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Chapter 1

Introduction

In today’s world, performance and productivity are often all that counts. Most program-
ming languages focus on either performance (i.e. shorter execution times) or productivity
(i.e. low development effort). For example, C and C++ provide high performance but
at the cost of productivity, whereas Python sacrifices performance for high productivity.
The Julia language positioned itself as a trade-off between performance and development
effort [1], although it comes with its own approach to distributed computing [2]. When
adapting applications to today’s increasingly distributed architectures, users need to ac-
count for an increased development cost, independently of the language, to integrate with
inter-process communication libraries like MPI.

1.1 Motivation

A preliminary study [3] investigated and compared the performance, development effort,
and scalability of graph benchmarking algorithms from the GAP benchmarking suite [4]
across multiple execution paradigms. This study investigated implementations in C++,
Julia, Python, and DAPHNE [5]. Rust is another programming language worthy of com-
parison, bringing a balance between performance and productivity along with a focus
on safety and concurrency. As such, Rust becomes particularly relevant for scalable dis-
tributed applications.

1.2 Objectives

In this project, we originally aimed to expand on the findings of the preliminary study [3]
by exploring Rust as a potential candidate for the study’s comparison due to its poten-
tial for performance and productivity, and its focus on safe concurrency. However, parts
of Rust’s ecosystem are still in an early stage, leading us to redefine our goals for this
project. We originally planned to implement four of the graph-based kernels described
by the GAP benchmarking suite, namely Connected Components, Breadth-First Search,
Triangle Counting, and Page-Rank, in Rust to compare its performance and the develop-
ment effort against the results from the preliminary study [3]. Due to a lack of required
functionalities in Rust’s sparse linear algebra ecosystem, we have revised our objectives
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to focus on the general suitability of Rust for High-Performance Computing (HPC). For
this, we evaluate the performance of Rust on two computational workloads: k-means
clustering and the Mandelbrot set.

1.3 Contribution

We make two contributions. First, we successfully parallelise k-means clustering and the
Mandelbrot set in Rust. Additionally, we notice that k-means clustering is a questionable
choice as a benchmarking workload as its performance is highly sensitive on the initial
parameters and the dataset used. Our second contribution is in establishing that, due
to its non-standard MPI syntax, immature sparse linear algebra support and different
approach to shared memory parallelism, Rust is not yet mature enough for wide-spread
adoption in HPC communities, albeit showing potential for HPC applications due to its
focus on safe concurrency, which would help reduce the number of concurrency-related
bugs.

1.4 Outline

We begin by presenting the Rust programming language, highlighting its quirks and fea-
tures that are relevant for distributed and parallel computing in Chapter 2. We further
present the current state of its library ecosystem on the topics of shared memory paral-
lelism, inter-process message-passing, and (sparse) linear algebra. We continue with the
shift in objectives in Section 2.3 and describe the computational workloads we use on a
theoretical level. In Chapter 3, we introduce the algorithms we use, our approaches to
their parallelisation, and their implementation details. In Chapter 4, we cover the metrics
we collect, how we evaluate them, and the measures we take to control the environment
of our experiments. We continue by presenting our results and their analysis in Chapter 4
and conclude with Chapter 5.
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Chapter 2

Background

In this chapter, we cover the origins of Rust and some of its design choices and paradigms,
uses in the industry, and the current state of Rust’s HPC ecosystem. Further, we discuss
the state of (sparse) linear algebra support in Rust and why we redefined our objectives.
Finally, we go over the updated project plan.

2.1 The Rust programming language

Rust is a general purpose programming language, designed in 2006 by Mozilla Research
employee Graydon Hoare [0]. Rust was sponsored by Mozilla in 2009, with the first
release appearing in 2012, and the first stable release in 2015. In 2021, ownership of all
trademarks and domain names were transferred to the Rust Foundation, newly founded by
Amazon Web Services (AWS), Google, Huawei, Microsoft, and Mozilla. Rust emphasizes
performance, type safety, and concurrency, while enforcing memory safety. Instead of a
conventional garbage collector, Rust enforces the Resource Acquisition Is Initialisation
(RAII) idiom, meaning that variables are automatically freed when they go out of scope.
Moreover, Rust ensures memory-safety and thread-safety with its ownership system and
so-called borrow checker, which tracks the lifetime of references at compile time [7]. Rust
does not enforce a particular programming paradigm, but takes ideas from both functional
programming and object-oriented programming. The following sections are meant to
highlight some key features of Rust that we use in this project. For those interested in
learning more about the language, a good starting point is the official book [%], which is
also freely available online!.

2.1.1 Functional programming

We begin by discussing some functional programming aspects in Rust. As an example,
let us take a look at a simple for loop, in which we iterate from 0 to 10 (exclusive). This
loop can be written in an imperative programming style, shown in Listing 2.1, or in a
functional programming style by converting the range 0..10 into an iterator, as shown in
Listing 2.2.

https://doc.rust-lang.org/book/, accessed June 15, 2025.
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Listing 2.1: Imperative-style for loop in Rust, iterating from 0 to 10 (exclusive)

1 for i in 0..10 {
2 // loop body

Listing 2.2: Same for loop as Listing 2.1, written in functional programming style

1 (0..10) // Create a range from 0 to 10 (exclusive)
2 .into_iter() // Convert the range into an iterator
3 .for_each(|lil { /* loop body */ }) // Apply closure to each item

The functional programming side of Rust comprises two major concepts, closures and
iterators, which we discuss in more details next.

Closures

In Listing 2.2, the for_each call takes a closure as input. Closures are anonymous functions
that can be defined in one place and evaluated in another context. Unlike functions,
closures can capture their environment, meaning they can access variables from the scope
in which they are defined. This is important in the context of shared-memory parallelism,
which we will cover in a later section. In Listing 2.3, the closure equal_to_z accesses the
variable x, which is not defined inside the closure, but within the same scope as the
closure.

Listing 2.3: A closure that captures the variable x from its environment

1 fn main() {

2 let x = 0;

3 let equal_to_x = |k| k == x; // equal_to_x captures x
4 println! ("{}", equal_to_x(0)); // prints "true"

5 }

Iterators

To write the for loop in Listing 2.2 in a functional style, we first convert the range into
an iterator. An iterator is a pattern that allows us to perform a task on a sequence of
items, one element at a time. Iterators abstract away the logic of iterating over each item
and determining when the end of the sequence is reached. For example, say we have an
array of integers and we want to double the value of each element in the array. Instead
of manually defining and updating an index variable, we can create an iterator over the
array, as shown in Listing 2.4.

Listing 2.4: Using an iterator to double the value of each element in an array

1 let mut arr = [1, 2, 3, 4]; // Define a mutable array of integers
2 let arr_iter = arr.iter_mut(); // Create an iterator over arr

s for value in arr_iter { // Iterate over each value

4 xvalue *= 2; // Double the value



5 }

Diving further into the functional side of Rust, we can abstract the for loop away by
using specific functions, known as iterator adaptors, that take the iterator and produce
another iterator. In our example, we can use the adaptor map, which takes a closure,
applies it to each element in the iterator, and returns the resulting iterator:

Listing 2.5: Using iterator adaptors to double the value of each element in an array

1 let mut arr = [1, 2, 3, 4];

2 arr = arr.iter_mut() // Create an iterator over arr

3 .map(|x| *x * 2) // Apply the closure to each element
4 .collect(); // Consume the iterator to get the result

Since Rust’s iterators are lazy, we need to call a consuming adaptor to get the result
from the previous calls to iterator adaptors. In Listing 2.5, we call the collect adaptor to
aggregate the result back into an array.

2.1.2 Shared memory parallelism in Rust

When it comes to concurrency, Rust follows the philosophy Share memory by communicat-
ing instead of Communicate by sharing memory. Concurrent access to a shared variable
is strictly controlled. At any time, there can be either multiple immutable references to
a variable, or a single mutable reference to that variable. This is enforced by the borrow
checker at compile time, effectively preventing race conditions.

When a thread spawns, it takes a closure which it then executes. We discussed in
Section 2.1.1 how closures can capture their environment. The closures passed to threads
are no different, as illustrated in Listing 2.6.

Listing 2.6: Spawning a thread to execute code concurrently, which captures the variable
x by reference

1 fn main() {

2 let x = 0;

3 // Closures passed to threads take no arguments

4 let handle = std::thread::spawn(|| {

5 let y = 0;

6 let is_equal = y == x; // x is captured here

7 println! ("{}", is_equal); // Prints "true"

8 1}

9

10 // Join the thread to ensure it finishes before the program exits.
1 // unwrap() used for simplicity instead of proper error handling
12 handle. join() .unwrap();

13 }

In Listing 2.6, the thread’s closure captures the variable x from the global context.
Since x is immutable and thus only read from, the closure can capture x by reference. If
the closure captured a mutable variable by reference instead, we would have a mutable



reference within the thread and another in the global context where the variable lives.
This is not allowed and the compiler will throw an error. Instead, the closure can take
ownership of the variable, invalidating the variable in the global context. We say that the
variable has been moved.

Listing 2.7: Spawning a thread that takes ownership of a mutable variable

1 fn main() {

2 let mut x = 0;

3 // Closures passed to threads take no arguments

4 let handle = std::thread::spawn(|| {

5 x += 1; // x is moved here

6 let y = 0;

7 let is_equal = y == x;

8 println! ("{}", is_equal); // Prints "false"

9 }); // x is no longer valid after this line

10 // Attempting to access x results in a compilation error
11

12 // unwrap() used for simplicity instead of proper error handling
13 handle. join() .unwrap() ;

14 }

If the global context needs to retain access to a variable, we have to share the value
in a way that prevents race conditions. For example, we could wrap the value in a
mutex, requiring a lock to be acquired before accessing the value. An exception to this is
integers, for which atomic variants exist. The other option is to use message-passing to
communicate with the thread through channels.

Listing 2.8: Using channels to communicate with a thread

1 fn main() {

2 let x = 0;

3

4 // Creating transmitters (tx) and receivers (rx)

5 let (txl1, rxl) = std::sync::mpsc::channel();

6 let (tx2, rx2) = std::sync::mpsc::channel();

7

8 // Explicitely tell the closure to move all captured variables
9 let handle = std::thread::spawn(move || {

10

11 // Receive a message through the first channel

12 let x = rxl.recv().unwrap(); // rxl is moved here
13

14 let y = 0;

15 let is_equal = y == x;

16

17 // Send the result through the second channel

18 tx2.send(is_equal) .unwrap(); // tx2 is moved here
19 i) 5



20

21 // Send x through first channel

22 tx1.send(x) .unwrap();

23

24 // Receive the result through the second channel
25 let is_equal = tx2.recv().unwrap();

26

27 println! ("{}", is_equal); // Prints "true"

28 handle. join() .unwrap();

29 }

In Listing 2.8, we create two channels to send and receive messages to and from the
thread. Rust’s channels are multiple sender, single receiver, hence the need to create two
channels in our example. The main thread creates a variable x and sends it through
the first channel. The thread reads from the channel, compares the received value to an
internal variable y, and sends the result back through the second channel.

Rayon

Rayon [9] is a shared memory parallelism crate (in Rust’s ecosystem, libraries are called
crates) for Rust, which abstracts away the manual management of threads by providing
parallel iterators as a high-level interface. Rayon also provides task parallelism, but re-
commends using the iterator approach first as it is more efficient. In both cases, Rayon
leverages work-stealing [10] to load-balance the work within its threadpool.

Parallelising the example in Listing 2.5 is simple. The only change required is to call
par_iter_mut() instead of iter_mut(), as shown in Listing 2.9. Rayon provides a parallel
version for most methods in the Standard Library (STD) that return an iterator over a
collection, prepending the prefix par_ to the original name of the STD function. There
are some exceptions to this naming scheme where _par_ is inserted in the middle of the
function’s name instead. For example, the parallel version of into_iter() is into_par_iter().

Listing 2.9: Parallelising the example in Listing 2.5 by leveraging Rayon’s parallel iterators
1 let mut arr = [1, 2, 3, 4];

2 arr = arr.par_iter_mut() // Create a parallel iterator over arr

3 .map(|x| *x * 2)

4 .collect();

2.1.3 MPI bindings for Rust

The Message Passing Interface (MPI) [11] is a specification for a message-passing style con-
currency library, which describes bindings for the C/C++ and Fortran programming lan-
guages. Currently, there is no Rust implementation of MPI. However, the rsmpi [12] crate
aims to bridge the gap by providing bindings to MPI 3.1 implementations in C through
Rust’s Foreign Function Interface (FFI). Rsmpi is tested to work with MPICH ver-
sion 3.3.2 and OpenMPI version 4.0.3, but, according to the developers of rsmpi, users also

10



reported success with Spectrum MPI version 10.3.0.1 and Cray MPI version 8.1.16 [12].

The bindings are very usable in their current state but do not yet cover the entire
MPI 3.1 specification. Most notably, one-sided communication, i.e. Remote Memory
Access (RMA), and MPI parallel I/O are not yet supported. Additionally, the syntax of
MPI calls in Rust differs from the traditional C syntax, as shown in Listing 2.10.

Listing 2.10: Example of the MPI syntax in Rust

1 fn main() {

10

11

12

13

14

15

16

17

}

// Equivalent to MPI_Init in C
let universe = mpi::initialize().unwrap();

// Get the MPI_COMM_WORLD communicator
let world = universe.world();

// Get the size of the communicator and
// the rank of this process

let size = world.size();

let rank = world.rank();

// Simple point-to-point communication example
if rank == 0 {
// Send 42 to rank 1. Equivalent to MPI_Send in C.
world.process_at_rank(1l) .send(&42132);
} else {
// Receive a message from rank 0. Equivalent to MPI_Recv in C.
let (msg, status) = world.process_at_rank(0).receive::<i32>();
}
// Implicit MPI_Finalize happens here
// This is due to the ’universe’ variable going
// out of scope, at which point it is freed

2.1.4 Rust in the industry

Examples of software using Rust are, but not limited to [6]:

Firefox, specifically its underlying browser engine Gecko [13].

The Linux kernel, with the first drivers written in Rust being accepted and released
in version 6.8 [1].

Firecracker, an open-source virtualisation software by AWS [15].

OpenDNS, a DNS resolution service from Cisco, did use Rust at some point, but
seems to have moved away from it since [10].

The npm package manager [17].
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2.2 State of sparse linear algebra support in Rust

Initially, our plan was to work with the kernels described by the GAP suite [1], which is
an effort to standardise graph processing evaluations. A good way to represent sparsely
connected graphs is to store their adjacency matrix, as sparse matrices can be efficiently
stored in memory. This further allows graph algorithms to be specified as a succession
of matrix operations. To this end, we investigated Rust’s sparse linear algebra ecosystem
by looking at multiple crates. However, we quickly observed that the support for sparse
linear algebra in Rust was not yet mature enough for this project. We discuss the crates
we have investigated and their limitations in more details in the following sections.

2.2.1 nalgeblra

The first option we considered is nalgebra [15], which is a general linear algebra crate with
support for sparse linear algebra. We ruled out nalgebra for performance reasons, as is
reflected in their documentation:

“The library is in an early, but usable state. |...] the focus so far has been on
correctness and APT design, with little focus on performance.” [19]

2.2.2 faer

Like nalgebra, faer [20] is a general linear algebra crate with support for sparse linear
algebra. It is a fast evolving project that already offers good performance, but is, at the
time of writing, poorly documented. Since faer does not provide some of the matrix
operations required for this project such as broadcast multiplication, we looked into the
possibility of grafting a custom implementation on top of faer. Doing so requires access to
the data buffers underlying faer’s data structures. Unfortunately, those data structures
do not expose their underlying buffers, which makes this idea unworkable. In addition,
this also makes it harder to send the data to another process with MPI, as one would
need to serialise and deserialise the data structure before and after sending, respectively.
Thus, we ruled out faer as a candidate for this project, but we will keep an eye on its
development for future endeavours.

2.2.3 sprs

Like faer and nalgebra, sprs [21] is a work in progress. It however focuses solely on
sparse linear algebra, and unlike faer, it provides access to the data structures’ underlying
buffers, allowing for custom implementations of the missing matrix operations. Unfor-
tunately, sprs currently only provides matrix multiplication, addition, subtraction, and
in-place division, which only covers a fraction of the matrix operations required by the
kernels from the GAP suite. Since one of our original goals was to compare Rust to
other languages, having multiple custom implementations of basic subroutines makes the
different programming languages harder to compare, if not incomparable.

2.2.4 cblas

Due to the difficulties encountered with Rust’s own linear algebra ecosystem, we looked at
the cblas [22] crate, which provides bindings to the C BLAS API [23]. Unfortunately, the

12
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underlying BLAS implementation is provided by OpenBLAS [2], which does not support
sparse linear algebra:

“OpenBLAS implements only the standard (dense) BLAS and LAPACK func-
tions with a select few extensions popularized by Intel’s MKL.” [25]

2.3 Redefining the project’s goals

The issues mentioned above rendered our project goals unworkable, at which point we
decided to redefine the project’s goals. Instead of comparing the performance and devel-
opment effort of kernels written in Rust, we now only investigate Rust’s suitability for
HPC. This allows us to move away from graph-based kernels, which are currently diffi-
cult to implement in Rust, and focus on other workloads. We chose k-means clustering
from the Rodinia benchmark suite [26] and the Mandelbrot set, as both workloads do not
rely on sparse linear algebra. We describe the two workloads in more details in the next
sections.

2.3.1 k-means clustering

k-means clustering [27], which is part of the Rodinia benchmark suite [20], is an algorithm
for partitioning n data points into k disjoint subsets S; € {S1,..., Sk}, each containing
n; data points so as to minimize the sum-of-squares criterion

k
J=22 b=l
j=1 nes;

where x,, is a vector representing the n-th data point and p; is the geometric centroid [25]
of the data points in S;. The result is a partition of the data space into Voronoi cells, as
can be seen in Figure 2.1.

13
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Figure 2.1: Partitioning of 10’000 points into 8 clusters, with each centre being the arithmetic
mean of the points that are part of that cluster.

Finding optimal solutions for k-means is a computationally difficult (NP-hard) prob-
lem [29, 30], leading to heuristic algorithms to be generally preferred. One such method is
Lloyd’s algorithm [27, 31], which comprises two steps. Initially the cluster centres are set
to some value. In the first step, every data point is assigned to the cluster whose centre
is closest to that point w.r.t the squared Euclidean distance. Then in the second step,
the cluster centres are re-computed according to the the points contained in each cluster
after the first step. These two steps are then repeated until a stopping criterion is met,
i.e. there is no further change in the assignment of the data points.

When performed until convergence, the result may be counter-intuitive, as the input
parameter k£ may not match the number of clusters in the dataset. This is further amplified
by the assumption of spherical clusters of roughly equal size that are separable, which may
not reflect the dataset’s structure. Moreover, the number of iterations until convergence
is heavily dependent on the data points and the initial cluster centres’ positions.
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2.3.2 The Mandelbrot set

The Mandelbrot set is perhaps one of the most famous fractal curves. It is defined in the
complex plane as the set of complex numbers ¢ = x + iy for which the series

Zny1 =22+ c (2.1)

with the starting point z; = 0 4 07 remains bounded in absolute value under a maximal
number of iterations n,,q.. The set features an infinitely complex boundary with increas-
ingly finer details at higher magnifications, as can be seen in Figure 2.2.

Figure 2.2: Visualisation of the Mandelbrot set using a cyclic, continuously coloured space.
The frontier of the set features increasingly intricate details at higher magnifications.
Bottom left: 4000x zoom showing the area around the point ¢ = —0.673085 — 0.3576784.

The visualisation of the Mandelbrot set is done by colouring the pixels in the complex
plane, with the x-axis and y-axis respectively representing the real and imaginary compo-
nents of the number c¢. The set itself is traditionally coloured black, while its complement
is coloured based on how quickly equation 2.1 diverges. To do so, an integer value ngy;, is
defined so that it represents the largest value n for which |z,| < 2 still holds. Each colour
represents a different value of ng;,.

This approach has the drawback of creating bands of colour, which as a type of alias-
ing, is not visually appealing (see Figure 2.3). This can however be solved by using the
normalised iteration count algorithm [32, 33] to get a smooth transition of colours. The
algorithm associates a real number v to each value of z by using the connection between

B

naiv and the potential function ®(z) = lim S, where 2, is the value after n iterations.
n—oo
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We redefine ng;, to be the largest value of n for which |z,| < r still holds, with the
escape radius » > 2. For large r, we have

log |z,| logr
on - v (z)
log |zn,,,
v(z) =ngi, +1— logz(#)

The value v(z) is then mapped on a cyclic scale containing h distinct colours, numbered
from 0 to h — 1. The colour of the pixel is defined as hy, € {0,1,...,h — 1} with

k= |v(z)*d|] modh

where d is the colour density in the picture (e.g. d = 256 for 8-bit RGB) and h;, is the
k-th colour in the scale.

Figure 2.3: Example of the aliasing artifacts (banding) that appear in the Mandelbrot set when
using the iteration count directly (left). On the right, we use the normalized iteration count
algorithm with an escape radius of » = 1’000, which results in smooth colour transitions.
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Chapter 3

Methodology

In this chapter, we introduce the algorithms we use, along with their implementation
details, as well as our approach to their parallelisation. The metrics we collect, how we
evaluate them, and the measures we take to control the environment of our experiments
are covered at the start of next chapter.

3.1 k-means clustering

The datasets we use contain 1 million, 2 million, 4 million, and 8 million points respec-
tively. Each point is represented using two coordinates ranging between 0 and 1. The 4
million points dataset is obtained by keeping the first half of the 8 million points dataset.
Similarly, the 2 million and 1 million points dataset are obtained by keeping the first half
of the next bigger dataset. We generate the 8 million points dataset with the utility tool
provided by the Rodinia benchmark suite [26] on Dropbox!.

3.1.1 Sequential implementation

We base our sequential implementation on the one provided by the Rodinia benchmark
suite [20] on GitHub?. After initialising the cluster centres’ starting values, we iterate over
the dataset as follows: For each point in the dataset, we find the closest cluster centre
w.r.t. the squared euclidean distance and update the point’s membership. We then add
the point’s coordinates to the corresponding centre’s running sums (two per cluster, one
for the x-axis and one for the y-axis) and keep track of the cluster’s new size. Once all
the points have been processed, we go through the cluster centres’ sums and divide each
coordinate by the size of the respective cluster, which gives us the mean position of the
points in that cluster. This corresponds to the new position of the cluster centre, which is
used in the next iteration of the algorithm. The algorithm terminates when the number of
points that change membership in the current iteration is less or equal to a chosen input
parameter threshold ¢. In our experiments, we partition the dataset in £ = 8 clusters and
use t = 0 for the termination criterion.

https://www.dropbox.com/s/cc6cozpboht3mtu/rodinia-3.1-data.tar.gz, accessed March 11,
2025.

2https://github.com/yuhc/gpu-rodinia/tree/master/openmp/kmeans/kmeans_serial, accessed
May 28, 2025.

17


https://www.dropbox.com/s/cc6cozpboht3mtu/rodinia-3.1-data.tar.gz
https://www.dropbox.com/s/cc6cozpboht3mtu/rodinia-3.1-data.tar.gz
https://github.com/yuhc/gpu-rodinia/tree/master/openmp/kmeans/kmeans_serial
https://github.com/yuhc/gpu-rodinia/tree/master/openmp/kmeans/kmeans_serial
Reto Krummenacher
Highlight

Reto Krummenacher
Highlight

Reto Krummenacher
Highlight


Our implementation differs slightly from the reference implementation in the choice of
the initial cluster centres. The version provided in Rodinia uses the first £ points in the
dataset as initial cluster centres, whereas we choose the centres randomly using a Random
Number Generator (RNG) derived from the ChaCha family of stream ciphers [31]. For
reproducibility purposes, we use the same seed for the RNG in all of our experiments.
The pseudocode for our sequential implementation is provided in Algorithm 1.

Algorithm 1 Pseudocode for the sequential k-means clustering algorithm in 2D with k
clusters, n points and termination threshold t. The min_dist function returns the index
of the nearest centre with respect to the squared euclidean distance.

Require: points = [p1,...,pu), k> 1,t>=0
function K_MEANS(points, k, t)

memberships < [mg, ..., my], m; =0 Vi
centres < [c1,..., ¢k, ¢; + (x,y), x,y € [0,1]
new_centres < [nci, ..., ncgl, ne; = (0,0) Vi
sizes < [81,...,8;], i =0 Vi
delta < 0
while delta >t do
for p; € points, m; € memberships, + € 1,2,...,n do
delta < 0

nearest < min_dist(p;, centres) € [1, k]
if nearest # m; then
delta < delta + 1
end if
m; <— nearest
NeW_CENITESpeqrest < NEW _CENITESpeqrest + Di
Sizesnearest <~ Sizesnearest + 1
end for
for c¢; € centres, nc; € new_centres, s; € sizes, 1 € 0,1,...,k do
Ci < e/ s;
nec; < 0
5; <0
end for
end while
return memberships, centres
end function

3.1.2 Parallel implementation using Rayon

To distribute the work among threads, we partition the dataset in chunks containing a
roughly equal number of points. More precisely, we divide the total number of points n

by the number of workers w, rounded up. This gives us the workload per worker [ = [2].

If n is not divisible by [, the size last worker’s chunk is l;,4 = n mod [. These chu;lﬂks
are processed in parallel by keeping track of the chunk’s contribution to the new clusters’
sizes and coordinates in each thread. After each iteration, we synchronize the threads
to combine the contributions together and update the cluster centres on the main thread

before proceeding to the next iteration.
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3.1.3 Distributed implementation using MPI

When using MPI, the distribution of work is done in a similar way. As before, the dataset
is partitioned in chunks of roughly equal size, which are sent to their respective MPI ranks.
The root rank also initialises and broadcasts the initial cluster centres to all ranks. Each
rank then computes the contribution of its share of work to the new cluster centres, after
which we call MPI_Reduce to merge the individual contributions into the root rank. The
root rank computes the new cluster centres and broadcasts them to all ranks, allowing
the next iteration to start.

3.1.4 Hybrid implementation using Rayon+MPI

The hybrid implementation, as its name suggests, combines the two previously mentioned
approaches together. The main difference is that the dataset is now partitioned twice.
The chunks are first distributed among the MPI ranks, which each subdivide their chunk
to process it in parallel using Rayon.

3.2 Mandelbrot

Our sequential implementation for computing the Mandelbrot set is based on John Burkardt’s
implementation®. For each pixel in the image, we compute the number of iterations re-
quired for the series z, = 22 | + ¢ with z; = 0 to diverge, where ¢ = = + iy describes the
pixel’s corresponding position in the complex plane. If the series has not diverged after
a given number of iterations, we colour the pixel black, else we colour it based on the
number of iterations it required to reach the divergence criterium and the final value of z,,.

The main difference to the reference implementation lies in how we colour the set.
The reference implementation uses a two-tone colouring, while we use a cyclic, contin-
uous colour space instead. To avoid the occurrence of aliasing artifacts in the resulting
image (refer to Figure 2.3 in Section 2.3.2), we define the criterium for divergence as when
the series’ absolute value exceeds the radius r > 1’000, instead of the traditional r > 2.
The pseudocode for the sequential implementation is provided in Algorithm 2 and 3. In
the following sections, we discuss the parallelisation of Algorithm 3.

3.2.1 Parallel implementation using Rayon

Since each pixel’s colour can be determined independently of the other pixels, the complex
plane can be partitioned in an arbitrary manner. In our case, we split the space into
vertical bands of roughly equal width (see Figure 3.1), which are then distributed among
the threads.

3https://people.sc.fsu.edu/~jburkardt/c_src/mandelbrot/mandelbrot.html, accessed
May 28, 2025
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3.2.2 Distributed implementation using MPI

The same principle applies when distributing the computation with MPI. We again split
the complex plane into vertical bands of roughly equal width and each rank computes
the pixels contained within one such band. After the computation is complete, we call
MPI_Gatherv to collect the partial images from all ranks into the root.

Algorithm 2 Pseudocode for assigning a smooth colour to a pixel based on the number
of iteration performed until the divergence criterion has been reached. colours is a pre-
computed array of 8bit RGB colours.

function GET_COLOUR(I, z, itersmqz)
if | > iters,,., then
return (0,0,0)
else
smoothed < log,(
colour sindex < (v/I + 10 — smoothed - 256) mod n_colors
return colours|colour_index]
end if
end function

log, \zIQ)
2

Algorithm 3 Pseudocode for computing an image of size n x n pixels of the Man-
delbrot set given the maximum number of iterations iters,,., the divergence threshold
radius 7, and the portion of the complex plane depicted in the image is delimited by

Tmazy; Tmins Ymazs Ymin-

Require: n > 0, iters,e: >0, 7 > 2, Tmae, Tmin, Ymazs Ymin
function MANDELBROT(p, itersmaz, 1)
pizels < [p1,...,pn2], pr = (R, G, B) where R, G, B € [0, 255]
for 0 <j<ndo
x<—(]:L‘maac—l—(n_]_l)xmm)_(n_l)
for 0 <k <pdo
Y (K Ymaz +(n—k = 1) Ymin) ~ (n — 1)
c—r+1-y
z=0
for 0 <[ < iters,,q, do
2224
if |z| > r then
break
end if
end for
pixels]j - n + k] < get_colour(l, z, itersmaz)
end for
end for
return pizels
end function
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3.2.3 Hybrid implementation using Rayon+MPI

The hybrid implementation combines the two previous approaches together. However, we
split the space a second time inside the ranks, but this time horizontally. This partitioning
is illustrated on the right in Figure 3.1.

Figure 3.1: Depiction of how we distribute the Mandelbrot set among workers. On the left,
we divide the set in vertical bands. On the right, we show our partitioning scheme for when we
use both MPT and Rayon together. First we distribute the vertical bands among the MPI ranks
(red) and each band is then divided horizontally for Rayon (yellow).
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Chapter 4

Results and Discussion

We first discuss how we measure our experiments and what metrics we use for analysis.
In our experiments, we collect the execution time in two different forms, shown in List-
ing 4.1. First is the effective computing time, which includes workload distribution among
workers, the computations, and the aggregation of results. The second is the end-to-end
execution time, which encompasses the computing time, file 1/O, library initialisation,
and memory allocation. We do not include the time required to parse command line
arguments in the end-to-end execution time. For k-means clustering, we also collect the
number of iterations performed. We use this data to analyse the strong and weak scaling
of the implemented kernels. The specific details are listed in Table 4.1.

Listing 4.1: Definition of what our various time measurements include

1 Begin of program

2 Argument parsing
g Memory allocation < Begin of end-to-end time
1 Library initialisation (Rayon and/or MPI)
5 Read input file (k-means only)
6 Split work among workers < Begin of computing time
7 Computations ] ]
8 Collection/reduction of results -—— End of computing time
9 Write output file
10 End of program < End of end-to-end time
We run our experiments on miniHPC [35], which is a small HPC cluster at the Uni-

versity of Basel (refer to Table 4.1 for details). To control the environment, we set an
environment variable to limit the number of threads that Rayon creates and we force MPI
to place at most one process per socket, as shown in Listing 4.2. Regarding Rayon, we are
unfortunately not aware of any means to control the mapping of threads to CPU cores.
Moreover, Rayon’s lack of NUMA-awareness is still an open issue [30].

Listing 4.2: Environment setup and MPI workload placement

1 RAYON_NUM_THREADS=SLURM_CPUS_PER_TAKS
> srun --cpu-bind=sockets [...]
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A further consideration we take is that, due to k-means’ sensitivity to the initial cluster
centres, we seed the RNG to get the same initial conditions for every run. Finally, the
source code of the project, as well as additional material, are available on BitBucket!
and the compile command we use to build the executable is shown in Listing 4.3. Both
building and executing the binary on miniHPC requires that the modules OpenMPI1/2.0.2-
GCC-6.3.0-2.27 and Clang/17.0.6-GCCcore-13.2.0 are loaded.

Listing 4.3: Compile command with flags used to build the executable

1 ml OpenMPI Clang #Loading the required modules
2 cargo build --release --bin rusthpc

Thttps://bitbucket.org/unibasdmihpc/sylvain-rousselle-msc-project
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Table 4.1: Design of factorial experiments

Factor Value Properties

Strong Scaling Problem size: 2 millions 2D points

Problem size:
k-means clustering 1, 2, 4, 8 millions 2D points

Termination threshold t=20

Strong Scaling Dataset size: 5’000x5’000 pixels
Problem size: 5’000x5’000,
Mandelbrot Weak Scaling 7'071x7°071, 10°000x10°000,
14°142x14°142 pixels
Max iterations 17000

Programming language Rust version 1.85.1

Tools .
. . rsmpi version 0.8.0
Message-passing library 11 "6 OpenMPI 2.0.2
Rust Sequential (1 thread)
Rust+Rayon 1, 2, 4, 8 threads
Degree of =~ emeeeee
Parallelism Rust+MPI 1, 2, 4, 8 ranks, 2 ranks per node
””””””””””””””””””” 1,2ranks
Rust+Rayon+MPI 1, 2, 4 threads per rank
Metrics Execution time [s] Computing time, end-to-end time
Validity Repetitions 5
2x Intel Xeon E5-2640 v4
Computing nodes  miniHPC-Broadwell 10 cores each, 2.4 GHz
25 MB L3 cache, 64 GB RAM
Network Node interconnectivity 100Gbit/s Intel Omni-Path links

4.1 k-means clustering

As shown in Figure 4.1 the weak scaling performance of k-means is consistent across the
tested parallelisation methods, with the exception of all versions using Rayon displaying
a higher overhead in end-to-end measurements (Figures 4.1b, 4.2b, and 4.4b). Since only
the end-to-end time is affected, this limits the possible causes to either file I/O, memory
allocation, or library initialisation. File I/O can be ruled out, as all versions perform
this sequentially. Finally, we can see that the MPI+Rayon hybrid version’s overhead is
only roughly half as much as that of the Rayon version. This correlates directly with
the number of threads created by Rayon: we only see a difference in time in the two
right-most groups of columns, which are also the two groups where the Rayon version
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creates twice as many threads per process as the hybrid version. Thus, we suspect that
this phenomenon is due to the library initialisation of Rayon, but are not able to confirm it.

k-means weak scaling, 8 clusters k-means weak scaling, 8 clusters
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1 2 4 8 1 2 4 8
Number of nodes / processes per node / threads per process Number of nodes / processes per node / threads per process
Degree of parallelism (number of processing elements) Degree of parallelism (number of processing elements)
(a) Computing time (b) End-to-end execution time

Figure 4.1: Weak scaling performance (averaged over 5 runs) of k-means clustering. There are
4 column groups, each with its own dataset size (top x-axis) and degree of parallelism (lower x-
axis). The parallelism is characterised by a triple nodes/processes per node/threads per process.
The total degree of parallelism is included as a single number below the parallelism triples. We
also report the number of iterations performed before reaching convergence for each column
group on the right-hand y-axis.

Additionally, we have generated a second set of datasets to analyse the influence of the
dataset on performance. To this end, we have repeated the weak scaling experiment on
the second set of datasets. As can be seen in Figures 4.2, the execution time of k-means
unexpectedly seems disconnected from the dataset size. This is reflected by the number
of iterations required to reach convergence, which is a property of the dataset. On the 4
million points dataset, k-means reached convergence after only 257 iterations, in contrast
to the 332 iterations performed on the 2 million points dataset.

We have generated this second set of datasets in the same manner as the first one (see
Section 3.1). To further ensure that both sets of datasets are comparable, we compute
the dissimilarity of the datasets using the Maximum Mean Discrepancy (MMD) [37] and
the Earth Mover’s Distance (EMD) [38] metrics at each dataset size. MMD is sensitive
to global structure and higher-order statistical differences between distributions, whereas
EMD measures the cost of transforming one point cloud’s distribution into the other and
is sensitive to spatial shifts and rearrangements. While EMD produces values in the range
[0,v/2] on the space [0, 1], MMD has a lower bound of 0, but no upper bound. As shown
in Figure 4.3, both metrics return low values across the board, indicating that the datasets
are similar.
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k-means weak scaling, 8 clusters k-means weak scaling, 8 clusters
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Figure 4.2: Weak scaling performance (averaged over 5 runs) of k-means clustering on a second
set of datasets. There are 4 column groups, each with its own dataset size (top x-axis) and
degree of parallelism (lower x-axis). The parallelism is characterised by a triple nodes/processes
per node/threads per process. The total degree of parallelism is also included as a single number
below the parallelism triples. We also report the number of iterations performed before reaching
convergence for each column group on the right-hand y-axis.
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Figure 4.3: MMD (left) and EMD (right) values between our two sets of datasets at each dataset
size. The overall low values indicate that the two datasets are similar. Note the difference in
scale between Figure 4.3a and Figure 4.3b.

We thus conclude that the cause for the better performance on the 4 million points
dataset of the second experiment is due to an advantageous distribution of the points
within the dataset, which leads to faster convergence. The same effect can be observed in
the end-to-end time measurements shown in Figure 4.2b, although not as pronounced as
in Figure 4.2a. The dependence of k-means’ performance not only on the initial cluster
centres’ positions, but also on the chosen dataset raises questions about the usefulness of

26


Reto Krummenacher
Highlight


k-means as a reliable, general benchmark tool.

When measuring the strong scaling, the influence of the dataset on the performance
is less of an issue as it is kept constant across all runs. In Figure 4.4a, we can see that the
execution time almost halves each time the computing resources are doubled (e.g. 30s -
31s with one processing element vs. approx. 15.5s with two processing elements). While
the trend is the same in Figure 4.4b, the performance gains are lower, which is expected
as the I/O operations to read in the dataset and writing the results to disk cannot be
parallelized.
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Figure 4.4: Strong scaling performance of k-means clustering on the 2 million points dataset,
averaged over b runs. There are 4 column groups, each with its own degree of parallelism. The
parallelism is characterised by a triple nodes/processes per node/threads per process. The total
degree of parallelism is also included as a single number below the parallelism triples.

4.2 Mandelbrot

In the weak and strong scaling experiments for Mandelbrot, shown if Figures 4.5 and 4.6,
all versions using MPI show lower performance gains than expected when increasing the
number of MPI ranks. This is caused by our vertical partitioning of the complex plane
(recall Figure 3.1). The pixels coloured in black all reach the given maximum iteration
threshold and the majority of black pixels are concentrated on the right side of the picture.
The other colours indicate points that diverge before reaching the iteration threshold and
are as such less compute-intensive. Thus, our partitioning scheme causes high load im-
balance, which could be improved upon by switching to a horizontal partitioning instead
to reduce the load imbalance.

The keen reader will have noticed that, despite using the same partitioning scheme,
the version parallelized with Rayon does not suffer from such performance losses. We im-
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pute this phenomenon to Rayon’s work-stealing scheduling (refer to Section 2.1.2), which
is able to compensate for the load imbalance.
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Figure 4.5: Weak scaling performance of Mandelbrot, averaged over 5 runs. For each column
group, we report the size of the computed image and the degree of parallelism. The parallelism
is characterised by a triple nodes/processes per node/threads per process. The total degree of
parallelism is included as a single number below the parallelism triples.

304

Average computing time [s] (5 runs)

204

265 26.52%127.1 Il Rust+Rayon
25 N Rust+MPI
Rust+Rayon+MPI
10
O R

15 1

Mandelbrot strong scaling
5'000x5'000 pixels, 1'000 max iterations

Mandelbrot strong scaling
5'000x5'000 pixels, 1'000 max iterations

Sequential

2P /1/11/1/11/1/1 Ly, /1/2 Ly,572/4 /2/2 Ly
1 2 4 8

Number of nodes / processes per node / threads per process
Degree of parallelism (number of processing elements)

(a) Computing time

Average end-to-end time [s] (5 runs)

30129.029.029.4 29.5 Sequential
HEl Rust+Rayon
25 4 B Rust+MPI
Rust+Rayon+MPI

201
15
10 A

i ll

O u

% 2 L /11/1 /11/1 2 J/J/Q /2/1 /1/2 1/1/4 /2/1 /2/2 3% 1/51/2/11/ 2
1 2 4 8

Number of nodes / processes per node / threads per process
Degree of parallelism (number of processing elements)

(b) End-to-end time

Figure 4.6: Strong scaling performance of Mandelbrot, averaged over 5 runs. For each column
group, we report the size of the computed image and the degree of parallelism. The parallelism
is characterised by a triple nodes/processes per node/threads per process. The total degree of
parallelism is included as a single number below the parallelism triples.
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Chapter 5

Conclusion

What started as a comparison of performance and productivity between Rust and other
programming languages, based on the implementation of graph algorithms from the GAP
benchmark suite, ended up with completely different goals due to limitations in Rust’s
sparse linear algebra ecosystem.

In accordance with our revised goals, we have evaluated k-means clustering and the
Mandelbrot set, as both workloads lend themselves well to parallelisation yet do not re-
quire sparse linear algebra. In our analysis of the Mandelbrot set, we found that the
partitioning scheme is crucial in managing load-imbalance, which can be mitigated with
more dynamic types of scheduling such as Rayon’s work-stealing. Regarding k-means
clustering, we found its performance outcomes to be consistent across the tested paralleli-
sation methods. However, we also notice that k-means clustering’s performance is heavily
dependent not only on the initialisation of the cluster centres but also on the dataset
used. This finding challenges the algorithm’s suitability as a general benchmark tool, as
the dependency on the dataset weakens reproducibility and comparability of results. We
also observed a non-negligible overhead in the end-to-end performance when using Rayon,
which we suspect is due to the initialisation of its thread pool.

Overall, Rust shows potential for HPC applications, especially in reducing the number
of concurrency-related bugs. However, with its non-standard MPI syntax, immature
sparse linear algebra ecosystem, and different approach to shared memory parallelism, we
found that Rust is not yet mature enough to be considered an HPC-ready programming
language.
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Use of Al tools

For this report, I used DeepLi [39] to translate single words and short partial sentences.
I also sparingly used ChatGPT [10] to point out what could be improved upon. The
prompt template is shown in Listing 5.1. No Al tools were used to generate new content.
I have checked all the texts and take full responsibility for the result.

Listing 5.1: ChatGPT prompt for pointing out passages that can be improved upon

1 Is this good as a part of the [section name] in a paper? Do not
2 rephrase or modify the text, only point out what can be improved upon.

[text goes here]

'y
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