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Abstract

Genomic context analysis is the study of the genomic neighborhood of a given gene to aid in genome
structure and evolution studies or to predict the function of a protein. One tool to support such
research is Python–based GCsnap, which generates interactive visualizations of the genomic context
of protein–encoding genes. The main limitation of the application is its long execution time, which
prevents large–scale studies of entire protein clusters. The poor performance is due to the need to
collect data from various online databases via APIs. We present two tools to overcome this limi-
tation: (i) GCsnap2.0 Desktop, designed to run on machines with API-enabled connectivity, and (ii)
GCsnap2.0 Cluster, tailored for high-performance computing clusters, where the required data is stored
in advance. The evaluation shows that the desktop version outperforms the old implementation, GC-
snap1, end–to–end in all cases. However, the performance gain is limited by the speed of the network
connection. The cluster variant allows the analysis of entire protein clusters, but there is still room for
improvement.
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Chapter 1

Introduction

Genomic context analysis refers to the study of the genomic neighborhood of a particular gene to assist
in genome structure and evolution studies or to predict the function of a protein [1]. Protein function
prediction involves infering the functional associations of newly sequenced genomes by calculating the
similarity to proteins for which the function has been identified. A tool for genomic context analysis is
GCsnap, a freely available open–source application written in Python [2]. Its purpose is to identify and
compare the genomic context of protein–encoding genes by collecting data from various public protein
databases, integrating this information, and creating interactive context visualizations [3].

1.1 Motivation

The current implementation of GCsnap, hereafter referred to as GCsnap1, has one major limitation: the
performance. Figure 1.1 shows the average execution time for different numbers of input sequences, 1
input sequence is called a target, and CPU cores over 5 repetitions. The key observation is the long
end-to-end execution time. It takes on average about 100 seconds to analyze the genomic context of 10
targets. This translates to 10 seconds per target if no parallelism is used, i.e., only 1 CPU core. The
reason for this is the number of queries to public databases and online servers. Such operations are
limited by the speed of the connection and the efficiency of the database itself to handle the queries,
resulting in potentially long latencies.

There is an increasing desire to study the genomic context of large sets of proteins. One use case
is the analysis of entire protein clusters from the Protein Universe Atlas [4] consisting of thousands of
sequences. Such a task is currently not feasible with GCsnap1 in a reasonable time. One solution is
to adapt the tool to run in a distributed environment. High Performance Computing (HPC) clusters
provide the necessary resources to perform this kind of large-scale analysis. However, there is a problem
with this approach. In most clusters, compute nodes cannot access to the internet, making it impossible
to use the online platforms to retrieve data. In order to run GCsnap on such a system, the data must be
made available to the compute nodes in advance.

1.2 Objectives

The goal of this thesis is to develop a new version of GCsnap, henceforth called GCsnap2.0, that meets
the following requirements:

• Scalable: The desired output is produced in a short time, even when analyzing thousands of
protein–encoding genes.

• Portable: GCsnap2.0 runs on all operating systems, regardless of the computing environment in
which it is executed. It should work on both clusters and desktops.

• Modular: Currently, GCsnap1 is just a single large Python script. The newly written code is
modularized to ensure maintainability and extensibility. This facilitates future customizations and
allows components to be used in a package-like fashion.
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Figure 1.1: Average end-to-end execution time of GCsnap1 over 5 repetitions with different numbers of CPU
cores and input targets. Error bars represent the minimum and maximum over the 5 repetitions. Experiments
were conducted on an AMD EPYC 7742 CPU with 64 CPU cores.

• User friendly: Despite all the new features, the execution of GCsnap2.0 remains simple. If
multiple dependencies are added, appropriate software environment handling must be provided.

1.3 Contribution

Given the differences in data access, online versus locally stored data, it is necessary to develop two
versions of GCsnap2.0. The main contributions of this thesis are (i) evaluation of suitable paral-
lel Python tools through qualitative and quantitative analysis, (ii) implementation of a performant
GCsnap2.0 Desktop (gc2D) for users without access to a computing cluster, and (iii) development of
GCsnap2.0 Cluster (gc2C) tailored to run on the Center for Scientific Computing at University of Basel
computing cluster (sciCORE).

1.4 Outline

The rest of this thesis is organized as follows. The necessary background information is given in Chapter 2,
followed by a detailed description of the GCsnap workflow and the analysis of the GCsnap1 bottlenecks
in Chapter 3. Chapter 4 presents an overview of related work before the evaluation of suitable tools is
explained in Chapter 5. Chapter 6 describes the implementation, and Chapter 7 the evaluation results.
Finally, Chapter 8 concludes the thesis and provides an outlook for future work.
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Chapter 2

Background

In this chapter, we provide the essential background knowledge and key terminology that will be used
throughout this thesis. The first part is dedicated to biological terms needed to understand the func-
tionality of GCsnap before we introduce parallel programming terminology in general. The final section
discusses the Global Interpreter Lock (GIL) and the limitations it imposes on running Python in parallel.

2.1 Biological Terminology

Eukaryotes, Bacteria and Archaea
The three distinct domains of life are eukaryotes, bacteria, and archaea [5, p. 3]. Eukaryotes, such as
plants, animals, or yeast cells, have a nucleus that is surrounded by a double membrane inside the cell.
In contrast, the nucleoid found in bacteria and archaea is not separated but is simply part of the internal
volume of a cell. Bacteria and archaea are unicellular microorganisms formerly grouped as prokaryotes
[5, p. 3].

DNA, Genes and Coding Sequences
When we mention a genome, we are referring to all the genetic information encoded in a cell. DNA carries
this information. A chromosome is a large DNA molecule that contains many genes. A gene encompasses
all the DNA that encodes the primary sequence of a final gene product [5, p. 980]. In this context, the
term coding sequence refers to a region in DNA that defines the sequence of amino acids in the protein.

Proteins, Peptides and Amino Acids
A protein is a large molecule composed of 1 or more polypeptides, a chain of amino acids, with each pair
of amino acids linked by a peptide bond. When an amino acid is connected to a neighbor, it is referred to
as an amino acid residue. All proteins in any organism comprise the same set of 20 amino acids [5, p. 75].
For example, the PhoH–like protein with the identifier PHOL ECOLI found in the bacterium Escherichia
coli strain K12 has a sequence of 346 amino acid residues, the first 10 of which are MNIDTREITL.
Each letter stands for 1 amino acid, for example, M denotes methionine. The complete list of all 20
amino acids and their abbreviations can be found in [5, p. 77]. Throughout this work, we will use the
term protein sequence for the actual sequence of amino acid residues.

Protein Structure and Function
The protein sequence is the primary structure of a protein. There are 4 levels of protein structure.
Along with the first level, the tertiary structure is mentioned throughout this work. It describes the
3-dimensional folding of the protein [5, p. 97]. These two are closely related, as the protein sequence
determines the 3D structure that defines the function of a protein [5, p. 97]. It is important to note that the
exact mechanism by which the protein sequence determines the function is not yet fully understood [5,
p. 104]. As a result, function prediction from sequence is not always possible. Nevertheless, protein
families with a common function can be identified based on the degree of similarity of their sequence
of amino acid residues. Regarding their function, two types of protein are of special interest. The first
are signal peptides, where the beginning of a gene encodes a signal peptide sequence that marks the
protein for export from the cell. The second are Transmembrane (TM) proteins because they span the
cell membrane and serve as receptors.
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Assembly
Assembly is a functionally relevant complex consisting of two or more proteins [6]. As described in [5,
pp. 339-342], one of the approaches to genome sequencing is called shotgun sequencing. Numerous copies
of the same DNA are sheared off at random positions into fragments of the desired length. The result is
many overlapping segments of the same DNA. The sequence can be traced from fragment to fragment, by
piecing together the overlaps, resulting in an assembly of contiguous sequence regions. All the extracted
information from genome sequencing is available in so– called assembly files, including the start and end
position of a sequence in the genome and its neighboring sequences.

Operons
It is common for bacteria to have operons. In this situation, the genes next to each other on the
chromosome form a cluster and are transcribed together [5, pp. 1158-1159]. The process of transcription
of clustered genes is initiated by a single promoter. Additionally, regulatory sequences serve as binding
sites for proteins to either activate or repress transcription; the latter is called an operator. Together,
the promoter, genes, and regulatory sequences form the operon. In general, the encoded products of
the genes in an operon have interdependent functions. Bacterial genomes usually contain a few highly
conserved operons [7], meaning that their sequences have a high degree of similarity.

2.2 Parallel Programming Terminology

Parallelism vs. concurrency
Parallelism is the execution of multiple tasks at the same time. This is different from concurrency, where
multiple tasks are interleaved, but only one is running at a time. As a simple example, the former is a
situation where we have two queues and two machines, while the latter is a situation where we have two
queues but only one machine. In this case, the machine can only serve one queue at a time. Progress
is achieved by switching between the concurrent queues. With two machines, however, both queues are
processed in parallel. In this sense, parallelism is a property of the hardware, whereas concurrency is a
property of the software.

Computing node architecture
The architecture on which a script is executed is crucial for parallelism. This is especially important when
considering nodes in a cluster, where multiple nodes are connected by a fast network. The schematic of
an example node is shown in Figure 2.1. The node contains two sockets, each with 1 CPU containing 4
cores, where each core has equal access to the local memory. Together, the two CPUs form a distributed
memory situation because they do not have direct access to each other’s memory. There needs to be
some means of exchanging information. In this case, this means both inter–socket communication and
internode transfer. This is generally slower than communication between cores on the same socket, due
to the higher latency and lower bandwidth associated with inter-socket communication. It is important
to note that different computer architectures require different programming paradigms.

Processes vs. threads
A process is a running program with its own allocated memory. Threads within the same process share
memory. Threads are the basic unit of CPU usage, so each process contains one or more running threads,
with the latter called a multithreaded process. Because all threads of the same process share the same
address space, interaction between them is faster, but more prone to concurrency problems. Concurrent
use of shared resources can lead to race conditions. A situation in which two concurrent threads access
the same variable in memory, leading to unintended behavior if not properly handled. On the other hand,
context switching between threads within the same process is faster than between processes due to the
shared memory. Context switching is when the operating system replaces threads in a waiting state on
the CPU with threads that are running.

Data vs. task parallelism
Data parallelism involves performing the same operation on subsets of the same data. For example,
consider summing an array, where one thread sums the first half and a second thread handles the second
half of the array. This type of parallelism focuses on using data across multiple CPU cores, allowing
each core to perform the same computation on different chunks of data. Data parallelism often requires
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CPU
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Core 3 Core 4

Local Memory

Figure 2.1: Schematic of a compute node with two sockets, each equipped with a 4-core CPU, where each core
has direct access to its local memory. Access to the memory of the other CPU requires communication through
the intersocket connection. Multiple nodes are connected by a high–speed network.

synchronous execution, meaning all threads must complete before the results can be combined. Data
parallelism also works with processes, except that data must be distributed in advance because processes
do not share memory.

Task parallelism involves dividing a program into separate tasks that can be executed simultaneously.
Unlike data parallelism, where the same operation is applied to different data, task parallelism allows
each thread or processor to perform a different operation. When there is no dependency between tasks,
execution can be asynchronous. Task parallelism is more general and flexible, since it can handle a wider
variety of tasks with different computational requirements.

2.3 Global Interpreter Lock

To avoid potential concurrency problems, the default CPython interpreter has the GIL [8]. This mech-
anism ensures that only one Python thread executes bytecode at a time, even on multicore machines,
thereby guaranteeing security against concurrent access by design. The threading module is the basic
tool for concurrent execution in Python [9]. Threads are created by passing a function and arguments
to the class constructor. Each thread has a reference to these arguments and its own copies of local
variables. The module does not achieve parallelism but only supports concurrency. However, threading
is useful for overlapping concurrent Input/Output (I/O) operations to reduce overall wait time. To run
Python in parallel despite the GIL, we must work with processes provided by modules or third-party
tools, as discribed in Section 4.2.

When talking about the GIL, it is important to mention the ongoing effort to make it optional. The
accepted Python Enhancement Proposals (PEP) 703 of 2023 details the necessary changes to the CPython
internals to support running without the GIL [10]. Given the far–reaching consequences of such a change,
the idea is to include a build configuration flag to build CPython to run without the GIL, but with GIL
remaining the default. In fact, this feature is available in the first release candidate of Python 3.13 from
August 2024 as an experimental free-threaded build mode [11, 12]. Due to the experimental nature and
the late release for this work, we did not consider it as an option for our implementation.
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Chapter 3

GCsnap

The first part of this chapter covers the general functionality of GCsnap, where an explanation of the
workflow and the details of the data used is given. The second part is dedicated to GCsnap1, talking
about the current implementation and presenting the results of the experiments we conducted to identify
the causes of poor performance.

3.1 The Workflow

The purpose of GCsnap is to provide a comparison of the genomic context of genes that encode pro-
teins [2]. It works for both prokaryotes and eukaryotes. The tool handles various input formats, collects
information from different protein databases, searches for similar proteins, identifies clusters, and com-
bines all this information into interactive plots. The organizations providing and managing the vast
amount of information include the National Center for Biotechnology Information (NCBI), the Universal
Protein Resource Database (UniProt), the European Molecular Biology Laboratory (EMBL), and the
Swiss Institute of Bioinformatics (SIB). A workflow visualization is shown in Figure 3.1. The various
tasks performed by GCsnap can be divided into three blocks: collect, find families, and annotate. Those
which will be discussed in the following, along with input and output. The focus here is on the tools
and data used. More details about GCsnap can be found in [3]. An overview of all data is presented in
Table 3.1.

Input
GCsnap takes sequence identifiers, called targets, of protein-coding genes as input. It supports many
identifier standards, which are listed below. For illustrative purposes, we added the identifier for each
standard of a PhoH–like protein sequence found in the bacterium Escherichia Coli strain K12:

• NCBI Reference Sequence Database (RefSeq): NP 415193.2

• UniProt Knowledgebase Identifier (UniProtKB-ID): PHOL ECOLI

• UniProt Knowledgebase Accession Number (UniProtKB-AC): P0A9K3

• GeneID: 86863170

• UniProt Reference Cluster (UniRef): UniRef100 P0A9K5, UniRef90 P0A9K5, UniRef50 P0A9K5.
Those are actually clusters, where the number represents the percentage of equality among cluster
members.

• UniProt Archive (UniParc): UPI0000163983

• EMBL Coding Sequence (EMBL-CDS): AAB40862.1

• Ensembl: No identifier for Escherichia Coli, but an example is ENSG00000139618.

The sequence identifiers can be provided either as (i) a simple list, (ii) a text file with each identifier on a
separate line, (iii) a FASTA file, or (iv) a sequence cluster file in CLANS format. While FASTA is a text-
based format for representing many protein sequences in one file, the CLANS format is specialized for
working with the CLANS (CLuster ANalysis of Sequences) bioinformatics toolkit developed and hosted
at the Max Planck Institute for Biology, Tübingen [14, 15].
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Figure 3.1: Schematic workflow of GCsnap with its three main task blocks. Starting from a list or text file with
sequence identifiers from different protein ID standards, GCsnap finds the assembly and extracts the n neighboring
genes around the target, called flanking genes, in block 1. Block 2 is responsible for family discovery. All collected
genes are clustered based on an all–against–all similarity search of the encoded proteins with MMseqs2 [13] before
being grouped into families. In block 3, GCsnap annotates families with structures and functions and family
members with sequence features and taxonomy information from various sequence repositories and online tools.
The collected information is stored in various text files and visually presented through static and interactive
images. This schematic adapts the original in [3, Figure 1].

Block Collect
The first task of GCsnap is to collect all information about the neighboring genes of a target from the
genome assemblies. This process involves the following steps:

• Each input protein sequence identifier is first mapped to UniProtKB-AC and then to RefSeq or
EMBL-CDS using the UniProt API. This is necessary because the genomic assembly file can only
be found with these 2 ID standards.

• The protein sequences adjacent to the target in the genome are extracted from the assembly files.
Those are General Feature Format (GFF) files, a format specialized for describing genes but readable
like any other text file. They are available from the NCBI Genetic Sequence Database (GenBank)
or the NCBI Reference Sequence Database (RefSeq). Using the mapped ID, GCsnap requests the
assembly accession from the NCBI Eutils API and retrieves the URL pointing to the assembly file
from the summary tables provided by the NCBI (see Table 3.1). The difference between GenBank
(primary) assembly accessions (GCA) and RefSeq (NCBI-derived) assembly accessions (GCF) is
that GCA contains records submitted and owned by researchers or sequencing centers. In contrast,
GCF records are maintained by NCBI staff and always include annotations [16]. In cases where
both are found, GCsnap favors RefSeq.

• Using the retrieved URL, GCsnap downloads the assembly file and extracts the neighboring genes
around the target, called flanking genes, within the same sequence region. By default, 4 such
flanking genes are collected on the downstream (3’, pronounced “three–prime”) and upstream (5’)
sides. If there are fewer flanking genes on either side, it represents a partial genomic context block.
Users can specify whether or not to keep these for further processing.

• The coding sequences of the target and its flanking genes are obtained from NCBI using the Eutils
API. The Coding Sequence (CDS) is the protein’s actual sequence of amino acids. Additionally,
the API returns the taxonomy ID and the name of the species of the target.

11



Block Find Families
This block aims to identify protein families among all targets and their flanking genes collected in the
previous block. This involves two steps: First, an all–against–all search on all CDS to find sequence
similarities, and second, finding clusters within the similarity matrix using the cluster.hierarchy tool from
SciPy [17]. Each cluster represents a family. GCsnap1 provides two methods for calculating similarity
scores between the CDS: Basic Local Alignment Search (BLAST [18]) or Many–against–Many Sequence
Search (MMseqs). The former involves building a protein BLAST database (BLASTp) against which
each protein sequence is searched during position-specific iterative BLAST (PSI–BLAST). Compared
to PSI–BLAST, MMseqs is more than 400 times faster with the same sensitivity [13]. For this reason,
GCsnap2.0 will no longer include BLAST and will only support MMseqs.

Block Annotate
The purpose of this task block in GCsnap is to annotate the families and the members of each family.
Additional family features and sequences information includes:

• The URL pointing to the Protein Data Bank (PDB) 3D structure is retrieved from the SWISS–MODEL
repositories or, if not found, through the AlphaFold API.

• Gene Ontology (GO) terms, i.e., information on the functions of genes, are queried with the
EMBL’s European Bioinformatics Institute (EMBL-EBI) API. Furthermore, the functional de-
scription, TM–topology, and additional keywords are retrieved.

• The taxonomy of each protein sequence is requested from NCBI Eutils with the taxonomy ID
collected in block 1. GCsnap uses the taxonomy to build the phylogenic tree shown in the interactive
output.

The final step is to identify the presence of TM segments and signal peptides. GCsnap either requests
the data from EMBL-EBI or allows the use of a software tool. The user can choose Phobius [19] or

Table 3.1: Details about the data collected by GCsnap in the first task block.

Data Source URL Accessed through

Mapping between
ID standards

UniProt
https://www.uniprot.org/help/
programmatic access

API

Assembly accession,
coding sequences,
taxonomy

NCBI
Eutils

https://eutils.ncbi.nlm.nih.gov/ API

Assembly summary
tables

GenBank
https://ftp.ncbi.nlm.nih.gov/genomes/
genbank/assembly summary genbank.txt

TXT file

RefSeq
https://ftp.ncbi.nlm.nih.gov/genomes/
refseq/assembly summary refseq.txt

TXT file

Assembly files

GenBank
https://ftp.ncbi.nlm.nih.gov/genomes/
all/GCA/

GFF files

RefSeq
https://ftp.ncbi.nlm.nih.gov/genomes/
all/GCF/

GFF files

3D protein structure
URL

SWISS-
MODEL
Repository

https:
//swissmodel.expasy.org/repository/

API

AlphaFold https://alphafold.ebi.ac.uk/ API

GO-terms,
keywords, functional
description,
TM-topology

EMBL-EBI https://www.ebi.ac.uk/proteins/api/ API
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TMHMM 2.0 [20]. Although it is noted that the current version used by GCsnap is outdated, the new
deep learning based DeepTMHMM [21] was not considered for our work. GCsnap runs the selected tool
with a FASTA file containing all flanking genes as input when installed. Alternatively, the tools can be
run online, and their output can be used as an input to GCsnap.

Output
The most informative output GCsnap creates is the HTML plot, a graphical interactive summary of the
results that can be explored further by clicking on genes of interest. An explained illustration can be
found in [3, Figure 2]. Other output produced includes plots, summary files in JSON format containing
all collected information about the genomic context, and TXT files with additional details.

3.2 Experiments with GCsnap1

The goal of this section is to evaluate how well GCsnap1 handles many input sequences and to identify
the causes of the long execution time despite exploiting concurrency by running multiple threads on
different cores through Multiprocessing’s ThreadPool construct (see Section 4.2 for details). Identifying
the bottlenecks is crucial to know where to focus when implementing GCsnap2.0. To achieve this, we
conducted a series of experiments, measuring the end-to-end execution time of the three task blocks and
of individual steps with the version available in [2, Branch: timing]. They were executed on the HPC
cluster of the HPC-Group at the Department of Mathematics and Computer Science (miniHPC). The
design of the factorial experiments is shown in Table 3.2. In these experiments, GCsnap1 was run without
specifying the personal NCBI API key. Therefore, we were limited to 3 requests per second when querying
the Eutils API [22]. While the higher limit of 10 requests per second may yield better performance, we
wanted to analyze the bad–case scenario.

Scaling analysis
The empirical results with up to 2’000 targets for different numbers of CPU cores are shown in Figure 3.2.
Although the end-to-end execution time for this argument setting is very long, GCsnap1 does scale. The
execution time decreases almost linearly with the number of cores used, strongly suggesting that the
parallelization technique used works as expected. More results for different numbers of target sequences
and CPU cores can be found in Appendix B.1.

However, the analysis with numerous targets and many CPU cores revealed another problem with
GCsnap1. When examining the individual results for each repetition of a specific argument combination,
we noticed that a total of 67 experiments did not finish. This occurred across 26 different combinations

Table 3.2: Design of factorial experiments to analyze the performance of GCsnap1.

Factor Value Properties

Application GCsnap1

Number of targets:
10, 20, 50, 100, 200, 500, 1’000, 2’000

Number of CPU cores: 1, 2, 4, 8, 16, 32, 64
Runtime arguments for GCsnap1:

-annotate TM True
-all-against-all methods mmseqs
-ncbi api key None

Metrics Program performance
Execution time (seconds)
end-to-end, of the three task blocks,
individual steps

Computing system 1 miniHPC node
2 AMD EPYC 7742, 2.25 GHz;
each with 64 cores and 256 MB L3 cache;
1’500 GB RAM; API-enabled connectivity

Validity Repetitions 5
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Figure 3.2: Average end-to-end execution time of GCsnap1 over 5 repetitions with different numbers of CPU
cores and input targets. Error bars represent the minimum and maximum over the 5 repetitions. Experiments
were conducted on an AMD EPYC 7742 CPU with 64 CPU cores. Not all repetitions finished.

of CPU cores and number of targets. For example, with 2’000 targets and 16 CPU cores, 3 out of 5
repetitions failed. All failed attempts are listed in Appendix B.1.

There is no apparent pattern, and the problem appears to occur randomly. Furthermore, the reasons
for failed experiments are unknown because the version of GCsnap1 measuring execution time catches
most errors without proper handling or reporting. By examining the output of each experiment, we
determined at what step GCsnap1 failed. 12 failed during the collection of genomic context, 10 failed
during the collection of taxonomic information, and the majority of the 45 experiments failed during
the functional annotation step. All 3 steps have in common that they rely on requesting data from an
online API. The fact that failures occur more frequently when many CPU cores are used suggests that
the problem is related to API limitations. When a request is blocked, a certain number of retries are
attempted, and if unsuccessful, the request is eventually aborted.

In summary, this indicates that GCsnap1 was not designed to handle large workloads. On the one
hand, the very long end-to-end execution requires more computing resources. On the other hand, using
more CPU cores leads to more failures.

Identifying bottlenecks
To identify the steps that cause the poor performance of GCsnap1, we measured the execution time of
the three task blocks and individually for each step. Figure 3.3 shows the time to complete the three task
blocks of GCsnap1. Two noteworthy observations: First, the collection of genomic context information
is primarily responsible for the poor performance of GCsnap1. Regardless of the number of targets, this
task block takes the most time (Figure 3.3a). Second, only the first block benefits from using more
resources. As shown in Figure 3.3b, the collection of genomic context scales with the number of CPU
cores, while blocks 2 and 3 together show little improvement.

Based on these findings, it is evident that the focus must be on the first block of GCsnap. Figure 3.4
shows the execution time of the individual steps within block 1: (i) finding the NCBI assemblies, (ii)
downloading and extracting the assemblies, and (iii) adding the actual sequences to the flanking genes. IT
is clear that the first and third steps cause GCsnap1’s inefficiency. As mentioned in Chapter 1, GCsnap1
takes an average of about 10 seconds per sequence. The height of the bars in Figure 3.4 indicates that
finding the assemblies and adding the flanking sequences take 2 and 4 seconds per target, respectively.
On average, these steps account for 60 percent of the GCsnap1 execution time per target, making them
the clear bottlenecks.
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(a) The average execution time with various targets with 1 CPU core.

(b) The average execution time with various CPU cores and 100 input targets.

Figure 3.3: Average execution time of GCsnap1 for the three task blocks over 5 repetitions with different
numbers of CPU cores and input targets. Error bars represent the minimum and maximum over the 5 repetitions.
Experiments were conducted on an AMD EPYC 7742 CPU with 64 CPU cores. Not all repetitions finished.

Figure 3.4: Average execution time of the steps performed in task block 1 over 5 repetitions with different
numbers of CPU cores and input targets. Experiments were conducted on an AMD EPYC 7742 CPU with 64
CPU cores. Not all repetitions finished.

15



Chapter 4

Related Work

In this chapter, we review studies and tools relevant to our work. First, we discuss existing strategies for
genomic context analysis. Second, we introduce third-party tools used to execute Python code in parallel
in various ways. Third, we present studies that rely on these tools, and finally, we summarize the tools
reviewed and discuss their interrelationships.

4.1 Genomic Context Analysis Tools

Several tools similar to GCsnap have been developed in recent years. One example is FlaGs [23], which
allows users to create visualizations for genomic context analysis. The tool is named after flanking genes.
The supported input identifiers are limited to RefSeq, as the tool exclusively uses GCF assemblies. This
differs from GCsnap, which supports many ID standards and uses assemblies from both RefSeq and
GenBank. FlaGs uses Jackhammer, a method based on Hidden Markov Models, to find clusters among
the flanking genes. Unlike GCsnap, the generated visualizations are not interactive. However, FlaGs
offers both a web–based version and the option to run it locally. A modification of FlaGs called NetFlax
was used in [24] to analyze proteinaceous toxin–antitoxin (TA) systems.

Another representative of web–based tools is GeCoViz [25], which creates interactive visualizations of
the genomic context of prokaryotes. GCsnap can handle sequences from both prokaryotes and eukaryotes.
GeCoViz relies on precomputed information stored in a MongoDB database to provide fast search results.
Another web application limited to prokaryotes is the Microbial Genomic Context Viewer (MGcV) [26].
Similar to GeCoViz, there is a MySQL database in the backend which is updated on a weekly basis. The
difference lies in the stored data. While GeCoViz stores the pre-calculated information, MGcV stores the
data needed for the calculation to ensure fast access.

Another tool, the Genomic Context Viewer (GCV) version 2 [27], takes a slightly different approach.
This web–based application is designed for visualizing microsyntenies, small genomic regions derived from
a common ancestor. GCV analyzes relationships in real–time through on–demand computation across
federated data sources. It is also possible to integrate GCV into existing web applications.

4.2 Parallel Python Tools

Many existing Python packages for scientific computing are designed to overcome the limitations of the
GIL. The most prominent of these is NumPy [28]. For example, when Python computes the sum of
two NumPy arrays, such as C = A + B, the GIL is freed allowing another thread to run. The same
goes for Pandas [29], a Python library that provides table-like data structures called dataframes, where
certain functions like groupby release the GIL. Another way to bypass the GIL is to use packages with a
particular compiler, for example Numba [30], which is designed for parallel scientific computing. It uses a
just–in–time (JIT) compiler, which reads the bytecode of a function decorated with @jit and compiles it
to produce a machine code version. Each time the function is called, the compiled version is used without
the need to hold the GIL.

There are many other solutions for exploiting parallelism in Python. Some examples focus on par-
allelizing Python on a single machine, but several projects also attempt to orchestrate execution on a

16



heterogeneous node of CPUs and GPUs, or in a distributed environment. Representatives of each group
are presented below.

Multiprocessing
The Multiprocessing package, a part of the standard Python library, overcomes the GIL using processes
instead of threads, as explained in [31]. The main purpose is to run different processes in parallel on
a multicore machine. In addition, the package provides the Pool object to execute a function (i.e.,
a callable) with different input values in parallel, making it an ideal tool for enabling data parallelism.
Processes from Pool can be executed synchronously or asynchronously. Furthermore, the library supports
parallelism with threads through the ThreadPool construct.

Concurrent.futures
As described in [32], the concurrent.futures module provides an interface for asynchronous execution of
callables. It is also part of the standard Python library. It uses futures, where an object is returned imme-
diately when the function is called, rather than commonly when the function terminates. The module sup-
ports the use of either threads with the ThreadPoolExecutor, or processes, using the ProcessPoolExecutor.
The first is built on top of the Threading module and has an implicit barrier, as all threads entering the
pool are joined before the interpreter can exit. The second uses the Multiprocessing package under the
hood [32, par. ProcessPoolExecutor]. It is important to note the fundamental difference: while threads
are not executed in parallel due to the GIL, processes created with the ProcessPoolExecutor are.

MPI for Python
As mentioned in Section 2.3, processes are not constrained by the GIL. The challenge lies in inter–process
communication. The Message Passing Interface (MPI) is one of the standard application program inter-
faces that allows information to be exchanged between CPUs in distributed systems. The standard [33]
defines routines provided by libraries for use in traditional HPC languages such as C/C++ and FOR-
TRAN. When running a program with MPI, all processes form a group called the world communicator.
All members, usually called ranks, are connected to each other. There are two major communication
primitives: Point-to-Point and Collective. The former involves only two processes, while the latter in-
volves all processes.

MPI for Python (mpi4py) is a package that provides bindings to access the MPI routines directly
from a Python script. Development of this package started in 2004 and is continuously adapted to new
MPI standards [34]. The package allows Python objects such as NumPy arrays to be passed in various
ways, including non–blocking versions of both communication primitives and buffered messages. It also
supports the creation of MPI groups, subsets of processes that form a group communicator within the
world communicator.

One drawback to the ease of use of mpi4py is the need to write your code in MPI style. The
programmer has to manage the master–worker pattern, where rank 0 is usually the master and all other
ranks are the workers. To address the community’s need for an easier way to deploy computation on an
HPC cluster, the mpi4py.futures module was introduced in [35]. It is based on concurrent.futures and
can be used in the same way through the MPIPoolExecutor. Details about the command and how to use
it can be found in [36].

Dask
Dask is a flexible parallel computing library first introduced in [37]. It encodes task graphs using Python
data structures, namely dictionaries, tuples, and callables. In these graphs, the nodes represent individual
tasks and the edges represent data dependencies between tasks [38]. The library’s scheduler executes the
graph simultaneously, while respecting the dependencies. Parallelism is achieved using Dask’s Futures,
derived from the concurrent.futures module. Parts of the distributed computation are built on top of
mpi4py, particularly the Dask-MPI module.

In addition, the library provides special tools for distributing large data structures to overcome mem-
ory limitations. A Dask.Array is composed of smaller pieces of NumPy like arrays. Since NumPy releases
the GIL, operations can be performed in parallel. Similarly, a Dask.DataFrame is a collection of Pandas
data frames.

Dask offers different usage methods depending on the machine it is running on. The simple case for a
local machine or single node on a computing cluster is LocalCluster, which sets the specified number of
CPU cores. The Client connects to this local cluster, to create and execute the task graph. Client also
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simplifies the process by allowing you to specify the desired resource directly when creating an instance
of Client. The ability of Dask to run on HPC clusters is much more relevant to this thesis is. The
Dask.Distributed module provides an API for interacting with cluster management systems such as the
Simple Linux Utility for Resource Management (SLURM) [39]. Using SLURMCluster, it is possible to
request resources on an HPC system directly from Python. Under the hood, this simply involves sending
SLURM jobs to the cluster requesting additional compute nodes. Once SLURM assigns these nodes to
Dask, the worker nodes execute the task graph managed by the Dask scheduler running in the main
Python thread.

PyCOMPSs
PyCOMPSs [40] is a parallel programming framework for Python that facilitates the development of
workflows for distributed systems. It is built on top of the COMPSs Java runtime system, which provides
the language bindings for Python applications. In order to execute callables as asynchronous parallel
tasks, functions in a sequential Python script are annotated with the @task decorator. PyCOMPSs
creates a task for each decorator invoked.

The runtime system exploits the inherent concurrency of the script and assigns tasks to available
resources while enforcing the detected dependency graph. The return values of callables are represented
as futures to ensure task execution is asynchronous. Available resources are specified in configuration
files. The scheduling policy is location–aware, meaning a score is calculated for each resource, based on
the number of input parameters already present on that resource. The scheduler assigns the task to the
resource with the highest score, ensuring that as little data as possible is transferred.

Parsl
Similar to PyCOMPSs, Parsl decomposes data dependencies into a dynamic task graph [41]. The main
difference to PyCOMPSs is the absence of a runtime system from another language, as Parsl is completely
implemented in Python. The core functionality is the App decorator @python app and the future object.
Parsl registers an asynchronous task when invoking a decorated function and immediately returns a
future. DataFlowKernel manages the construction of task graphs and their order of execution. The
nodes represent the Apps to be executed, and the edges are derived by passing futures between Apps.

To ensure portability across computing systems, Parsl includes the Provider interface. This abstrac-
tion handles three actions: Submitting a job, getting the status of a job, and canceling a running job. The
Provider supports interaction with various cluster management tools, including SLURM, AWS, Google
Cloud, and Kubernetes. The actual execution is handled by Parsl’s Executor, which provides a collection
for common execution patterns, such as high throughput or extreme scale problems. Under the hood, it
is an extension of the concurrent.futures module along with mpi4py to manage distributed execution.

Parla
It is a tasking system for Python introduced in [42]. Parla’s runtime module implementation allows the
orchestration of kernel and library functions within a single process. To overcome the limitations imposed
by the GIL, Parla interoperates with NumPy and Numba. Unlike Dask, PyCOMPS, and Parsl, which
are designed for workflow management on distributed systems, Parla focuses on managing heterogeneous
resources on a single node, such as nodes containing CPUs and accelerators like CUDA–enabled GPUs.

Tasks in Parla are arbitrary blocks of Python code. Using the @spawn decorator, these blocks are
executed asynchronously. Unlike the above tools, it explicitly uses blocks instead of functions to decouple
functional abstraction from parallelism, making it easier to add parallel code blocks around sequential
code without restructuring. There are no implicit barriers where a task waits for others to complete.
Tasks are assigned to worker threads at runtime, and placement on a device can be specified via the
decorator. The same applies to task names. The programmer defines task dependencies using the
dependencies=[task name] option.

Flux
Traditional HPC management software such as SLURM has limitations in handling complex workflows
consisting of many heterogeneous small tasks [43]. The Flux Framework [44] is a collection of C and
C++ projects, libraries, and tools that provide resource managers and schedulers for large HPC centers.
It features a modular architecture and a hierarchical scheduling model to support parallelism for high
throughput. This model allows each Flux instance to spawn child instances of arbitrary depth and

18



width. Users can choose scheduling policies within an instance through an API. Recently, a module was
developed to support Python bindings to a running Flux instance [45].

ExaWorks
One approach to combining several of the tools described above is ExaWorks, presented in [46]. The goal
was to create a workflow software development toolkit (SDK) to enable the composition and interoper-
ation of existing workflow management tools. These technologies form the first pillar of the ExaWorks
technical approach. The second pillar is the Portable Submission Interface for Jobs (PSI/J), an abstrac-
tion layer that serves as an API for interacting with various HPC workload schedulers to create portable
workflows [47]. The third pillar is the SDK itself, which supports the easy installation of the workflow
systems [48]. Of interest for our work are the prototyped integration architectures. For example, Parsl
can be combined with Flux to overcome the limitations of Parsl’s executor to schedule tasks based on
resource requirements.

4.3 Parallelization Tools in Practice

The tools presented above have been used in various studies and projects. An example using concur-
rent.futures is described in [49]. The idea was to simulate hyperspectral data from existing multispectral
and hyperspectral data. The process involves computing Chebyshev distances between many pixels of
satellite imagery. By using standard Python modules, the execution time was significantly reduced.
However, the code was not designed to work with distributed computing resources.

An example of distributed computation using mpi4py is presented in [50]. The tool generates US East
and Gulf Coasts meshes to simulate compound flooding. The approach extended the one-dimensional
thalweg, the line of lowest elevation within a valley, from digital elevation models to a 2D river repre-
sentation. These were then used to support mesh generation. Parallelization was necessary to enable
continental scale computation.

Another application using mpi4py and NumPy can be found in [51]. The goal was to simulate hybrid
particle–field molecular dynamics (hPF–MD), a coarse-grained view of MD in which a group of atoms is
treated as a single entity. Additionally, instead of particle–particle interactions, hPF models are based on
particles interacting with an external density. Massive parallel I/O was enabled by using the specialized
HDF5 binary data format. The corresponding Python library, h5py, allows easy manipulation of huge
amounts of NumPy data [52].

In [53], two use cases of parallel execution for social sciences were presented: social network (SN)
simulation and kernel polynomial method (KPM). The former is an example of task parallelism, where
each propagation of a tweet through the network is a task, while the latter involves data parallelism in
computing the eigenvalues of the adjacency matrix of the graph. Both applications were implemented
using mpi4py and Python scientific computing libraries such as NumPy. The authors also used Numba
to speed up random number generation and list sampling. The paper also describes strategies to reduce
the execution time further. For the SN simulation, this included changing the order of task execution
to achieve better load balancing. In the case of KPM, improved data distribution was implemented to
match the available hardware architecture, specifically, the number of MPI groups created is equal to the
number of NUMA domains available on a given computing platform.

A significant project is MQCAS [54], the Quantum Chemistry Archive (QCArchive) of the Molecular
Sciences Software Institute (MolSSI). It is a central server for collecting and hosting QC data and making
it available to the molecular science community. Of interest to our work is the Python-based open–source
QCArchive infrastructure. The important component is QCFractal, a server that provides a central task
queue where tasks are evaluated by a single or multiple so–called managers. These managers interact with
physical resources ranging from workstations to supercomputers. The share of resources used by each
manager is defined by a configuration. To achieve high throughput distributed computing, the managers
rely on systems such as Dask and Parsl, which interface with queuing systems such as SLURM. To store
computations, QCFractal uses a PostgresSQL database.

4.4 Summary of Tools

An overview of the tools presented can be found in Figure 4.1. It illustrates the relationship between the
different tools and emphasizes the hierarchical structure. The innermost circle contains standard Python
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Figure 4.1: Visualization of all presented tools and their connection. The colors in the center circle indicate
the type of the tool. Blue for standard Python library modules, yellow for extension packages and red for other
programming languages. Reading examples: ExaWorks relies on Flux and Parsl. Concurrent.futures relies on
Multiprocessing.

modules, extension packages, and other programming languages, all of which are used to overcome the
GIL. The outer rings represent solutions that utilize the adjacent inner tools. For example, ExaWorks
relies on Flux and Parsl, with the latter using mpi4py which is based on concurrent.futures, which in
turn partly relies on Multiprocessing. The further a ring is from the center, the more functionality the
tool provides. Mighty tools offer advantages such as including schedulers or creating task graphs for
more efficient execution. However, some of these can also add complexity to deployment and execution.
Because they are ongoing projects, these tools are more prone to changes than standard modules. In
contrast, the inner circle solutions are easier to implement but have limited capabilities. It is important
to balance this tradeoff for each future design decision. The next chapter discusses the suitability of each
tool for our work.
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Chapter 5

Parallel Tool Assessment

This chapter discussed the suitability of the parallel Python tools presented in Section 4.2 for our work.
As mentioned in Section 1.3, we are implementing two applications, GCsnap2.0 Desktop (gc2D) intended
to run on any laptop, and GCsnap2.0 Cluster (gc2C) tailored for HPC systems. Each has specific re-
quirements and necessitates different tools. In addition to a purely qualitative discussion, we conducted
experiments to evaluate the tools under consideration for quantitative analysis.

5.1 Tool Discussion

An important criterion in evaluating tools is to keep things as simple as possible. Regarding Figure 4.1,
we prefer solutions from circles closer to the center. Here, we explain our reasoning for considering some
tools and omitting others. A summary is shown in Table 5.1, where we indicate whether each tool is
being considered for a particular application and why.

Table 5.1: A summary table assessing each tool, including a column indicating if and for which of the applications
it is being considered. Other programming languages are not listed because they were never considered.

Tool Considered Reasons

Multiprocessing gc2D Standard way to have process and thread parallelism

concurrent.futures gc2D Standard way to have process and thread parallelism

NumPy gc2D and gc2C Arrays as basic data structures

Pandas gc2D and gc2C Dataframes as basic data structures

Numba No Computationally intensive part solved with MMseqs

Parla No No heterogeneous computing resources to manage

PyCOMPSs No Difficult to deploy due to required infrastructure

Flux No Difficult to deploy due to required infrastructure

Dask gc2D and gc2C
Process and thread pool to enable parallelism, handle
large files, distributed computing

mpi4py gc2C Standard for distributed computing

Parsl No
Similar capabilities as Dask, but missing the feature to
handle large files

ExaWorks No Difficult to deploy due to required infrastructure
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Considered tools
The primary objective is to parallelize Python by using processes to overcome the limitations imposed
by the GIL (see Section 2.3). Since GCsnap heavily uses URL requests, we are also considering using
threads. Suitable tools include the pool executors from Multiprocessing, concurrent.futures, and Dask’s
Client command. All three support both processes and threads. While they are sufficient for gc2D, they
are inadequate for implementing gc2C, as we need means for inter–process communication.

The straightforward approach for gc2C would be to use mpi4py or Dask.Distributed. Since Dask is
already a possible solution for gc2D, we prefer Dask instead of mpi4py. Additionally, Dask could help
solve another foreseeable problem. In the case of gc2C, we need all the data available on the cluster.
Some files are large and may not fit into memory. In particular, the table containing all the mappings
between ID standards is 45 GB in size. See Section 6.4 for details. Dask.DataFrame is designed to work
with such large files.

When implementing gc2C and gc2D, we use Pandas data frames as an easy-to-use data structure for
storing data in tabular format. Similarly, NumPy arrays are used for efficient data handling.

Not considered tools
Among the tools not considered for implementing GCsnap2.0 is Numba, which is designed to improve the
performance of computationally intensive parts through its JIT compiler. The only case where GCsnap
would benefit is the many–against–many sequence search, where MMseqs already solves the computational
requirements. Therefore, there is no need to consider Numba further. Parla is also discarded as a possible
solution. The reason is that Parla is designed to manage heterogeneous resources on a single node. The
nodes on which we want to execute gc2C are not of this type.

Writing scripts in programming languages other than Python to improve the performance of GCsnap
was never part of this work, but using a tool based on it was considered. However, the problem with
both PyCOMPS and Flux is that they require a running instance of the underlying infrastructure. For
PyCOMPS, this means installing COMPS, including the Java development kit. Installation details are
presented in [55]. Generally, users of HPC clusters do not have the means to install what they need.
Therefore, deploying GCsnap on a cluster would be difficult and violate the portability requirement.
Therefore, we will not consider PyCOMPS and Flux further. For the same reason, we discard ExaWorks.
Since it is built on top of Flux, it requires the same infrastructure. This makes it difficult to deploy,
which again violates the portability requirement.

The last tool shown in Figure 4.1 is Parsl. It is very similar to Dask in that it interacts with cluster
management tools and uses concurrent.futures and mpi4py under the hood. Although it is suitable for
this work, we did not consider it further. Parsl makes it convenient to build parallel workflows from
existing Python code with its decorators. However, gc2D and gc2C are implemented from scratch, which
mitigates this advantage. In addition, Dask offers additional features over Parsl, most notably support
for distributed Pandas dataframes. All in all, this led to the decision to use Dask instead of Parsl. Ex-
perimenting with both tools was not considered an option to keep the amount of work manageable.

We now know which tools to consider for implementing gc2D and gc2C. However, we still need to decide
which one to use. In order to base our decision on some empirical evidence, we have performed several
experiments, which will be presented in the following section.

5.2 Parallel Tools for GCsnap2.0 Desktop

The first experiments were designed to gather information about the parallel tools under consideration
for gc2D: Multiprocessing, concurrent.futures, and Dask’s Client. We aimed to evaluate which works
best for the first block of the GCsnap workflow (see Section 3.1). To achieve this, we designed two
experiments:

1. Mapping between ID standards using the UniProt API. GCsnap1 requests information from the
API separately for each target. For this experiment, we adapted the code to work with batches,
allowing multiple arguments per request. Determining the optimal batch size was also part of the
evaluation.

2. Find, download and extract assemblies. All the functionality of GCsnap1 to perform these steps is
combined into a Python class, importing the parallel functionality from another module. However,
the code itself is not yet optimized, for example by replacing loops with list comprehensions.
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Both experiments were run with different parameters as presented in Table 5.2 and executed on sciCORE.
The most significant improvement is that we implemented wrapper functions for each tool under evalua-
tion. An example of the wrapper using ProcessPoolExecutor from concurrent.futures is shown in Code 5.1.
All wrappers receive an iterable list of arguments, which is processed by the specified number of CPU
cores, either as processes or threads.

Code 5.1: Example of the wrapper function using concurrent.futures’ ProcessPoolExecutor.

1 from concurrent.futures import ProcessPoolExecutor

2 def futures_process_wrapper(n_processes: int, parallel_args: list[tuple], func: Callable) -> list:

3 """

4 Apply a function to a list of arguments using ProcessPoolExecutor. The arguments are passed as

tuples and are unpacked within the function. As completed is used to get the results in the

order they finish.

5

6 Args:

7 n_processes (int): The number of processes to use.

8 parallel_args (list[tuple]): A list of tuples, where each tuple contains the arguments for

the function.

9 func (Callable): The function to apply to the arguments.

10

11 Returns:

12 list: A list of results from the function applied to the arguments in the order they

finish.

13 """

14 with ProcessPoolExecutor(max_workers=n_processes) as executor:

15 futures = [executor.submit(func, arg) for arg in parallel_args]

16 result_list = [future.result() for future in as_completed(futures)]

17 return result_list

Results of the online ID mapping experiment
The results of this experiment are shown in Figure 5.1. Our goal is to determine which tool works best
and what an optimal batch size would be. The first question is addressed in Figure 5.1a. Dask has the
worst performance. This is due to the additional computation required to construct the task graph to be
executed, which makes Dask less efficient compared to other tools. Moreover, threads appear to perform

Table 5.2: Design of factorial experiments to assess the different parallel tools considered for the implementation
of GCsnap2.0 Desktop.

Factor Value Properties

Application

ID mapping online

Number of targets: 100, 500, 1’000
Number of CPU cores: 1, 2, 4, 8, 16
Parallel tools: Multiprocessing, concurrent.futures

and Dask; each with threads and processes
Batch size: 33, 66, 125, 250
Default: number of targets / cores

Assembly handling
online

Number of targets: 10, 20, 50
Number of CPU cores: 1, 2, 4, 8, 16
Parallel tools: Multiprocessing, concurrent.futures

and Dask; each with threads and processes

Metrics Program performance Execution time (seconds)

Computing system 1 sciCORE node
2 Xeon E5-2630v4, 2.2 GHz;
each with 10 cores and 25 MB L3 cache;
256 GB RAM; API-enabled connectivity

Validity Repetitions 5
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(a) The average execution time with various targets and 4 CPU cores, each running one batch. The batch size equals the
number of targets divided by 4.

(b) The average execution time with different batch sizes and 1’000 input targets, executed on 4 CPU cores.

Figure 5.1: Average execution time of the online ID mapping experiment over 5 repetitions with different
numbers of CPU cores, input targets, batch sizes, and parallel tools. The abbreviation conc.futures stands for the
concurrent.futures module. Error bars represent the minimum and maximum over the 5 repetitions. Experiments
were conducted on 2 Xeon E5-2630v4 with a total of 20 CPU cores.

better relative to processes. The tools that work with threads are subject to the GIL, meaning they are
not executed in parallel even when running on multiple CPU cores. However, efficient context switching
allows overlapping of URL requests and leads to faster execution than with parallel processes.

Regarding batch size, Figure 5.1b shows the average execution time over 5 repetitions of each experi-
ment. Two observations can be made. First, the previous finding that Dask is less efficient is confirmed,
as Dask has a longer execution time than the other tools for each batch size. Second, larger batch sizes
perform better. As the batch size increases for a given number of targets, fewer API requests are re-
quired. The results show that the UniProt API can handle larger requests efficiently, as doubling the
batch size roughly halves the execution time. In fact, the UniProt API allows up to 100,000 target IDs
to be submitted in a single request [56], therefore larger batch sizes are preferable.

Results for the online assembly handling experiment
Unlike the previous experiment, this one not only requests data, but also parses the assembly files.
Figure 5.2a shows the results. It is important to note that the actual height of the bars is not of interest,
as the underlying code is still unoptimized. Nevertheless, The results indicate that the concurrent.futures
module performs the worst. However, this finding is misleading.

The results are skewed by the way the work is sent to the processes. For concurrent.futures, our
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(a) The average execution time for 50 targets.

(b) The average execution time when running on 4 CPU cores.

Figure 5.2: Average execution time of the online assembly handling experiment over 5 repetitions with different
numbers of CPU cores, input targets, and parallel tools. The abbreviation conc.futures stands for the concur-
rent.futures module. Error bars represent the minimum and maximum over the 5 repetitions. Experiments were
conducted on 2 Xeon E5-2630v4 with a total of 20 CPU cores.

implementation submits one argument at a time, as can be seen in Code 5.1 line 15. This contrasts with
Multiprocessing’s Pool, which relies on the built-in map function to process the iterable in chunks. By
default, the chunk size is not 1, but is calculated based on the length of the iterable and the number of
CPU cores. The actual formula can be found in [57]. Using chunks is more efficient because it requires
less communication with the processes in the pool. Since the chunk size is calculated using a heuristic, the
programmer does not have to worry about workload allocation, which is convenient for an implementation
of gc2D. Furthermore, Multiprocessing with processes outperforms Multiprocessing with threads for a
larger number of targets, as shown in Figure 5.2b. This suggests that the advantage of overlapping URL
requests with threads seen in the first experiment is lost when the computational part becomes dominant.

In conclusion, Multiprocessing’s ProcessPool is best suited for gc2D, as the tasks involve collecting data
through APIs and extracting relevant information. Furthermore, the automatic workload adjustment
facilitates the implementation. With respect to APIs, larger batch sizes are preferred. Wrapping the
invocation of the parallel tools in wrapper functions provides an easy and flexible way to call them
whenever needed. This simplifies modularization.
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Figure 5.3: Average execution time of the ID mapping experiment with Dask.DataFrame over 5 repetitions
with different numbers of CPU cores and block sizes with 10’000 targets. Error bars represent the minimum and
maximum over the 5 repetitions. Experiments were conducted on 2 Xeon E5-2640v4 with a total of 20 CPU cores.

5.3 ID Mapping with Dask.DataFrame

The goal is to evaluate the suitability of Dask.DataFrame for ID mapping in gc2C. The underlying data
for the UniProt mapping API is available for download (see Section 6.4). Since the file is large and
may not fit in memory, the idea is to use Dask.DataFrame to represent a Dask data frame as many
partitions of Pandas data frames. In order to get the mapping between the ID standards of any target,
the combined data frame is filtered using the appropriate Pandas syntax and Dask handles the filtering
of each partition. Based on the examples in [58], we used a format called Parquet [59] to store our
partitions. These are pre-created for fast access during computation. The most important parameter is
the block size, measured in bytes, which determines the size of each partition. The smaller the block
size, the more partitions are needed. Since the optimal block size is not known beforehand, we tested
different values during the experiment. Table 5.3 presents the experimental design. The main conclusion
is provided below, with additional plots in Appendix B.2.

The results of varying the block size and the number of CPU cores with 10’000 target sequences are
shown in Figure 5.3. The fact that the mean is close to the bottom of the error bar representing the
minimum execution time over the 5 repetitions indicates the presence of outliers. To identify the cause
of this issue, we plotted the execution time for each repetition on 1 CPU core separately in Figure 5.4.
Clearly, the first repetition is the outlier in all cases. The operating system keeps track of the partition
locations on the network file system, meaning they are found faster when repeating the experiment. This

Table 5.3: Design of factorial experiments to assess the suitablity of Dask.DataFrame for an implementation of
GCsnap2.0 Cluster.

Factor Value Properties

Application
ID mapping with
Dask Dataframe

Number of targets:
10’000, 50’000, 100’000, 500’000

Number of CPU cores: 1, 2, 4, 8, 16
Block size (MB): 32, 64, 128, 196, 216, 512

Metrics Program performance
Execution time (seconds) of parsing the input,
read parquet files, and filter data

Computing system 1 miniHPC node
2 CPU Xeon E5-2640v4, 2.4GHz;
each with 10 cores and 25 MB L3 cache;
64 GB RAM;

Validity Repetitions 5
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Figure 5.4: Execution time of each repetition of the ID mapping experiment with Dask.DataFrame with different
block sizes, 10’000 targets and 1 CPU core. Experiments were conducted on 2 Xeon E5-2640v4 with a total of 20
CPU cores.

suggests that the first repetition is not the outlier, but rather the other 4 are atypically fast. Given the
long execution time for filtering the ID mapping table with Dask.DataFrame on the first run, we do not
consider this to be a suitable tool for implementing GCsnap2.0 Cluster.

5.4 Dask.distributed vs. MPI for Python

We then evaluate whether to use Dask.distributed or mpi4py for gc2C. As discussed in Section 4.2, using
mpi4py involves controlling the master–worker relationship, which requires the programmer to include a
control structure in the script to manage what is run on which MPI rank. This approach seems impractical
for a large project like gc2C, which has many modules and dependencies between the modules. A solution
is to use mpi4py.futures, which is designed to work with pools of processes, similar to concurrent.futures.
Therefore, it can be bundled into a wrapper function. Since Dask and mpi4py.futures are equally easy to
implement, the choice is based on performance.

Before discussing the experiments conducted, a few remarks regarding the deployment of Dask and
mpi4py.future on an HPC cluster are necessary. Running gc2C in a distributed environment requires
interaction with cluster management software. Both clusters we are working on, miniHPC and sciCORE,
use SLURM [39]. Scripts are started by submitting a job script that requests cluster resources to run
our application. One difference between the two is what resources are being requested. As mentioned in
Section 4.2, Dask sends requests for additional worker nodes as needed from the Python script. So the
main Python thread, which also manages the Dask scheduler, is started with a job script asking SLURM
for a node, and Dask does the rest. This contrasts with mpi4py.futures, where all resources to be used
are requested by the job script.

As a result, Dask needs an additional node to run the main thread and the scheduler. The situation
when running on sciCORE is shown in Figure 5.5. This does not seem efficient, especially on busy HPC
systems like the sciCORE cluster. A user must wait twice to get the resources, and while waiting for
the workers, already blocks the resources of the node where the main thread is idle. A workaround to
overcome this is mentioned in [60]. The main idea is to manually start the scheduler and the workers
separately from the same job script. However, there is no way to use the node where the main thread is
running as a worker [60].

The obvious approach to circumvent the problem was to run the Python script directly from the login
node on the cluster, but this did not work. Dask workers could not connect to the Dask scheduler running
on the login node. It is possible that the connection from the compute nodes to the login node in the
cluster is blocked, as suggested in [60]. In any case, the solution to this problem is beyond our control
and would require assistance from the cluster administrators.

Accepting the deployment issues as beyond our capabilities, we proceed to evaluate whether mpi4py.futures
or Dask performs better. In [35], it was shown that mpi4py.futures outperforms Dask in most scenarios.
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Figure 5.5: Screenshot of the terminal when executing Dask on sciCORE. The main Python scripts run on
their own node, requesting additional worker nodes, which are assigned then.

To asses its suitability for our case, we conducted several experiments according to the design presented in
Table 5.4. The task consists of opening and parsing assembly files. For convenience, the experiments were
run on miniHPC, which is much less busy than sciCORE. The main results can be seen in Figure 5.6,
with additional shown in Appendix B.3. Dask performs better in the single node experiment, while
mpi4py.futures has a lower average execution time when using more than 2 nodes. There is no further

Table 5.4: Design of factorial experiments to compare the performance of Dask.distributed and mpi4py.futures.

Factor Value Properties

Application

Parsing assemblies
with Dask.distributed

Number of targets: 1’000, 2’000, 5’000, 10’000
Number of compute nodes: 1, 2, 4, 8, 16
Number of CPU cores per node: 1, 2, 4, 8, 16

Parsing assemblies
with mpi4py.futures

Number of targets: 1’000, 2’000, 5’000, 10’000
Number of nodes: 1, 2, 4, 8, 16
Number of CPU cores node: 1, 2, 4, 8, 16

Metrics Program performance Execution time (seconds)

Computing system miniHPC
Each node with 2 CPU Xeon E5-2640v4, 2.4GHz;
each with 10 cores and 25 MB L3 cache;
64 GB RAM

Validity Repetitions 5
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Figure 5.6: Average execution time of the assembly file parsing experiment with Dask.distributed and
mpi4py.futures over 5 repetitions with different numbers of nodes, 4 CPU cores per node, and 10’000 files. Error
bars represent the minimum and maximum over the 5 repetitions. Experiments were conducted on miniHPC
nodes, each with 2 Xeon E5-2640v4 and a total of 20 CPU cores.

improvement when using more than 8 nodes. However, this is due to the small size of the workload, which
consists of 10,000 files to be parsed. Both tools have a coordination and communication overhead that
dominates the computation of such a small workload. Since gc2C should perform well on many nodes,
mpi4py seems to be the better choice. In summary, we will use mpi4py for our implementation of gc2C.
It outperforms Dask when running on multiple nodes and does not have the problems when deployed on
a SLURM managed cluster.

5.5 Summary of the Assessment

In this chapter, we discussed the advantages and disadvantages of the various tools presented and eval-
uated their suitability for implementing GCsnap2.0 Desktop and GCsnap2.0 Cluster with experiments.
The most important aspects are:

• Parallelism in gc2D is based on ProcessPool from the Multiprocessing module. The experiments
strongly suggest that it works best for tasks involving I/O operations and computations.

• Results of online experiments have shown that requesting information from APIs is most efficient
when using large batch sizes.

• Writing wrapper functions that encapsulate parallel tools is feasible, simplifying implementation
and modularization.

• Using the Dask.DataFrame module to work with partitioned data is not suitable. The first time an
experiment is run on a node, it takes much longer than the subsequent runs. The execution time
of the first run is considered to be too long and not applicable to real-world scenarios.

• We use mpi4py.futures to enable distributed computing for gc2C.

With these points in mind, the next chapter presents the new implementation of both applications.
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Chapter 6

GCsnap2.0

This section covers the implementation of GCsnap2.0 and its two versions, GCsnap2.0 Desktop (gc2D)
and GCsnap2.0 Cluster (gc2C). The first part presents the results from the user survey to gain a more
profound understanding about the issues users faced with GCsnap1 and their suggestions for improvement.
Thereafter, we present new features in GCsnap2.0 before detailing out the implementations of gc2D and
gc2C, with a particular focus on the data that needed to be stored on the cluster.

6.1 Results of user survey

One of the goals of creating GCsnap2.0 was to increase the level of its user-friendliness. We conducted
a user survey to get some insight into how GCsnap1 is being used, what could be improved, and what
new features should be included,. The anonymous survey was open between April 16 and August 3, 2024
and consisted of 22 questions. The full questionnaire can be found in Figure A.1. Unfortunately, the
number of responses was very low. Despite sending reminders and adding the link to the survey to the
GCsnap1 repository on GitHub, only 2 people participated. This raises concern about the reliability and
generalizability of the results. Nevertheless, some responses had a direct impact on our design decisions,
while others highlighted problems with GCsnap1.

Questions related to GCSnap argument list
Surprisingly, not all respondents were aware that GCsnap1 supports 40 optional arguments. When asked
about the most commonly used argument categories (see Figure A.1e), only 4 categories were mentioned.
One reason may be the tedious nature of specifying so many arguments from a command line terminal.
To simplify the process, GCsnap2.0 includes the ability to pass arguments via a configuration file, a
feature welcomed by all respondents.

Parallel execution and workload
One of the objectives of this thesis is to ensure that the new implementation of GCsnap2.0 runs in parallel.
However, it was unclear how many input sequences users typically use to run GCsnap1 and how much
computing resources are needed for this. The question about the number of targets (see Figure A.1g)
revealed a need to run GCsnap2.0 with up to 2’000 targets. As mentioned in Section 3.2, this takes a very
long time and is not guaranteed to finish. Regarding computing resources, one user explicitly expressed
the desire to run GCsnap2.0 on a cluster, while the other preferred the option to specify the number of
CPU cores used.

Revealed issues
The most insights gained were from the open–ended questions, especially when users were asked about
bugs and problems (see Figure A.1g). One issue mentioned is the reproducibility of GCsnap1. Occasion-
ally it reports that an assembly cannot be found, but the same assembly is located when the application
is rerun. Upon analyzing the code in detail, we discovered that online request errors are improperly
handled. When an API limit is reached or a request times out, GCsnap1 simply excludes that target.
Since such connection–related problems are sporadic, the results of two GCsnap1 runs can differ. Another
aspect mentioned by respondents was missing output. The reason for this behavior was again due to a
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Figure 6.1: Screenshot of the terminal when running GCsnap2.0.

runtime error that was not handled carefully. When it occured, GCsnap simply stopped plotting without
reporting the problem.

In addition to these runtime-related issues with GCsnap1, the survey responses also pointed to another
problem. GCsnap1 is supposed to run on all major operating systems, including Windows [3, p. 6]. One
respondent specifically mentioned using Windows Subsystem for Linux (WSL). Curious about why it
was not executed directly on Windows, we attempted to run it ourselves and were unsuccessful. The
main reason is the use of the Unix command wget to download files, which is not standard on Windows.
Additionally, we could not find a working installation candidate of the protein family finding tool MMseqs2
for Windows [13]. Since portability is one of the goals of this work, finding solutions to these issues is
essential when implementing GCsnap2.0.

6.2 New Features and Improvements

Informative terminal messages and logging
GCsnap1 had no real logging mechanism, relying instead on print statements, which flooded the terminal
with messages. Logging was done by piping the terminal output to a file. One of the first new features
was the separation of terminal output and logging. Since, user–friendliness is one of the goals of this work,
we used the Rich module for Python [61] to have nicely formatted terminal messages. These messages
inform the user about the state of execution and display warnings or errors. An example of this can be
seen in Figure 6.1. The logging is based on Python’s logging module [62], which is part of the standard
Python library. During execution, warnings are written to a file. Most conveniently, a warning message
including the target ID is logged if a target cannot be mapped or the corresponding assembly cannot be
found.

Providing arguments through a configuration file
Entering up to 40 arguments when running GCsnap1 is tedious. We added the functionality to pass
arguments through a configuration file named config.yaml to improve usability. This makes it easier to
use GCsnap2.0, especially when many parameters differ from their default value. In this scenario, the
user can modify them directly in the configuration file instead of passing them through the command
line. Based on the survey responses, this feature is expected to be well–received by GCsnap users. During
these changes, we have also improved the output of the --help from in the command window. The concise
layout increases the information peovided, as shown in Figure 6.2. Our implementation uses the pyyaml
module for Python [63].
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Figure 6.2: Screenshot of the terminal when using the --help command to get information about all arguments,
allowed input, and defaults as defined in the configuration file.

Improved installation process and portability
Like GCsnap1, GCsnap2.0 relies on Conda environments [64] to manage software packages and Python
libraries. Both the desktop and cluster applications of GCsnap2.0 are publicly available on GitHub [65,
66]. Installing GCsnap2.0 uses the pyproject.toml file which lists all dependencies. Unlike the original
implementation, the new dependency specification includes not only the library names, but also the
versions. This helps to avoid dependency issues and should simplify installation in the future. As one
respondent noted, GCsnap1 did not run on Windows. In gc2D, files are downloaded using the Python
libraries pypdl [67] and urllib.request [68] instead of Unix commands. The new implementation has been
tested on Ubuntu, CentOS, MacOS and Windows to ensure portability. Problems have been reported
when installing the necessary gcc library needed to build GCsnap2.0 on machines with ARM chips
running MacOS, but those could be resolved manually and were not directly caused by GCsnap. The
only inconvenience on Windows is that the user must specify the path to the downloaded static binary
of MMseqs2 as an argument when running GCsnap2.0. Downloads are available in [13].

Advanced error handling
The error handling of GCsnap1 was suboptimal, as mentioned in Section 3.2 and Section 6.1. The new
implementation improves error handling, particularly when working with online requests. When the
request limit is reached, the server suggests the delay time. If no suggestion is provided, a random delay
is used. The implementation is shown in Code 6.1.
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Code 6.1: Example of improved error handling when retrieving data from NCBI Eutils including random
back off when request limit is met and server does not send a delay suggestion.

1 initial_wait_time = 1 # Initial wait time in seconds

2 max_wait_time = 10 # Maximum wait time in seconds

3 while True:

4 response = requests.get(url, timeout=timeout)

5 if response.status_code == 200:

6 xml_string = response.text

7 return ET.fromstring(xml_string)

8 elif response.status_code == 429: # limit hit

9 # extract the time with wait suggestion from the response

10 retry_after = response.headers.get(’Retry-After’)

11 if retry_after:

12 try:

13 retry_after = int(retry_after)

14 except ValueError:

15 # If Retry-After is not a number, it might be a date

16 retry_after_date = requests.utils.parse_date(retry_after)

17 if retry_after_date:

18 wait_time = (retry_after_date - datetime.datetime.now()).total_seconds()

19 wait_time = int(retry_after)

20 else:

21 # Random

22 wait_time = random.uniform(initial_wait_time, max_wait_time)

23 time.sleep(wait_time)

24 else:

25 raise WarningToLog(’Eutils request failed with status code {}’.format(response.status_code

))

6.3 GCsnap2.0 Desktop

The application combines 26 different scripts and a total of 30 Python classes. The schematic view of all
modules, dependencies and the main workflow is shown in Figure 6.3. The colors of the modules refer to
the type of underlying functionality:

• Gray: Input

• Blue: Modules that are executed sequentially, without taking advantage of any parallelism.

• Yellow: Modules that use parallelism. As noted in Section 5.5, this is enabled by ProcessPool from
Multiprocessing, encapsulated inside a function. See below for an explanation.

• Red: Modules that interact with online APIs to retrieve data, using batches of IDs for each request.

• Purple: Modules that provide general functionality. Some of them are direct dependencies of others,
indicated by an arrow. Most other modules import the 3 modules on the top right. For simplicity,
dependencies are not shown.

Modularization has two advantages. First and foremost, it increases maintainability and extensibility,
meaning that new functionality within classes or new modules can be added with little effort. Second,
the modules can be used stand alone in other projects.

The most important feature of gc2D is process parallelism. We use the wrapper function shown in
Code 6.2. The wrapper takes a list of elements and a function as input. The map async command applies
the callable to each item in the list in chunks. If desired, the number of chunks can be controlled by
passing a list of lists to the wrapper. If the iterable has as many elements as there are processes in the
pool, it corresponds to chunk size of 1. But as stated in Section 5.2, this is not necessary given the
chunk size computation heuristic of Multiprocessing. Most functions in gc2C take multiple arguments
instead of just one. We can use the same wrapper, but combine all the arguments into a tuple, passing
a list of tuples as input to the wrapper. To assure that all processes have finished, we use pool.join to
synchronize before collecting the results. The wrapper returns a list of lists, where each sublist is the
output of one process.
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Target sequences

ID of sequences either by .txt, .fasta or text in CLI.
Multiple files supported.
ID types supported: UniRef, UniParc, Ensembl,
GeneID, UniProt, RefSeq, and EMBL-CDS

sequence_mapping.py

Map ID from any type to desired
codes. Parallel over ID type lists.

Color indication: Blue: Sequential, Yellow: Parallel processes,
Red: API in batches, Purple: General functionality, Gray:
Input. Workflow shown with thick arrows, dependencies with
thin arrows.

targets.py

Parse targets into Python
dictionary of ID type lists.

Optional arguments for execution

Either from config.yaml or parsed from CLI. Both are
supported. The config.yaml content is the default
value.

configuration.py

Parse arguments into Python
dictionary.

sequences.py

Add actual protein sequences to
flanking genes.
Parallel over sequence IDs.

assembly_links.py

Download and extract mapping for
assembly accession to assembly
URL.

utils.py

Methods for:
- Exceptions
- Parallel wrappers
- Logging

assemblies.py

- Find assembly accessions and links
to assembly files
- Download and parse assembly files
to extract neighboring (i.e, flanking)
genes.
Parallel over sequences IDs to
extract genomic context.

uniprot_api.py

Methods to access UniProt
mapping tool.

__main__.py

Entry point of GCsnap2.0
and executing workflow.

rich_console.py

Methods to display
formatted terminal output.

Block 'Collect'

GCsnap2.0 Desktop Modules

genomic_context.py

- Data structure to store all generated
and collected information, including
flanking genes of target, families,
and operons.
- Methods to write information to
file.

families.py

Find protein families over
all flanking genes.

families_functions_structures.py

Add functional annotation and 3D
structure to families. Needs mapping
to UniProt identifier for API.

operons.py

Find operon clusters.

taxonomy.py

Download phylogenic tree, i.e., the
taxonomy of a sequence.

tm_segments.py

Transmembrane annotation.

uniprot_dbs_dict.py

Data structure for mapping
information.

apis.py

APIs to access SwissModel
repository, Protein Data Bank
information, and UniProt
annotations from the European
Bioinformatics Institute.

entrez_query.py

Methods to access NCBI
information via URL requests for
assemblies, sequences, and
taxonomy.

mmseqs_cluster.py

Many-to-many sequences
searching with MMseqs2
and find clusters.

figure_genomic_context.py

Create static SVG or PNG figures.

Block 'Find families'

Block 'Annotate'

figures.py

Create Figures

figure_interactive.py

Create HTML file.

figure_interactive_advanced.py

Create HTML file with additional
information.

figure.py

Common methods for figures.

timing.py

Measure execution time.

Block 'Annotate'

Input

Input

Figure 6.3: Modules and dependencies of GCsnap2.0 Desktop. Color indication: Blue are sequential modules,
yellow are modules using parallel processes, red represents API request with batches, purple are modules of
general functionality, and gray is the input. The main workflow is indicated by thick arrows, while dependencies
are indicated by thin arrows.
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Code 6.2: Example of the wrapper function using Multiprocessing’s ProcessPool.

1 from multiprocessing import Pool as ProcessPool

2 def processpool_wrapper(n_processes: int, parallel_args: list[tuple], func: Callable) -> list:

3 """

4 Args:

5 n_processes (int): The number of processes to use.

6 parallel_args (list): A list arguments for the function.

7 func (Callable): The function to apply to the arguments.

8

9 Returns:

10 list: A list of results from the function applied to the arguments in the order they

finish.

11 """

12 # create the pool

13 pool = ProcessPool(processes = n_processes)

14 # start execution

15 # map: Takes only one argument, hence upacking within the callable

16 # async: Results returned in order they finish

17 results = pool.map_async(func, parallel_args)

18 # Close pool to receive further work

19 pool.close()

20 # Synchronization: Wait until all have finished

21 pool.join()

22 # Get results

23 result_list = results.get()

24 return result_list

6.4 GCsnap2.0 Cluster

All data must be available on the cluster where gc2C is executed. We distinguish between two types.
First, raw files that are parsed to extract information. For example, the assembly files from which the
flanking genes are extracted. Second, databases to mimic the APIs used in gc2D. While UniProt provides
a single file containing all the mappings between ID standards, NCBI does not supply such a combined
summary. For example, the mapping from GenBank or RefSeq ID to assembly accession is not publicly
available. Therefore, we extracted this information from the raw files and stored it in a database for quick
retrieval during execution. Similarly, coding sequences were parsed from the available protein sequence
files. As a database tool, we use SQLite with its Python implementation because it is a lightweight
solution that does not require running a separate server [69]. Below we provide some details about the
data, its source, the method to download it, and the means of storage on sciCORE. The number of files
and the reported file size were measured using the ls command.

1. UniProt mapping between ID standards:

• Source: https://ftp.uniprot.org/pub/databases/uniprot/current release/knowledgebase/
idmapping/idmapping selected.tab.gz

• Number of files: 1

• Size: 44 GB decompressed

• Retrieved how: Manually download on Jul. 24, 2024

• Kept as: SQLite DB mappings.db (65 GB) created with script available in [66]

2. NCBI summary tables for GenBank assembly files:

• Source: https://ftp.ncbi.nlm.nih.gov/genomes/genbank

• Number of files: 1

• Size: 991 MB

• Retrieved how: Manually download on Mar. 18, 2024

• Kept as: TXT file

3. NCBI summary tables for RefSeq assembly files:
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• Source: https://ftp.ncbi.nlm.nih.gov/genomes/refseq

• Number of files: 1

• Size: 160 MB

• Retrieved how: Manually download on Mar. 23, 2024

• Kept as: TXT file

4. GenBank assembly files ( genomic.gff.gz):

• Source: https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA

• Number of files: 1’678’176

• Size: In total 461 GB compressed; File range: <1 KB, 274 KB, 188 MB (min, average, max)

• Retrieved how: Synchronized with rsync in Mar. 2024

• Kept as: GFF.gz

5. RefSeq assembly files ( genomic.gff.gz):

• Source: https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF

• Number of files: 362’140

• Size: In total 138 GB compressed; File range: <1 KB, 380 KB, 79 MB (min, average, max)

• Retrieved how: Synchronized with rsync in Mar. 2024

• Kept as: GFF.gz

6. Mapping between GenBank and RefSeq IDs, assembly accessions, assembly files, and taxonomy
ID:

• Source: 2., 3., 4., and 5.

• Number of files: 1

• Size: 397 GB

• Kept as: SQLite DB assemblies.db created with script [66]

7. GenBank protein sequence files ( protein.faa.gz):

• Source: https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA

• Number of files: 1’676’631

• Size: In total 1.29 TB compressed; File range: <1 KB, 770 KB, 304 MB (min, average, max)

• Retrieved how: Synchronized with rsync in Mar. 2024

• Kept as: SQLite DB sequences.db created with script [66]

8. RefSeq protein sequence files ( protein.faa.gz):

• Source: https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF

• Number of files: 362’090

• Size: In total 289 GB compressed; File range: <1 KB, 780 KB, 29 MB (min, average, max)

• Retrieved how: Synchronized with rsync in Mar. 2024

• Kept as: SQLite DB sequences.db created with script available in [66]

9. NCBI taxonomy (rankedlineage.dmp in new taxdump.tar.gz):

• Source: https://ftp.ncbi.nih.gov/pub/taxonomy/new taxdump

• Number of files: 1

• Size: 324 MB decompressed

• Retrieved how: Manually download and extracted on Aug. 20, 2024

• Kept as: DMP

The sequences.db is 366 GB in size, but only 4 percent of the records actually have values for the actual
coding sequence. This corresponds to 250 million records. The rest have an empty string in the sequence
field. The entire database filled with all coding sequences has an estimated size of 1.9 TB. 303 GB for the
database without filled coding sequence fields, but including the index for quick access, and 1.6 TB for
all data. To save space, we decided to limit the content to a subset of the sequences needed to evaluate
gc2C.
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This decision also saves time. The entire process of retrieving all the information and creating the
restricted databases takes 17 days. 2 days of which are spent on the insertion of the 4 percent of the
coding sequences. In a production environment where data should be updated regularly, the current data
workflow is not efficient, although the frequency of such updates is debatable and depends on updates to
the underlying data. While new RefSeq information becomes available daily [70], UniProt releases new
versions every 8 weeks [71].

The amount of space and time required suggests that the current approach using SQLite databases is
inappropriate for using GCsnap2.0 Cluster in a productive environment. Another limitation is that the
data needed for functional annotation is not available for download. The solution is for the user to pass
a JSON file containing the desired information as an argument to gc2C, which will be used to annotate
functions and identify TM segments.

The modules and workflow of gc2C are shown in Figure 6.4. Although the structure is similar to the
modularization of gc2D in Figure 6.3, the implementation is different, especially for the collect block.
These modules rely on database handlers, shown in pink, to select information from the databases. In
addition, the parallel functionality is provided by the class shown in red. Like gc2D, the parallelization
is provided through a callable wrapper function that uses mpi4py.futures.
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Target sequences

ID of sequences either by .txt, .fasta or text in CLI.
Multiple files supported.
ID types supported: UniRef, UniParc, Ensembl,
GeneID, UniProt, RefSeq, and EMBL-CDS

mapping.py

Map ID from any type to desired
codes. Parallel over ID type lists.

Color indication: Blue: Sequential, Yellow: Parallel processes,
Red: Parallel functionality, Pink: DB connectors, Purple:
General functionality, Gray: Input/Data. Workflow shown with
thick arrows, dependencies with thin arrows.

targets.py

Parse targets into Python
dictionary of ID type lists.

Optional arguments for execution

Either from config.yaml or parsed from CLI. Both are
supported. The config.yaml content is the default
value.

configuration.py

Parse arguments into Python
dictionary.

sequences.py

Add actual protein sequences to
flanking genes.
Parallel over sequence IDs.

utils.py

Methods for:
- Exceptions
- Logging

assemblies.py

- Find assembly accessions and links
to assembly files
- Parse assembly files to extract
neighboring (i.e, flanking) genes.
Parallel over sequences IDs to
extract genomic context.

__main__.py

Entry point of GCsnap2.0
and executing workflow.

rich_console.py

Methods to display
formatted terminal output.

Block 'Collect'

GCsnap2.0 Cluster Modules

genomic_context.py

- Data structure to store all generated
and collected information, including
flanking genes of target, families,
and operons.
- Methods to write information to
file.

families.py

Find protein families over
all flanking genes.

families_functions_structures.py

Add functional annotation and 3D
structure to families. Needs mapping
to UniProt identifier for API.

operons.py

Find operon clusters.

tm_segments.py

Transmembrane annotation.

uniprot_dbs_dict.py

Data structure for mapping
information.

mmseqs_cluster.py

Many-to-many sequences
searching with MMseqs2
and find clusters.

figure_genomic_context.py

Create static SVG or PNG figures.

Block 'Find families'

Block 'Annotate'

figures.py

Create Figures

figure_interactive.py

Create HTML file.

figure_interactive_advanced.py

Create HTML file with additional
information.

figure.py

Common methods for figures.

timing.py

Measure execution time.

Block 'Annotate'

Input

Input

parallel_tools.py

Callable parallel wrappers for
mpi4py.futures.

rankedlineage.dmp

Taxonomy information.

annotation.json

Functional annotations
provided by user.

taxonomy.py

Extract phylogenic tree, i.e., the
taxonomy of a sequence.

db_handler_assemblies.py

Interact with assemblies.db

db_handler_sequences.py

Interact with sequences.db

db_handler_uniprot_mappings.py

Interact with uniprot_mappings.db

Figure 6.4: Modules and dependencies of GCsnap2.0 Cluster. Color indication: Blue are sequential modules,
yellow are modules that use parallel processes, and red represents the module that contains the functionality to
enable parallelism. Pink indicates the modules that interact with the databases, purple are modules of general
functionality, and gray marks the input and necessary data. The main workflow is indicated by thick arrows,
while dependencies are indicated by thin arrows.
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Chapter 7

Evaluation

This chapter evaluates our implementation of GCsnap2.0 Desktop (gc2D) and GCsnap2.0 Cluster (gc2C).
We begin by comparing the results of GCsnap1 with the output of GCsnap2.0. Next, we analyze the
performance of gc2D to determin if the objective to improve the performance has been met. Finally, we
present the results of running gc2C on sciCORE.

7.1 Consistency of GCsnap2.0

Ensuring that GCsnap2.0 replicates the functionality of GCsnap1 was an iterative process. It involved
deploying the new implementation to selected day-to-day users, analyzing their feedback, and addressing
any issues discovered. The consistency assessment was based on two pillars: (i) systematic comparison
of the generated TXT and JSON files, and (ii) review of the graphical output. This process will con-
tinue beyond the submission of this thesis. Nevertheless, the current state is not only satisfactory, but

Table 7.1: Design of factorial experiments to evaluate the performance of GCsnap2.0 Desktop (gc2D) and the
scalability of GCsnap2.0 Cluster (gc2C). Color indicates which experiment the information refers to.

Factor Value Properties

Application

GCsnap2.0 Desktop

Number of targets:
10, 20, 50, 100, 200, 500, 1’000, 2’000

Number of CPU cores: 1, 2, 4, 8, 16, 32, 64
Runtime arguments for gc2D:
--annotate-TM True

GCsnap2.0 Cluster

Number of targets: 10’000
Number of nodes: 2, 4, 8
Number of MPI ranks per node: 8
Runtime arguments for gc2C:
--annotate-TM False
--functional-annotation-files-path None

Metrics Program performance
Execution time (seconds)
end-to-end, of the three GCsnap task blocks,
and individual steps

Computing system

1 miniHPC node
2 AMD EPYC 7742, 2.25 GHz;
each with 64 cores and 256 MB L3 cache;
1’500 GB RAM; API-enabled connectivity

sciCORE
Each node with 2 AMD EPYC 7742, 2.25 GHz;
each with 64 cores and 256 MB L3 cache;
512 GB RAM

Validity Repetitions 5, 1
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(a) Screenshot of the interactive HTML output of GCsnap1, taken from the example ybez KHI available in [2].

(b) Screenshot of the interactive HTML output of gc2D , created by reproducing the example ybez KHI available in [2].

Figure 7.1: Comparison of the interactive HTML output from (a) GCsnap1 and (b) GCsnap2.0 Desktop (gc2D).

demonstrates exemplary consistency.
We replicated the example ybez KHI available in [2] using gc2D, to compare the two applications. The

interactive HTML output of GCsnap1 and GCsnap2.0 is shown in Figure 7.1. At first glance, they appear
different, and they are, but for explainable reasons. The most important difference is the use of MMseqs
instead of BLAST. As a result, different families were identified and the family network changed. The
underlying data was also updated, especially for the taxonomy, resulting in a revised phylogeny. Despite
these differences, the test users approved the results based on their expertise, demonstrating success in
achieving consistency.

7.2 Performance of GCsnap2.0 Desktop

To evaluate the performance of gc2D and to compare it with GCsnap1, the experiments presented in
Section 3.2 were repeated with the new tool. The design of the factorial experiment is shown in Table 7.1.
As with GCsnap1, not all runs of gc2D were completed. The list of all 18 failed experiments can be found
in Appendix B.4, along with additional plots. Unlike before, we now know the errors thanks to the
updated error handling mechanism implemented. All failures occurred when using the UniProt API to
map sequences or retrieving NCBI data, so we assume that temporary network interruptions are the

40



Figure 7.2: Speedup of the average end-to-end execution time over 5 repetitions of gc2D compared to GCsnap1
with different numbers of CPU cores and input targets. A value above 1 (black dashed line) means that gc2D
had a lower average execution time. Experiments were conducted on an AMD EPYC 7742 with 64 CPU cores.
Not all repetitions finished.

Figure 7.3: Speedup of the average end-to-end execution time over 5 repetitions of gc2D compared to GCsnap1
with different numbers of CPU cores and 100 targets for the 3 blocks of. A value above 1 (black dashed line)
means that gc2D had a lower average execution time. Experiments were performed on a 2 AMD EPYC 7742 with
64 CPU cores. Not all repetitions finished.

cause of these failures.
Figure 7.2 depicts the speedup calculated as the average execution time of GCsnap1 divided by the

average execution time of gc2D. The numerator and denominator are the averages over the 5 repetitions
of each experimental factor combination. A value greater than 1 means that gc2D was faster. The plot
shows that GCsnap2.0 Desktop outperforms GCsnap1 in all cases. Additionally, the speedup is increasing
as the number of input targets increases.

To analyze which block of GCsnap experiences the largest performance gain, we plotted the speedup
of the 3 blocks of GCsnap in Figure 7.3. The new implementation of finding families with MMseqs is
slower than in GCsnap1. Since we did not change anything in the actual execution of MMseqs, we suspect
that the modularization is the cause, as importing the modules takes time and initializing the classes
requires additional memory. However, this is not a concern as this step accounts for a small fraction of
the end-to-end execution time (see Section 3.2). The other two blocks experience notable performance
gain. The speedup of the annotation part is above 10x for different number of CPU cores.

The speedup for the steps of the annotate block is presented in Figure 7.4. We see that annotating
functions, the taxonomy, and especially transmembrane annotation perform better. This is a direct
result of requesting data from APIs in batches. The poor performance of the operons may again be
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Figure 7.4: Speedup of the average end-to-end execution time over 5 repetitions of gc2D compared to GCsnap1
with different numbers of CPU cores and 100 targets for the annotation steps of task block 3. A value above
1 (black dashed line) means that gc2D had a lower average execution time. Experiments were conducted on an
AMD EPYC 7742 with 64 CPU cores. Not all repetitions finished.

Figure 7.5: Average execution time of the first block and its steps of GCsnap2.0 Desktop over 5 repetitions with
different numbers of CPU cores and input targets. Error bars represent the minimum and maximum over the 5
repetitions. Experiments were conducted on an AMD EPYC 7742 with 64 CPU cores.

due to modularization, as this part is executed sequentially and the logic has not been changed. This
underlies the success of gc2D as performance has been improved despite the modularization overhead.

To our surprise, the performance gain of collecting data in Figure 7.3 was not pronounced, especially,
since the focus was on improving this part of GCsnap, given that collecting all necessary information
accounted for the largest share of the end-to-end execution time (see Section 3.2). In order to analyze
the steps of block 1 in detail, the average execution time over 5 repetitions of each experiment with gc2D
is shown in Figure 7.5. Plotted is the average execution time of the block collect and of its three steps ID
mapping, assembly handling, and adding the coding sequences. It is clear that handling the assemblies
remains inefficient. Despite being executed in parallel, downloading the assembly files does not improve.
On the contrary, it worsens with more computing resources. The reason is the limited bandwidth of
the network. The more processes share the bandwidth, the slower each process becomes. This is less
problematic for APIs as the amount of data transferred is small, but, as seen in Section 6.4, assembly
files can be large. In conclusion, this part of GCsnap is only as fast as the download speed the connection
allows and cannot be optimized further on a single node.
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Figure 7.6: Execution time of the 3 blocks of GCsnap2.0 Cluster with different numbers of nodes, 10’000 input
targets and 8 MPI ranks per node. Experiments were conducted on sciCORE nodes, each with 2 AMD EPYC
7742 with 128 CPU cores.

Figure 7.7: Execution time of the 3 steps of GCsnap2.0 Cluster that have the longest execution time with
different numbers of nodes, 10’000 input targets and 8 MPI ranks per node. Experiments were conducted on
sciCORE nodes, each with 2 AMD EPYC 7742 with 128 CPU cores.

7.3 Cluster scalability

To evaluate the performance of GCsnap2.0 Cluster, we use a real–world example from the Protein Uni-
verse Atlas mentioned in Section 1.1. The experimental design is presented in Table 7.1. Since we do
not have a prepared functional annotation file, the corresponding runtime argument is set to None. We
also disable TM annotations because they also rely on additional information passed to gc2C. These
experiments were only repeated once, which raises concerns about the reliability of the results. However,
they provide enough insight to evaluate our implementation.

Figure 7.6 shows the execution time of the 3 tasks block of GCsnap with different number of nodes
and 8 MPI ranks per node. It is clear that our implementation has its limits. While block 1 does scale,
the other 2 blocks do not. This is surprising since they all rely on the same parallelization functionality.
We suspect that this is due to inefficient workload distribution. Unlike gc2D, where the Multiprocessing
module has a heuristic to adjust the workload, mpi4py.futures does not and sets the chunk size to 1 by
default. We approach this by passing a list of lists to the parallel wrapper function to ensure that each
rank has a similar workload. However, the load balancing aspect reveals another limitation of our work.
We did not use a profiling or tracing tool such as Score-P [72] to analyze our implementations in terms
of memory efficiency or CPU usage.

We plotted the 3 steps that have the longest execution time in Figure 7.7 to determine which module
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is responsible for the bad performance. The tree steps Find Families, Identify Operons, and Collect
Taxonomy account for more than 80% of the total execution time of gc2C. Interestingly, all three were
never considered a bottleneck, on the contrary, finding families had the best performance in GCsnap1.
One possible explanation is that MMseqs does not run in parallel because it does not have access to the
computational resources specified in the SLURM job script. But there is another reason. The tree steps
mentioned were never considered a performance issue, and thus were not fully optimized by replacing all
the original code.

On the positive side, GCsnap2.0 Cluster is able to process 10’000 targets in less than 40 minutes.
This would never have been possible with GCsnap1. In conclusion, the identified bottlenecks of GCsnap1
have been resolved, revealing previously unknown limitations that can be addressed in future work.
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Chapter 8

Conclusion

In this thesis, we propose a solution to reduce the execution time of GCsnap1, a genomic context analysis
tool written in Python. The need to run on both local desktops and computer clusters required the
writing of two versions: GCsnap2.0 Desktop (gc2D) and GCsnap2.0 Cluster (gc2C). While the former
requests the necessary data from online sources via APIs, the latter uses previously stored information.
We identified the data collection as the clear bottleneck of GCsnap1 and the cause of its poor performance.
The large amount of data required for gc2C raises the question of how to manage the underlying data
efficiently.

Both implemented versions are fully modularized, making it possible to use GCsnap functionality in
other projects. In addition, we have improved several aspects of GCsnap. Clear and concise warning
messages, improved logging, and the ability to pass arguments to GCsnap2.0 through a configuration
file enhance usability. A precise definition of the building dependencies together with ensuring that
GCsnap2.0 runs on all major operating systems ensures portability. However, the main focus was to
increase performance by exploiting parallelism.

The limiting factor when running Python in parallel is the Global Interpreter Lock (GIL), a safety
mechanism that prevents more than 1 Python thread from running at the same time. There are a variety
of modules and libraries to overcome the Global Interpreter Lock (GIL), ranging from basic modules
that work with processes from the standard Python library to powerful third–party tools designed for
use on High Performance Computing (HPC) clusters. In order to assess which existing solutions are best
suited for our work, we conducted a series of experiments to collect empirical data as a basis for decision
making.

A comparison of the modules from the standard Python library showed that the ProcessPool function-
ality of Multiprocessing is best suited for gc2D. It is able to handle online queries and computations as
well as working with processes. In addition, the automatic heuristic to determine the size of the workload
sent to the participating process is a convenient feature because the programmer does not need to worry
about workload allocation. The results of the primary analysis also showed that API requests are most
efficient when done in batches.

The results of the experiment comparing Dask and mpi4py.futures showed that the latter is more
suitable for gc2C, as the performance was better when running on more than 2 nodes. Furthermore, the
way Dask interacts with SLURM when deployed on a cluster does not seem efficient, as a user has to wait
twice for the requested resources. Once for the main thread to start and then for SLURM to allocate the
additional requested worker nodes.

The evaluation of the new application shows that gc2D outperforms GCsnap1 in all experiments,
but also reveals that the network connection is the determining factor for further performance gains.
Requesting information from APIs and downloading many files can only be as fast as the download speed
of the network connection. Regarding gc2C, the few experiments revealed that our implementation has
some problems. On the one hand, it is possible to analyze thousands of sequences in a reasonable time.
On the other hand, our implementation of certain modules is not efficient. In particular, those steps that
were not a bottleneck in GCsnap1 leave room for additional improvement.

In summary, this work provides a user-friendly solution for fast genomic context analysis on lo-
cal machines with GCsnap2.0 Desktop, and a tool for performing studies of entire protein families on
SLURM–managed HPC clusters with GCsnap2.0 Cluster.
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8.1 Future Work

Since GCsnap is freely available and actively used in daily operations, its development is continuous. This
section outlines future work and possible adaptations, divided into short– and long–term goals. The aim
is to ensure that the tool remains effective and adapts to evolving dependencies and future requirements.

Short-term adaptions
With the release of the newer, faster version of GCsnap, we anticipate a broader user base and, conse-
quently, more but reports. Regularly addressing the issues to improve the quality will be a significant
part of the future work, but not the only focus.

• As noted in Section 3.1, the currently supported version of TMHMM 2.0 is obsolete [20]. We need
to add support for the new version DeepTMHMM [21]. Since this is a dependency rather than
part of the implementation, updating the installation instructions should be sufficient. However,
before proceeding, some analysis of the new tool and testing of interoperability with GCsnap2.0 is
necessary.

• All GCsnap2.0 code is available on GitHub. Currently, gc2D and gc2C reside in our forked repository
on two different development branches. They need to be merged into the original GCsnap repository.
Obviously, both versions cannot coexist in the main branch together. The question of how and where
gc2D and gc2C will reside needs to be addressed in the near future.

• The performance of gc2C is limited by three specific modules. Solving the unknown problems
requires a thorough analysis to identify the cause. Solving these problems would increase the
overall performance of gc2C, allowing the study of tens of thousands of protein sequences.

Long-term improvements
In the long term, there are two ultimate goals that would further enhance the usability of GCsnap2.0:

• Currently, it is possible to use the modules of GCsnap2.0 Desktop in a standalone manner. However,
users still need to build GCsnap in a Conda environment, as there is no installation candidate.
Making gc2D a Python package installable via the Python Package Index (PyPI) would allow users
to include it in their projects and use individual modules easily. The challenge is whether and how
to include the GCsnap workflow in the package. One approach could be to create a package that
does not include the main module, and then create a new script that imports the GCsnap package
and combines the classes to run the workflow.

• The summary of the data needed to run GCsnap2.0 Cluster in Section 6.4 highlighted that a large
amount of data must be downloaded in advance, and databases need to be created. Regular updates
are necessary to ensure the information remains up–to–date. Implementing a fully automated data
pipeline to ensure the data remains up–to–date is the solution. Parts of the scripts executed to
handle the data in this thesis can be adapted to implement such a data workflow, but significant
improvements are needed to make the data pipeline efficient. Finally, the underlying database
solution needs to be reviewed. While the lightweight SQLite was appropriate for this work, there
are better options for a data pipeline that could reduce update time and generally increase the
performance of gc2C.
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Gene discovery and annotation

Comparative genomics

Functional genomics

Discover new functional relationships

Daily: I use GCsnap every day.

Weekly: I use GCsnap at least once a week.

Monthly: I use GCsnap at least once a month.

Occasionally: I use GCsnap less frequently than once a month.

No longer using: I have used GCsnap in the past, but I no longer use it.

General Usage

GCsnap User Survey
We are conducting this survey to better understand how users interact with GCsnap, including 
usage patterns, integration into workflows, and areas where we can improve or enhance 
functionality to better meet your needs.

We do not collect your e-mail address. Your responses are anonymous.

This survey should take no more than 15 minutes to complete. Thank you for your time and 
insight.

What have you used GCsnap for the most?

How often do you use GCsnap?

(a) Introduction and general usage.

Figure A.1: GCsnap user survey questions.
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Stand-alone

Part of workflow

Very hard Very easy

Not helpful Very helpful

User Experience

Do you use GCsnap as a stand-alone tool or as part of a larger genomic analysis
workflow?

If part of a workflow, please describe how you typically use GCsnaps in your projects.

How would you rate the ease of the installation process of GCsnap?

How helpful was the documentation provided on the GCsnap GitHub repository for
the installation process?
https://github.com/JoanaMPereira/GCsnap

(b) General usage (cont.) and user experience.

Figure A.1: GCsnap user survey questions (cont.).
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Very hard Very easy

Not helpful Very helpful

Interactive Output

Customizable visualization options

Ability to handle various input formats

Combining multiple data sources (NCBI, UniProt, SwissModel)

Features

How would you rate the ease of execution of GCsnap?

How helpful was the documentation provided on the GCsnap GitHub repository for
the execution?
https://github.com/JoanaMPereira/GCsnap

Which feature of GCsnap do you find most useful?

(c) User experience (cont.) and features.

Figure A.1: GCsnap user survey questions (cont.).
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Linux distribution (e.g. Ubuntu, Fedora)

MacOS

Windows

Executing GCsnap

Are there any features that you find redundant?

Are there any features that you feel are missing from the tool?

Under which operating system are you running GCsnap?

(d) Features (cont.) and execution experience.

Figure A.1: GCsnap user survey questions (cont.).
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Generall execution (get_taxonomy, collect_only)

Parallel execution (cpu)

Folder control (tmp_folder, out_label, out_label_suffix)

Number of flanking sequences (n_flanking, n_flanking5, n_flanking3)

Operon clustering (exclude_partial, n_max_operons, operon_cluster_advanced,
max_family_freq, min_family_freq)

Protein family identification (n_iterations, evalue, coverage, base, all-against-all_method,
psiblast_location, mmseqs_location)

Figure making (genomic_context_map, out_format, print_color_summary)

Annotation (get_pdb, get_functional_annotations, annotate_TM, annotation_TM_mode,
annotation_TM_file)

Interactive output (interactive, gc_legend_mode, min_coocc, min_freq_accross_context,
sort_mode, int_tree, in_tree_format)

Clans map (clans_patterns, clans_file)

Yes

No

Yes

No

Which of the following optional argument categories do you regularly use when
working with GCsnap? The arguments from each category are listed in parentheses.

Please do not select more than the three that you use the most.

Did you know that GCsnap supports this many arguments?

Would you like to pass arguments through a configuration file?

(e) Execution experience (cont.).

Figure A.1: GCsnap user survey questions (cont.).
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Yes

No

I was not aware that this option existed.

I don't need GCsnap to run in parallel. It works fine for my purposes with only one
CPU.

I would like to specify how many CPUs GCsnap uses during execution.

I want GCsnap to use all resources of my machine by default.

I want to execute GCsnap on a computing cluster.

I want to execute GCsnap on cloud platforms (AWS, Azure)

I would not execute GCsnap in parallel.

Speed improvement when analyzing a small number of input sequences.

Efficiency and timeliness for medium-sized input: Study up to a hundred sequences
in a reasonable amount of time.

Enable large-scale genomic studies: Analyze hundreds of sequences at once.

Have you ever executed GCsnap in parallel by specifying the cpu argument? This
option sets the number of CPUs used to run GCsnap.

How would you like to execute GCsnap in terms of parallelism?

Why would you execute GCsnap in parallel?

(f) Execution experience (cont.).

Figure A.1: GCsnap user survey questions (cont.).
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<5

5-9

10-19

20-50

No specific reason.

Performance: GCsnap takes too long to compute.

The produced output with many sequences offers no insight anymore.

Not needed as my analysis focuses on a smaller, more specific set of proteins.

On average, how many input sequences (targets) do you use when running GCsnap?

What are the reasons why you do not use GCsnap with more input sequences at the
same time?

Have you encountered any bugs or problems while using the GCsnap? Please describe
them.

(g) Execution experience (cont.).

Figure A.1: GCsnap user survey questions (cont.).
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Any other comments or suggestions?

Open Feedback

(h) General feedback.

Figure A.1: GCsnap user survey questions (cont.).

60



Appendix B

Additional Plots and Tables

61



B.1 GCsnap1 Execution Time Analysis

Table B.1: List of the 26 combinations of targets and CPU cores resulting in failed experiment when running
GCsnap1.

Number of targets CPU cores
Number of failed

repetitions

10 8 1

20 16 2

20 64 1

50 4 1

100 16 1

200 1 1

200 4 1

200 32 4

200 64 3

500 1 4

500 4 1

500 8 1

500 16 1

500 32 5

500 64 4

1’000 1 5

1’000 16 1

1’000 32 5

1’000 64 5

2’000 1 2

2’000 2 1

2’000 4 2

2’000 8 2

2’000 16 3

2’000 32 5

2’000 64 5
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Figure B.1: Average end-to-end execution time of GCsnap1 over 5 repetitions with different numbers of CPU
cores and input targets. Error bars represent the minimum and maximum over the 5 repetitions. Experiments
were conducted on an AMD EPYC 7742 with 64 CPU cores. Not all repetitions finished (see Appendix B.1).

Figure B.2: Average end-to-end execution time of GCsnap1 over 5 repetitions with different numbers of CPU
cores and input targets. Error bars represent the minimum and maximum over the 5 repetitions. Experiments
were conducted on an AMD EPYC 7742 with 64 CPU cores. Not all repetitions finished (see Appendix B.1).
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Figure B.3: Average end-to-end execution time of GCsnap1 over 5 repetitions with different numbers of CPU
cores and input targets. Error bars represent the minimum and maximum over the 5 repetitions. Experiments
were conducted on an AMD EPYC 7742 with 64 CPU cores. Not all repetitions finished (see Appendix B.1).
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B.2 ID Mapping with Dask.DataFrame

Figure B.4: Average execution time of the ID mapping experiment with Dask.DataFrame over 5 repetitions
with different numbers of CPU cores and block sizes with 50’000 targets. Error bars represent the minimum and
maximum over the 5 repetitions. Experiments were conducted on 2 Xeon E5-2640v4 with a total of 20 CPU cores.

Figure B.5: Average execution time of the ID mapping experiment with Dask.DataFrame over 5 repetitions
with different numbers of CPU cores and block sizes with 100’000 targets. Error bars represent the minimum
and maximum over the 5 repetitions. Experiments were conducted on 2 Xeon E5-2640v4 with a total of 20 CPU
cores.
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Figure B.6: Average execution time of the ID mapping experiment with Dask.DataFrame over 5 repetitions
with different numbers of CPU cores and block sizes with 500’000 targets. Error bars represent the minimum
and maximum over the 5 repetitions. Experiments were conducted on 2 Xeon E5-2640v4 with a total of 20 CPU
cores.
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B.3 Assembly parsing with Dask.distributed and mpi4py.futures

Figure B.7: Average execution time of the assembly file parsing experiment with Dask.distributed and
mpi4py.futures over 5 repetitions with different numbers of nodes, 1 CPU core per node, and 10’000 files. Error
bars represent the minimum and maximum over the 5 repetitions. Experiments were conducted on miniHPC
nodes, each with 2 Xeon E5-2640v4 and a total of 20 CPU cores.

Figure B.8: Average execution time of the assembly file parsing experiment with Dask.distributed and
mpi4py.futures over 5 repetitions with different numbers of nodes, 8 CPU cores per node, and 10’000 files. Error
bars represent the minimum and maximum over the 5 repetitions. Experiments were conducted on miniHPC
nodes, each with 2 Xeon E5-2640v4 and a total of 20 CPU cores.
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Figure B.9: Average execution time of the assembly file parsing experiment with Dask.distributed over 5
repetitions with different numbers of files and 4 CPU core per node. Error bars represent the minimum and
maximum over the 5 repetitions. Experiments were conducted on miniHPC nodes, each with 2 Xeon E5-2640v4
and a total of 20 CPU cores.

Figure B.10: Average execution time of the assembly file parsing experiment with mpi4py.futures distributed
over 5 repetitions with different numbers of files and 4 CPU cores per node. Error bars represent the minimum and
maximum over the 5 repetitions. Experiments were conducted on miniHPC nodes, each with 2 Xeon E5-2640v4
and a total of 20 CPU cores.
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B.4 GCsnap2.0 Desktop Performance Analysis

Table B.2: List of the 9 combinations of targets and CPU cores resulting in failed experiment when running
GCsnap2.0 Desktop.

Number of targets CPU cores
Number of failed

repetitions

500 32 1

1’000 1 3

1’000 16 1

1’000 64 1

2’000 1 5

2’000 2 4

2’000 8 2

2’000 16 1

Figure B.11: Average end-to-end execution time of GCsnap2.0 Desktop over 5 repetitions with different num-
bers of CPU cores and input targets. Error bars represent the minimum and maximum over the 5 repetitions.
Experiments were conducted on an AMD EPYC 7742 with 64 CPU cores. Not all repetitions finished (see Ap-
pendix B.4).
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Figure B.12: Average end-to-end execution time of GCsnap2.0 Desktop over 5 repetitions with different num-
bers of CPU cores and input targets. Error bars represent the minimum and maximum over the 5 repetitions.
Experiments were conducted on an AMD EPYC 7742 with 64 CPU cores. Not all repetitions finished (see Ap-
pendix B.4).

Figure B.13: Average end-to-end execution time of GCsnap2.0 Desktop over 5 repetitions with different num-
bers of CPU cores and input targets. Error bars represent the minimum and maximum over the 5 repetitions.
Experiments were conducted on an AMD EPYC 7742 with 64 CPU cores. Not all repetitions finished (see Ap-
pendix B.4).
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Figure B.14: Speedup of the average end-to-end execution time over 5 repetitions of gc2D compared to GCsnap1
with different numbers of CPU cores and 200 targets for the 3 blocks of. A value above 1 (black dashed line)
means that gc2D had a lower average execution time. Experiments were conducted on an AMD EPYC 7742 with
64 CPU cores. Not all repetitions finished (see Appendix B.1 and Appendix B.4)

Figure B.15: Speedup of the average end-to-end execution time over 5 repetitions of gc2D compared to GCsnap1
with different numbers of CPU cores and 500 targets for the 3 blocks of. A value above 1 (black dashed line)
means that gc2D had a lower average execution time. Experiments were conducted on an AMD EPYC 7742 with
64 CPU cores. Not all repetitions finished (see Appendix B.1 and Appendix B.4)
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