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Abstract

This thesis analyses job data from three distinct High Performance Computing (HPC) systems to
propose actionable e!ciency improvements. We introduce the framework of Operational Data Anal-
ysis (ODA) in similar work and apply both descriptive and prescriptive ODA across the datasets.
The analysis aims to identify patterns, anomalies, and actionable improvements.

Our approach involves a thorough examination of each dataset, followed by methodical both
within and across the datasets. Key findings include the prevalence of short, single-node workloads
that are not well-suited to current HPC hardware, as well as the identification of a small group
of approximately 20 power users responsible for nearly half of all job submissions on all datasets.
Despite their experience, these users frequently overestimate wallclock times.

Based on these findings, we propose targeted improvements: implement workshop and feedback
mechanisms to help power users improve their wallclock time estimations; schedule short jobs
more e!ciently using aggressive backfilling strategies and a dedicated high-throughput queue; and
procure hardware specifically optimized for short, single-node workloads.

We further explore job simulators to demonstrate the impact of the stated improvements. To this
end, we set up the OpenDC job simulator with our target hardware and workloads. However, the
simulation results were limited by constraints within the OpenDC framework As a way forward, we
suggest switching to a more suitable simulator or combining multiple simulators, such as OpenDC
and Batsim—to leverage their respective strengths and produce more meaningful results.

To our knowledge, this study is the first to derive general HPC system recommendations based
on the cross-analysis of multiple real-world HPC job datasets, o”ering a general foundation for HPC
e!ciency improvements.
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Chapter 1

Introduction

1.1 Operational Data Analytics

High-Performance Computing (HPC) systems form an important pillar in our modern society by
enabling fields like earthquake prediction, climate analysis and artificial intelligence. In recent years
both the application fields and demand for processing power are growing explosively [23], especially
with the trend of deep learning AI. This results in the emergence of the first exascale systems that
face significant operational challenges due to unprecedented complexity. To fulfill this operational
demand, improving the speed, e!ciency, and reliability of these systems is vital. A term named
Operational Data Analytics (ODA) was coined by Bourassa et al. [3] in the context of optimiz-
ing cooling systems at the National Energy Research Scientific Computing Center (NERSC) and
expanded on by Netti et al.[20] into a general conceptual Framework with the goal of ”continuous
monitoring, archiving, and analysis of near real-time performance data, providing immediately ac-
tionable information for multiple operational uses.”[21] In this bachelor thesis we aim to produce
descriptive and prescriptive ODA on the application layer across di”erent HPC system datasets by
analyzing their submitted job data. In our analysis, we will identify patterns and anomalies within
each individual dataset, as well as across all datasets collectively. Based on these findings, we will
provide recommendations for potential improvements. Additionally, we will implement an HPC
simulator to analyse the results of our datasets and to evaluate the impact of proposed changes. To
our knowledge, this is the first academic study that systematically compares HPC job data across
multiple supercomputing systems.

1.2 Motivation

By analyzing historical job data multiple high-performance computing (HPC) systems, we aim to
produce valuable insights for operational improvements. We will be able to visualize and examine
both user and system behavior, allowing us to identify patterns and anomalies. With these insights
we can form recommendations for improving user behavior, scheduling strategies and resource allo-
cation. To evaluate the potential impact of these improvements, we will employ an HPC simulator.
Given the scale of HPC environments, even small improvements scale up to significant gains in
speed and e!ciency.
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Chapter 1. Introduction

1.3 Challenges

Publicly available HPC Job datasets are rare, The three datasets explored in this thesis have all
been released recently: the Marconi100 dataset from 2023 [2], the NREL Eagle dataset from 2023
[7] and the Fugaku dataset from 2024 [1]. Dataset size can also be a constraint, for example the
Marconi100 dataset has a total size of 400GB. However, it is a manageable constraint since the job
data subset size, in this case, is at most 27GB. Moreover, available HPC simulators are relatively
niche tools with limited documentation and unique technical constraints. We will explore these
simulators as part of the thesis.

1.4 Goals

We methodically analyse metrics related to job submissions, scheduling, and anonymized user
behavior from three HPC systems. Our goal is to identify patterns and anomalies across these
systems to uncover insights and form improvement proposals. These proposed changes will then be
tested using an HPC simulator to evaluate their potential e”ectiveness in realistic scenarios.
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Chapter 2

Related Work

A methodological groundwork for what we are doing was laid out by Netti et al. called ”Op-
erational Data Analytics” [20], combining the popular HPC frameworks ”4-Pillar Framework for
Energy-E!cient HPC Data Centers” [24] and the ”Four Types of Data Analytics” [13]. The 4 pillar
framework ”provides a classification [...] in the form of building infrastructure, system hardware,
system software and applications.” [20] The four types of data analytics ”describe the typology of
the underlying analytics techniques. The four types are descriptive, diagnostic, predictive and pre-
scriptive analytics.” [20] This thesis focuses on the Applications pillar, which concerns ”individual
workloads as well as the workload mix executed on a system. An application can be considered
a unit of work, since the goal of an HPC system is to find new scientific insight using software
applications” [24]. As our work involves the analysis of historical HPC job data, we are particularly
concerned with identifying behavioral patterns and system dynamics. Our analytical approach
falls under both descriptive and prescriptive analytics as we summarize historical data to uncover
patterns and test actionable recommendations for improving workload management and system
e!ciency.
For ODA, the operational data of an HPC system needs to be collected in the first place. ”In many
cases, the data collection agents are proprietary or self-developed software that are tailor-made to
the specific requirements of the site.” [21] The data collection implementations are also the most
labor-intensive parts of the ODA process. On the other hand, channeling the data over a message
bus to databases, and analyzing the data is generally done over o” the shelf tools. [21] Figure 2.1
shows an overview of di”erent HPC facilities (rows) and the tools they use for the ODA process
(columns).
The comprehensive survey by Ott et al. [21] shows that the primary use cases for ODA can be
grouped into three categories: optimizing facility infrastructure, managing power and energy and
improving strategic planning. A lot of analytical tools exist for the purpose of descriptive analysis,
a topic we are also focusing on in our work. An example implementation can be seen by Chan
[5] using Grafana for historical and real time resource analytics for the ”Savio Supercluster”. De-
scriptive research on historical HPC job data, similar to this thesis, has also been conducted by
Chu et al. [6], who analysed node energy consumption, job failures, and node-job correlations on
SURF Lisa—a Dutch HPC system comprising 338 nodes and primarily used by universities and
researchers. Our approach is novel in that we analyse data across multiple HPC systems, enabling
cross-system comparisons and broader insights.
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Chapter 2. Related Work

Figure 2.1: ODA Tools used by di”erent HPC facilities. Source: [21]

In addition to descriptive analytics, predictive analytics also has been growing in recent re-
search. One area involves predicting the runtime of submitted jobs using various machine learning
techniques [17]. Other studies explore machine learning-based online performance prediction for
parallelization and task scheduling [14], as well as classification and prediction of job resource
consumption on HPC platforms [9].
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Chapter 3

Methods

3.1 Technical Analysis Setup

We are interested in the publicly available job data of three HPC systems:

Fugaku: Provided by the RIKEN Center for Computational Science. Available at https://
zenodo.org/records/11467483. Download size: 26 GB.

M100: From CINECA. Dataset accessible via https://data.openei.org/submissions/5860.
Download size: 401 GB.

Eagle: From the U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory
(NREL). Available at https://gitlab.com/ecs-lab/exadata/-/tree/main. Download size:
240 MB.

While the Fugaku and Eagle datasets are already job-centric, the Marconi 100 dataset contains
additional metrics such as power consumption and temperature, which are outside the scope of our
analysis. Therefore, we extract only the relevant job data of the Marconi100 dataset by filtering
for the job table plugin in the directory structure. The resulting subset of job data has a size of
217 MB.
The full analysis workflow is done using Python with a range of Python libraries. All datasets
are provided in the .parquet format and are loaded into memory using the pyarrow library. The
data is then converted into a pandas DataFrame, enabling flexible table manipulation and analysis.
Visualizations are generated using the Matplotlib and seaborn libraries, while regression analysis
is conducted with SciPy.
Reading the parquet files into the panda dataframe requires north of 256GB memory. We will
be using a high-performance computing cluster funded by the University of Basel, ”miniHPC” to
proces large in memory computations.

3.1.1 Parquet

”Apache Parquet is an open source, column-oriented data file format designed for e!cient data
storage and retrieval.” [22]. An advantage of the column oriented data structure is its positive
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Chapter 3. Methods

impact on data compression since values of the same type are grouped together. Before compres-
sion, Parquet applies encoding strategies to represent the data more compactly. After encoding,
a compression algorithm is applied to the data. Parquet supports a range of compression codecs,
allowing for optimization based on the data’s characteristics [22]. The format has become a popular
tool for storing and processing data in analytics pipelines.

3.2 Analysis Methodology

Each dataset o”ers a unique set of features (columns). Our objective is to explore these features
both individually and across datasets. We construct a table with the datasets as columns and
the available features as rows. Next, we group related features into broader ”dimensions” to help
formulate methodical analysis questions based on both dimensions and datasets.

Table 3.1: Grouping relevant features of Marconi100, Fugaku and Eagle datasets.

Dimension Feature Marconi100 Fugaku Eagle

Scheduling

Wall-clock run time run time
(seconds)

duration
(seconds)

run time
(seconds)

Job submission time submit time
(datetime)

adt
(datetime)

submit time
(datetime)

Job start time start time
(datetime)

sdt
(datetime)

start time
(datetime)

Job end time end time
(datetime)

edt
(datetime)

end time
(datetime)

Job completion state job state
(CANCELLED, FAILED,

COMPLETED, TIMEOUT,

OUT OF MEMORY,

NODE FAIL,

PREEMPTED)

exit state
(completed, failed)

state
(CANCELLED,

COMPLETED, FAILED,

TIMEOUT, NODE FAIL,

OUT OF MEMORY,

PENDING, RUNNING)

Reason for
pending/failed state

state reason
(string)

Average job idle time idle time ave
(seconds)

Threads per core
required by job

threads per core

Number of tasks
requested by job

num tasks

Continued on next page
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Table 3.1 – continued from previous page

Dimension Feature Marconi100 Fugaku Eagle

CPU statistics perf1 (exec cycles)
perf6 (sleep cycles)
sctmut (sys. CPU
time, ms)
usctmut (user CPU
time, ms)

Tasks per node/socket ntasks per node
ntasks per socket

Resources

Requested
wall-clock time

time limit
(minutes)

elpl
(seconds)

wallclock req
(seconds)

Requested processors tres req str cnumr processors req

Required
cores per socket

cores per socket

Requested nodes tres req str nnumr nodes req

Allocated nodes tres alloc str nnuma

Allocated CPUs tres alloc str cnumat

Requested memory tres req str mem req

Allocated memory tres alloc str msza
(only 3

unique values)

Requested GPUs tres req str gpus req

Allocated GPUs tres alloc str

Used amount of
processors

cnumut

Used amount of
nodes

nnumu

Job can share nodes shared
(string: ’0’ or ’OK’)

Contiguous nodes
requested

contiguous

Used memory mmszu

Continued on next page
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Table 3.1 – continued from previous page

Dimension Feature Marconi100 Fugaku Eagle

Node frequency
requested

freq req
(megahertz)

Node frequency
allocated

freq alloc
(megahertz)

Floating point ops/sec flops

Memory bandwidth mbwidth
(bytes)

Memory limit exceeded mem per cpu
(per CPU)
mem per node
(per Node)
(boolean)

Performance class pclass
(e.g. memory- or

compute-bound)

User Associated user name user id usr user

3.2.1 Dataset Analysis Framework

Based on the available feature and dimension information, we are now able to formulate targeted
analysis questions for each dataset.

1. Cross-System Analysis (Marconi, Fugaku, Eagle)

(1.1) Metadata

1.1.1. Total number of submitted jobs.

1.1.2. Timeframe of job submissions.

1.1.3. Overview of the hardware setup.

(1.2) Scheduling Analysis

1.2.1. Histogram of wall-clock run time, including the median, to analyse job duration
(A.1).

1.2.2. Histogram of job wait time (submission time - start time), including the median, to
analyse job scheduling duration (A.2).

1.2.3. Histogram of job exit states (A.3).

1.2.4. Analysis of job arrivals throughout day, week and year to highlight workload sub-
mission load balancing (A.4, A.5, A.6).

1.2.5. Analysis of wait times throughout day, week and year to highlight periods with the
lowest average wait time (A.7, A.8, A.9).
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Chapter 3. Methods

(1.3) Resource Analysis

1.3.1. Histogram of requested nodes per job (A.10, A.11, A.12).

1.3.2. Histogram of requested processors per job (A.13).

(1.4) Scheduling vs. Resources

1.4.1. Histogram of job node seconds (wall-clock run time → requested nodes) (A.14).

1.4.2. Histogram of job processor seconds (wall-clock run time → requested processors)
(A.15).

1.4.3. Analysis of time limit usage for completed jobs to determine how much users over-
estimate wallclock runtime (A.16).

1.4.4. Comparison of wait time and requested processor wall-clock to analyse if larger
resource requests increase wait times (A.17).

1.4.5. Comparison of unsuccessful job rate and processor wall-clock runtime to analyse if
long high resource jobs are more likely to fail (A.18).

(1.5) Scheduling vs. User Behavior

1.5.1. Top 20 users by job submission count to identify power users queuing a significant
amount of jobs (A.19).

1.5.2. Comparison of wallclock usage e!ciency and number of submitted jobs to analyse
if power users are better at estimating wallclock time (A.20).

1.5.3. Top 20 users by total overestimated processor time to identify the least e!cient users
in wall-clock estimation (A.21).

1.5.4. Top 20 users by total wall-clock processor-seconds to identify top users by allocation
area (A.22).

1.5.5. Highlighting top 20 users by submitted jobs, total processor time and overestimated
requested time to see overlap in the usage metrics (A.23).

2. Fugaku-Specific Analysis

(2.1) Scheduling

2.1.1. Comparison of execution cycles and wallclock runtime to analyse scaling behavior
(A.24).

2.1.2. Comparison of sleep cycles and wallclock runtime to analyse scaling behavior (A.25).

2.1.3. Analysis of the execution-to-sleep cycle ratio compared to wallclock runtime (A.26).

(2.2) Resources

2.2.1. Comparison of requested and used processors to determine actual usage (A.27).

2.2.2. Comparison of requested and used processors grouped by requested processors (A.28).

2.2.3. Comparison of requested and allocated nodes to determine allocation (A.29).

2.2.4. Comparison of requested and used nodes to determine actual usage (A.30).

2.2.5. Comparison of requested and used nodes grouped by requested nodes (A.31).

2.2.6. Comparison of allocated and used memory to determine over allocation of memory
(A.32).

2.2.7. Analysis of used memory and floating-point operations (flops) to see if flops scale
with memory usage (A.33).
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2.2.8. Analysis of flops and memory bandwidth to determine if higher bandwidth results
in higher flops (A.34).

2.2.9. Analysis of used memory vs. memory bandwidth to determine if memory usage
influences bandwidth (A.35).

2.2.10. Comparison of requested and allocated nodes grouped by requested nodes (A.36).

(2.3) Scheduling vs. Resources

2.3.1. Relationship between user/system CPU time and memory bandwidth (A.37).

2.3.2. Analysis of average job idle time vs. used nodes to determine if using more nodes
leads to longer idle times (A.38).

2.3.3. Analysis of execution-to-sleep cycles ratio compared to used processors to analyse if
using more processors leads to a higher ratio of sleep cycles (A.39).

(2.4) Resources vs. User Behavior

2.4.1. Analysis of user ID vs. underused resources to identify users who consistently un-
derutilize their requests (A.40).

3. Marconi-Specific Analysis

(3.1) Scheduling

3.1.1. Histogram of SLURM tasks requested by jobs (A.41).

(3.2) Resources

3.2.1. Histogram of requested memory amount (A.42).

3.2.2. Histogram of requested GPU amount (A.43).

3.2.3. Relationship between requested CPUs and GPUs for jobs demanding both (A.44).

3.2.4. Comparison of requested vs. allocated CPUs to determine over-allocation (A.45).

3.2.5. CPU Allocation Percentage grouped by requested processors (A.46).

3.2.6. Comparison of requested and allocated memory to determine over-allocation (A.47).

3.2.7. Memory Allocation Percentage grouped by requested memory (A.48).

3.2.8. Comparison of requested and allocated nodes to determine over-allocation (A.49).

3.2.9. Comparison of requested and allocated GPUs to determine over-allocation (A.50).

(3.3) Scheduling vs. Resources

3.3.1. Comparison of timeout percentage and requested wall-clock time to determine if
high or low runtime estimates are more likely to time out (A.51).

3.3.2. Comparison of job cancellation percentage and wait time to determine if longer wait
times lead to more cancellations (A.52).

3.3.3. Comparison of unsuccessful job rate and requested memory to analyse if memory
requirements impact completion probability (A.53).

4. Eagle-Specific Analysis

(4.1) Resources

4.1.1. Histogram of requested memory amount (A.54).

4.1.2. Histogram of requested GPU amount (A.55).

12
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4.1.3. Scatter plot analyzing the relationship between requested CPUs and GPUs for jobs
demanding both (A.56).

(4.2) Scheduling vs. Resources

4.2.1. Comparison of timeout rate and requested wall-clock time to determine if high or
low estimates are more likely to time out (A.57).

4.2.2. Comparison of job cancellation percentage and wait time to determine if longer wait
times lead to more cancellations (A.58).

4.2.3. Comparison of unsuccessful job rate and requested memory to analyse whether mem-
ory requirements impact completion probability (A.59).

3.3 Job Simulator

We start by comparing a range of available job simulators to evaluate their suitability for our
thesis. After formulating improvements, we aim to set up virtual HPC systems that replicate the
configurations observed in our datasets.

These virtual systems will be used to simulate job execution using our dataset workloads. By
comparing the simulated output with the actual workload data, we can compare the accuracy of
the simulation and establish a baseline behavior of the simulator.

Next, we introduce specific changes such as queue adjustments or scheduling policy modifications
into the simulator. By modifying both simulator parameters and workload characteristics, we can
explore how these changes a”ect system performance and job behavior. The results will be visualized
to evaluate the impact of our recommendations.

13



Chapter 4

Analysis

The complete set of analysis results is provided in Appendix A and is also organized and referenced
in Section 3.2.1. This chapter provides a summary of the main findings and highlights the most
significant results.

4.1 Hardware

Specification Marconi Fugaku Eagle

Total number of nodes 980 158,976 2,114

CPU cores per node 32 48 36

Available memory per node 256 GB 32 GiB
1728 nodes: 96GB
288 nodes: 192GB

Available GPUs per node 4 0
50 nodes

with 2 GPUs

Table 4.1: Hardware Overview of the Marconi, Fugaku, and Eagle Systems [10][15][18]

4.2 Marconi 100 Analysis

The Marconi 100 dataset comprises 6,236,347 job entries submitted between May 5, 2020, and
September 28, 2022. An analysis of the wallclock runtime histogram 4.1 reveals a median job
duration of only two seconds, indicating a strong prevalence of short-running tasks. Furthermore,
Figure 4.2 shows that a vast majority of these jobs request only a single node.
These characteristics display that the Marconi100 system is primarily utilized for short,

single-node computations rather than large-scale, high-performance computing tasks.
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Chapter 4. Analysis

Figure 4.1: Marconi 100 job wallclock runtime distribution.

Figure 4.2: Marconi 100 requested nodes distribution.
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Chapter 4. Analysis

Even though the majority of jobs are short and single node, the time delay between submission
and scheduling (wait time) remains relatively high as seen in the wait time histogram 4.3. Paired
with a very inaccurate wallclock time estimation across all users as seen in Figure 4.4 we suspect

that the wait times are relatively high due to ine!cient wallclock time estimations.

We see a correlation between the requested wallclock processor seconds (wallclock → requested
processors) and the requested wallclock runtime in Figure 4.5, however the high variation and the
low R2 value leave room for uncertainty.

Figure 4.3: Marconi 100 job wait time distribution.
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Chapter 4. Analysis

Figure 4.4: Marconi 100 usage of requested wallclock time.

Figure 4.5: Marconi 100 linear regression of wait time and requested processor wallclock seconds.
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Chapter 4. Analysis

When looking at user behavior we observe a correlation in job cancellation and waiting times
(4.6). Up to 104 seconds (↑166 minutes) the job cancellation rate scales linearly to 40% and with
waiting times longer than 106 seconds (↑11 days) we see a cancellation rate of up to 100%.

Figure 4.6: Marconi 100 linear regression of wait time and job cancellations.

When looking at total job submissions we see a small group of 20 users accounting for around
60% of total job submissions (4.7). The Marconi100 system has a small set of power users

accounting for over half of job submissions. Analysis of the relationship between wallclock
estimation e!ciency and the number of jobs submitted per user reveals no discernible correla-
tion (Figure 4.8). Users with extensive job submission experience do not demonstrate

improved accuracy in estimating wallclock usage.
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Figure 4.7: Marconi 100 linear regression of wait time and job cancellations.

Figure 4.8: Marconi 100 linear regression of wallclock usage e!ciency and number of submitted
jobs.
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4.3 Fugaku Analysis

The Fugaku dataset comprises 25,866,900 job entries submitted between March 1, 2021, and April
30, 2024. The median job wallclock runtime is 1253 seconds (↑21 minutes) 4.9 with 60% of jobs
being single node (4.10). The Fugaku system is utilized for long single to multi node

workloads. The majority of jobs use 10% or less of the estimated runtime (4.11). The Fugaku

Figure 4.9: Fugaku job wallclock runtime distribution.

workloads show relatively poor runtime estimations. When looking at total job submis-
sions we see a small group of 20 users accounting for around 40% of total job submissions (4.12).
The Fugaku system has a small set of power users accounting for 40% of job submis-

sions. Analysis of the relationship between wallclock estimation e!ciency and the number of jobs
submitted per user reveals no discernible correlation (Figure 4.11). Users with extensive job

submission experience do not demonstrate improved accuracy in estimating wallclock

usage.
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Figure 4.10: Fugaku requested nodes distribution.

Figure 4.11: Fugaku usage of requested wallclock time.
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Figure 4.12: Fugaku linear regression of wait time and job cancellations.

Figure 4.13: Fugaku linear regression of wallclock usage e!ciency and number of submitted jobs.
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4.4 Eagle Analysis

The Eagle dataset comprises 11,030,377 job entries submitted between November 14, 2018 and
February 02, 2023. The job wallclock histogram 4.14 reveals an even distribution of short and long
jobs, with a median job wallclock runtime of 336 seconds. The node distribution 4.15 shows a very
strong preference of single node workloads of 90%. The Eagle system is primarily utilized

for short to long single-node computations. The majority of jobs use 10% or less of the

Figure 4.14: Eagle job wallclock runtime distribution.

estimated runtime (4.16). The Eagle workloads show relatively poor runtime estimations.

When looking at total job submissions we see a small group of 20 users accounting for around 50%
of total job submissions 4.17. The Eagle system has a small set of power users accounting

for 50% of job submissions Analysis of the relationship between wallclock estimation e!ciency
and the number of jobs submitted per user reveals no discernible correlation (Figure 4.16). Users

with extensive job submission experience do not demonstrate improved accuracy in

estimating wallclock usage.
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Figure 4.15: Eagle requested nodes distribution

Figure 4.16: Eagle usage of requested wallclock time.
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Figure 4.17: Eagle linear regression of wait time and job cancellations.

Figure 4.18: Eagle linear regression of wallclock usage e!ciency and number of submitted jobs.
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4.5 Similarities

• All systems exhibit poor wallclock time estimation accuracy (A.16).

• A small subset of users contributes the majority of submitted jobs on all systems (A.19).

• Users with high submission frequency do not demonstrate improved wallclock estimation
accuracy (A.20).

• The majority of jobs on all systems are single-node workloads (A.10, A.11, A.12).

• System utilization peaks between 9 AM and 12 PM, and is lowest outside these hours (A.4,
A.5, A.6), resulting in reduced queue wait times between midnight and 9 AM (A.7, A.8, A.9).

• On Marconi and Eagle, GPU job requests show a partial correlation between the number of
requested processors and GPUs. However, a significant portion of the data also shows fixed
configurations, resulting in mixed patterns (A.44, A.56).

• Wait time correlates with requested wallclock processor runtime (wallclock → processors)
across all systems (A.2).

• On Marconi and Eagle, we see a correlation between wait time and job cancellations. Wait
times exceeding 105 seconds (↑28 hours) have up to 100% cancellation rate (A.52, A.58).

4.6 Anomalies

• Marconi shows a disproportionately high number of short-duration, single-node jobs (A.1,
A.10).

• Wallclock estimation errors on Marconi are worse compared to the other systems (A.16).

• In contrast to Marconi, Fugaku overallocates nodes by an average of 300%, with single-node
workloads contributing the most by being overallocated by approximately 500% on average
(A.36, A.49).

4.7 Recommendations

Our analysis reveals several areas for possible improvement. A significant finding is that a small
subgroup of ”power users” is responsible for a majority of the workload on all systems, however
these experienced users show no corresponding improvement in the accuracy of their wallclock time
estimations. This suggests that influencing a small group of users would result in a high degree
of change. Simple workshops or an automated post-job feedback system (e.g., ”1 hour out of an
estimated 30 hours wallclock time used”), would have an influence on these users and lead to more
e!cient scheduling. Predictive runtime estimation tools could also contribute to more accurate
wallclock time predictions.
Furthermore, we have a prevalence of single-node workloads on all systems. From a scheduling
perspective, policies like aggressive backfilling or creating dedicated high-throughput queues can be
implemented to optimize for this dominant job type. From a hardware perspective, single nodes
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with high flops per core and high memory for high-throughput serial processing could be added
instead of focusing solely on parallel computing.
All systems show underutilization during night hours, indicating potential for improved load bal-
ancing. Incentivizing job submissions during o”-peak times could lead to more e!cient resource
utilization.
Finally, we see that long wait times lead to high rates of user cancellations. Providing users with
an estimated start time could help them make better decisions, reducing the number of jobs left in
the queue only to be cancelled later.

The following concrete improvements are proposed:

• O”er workshops for power users to improve wallclock runtime estimation practices.

• Deploy an automated post-job feedback system to help users refine their future runtime esti-
mates.

• Apply aggressive backfilling strategies to increase scheduling e!ciency for short jobs.

• Establish a dedicated high-throughput queue and procure hardware for short, single-node
workloads.

• O”er incentives to encourage job submissions during o”-peak hours.

• Improve queue transparency by providing users with estimated job start times.
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Simulation

5.1 Available Simulators

We evaluated several available job simulators relevant to HPC analysis.
SimGrid is a long-established, high-performance simulation framework written in C++. It

provides scalable models for computation and networking and serves as the simulation backend for
other job simulators, for example Batsim. [4]

GridSim is an older Java-based simulator designed for Grid environments. Though no longer
maintained, it influenced the design of ALEA.[19]

Batsim builds on SimGrid and provides a decoupled architecture where scheduling logic is
separated from simulation execution.[8] It is convenient for research focused on custom scheduler
development and has plenty of user documentation.

AccaSim is a Python-based HPC workload simulator, however it has not seen active develop-
ment since 2018 and has very sparse user documentation. [11]

ALEA is an extension of GridSim with a library of standard scheduling algorithms. Like
AccaSim, it is no longer actively maintained and doesn’t have a lot of user documentation. [12]

OpenDC is a modern, cloud-focused simulator built in Kotlin with a visual, web-based interface.
It is actively developed and supports modeling of serverless and ML workloads. [16] Its focus on
ease of use and support for quick topology building make it an attractive choice, though it o”ers
less flexibility in low-level scheduling.

Our final decision was between Batsim and OpenDC, both of which are actively maintained
and provide su!cient user documentation. For this thesis, we chose to proceed withOpenDC. This
decision was primarily based on the fact that OpenDC’s input requirements are well-aligned with
our available hardware and workload data, and its simulation output is comparably informative to
that of Batsim.

While Batsim o”ers greater flexibility for scheduler customization, it relies on SimGrid to define
the hardware topology, which requires detailed and complex specification of nodes and interconnects.
In contrast, OpenDC supports a much simpler JSON-based topology configuration. This significant
advantage in ease of use, combined with easy integration of our datasets, made OpenDC the choice
for this work.
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5.2 OpenDC Setup

OpenDC requires three fundamental input files to run a simulation: the topology of the system, the
workload and the experiment configuration. The experiment file defines the scheduling policy,
output targets, and links to both the topology and workload files.

We begin by defining a topology file for each of the three systems used in this study: Marconi100,
Fugaku, and Eagle (B.1) (B.2) (B.3). A limitation of OpenDC is its current inability to natively
schedule jobs across multiple nodes. To accommodate this, we represent each system as a single
large node containing all hardware resources.

Next, we define the workload for OpenDC. The simulator expects the workload to be provided
in two .parquet files: tasks.parquet and fragments.parquet. These files must follow specific
Apache Arrow schemas (5.1) (5.2). The purpose of the tasks file is to define the workload arrival
time, length and hardware requirements. The fragments file serves to dynamically change the
workload requirements of the tasks workload. We will use the fragments file to model the actual
wallclock runtime while putting the wallclock runtime estimation into the tasks file. Another
caveat is the presence of cpu capacity and cpu usage fields that require MHZ values. These
are irrelevant in our analysis as we do not model power requirements or model the slowdown of
tasks when supplied with insu!cient cpu capacity. We generate both of these files from our own
workload files using python.

Listing 5.1: Schema for tasks.parquet defined in Python.

job schema = pa . schema ( [
pa . f i e l d ( ” id ” , pa . s t r i n g ( ) , nu l l a b l e=Fal se ) ,
pa . f i e l d ( ” submiss ion t ime ” , pa . in t64 ( ) , n u l l a b l e=Fal se ) ,
pa . f i e l d ( ” nature ” , pa . s t r i n g ( ) , nu l l a b l e=True ) ,
pa . f i e l d ( ” dead l ine ” , pa . in t64 ( ) , n u l l a b l e=True ) ,
pa . f i e l d ( ” durat ion ” , pa . in t64 ( ) , n u l l a b l e=Fal se ) ,
pa . f i e l d ( ” cpu count ” , pa . in t32 ( ) , nu l l a b l e=Fal se ) ,
pa . f i e l d ( ” cpu capac i ty ” , pa . f l o a t 6 4 ( ) , n u l l a b l e=False ) ,
pa . f i e l d ( ”mem capacity” , pa . in t64 ( ) , n u l l a b l e=Fal se ) ,

] )

Listing 5.2: Schema for fragments.parquet defined in Python.

fragment schema = pa . schema ( [
pa . f i e l d ( ” id ” , pa . s t r i n g ( ) , nu l l a b l e=Fal se ) ,
pa . f i e l d ( ” durat ion ” , pa . in t64 ( ) , n u l l a b l e=Fal se ) ,
pa . f i e l d ( ” cpu count ” , pa . in t32 ( ) , nu l l a b l e=Fal se ) ,
pa . f i e l d ( ” cpu usage ” , pa . f l o a t 6 4 ( ) , nu l l a b l e=Fal se ) ,

] )

Finally we define an experiment json file (5.3) that links to the topology and the workloads (work-
load folder containing tasks and fragments parquet files). The allocation policy is ”provisioned-
Cores”, in this case it does not make a di”erence however, since we defined big single node systems
and OpenDC doesn’t have workload allocation logic to split a workload among di”erent nodes. For
the export model we are interested in task, host and service metrics as these contain the relevant
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job information. The export interval prints the state of the virtual machine, as we are only inter-
ested in the finished state of the machine and not intermediate states, we set this to a very high
value to have one finished output. The scaling is set to ”NoDelay”, this disables any task slowdown
simulation with the MHZ logic of cpu capacity.

Listing 5.3: Experiment JSON for OpenDC

1 {
2 "name": "; Simulation",
3 "topologies": [
4 {
5 "pathToFile": "topology/toplogy.json"
6 }
7 ],
8 "workloads": [
9 {

10 "type": "ComputeWorkload",
11 "pathToFile": "workload"
12 "scalingPolicy": "NoDelay"
13 }
14 ],
15 "allocationPolicies": [
16 {
17 "type": "prefab",
18 "policyName": "ProvisionedCores"
19 }
20 ],
21 "exportModels": [
22 {
23 "exportInterval": 999999999,
24 "printFrequency": 360,
25 "filesToExport": [
26 "task",
27 "host",
28 "service"
29 ]
30 }
31 ]
32 }

5.3 Simulation Results

The simulated results of Marconi Fugaku and Eagle show that the runtime distribution (5.1) is an
exact replica of the original runtime. This occurs due to the discrete-event simulation scheduling of
OpenDC. When comparing the simulated wait time distributions, we see much fewer jobs appearing
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in the distribution in the first place. This is due to the scheduling field being often empty in the
simulator output, we assume an empty scheduling field of the simulator output signalizes no wait
time. This shows the simulator being much more e!cient at scheduling, probably a result of our
single node topology setup. Furthermore, node sharing is currently not simulated and leads to high
processor overallocation as seen in Figure A.45.

Figure 5.1: Marconi 100 simulated job wallclock runtime distribution.
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Figure 5.2: Marconi 100 simulated job wait time distribution.

Figure 5.3: Eagle simulated job wallclock runtime distribution.
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Figure 5.4: Eagle simulated job wait time distribution.

Figure 5.5: Fugaku simulated job wait time distribution.
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Chapter 6

Discussion

6.1 ODA of HPC Systems

In our operational data analysis, we systematically examined the available dataset features, or-
ganized them along dimensions and developed a structured set of relevant analytical questions,
which we then explored in detail. The overall approach is methodical and comprehensive, leaving
little room for improvement. Our descriptive findings are thorough, and the resulting prescriptive
recommendations are both relevant and well-supported by the analysis.

6.2 Simulation with OpenDC

Simulating our proposed improvements using OpenDC fell short of expectations. The two main
limitations encountered were OpenDC’s inability to automatically distribute workloads across mul-
tiple nodes, and its rigid discrete-event scheduler, which cannot be easily replaced or extended with
alternative strategies such as backfilling.

Although we made e”orts to extend OpenDC’s functionality through direct code modifications,
its fragmented codebase made progress slow, ultimately rendering these attempts unsuccessful. As
a result, we were unable to simulate changes to the hardware topology or the scheduling logic. In
conclusion, our simulation objectives could not be realized and OpenDC proved to be an unsuitable
tool for our goals.
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Conclusion

7.1 Cross-System Operational Data Analysis

While many existing studies and tools focus on optimizing individual HPC systems through de-
scriptive analysis, the growing availability of public HPC datasets now enables comparative analyses
across multiple, independent systems. Such cross-system insights o”er more generalizable conclu-
sions that are not tied to a single infrastructure. This thesis represents a first step in that direction,
providing both descriptive and prescriptive operational data analysis (ODA) across three distinct,
job-centric HPC datasets.

We performed a thorough examination of each dataset and conducted single and comparative
descriptive analysis across them. This enabled us to identify recurring patterns and anomalies.
Based on these findings, we formulated a set of actionable recommendations for improving HPC
system performance in general.

One particularly promising improvement is placing greater emphasis on e!ciently handling
short, sequential jobs within HPC environments traditionally optimized for large-scale parallel work-
loads. This approach not only enables faster processing of smaller jobs but also reduces scheduling
interference with larger jobs. We predict an increased overall throughput and reduced power con-
sumption.

7.2 Outlook

The promising improvements identified in this thesis now warrant validation through simulation.
While our attempts using OpenDC were limited by its lack of support for multi-node scheduling
and flexible scheduling strategies, future work could either extend OpenDC’s capabilities or tran-
sition to an alternative such as Batsim. As the author, I propose a dual approach: leveraging
OpenDC’s great capabilities of modeling power consumption and leveraging Batsim for exploring
scheduling strategies due to its flexibility in scheduler design. Using both simulators could provide a
comprehensive simulation framework, enabling evaluation of both energy e!ciency and scheduling
performance.

35



Bibliography

[1] Francesco Antici, Andrea Bartolini, Jens Domke, Zeynep Kiziltan, Keiji Yamamoto, et al.
F-data: A fugaku workload dataset for job-centric predictive modelling in hpc systems. 2024.

[2] Francesco Antici, Mohsen Seyedkazemi Ardebili, Andrea Bartolini, and Zeynep Kiziltan.
Pm100: A job power consumption dataset of a large-scale production hpc system. In Proceed-

ings of the SC’23 Workshops of the International Conference on High Performance Computing,

Network, Storage, and Analysis, pages 1812–1819, 2023.

[3] Norman Bourassa, Walker Johnson, Je” Broughton, Deirdre McShane Carter, Sadie Joy,
Raphael Vitti, and Peter Seto. Operational data analytics: Optimizing the national energy
research scientific computing center cooling systems. In Workshop Proceedings of the 48th

International Conference on Parallel Processing, pages 1–7, 2019.

[4] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric Suter. Low-
ering entry barriers to developing custom simulators of distributed applications and platforms
with simgrid. Parallel Computing, page 103125, 2025.

[5] Nicolas Chan. A resource utilization analytics platform using grafana and telegraf for the savio
supercluster. In Practice and Experience in Advanced Research Computing 2019: Rise of the

Machines (learning), pages 1–6. 2019.

[6] Xiaoyu Chu, Daniel Hofstätter, Shashikant Ilager, Sacheendra Talluri, Duncan Kampert,
Damian Podareanu, Dmitry Duplyakin, Ivona Brandic, and Alexandru Iosup. Generic and
ml workloads in an hpc datacenter: Node energy, job failures, and node-job analysis. In 2024

IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS), pages
710–719. IEEE, 2024.

[7] Dmitry Duplyakin and Kevin Menear. Nrel eagle supercomputer jobs. Open
Energy Data Initiative (OEDI), National Renewable Energy Laboratory,
https://data.openei.org/submissions/5860, 2023. Accessed: 2025-06-11.

[8] Pierre-François Dutot, Michael Mercier, Millian Poquet, and Olivier Richard. Batsim: a re-
alistic language-independent resources and jobs management systems simulator. In Workshop

on Job Scheduling Strategies for Parallel Processing, pages 178–197. Springer, 2015.
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[12] Dalibor Klusáček, Mehmet Soysal, and Frédéric Suter. Alea–complex job scheduling simulator.
In International Conference on Parallel Processing and Applied Mathematics, pages 217–229.
Springer, 2019.

[13] Katerina Lepenioti, Alexandros Bousdekis, Dimitris Apostolou, and Gregoris Mentzas. Pre-
scriptive analytics: Literature review and research challenges. International Journal of Infor-
mation Management, 50:57–70, 2020.

[14] Jiangtian Li, Xiaosong Ma, Karan Singh, Martin Schulz, Bronis R de Supinski, and Sally A
McKee. Machine learning based online performance prediction for runtime parallelization and
task scheduling. In 2009 IEEE international symposium on performance analysis of systems

and software, pages 89–100. IEEE, 2009.

[15] Mervi Mantsinen. Welcome to marconi100: a new tool for fu-
sion research. https://fusion.bsc.es/index.php/2020/06/11/
welcome-to-marconi100-a-new-tool-for-fusion-research/, June 2020. Accessed
on 2025-06-12.

[16] Fabian Mastenbroek, Georgios Andreadis, Soufiane Jounaid, Wenchen Lai, Jacob Burley, Jaro
Bosch, Erwin Van Eyk, Laurens Versluis, Vincent Van Beek, and Alexandru Iosup. Opendc
2.0: Convenient modeling and simulation of emerging technologies in cloud datacenters. In
2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing

(CCGrid), pages 455–464. IEEE, 2021.

[17] Kevin Menear, Ambarish Nag, Jordan Perr-Sauer, Monte Lunacek, Kristi Potter, and Dmitry
Duplyakin. Mastering hpc runtime prediction: From observing patterns to a methodological
approach. In Practice and Experience in Advanced Research Computing 2023: Computing for

the Common Good, pages 75–85. 2023.

[18] Kris Munch and Aaron Andersen. The eagle supercomputer: System and user environment.
Technical Report NREL/TP-2C00-86370, National Renewable Energy Laboratory (NREL),
September 2023.

[19] Manzur Murshed, Rajkumar Buyya, and David Abramson. Gridsim: A toolkit for the modeling
and simulation of global grids. Monash University Journal, 1, 2001.

[20] Alessio Netti, Woong Shin, Michael Ott, Torsten Wilde, and Natalie Bates. A conceptual
framework for hpc operational data analytics. In 2021 IEEE International Conference on

Cluster Computing (CLUSTER), pages 596–603. IEEE, 2021.

[21] Michael Ott, Woong Shin, Norman Bourassa, Torsten Wilde, Stefan Ceballos, Melissa Ro-
manus, and Natalie Bates. Global experiences with hpc operational data measurement, collec-
tion and analysis. In 2020 IEEE International Conference on Cluster Computing (CLUSTER),
pages 499–508. IEEE, 2020.

37

https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://fusion.bsc.es/index.php/2020/06/11/welcome-to-marconi100-a-new-tool-for-fusion-research/
https://fusion.bsc.es/index.php/2020/06/11/welcome-to-marconi100-a-new-tool-for-fusion-research/


[22] The Apache Software Foundation. Apache parquet documentation: Overview. https://
parquet.apache.org/docs/. Accessed on 2024-06-10.

[23] Jia Wei, Mo Chen, Longxiang Wang, Pei Ren, Yujia Lei, Yuqi Qu, Qiyu Jiang, Xiaoshe Dong,
Weiguo Wu, Qiang Wang, et al. Status, challenges and trends of data-intensive supercomput-
ing. CCF Transactions on High Performance Computing, 4(2):211–230, 2022.

[24] Torsten Wilde, Axel Auweter, and Hayk Shoukourian. The 4 pillar framework for energy
e!cient hpc data centers. Computer Science-Research and Development, 29:241–251, 2014.

38

https://parquet.apache.org/docs/
https://parquet.apache.org/docs/


Appendix A

Figures

A.0.1 Cross-System Analysis
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Figure A.1: Histograms of wall-clock run time across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.2: Histograms of job wait time across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.3: Histograms of job exit states across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.4: Analysis of job arrivals (Marconi).
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Figure A.5: Analysis of job arrivals (Fugaku).
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Figure A.6: Analysis of job arrivals (Eagle).
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Figure A.7: Analysis of wait times (Marconi).
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Figure A.8: Analysis of wait times (Fugaku).
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Figure A.9: Analysis of wait times (Eagle).
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Figure A.10: Histograms of requested nodes per job (Marconi).

Figure A.11: Histograms of requested nodes per job (Fugaku).
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Figure A.12: Histograms of requested nodes per job (Eagle).
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Figure A.13: Histograms of requested processors per job across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.14: Histograms of job node seconds across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.15: Histograms of job processor seconds across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.16: Analysis of time limit usage for completed jobs across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.17: Comparison of wait time and requested processor wall-clock across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.18: Comparison of unsuccessful job rate and processor wall-clock runtime across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.19: Top 20 users by job submission count across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.20: Wall-clock usage e!ciency vs. number of submitted jobs across systems.

(a) Marconi

(b) Fugaku

(c) Eagle

58



Figure A.21: Top 20 users by total overestimated processor time across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.22: Top 20 users by total wall-clock processor-seconds across systems.

(a) Marconi

(b) Fugaku

(c) Eagle
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Figure A.23: Highlighting top 20 users by the sum of the normalized score of submitted jobs, total
processor time and overestimated requested time.

(a) Marconi

(b) Fugaku

(c) Eagle
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A.0.2 Fugaku-Specific Analysis

Figure A.24: Fugaku Comparison of execution cycles and wallclock runtime.

62



Figure A.25: Fugaku Comparison of sleep cycles and wallclock runtime.

Figure A.26: Fugaku Analysis of the execution-to-sleep cycle ratio compared to wallclock runtime.
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Figure A.27: Fugaku Comparison of requested and used processors.

Figure A.28: Fugaku Comparison of requested and used processors grouped by requested processors.
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Figure A.29: Fugaku Comparison of requested and allocated nodes.

Figure A.30: Fugaku Comparison of requested and used nodes.
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Figure A.31: Fugaku Comparison of requested and used nodes grouped by requested nodes.
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Figure A.32: Fugaku Comparison of allocated and used memory.
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Figure A.33: Fugaku Analysis of used memory and floating-point operations (flops).

Figure A.34: Fugaku Analysis of flops and memory bandwidth.
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Figure A.35: Fugaku Analysis of used memory vs. memory bandwidth.

Figure A.36: Fugaku Comparison of requested and allocated nodes grouped by requested nodes.
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Figure A.37: Fugaku Relationship between user/system CPU time and memory bandwidth.

Figure A.38: Fugaku Analysis of average job idle time vs. used nodes.
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Figure A.39: Fugaku Analysis of execution-to-sleep cycles ratio compared to used processors.

Figure A.40: Fugaku Analysis of user ID vs. underused resources.
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A.0.3 Marconi-Specific Analysis

Figure A.41: Marconi100 Histogram of SLURM tasks requested by jobs.
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Figure A.42: Marconi100 Histogram of requested memory amount.

Figure A.43: Marconi100 Histogram of requested GPU amount.
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Figure A.44: Marconi100 Relationship between requested CPUs and GPUs.
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Figure A.45: Marconi100 Comparison of requested vs. allocated CPUs.
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Figure A.46: Marconi100 CPU Allocation Percentage grouped by requested processors.
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Figure A.47: Marconi100 Comparison of requested and allocated memory.
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Figure A.48: Marconi100 Memory Allocation Percentage grouped by requested memory.
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Figure A.49: Marconi100 Comparison of requested and allocated nodes.
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Figure A.50: Marconi100 Comparison of requested and allocated GPUs.

Figure A.51: Marconi100 Comparison of timeout percentage and requested wall-clock time.
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Figure A.52: Marconi100 Comparison of job cancellation percentage and wait time.

Figure A.53: Marconi100 Comparison of unsuccessful job rate and requested memory.
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A.0.4 Eagle-Specific Analysis

Figure A.54: Eagle Histogram of requested memory amount.
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Figure A.55: Eagle Histogram of requested GPU amount.

Figure A.56: Eagle Scatter plot analyzing the relationship between requested CPUs and GPUs.
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Figure A.57: Eagle Comparison of timeout rate and requested wall-clock time.

Figure A.58: Eagle Comparison of job cancellation percentage and wait time.
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Figure A.59: Eagle Comparison of unsuccessful job rate and requested memory.
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Appendix B

Topology Setup

Listing B.1: OpenDC Topology JSON for Marconi100

1 {
2 "clusters": [
3 {
4 "name": "Marconi100",
5 "count": 1,
6 "hosts": [
7 {
8 "name": "IBM Power AC922",
9 "count": 1,

10 "cpu": {
11 "vendor": "IBM",
12 "modelName": "POWER9 8335-GTG",
13 "arch": "ppc64le",
14 "coreCount": 32,
15 "coreSpeed": 2600,
16 "count": 980
17 },
18 "memory": {
19 "vendor": "unknown",
20 "modelName": "unknown",
21 "arch": "unknown",
22 "memorySize": "250880 GB",
23 "memorySpeed": -1
24 }
25 }
26 ]
27 }
28 ]
29 }
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Listing B.2: OpenDC Topology JSON for Fugaku

1 {
2 "clusters": [
3 {
4 "name": "Fugaku",
5 "count": 1,
6 "hosts": [
7 {
8 "name": "Fujitsu A64FX",
9 "count": 1,

10 "cpu": {
11 "vendor": "Fujitsu",
12 "modelName": "A64FX",
13 "arch": "arm",
14 "coreCount": 48,
15 "coreSpeed": 2200,
16 "count": 158976
17 },
18 "memory": {
19 "vendor": "HBM2",
20 "modelName": "unknown",
21 "arch": "unknown",
22 "memorySize": "5085594 GiB",
23 "memorySpeed": -1
24 }
25 }
26 ]
27 }
28 ]
29 }
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Listing B.3: OpenDC Topology JSON for Eagle

1 {
2 "clusters": [
3 {
4 "name": "Eagle",
5 "count": 1,
6 "hosts": [
7 {
8 "name": "Eagle Node",
9 "count": 1,

10 "cpu": {
11 "vendor": "Intel",
12 "modelName": "Xeon Gold Skylake",
13 "arch": "x86_64",
14 "coreCount": 36,
15 "coreSpeed": 3000,
16 "count": 2114
17 },
18 "memory": {
19 "vendor": "unknown",
20 "modelName": "unknown",
21 "arch": "unknown",
22 "memorySize": "221184 GB",
23 "memorySpeed": -1
24 }
25 }
26 ]
27 }
28 ]
29 }
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