
Machine Learning-Enhanced Interactive Multimedia

Applications for a 64 Odroid Computing Cluster

Master Project Report

Reto Krummenacher
High Performance Computing Group

Department of Mathematics and Computer Science
University of Basel

November 27, 2023

Abstract

This report describes the development of interactive applications customized for public exhibitions of the µ-Cluster,
a parallel computing system. The main goal is to demonstrate the potential of parallel computing and generate
interest through interactive applications, including a game of Snake against an AI opponent, an application
that matches user photos with celebrity images, and parallel computation of pi digits. The report discusses the
integration of efficient communication between nodes, the implementation of user-friendly input methods, training
experiments of the AI agent, and the workload distribution technique used for pi computation. Future work will
include thorough testing on the µ-Cluster and investigating any limitations of the celebrity implementation.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 1

1.3 Outline . 1

2 Background 1

2.1 MPI . 1

2.2 The Odroid . 2

2.3 The µ-Cluster . 2

2.4 Deep Q-Learning . 2

3 Play Snake against an AI Opponent 3

3.1 Process Flow and Code Structure . 4

3.2 Efficient Message sending within the MPI Communicator . 4

3.3 Virtual Keyboard . 5

3.4 The AI Opponent . 5

4 Which Celebrity you look like? 7

4.1 MPI Group Communication . 8

4.2 Celebrity Database: CelebA . 9

4.3 Face Detection and Matching . 9

5 How much Pi you like? 10

5.1 Pi Computation . 10

6 Displaying Information 12

7 Conclusion and Future Work 12

A Project Structure Diagrams 14

B Screen captures of ’Play Snake against an AI Opponent’ 18

C Screen captures of ’Which Celebrity you look like?’ 21

D Screen captures of ’How much Pi you like?’ 25

E Screen captures of ’Displaying Information’ 31

1 Introduction

The µ-Cluster of the High Performance Computing Group at the University of Basel comprises 66 single board
computers, 64 of it connected to LCD-Screens, sixteen of which are combined on each side of the cluster. Its primary
objective is to showcase parallel computing for public exhibitions. At present, the cluster exhibits primarily videos.
Applications that require interaction are not available, despite all the screens having touch screen capability.

1.1 Motivation

We aim to enhance the attractiveness of the µ-Cluster by developing new visually compelling applications with
suitable levels of user engagement. Given the current hype around artificial intelligence, we intend to create programs
that use machine learning. The µ-Cluster has four sides, which means the objective is to create 4 new applications.
There were numerous ideas, including some natural language processing, where the cluster finishes sentences for
visitors. In the end, we have decided in favor of:

• ’Play Snake against an AI Opponent’: A user can play the game Snake against a machine-controlled AI instance
trained with reinforcement learning. The game is controlled using a gamepad.

• ’Which Celebrity you look like?’: The user may initiate the application by tapping on one of the touchscreens.
The connected camera takes a photo which is compared to a database of celebrity images to determine which
famous person a visitor resembles the most.

• ’How much Pi you like?’: Demonstrating parallel computing through the calculation of a number of pi digits
selected by the user.

• ’Displaying Information’: Create new content to be displayed.

1.2 Contribution

This report details the implementation of 4 Python-based applications. It describes the communication methods
employed among the computing nodes of the µ-Cluster, the integration of a gamepad for user pseudonym provision,
the results of the AI agent training evaluation, and the parallel workload distribution algorithm for computing pi
digits.

A significant limitation is that none of the applications could be tested on the µ-Cluster. This is because we were
unable to create a container image that would work with the ARM architecture of the cluster nodes, nor were we
successful in finding a way to update their operating systems. As a result, we performed all functionality testing on
our own single machine to the extent possible.

1.3 Outline

The remainder of this report is structured as follows. The necessary background information can be found in section 2.
The implementation of ’Play Snake against an AI Opponent’ is explained in detail in section 3 followed by the work
for ’Which Celebrity you look like?’ presented in section 4. Some aspects of ’How much Pi you like?’ are detailed
out in section 5 before explaining ’Displaying Information’ in section 6. Finally, section 7 concludes the paper.

2 Background

In this section, we provide background information on hardware and communication primitives, as well as a brief
introduction to deep Q-learning. Readers who are already familiar with this material may wish to skip to Section 3.

2.1 MPI

The Message Passing Interface (MPI1) is one of the standard application program interfaces allowing information
exchange between CPUs in distributed systems. The standard defines routines offered by libraries to be used in

1https://www.mpi-forum.org/docs/ (accessed 2023-10-30)

1

https://www.mpi-forum.org/docs/

traditional HPC languages such as C/C++ and FORTRAN.

When running a program with MPI, all the processes form a group, which is called a communicator. All the
members, usually called ranks, are connected to each other. There are two major communication primitives: Point-
to-Point and Collective. The former involves only two processes, while the latter involves all of them.

MPI for Python2 offers bindings to access the MPI routines directly from within a Python script. The package
development began more than 14 years ago by Lisandro Dalcin [1].

2.2 The Odroid

An Odroid is a compact single-board computer (SBC) with an integrated processor, memory, and storage, running a
full operating system. Another example is the Raspberry Pi. In contrast to microcontroller boards like the Arduino,
the SCBs offer more connectivity, featuring HDMI and USB ports. The µ-Cluster was built with the now discontinued
Odroid C2, which comes with a 1.5 GHz quad-core ARM CPU, 2 GB RAM and even a small GPU.3

2.3 The µ-Cluster

The µ-Cluster4 consists of 64 Odroid-C2 SBCs dedicated to computing, an Odroid for login and one for storage. In
total, there are 66 Odroids interconnected in a star topology with 1 Gbit/s Ethernet switches. They form a network,
where each Odroid has an IP-address and a corresponding speaking name, such as ’node1’.

The cluster comprises four layers, each of which has 16 Odroids connected to an LCD screen, providing touchscreen
capabilities. A total of 16 of these screens make up what we call a panel. Notably, the Odroids within a given layer
do not link to the same panel but rather to the same screen row within each panel. It remains unclear why this is
so, but it may have been to facilitate simpler wiring, since only Ethernet cables are needed to connect the layers.

As a result, the arrangement of which Odroid controls which screen is unclear, as depicted in Figure 1. Each
panel will display one application implemented in this project. Therefore, it is essential that each application run
exactly on these specific nodes. The rank numbers of workers within an MPI communicator are assigned based on
the order of appearance in the starting routine. Our implementation is based on the consecutive numbering of nodes,
illustrated in Figure 1 with teal numbers. This numbering is crucial for features dependent on connected devices,
such as the gamepad, which must be connected to node 47, identified as rank 9 within the application (Figure 1b).

2.4 Deep Q-Learning

Deep Q-learning is a type of active reinforcement learning (RL). Details about RL can be found in any standard
machine learning textbook, for instance [2]. The main concept of Q-learning is that an agent determines the best
actions to take in an environment by receiving rewards for its actions. The Q in Q-learning stands for quality value
and represents the quality of an action. Every state of the environment is assigned a Q-value for each possible action
in that state. In simple Q-learning, these Q-values are initially set to 0 and stored in a table.

The update rule is defined as follows:

Q(s, a)←
current Q value︷ ︸︸ ︷

Q(s, a)+ α︸︷︷︸
learning rate

·[
reward︷ ︸︸ ︷

R(s, a, s′)+ γ︸︷︷︸
discount factor

·
maximum expected future reward︷ ︸︸ ︷

max
a′

Q(s′, a′)−Q(s, a)]. (1)

Within the brackets is the temporal difference term, representing the disparity between the current Q-value and
the highest future reward. This maximum expected reward is determined by the action a′ taken in the current state
s that leads to the maximum Q-value in the successor state s′. Additionally, the reward from taking action a in
state s are added. During training, the hyperparameters of the learning rate and the discount factor are tuned. The
first defines the pace of update of the Q-Values, while the second determines the relative importance of immediate
rewards versus future rewards.

It is often infeasible to store the Q-Values in a table. One alternative solution is to approximate the Q-value with
a weighted linear combination of features:

2https://mpi4py.readthedocs.io/en/stable/ (accessed 2023-11-21)
3https://www.hardkernel.com/shop/odroid-c2/ (accessed 2023-11-21)
4https://hpc.dmi.unibas.ch/en/research/micro-cluster/ (accessed 2023-11-20)

2

https://mpi4py.readthedocs.io/en/stable/
https://www.hardkernel.com/shop/odroid-c2/
https://hpc.dmi.unibas.ch/en/research/micro-cluster/

node55, 0 node56, 1 node51, 2 node52, 3

node27, 4 node31, 5 node28, 6 node32, 7

node42, 8 node41, 9 node46, 10 node45, 11

node6, 12 node2, 13 node9, 14 node1, 15

(a) Panel to display ’How much Pi you like?’.

node54, 0 node50, 1 node53, 2 node49, 3

node23, 4 node24, 5 node19, 6 node20, 7

node43, 8 node47, 9 node44, 10 node48, 11

node10, 12 node5, 13 node14, 14 node13, 15

(b) Panel to display ’Play Snake against an AI Opponent’.

node58, 0 node57, 1 node62, 2 node61, 3

node22, 4 node18, 5 node21, 6 node17, 7

node39, 8 node35, 9 node40, 10 node36, 11

node11, 12 node15, 13 node12, 14 node16, 15

(c) Panel to display ’Which Celebrity you look like?’.

node29, 0 node8, 1 node25, 2 node63, 3

node64, 4 node4, 5 node3, 6 node34, 7

node37, 8 node38, 9 node26, 10 node30, 11

node7, 12 node33, 13 node59, 14 node60, 15

(d) Panel for ’Displaying Information’.

Figure 1: Arrangement of the 4 panels and which Odroid is controlling which LCD screen. The designated rank number is
shown in teal. To operate the system, the gamepad should be connected to node 47 with rank number 9, marked by a gray
box.

Q̂(s, a) = ω0 + ω1 · f1(s, a) + ω2 · f2(s, a). (2)

A basic illustration featuring 2 characteristics and 3 parameters. This equation permits the calculation of a
gradient that indicates the direction of the highest rate of change of the equation at that point. Throughout the
training stage, the parameters are upgraded based on the error between the current value and the target value:

ωi ← ωi + α · [

target value︷ ︸︸ ︷
R(s, a, s′) + γ ·max

a′
Q̂ω(s

′, a′)−

current value︷ ︸︸ ︷
Q̂ω(s, a)︸ ︷︷ ︸

error

]
∂Q̂ω(s, a)

∂ωi︸ ︷︷ ︸
gradient

. (3)

If the concept is extended to approximate Q(s, a) using neural networks, it is referred to as deep Q-learning. Such
a model is trained by minimizing the loss, generally defined as the mean squared error between the target value and
the current value.

In all active RL processes, it is necessary for the agent to first explore the environment by undertaking random
moves. As the duration of training increases, the agent’s actions ought to depend more on following the optimal
path, which translates to selecting the action with the maximum Q-value. This dynamic is referred to as the tradeoff
between exploration and exploitation. A typical approach to address this tradeoff is through the implementation
of the decaying ϵ-greedy strategy, where ϵ denotes the probability of a random move. The precise values of these
hyperparameters require additional tuning.

3 Play Snake against an AI Opponent

The aim of this application is to allow users to play the game ’Snake’ on the µ-Cluster via a gamepad. To enhance
the attraction for potential visitors during an exhibition, users are invited to play against an AI opponent referred
to as the bot. The game has 3 finishing rules:

3

1. When the maximum play time of 2 minutes has elapsed and neither the user nor the bot are game over, the
player with the highest number of consumed apples is the winner.

2. If the user is game over, the bot emerges victorious.

3. If the bot is game over, users can still continue to achieve victory in accordance with rule 1.

3.1 Process Flow and Code Structure

As a starting point, the process flow is shown in Figure 2. Once started, the application runs in an infinite loop until
the µ-Cluster is shut down. The steps involved are:

• Welcome screen: Displays a welcome message, logos of Python libraries used in the implementation, and the
list of current record holders.

• When the Start button on the gamepad is pressed, the virtual keyboard appears. The user enters their name
or pseudonym under which they wish to play.

• The AI opponent is initialized, and the game is played until the end of the game according to the rules above.

• When the game is finished, the high score list is updated. The user can choose to play again or to return to
the welcome screen.

Start
application

Welcome
screen

Virtual
keyboard No

Game over

Game

Enter user
name

Yes

Start bot

Update high
score list Yes

No
Start

Play again

Figure 2: Flow diagram for the ’Play Snake against an AI Opponent’ implementation. The colors correspond to distinct
components of the project, as shown in Figure 7 in Appendix A. Green depicts the entry point, blue relates to the main
components of the application, and orange signifies code dedicated to the AI agent. Trapezoids represent necessary user input.

To give an idea how the application looks like when running, screen captures are provided in Appendix B. This report
is not intended to cover the details of the code. To get an overview of how the project is structured, a simplified
relationship diagram can be found in Figure 7 in Appendix A. Nevertheless, we would like to present some special
features of our implementation.

3.2 Efficient Message sending within the MPI Communicator

Since the Ethernet connection between the Odroids could be a performance bottleneck, we try to reduce the traffic
from the beginning. The first step is to minimize the number of messages sent.

As mentioned in Section 2, all processors form a communicator to allow the transmission of messages between
nodes. In our case, there are 16 ranks involved. The MPI standard offers point-to-point or collective communication.
However, most of the messages need to be sent from one rank to a few others only. The best example is the transfer
of the game state from the game node to the 4 display nodes. In short, the usual collective primitives are not very
efficient due to an excessive amount of irrelevant messages.

4

To tackle this issue, we created our own kind of transmission, which involves a series of point-to-point trans-
fers based on a list of recipients. The crucial part: The method must be called on the nodes taking part in the
communication.

Another important aspect is the size of the message. The position of the snake is stored as a list of tuples (x, y),
each representing the top-left pixel of a snake block. Since a snake block has a size of 20×20 pixels and the game
canvas has dimension 1 800×1 000, x = 0, 20, 40 . . . , 1780 and y = 0, 20, 40 . . . , 980 respectively. To reduce the
message size, the pixels are converted to positions, with x = 0, 1, 2 . . . , 89 and y = 0, 1, 2 . . . , 49. Values that can be
stored in a single byte. Furthermore, the data is sent via NumPy5 arrays, the fastest way according to the mpi4py
documentation.6

3.3 Virtual Keyboard

A user can only enter text by either using the touchscreens or the gamepad. Both methods rely on a virtual keyboard
displayed on a screen. Since the cluster’s screens are rather delicate, we decided to implement a gamepad controlled
virtual keyboard.

The starting point was the look and functionality of a standard touchscreen keyboard found in many messaging
applications on a modern smartphone. In addition to keys for lowercase letters, there is the possibility to switch to
uppercase letters or to special characters and numbers. The core of our implementation are the data structures that
contain the characters to display. In Python, we use lists of lists. An example can be seen in Code 1. The activated
character is tracked with the row and column index. For example, the letter ’F’ is in row 1 column 3. The user
changes these indices and thus the activated key with the directional pad of the game controller.

Code 1: Example of the keyboard layout as list of lists in Python.

1 __return_symbol = ’\u23CE’

2 __shift_symbol = ’\u21E7’

3 __backspace_symbol = ’\u2190’

4 __layout_upper = [

5 [’Q’, ’W’, ’E’, ’R’, ’T’, ’Y’, ’U’, ’I’, ’O’, ’P’],

6 [’A’, ’S’, ’D’, ’F’, ’G’, ’H’, ’J’, ’K’, ’L’],

7 [__shift_symbol, ’Z’, ’X’, ’C’, ’V’, ’B’, ’N’, ’M’, __backspace_symbol],

8 [’123’, ’ ’, __return_symbol]

9]

Selecting the keys ’123’ or ’ shift symbol’ will replace the current layout with the new one, and the new keyboard
is displayed on the screen. The change from the lowercase letter layout to the number and special character layout
when pressing the ’123’ key is shown in Figure 3.

3.4 The AI Opponent

Our AI agent implementation is based on the example by Patrick Loeber7. We used reinforcement learning, specif-
ically deep Q-learning, to teach the agent how to play Snake. Various aspects of Q-learning have been discussed in
Section 2. Here we state the important elements of our implementation.

The neural network consists of 3 layers:

1. Input layer: The input layer consists either of 11 or 15 units.

• Input layer part 1: The game state is represented as a list of Boolean values. The first 3 elements indicate
whether the snake is in danger of colliding with the walls or its tail while moving left, right, or straight
ahead. The current direction of the snake (left, right, up, down) is also included. Another part is the
position of the snake’s head relative to the food (left, right, up, down).

• Input layer part 2: During our initial training sessions, we observed the AI agent getting stuck by its tail.
To prevent such situations, we added 4 new game state variables that measure the location of the snake’s

5https://numpy.org/ (accessed 2023-11-21)
6https://mpi4py.readthedocs.io/en/stable/tutorial.html#point-to-point-communication (accessed 2023-11-21)
7https://github.com/patrickloeber/snake-ai-pytorch/tree/main (accessed 2023-11-21)

5

https://numpy.org/
https://mpi4py.readthedocs.io/en/stable/tutorial.html#point-to-point-communication
 https://github.com/patrickloeber/snake-ai-pytorch/tree/main

(a) The virtual keybord with lowercase letters. (b) The virtual keyboard with numbers and special characters.

Figure 3: Change of the keyboard layout from lowercase letters to numbers and special characters upon selecting the ’123’
key. Pictures taken while executing the ’Play Snake against an AI Opponent’ application on our own individual machine,
allowing up to 6 MPI ranks.

head relative to its body, represented by what we call the center of gravity. This metric is calculated by
averaging the coordinates of the tail elements of the snake.

2. Hidden layer: The size of the hidden layer was set to 256, following Patrick Loeber’s implementation.

3. Output layer: The output of the neural network is 3 Q-values.

The purpose of the neural network is to predict 3 Q-values from a given game state and to determine the action to
take in that state. An action is encoded as a list with 3 Booleans: [turn left, go straight, turn right], where the index
with the maximum Q-value is labeled 1 and the remaining indices are labeled 0. The model parameters are obtained
by minimizing the mean squared error between the predicted Q-values and the target Q-values. At the beginning of
each training, the agent needs to do some random moves. Our approach implements a decaying ϵ-greedy strategy to
ensure sufficient exploration at the beginning of each training.

Training Experiments and Results

Training an agent with deep Q-learning requires numerous crucial choices. These decisions include the overall network
architecture, as well as selecting appropriate values for key parameters such as the exploration-exploitation strategy
and the learning rate. To gain insight into the effectiveness of particular choices, experiments were conducted on our
own individual machine. The design of factorial experiments is shown in Table 1. Some points we like to emphasize:

• During each training session, the agent plays a continuous succession of games.

• For each game, the score, the number of eaten apples, is recorded.

• Each training run lasts at most 90 minutes. However, there are certain situations, where the agent is stuck.
To account for such scenarios, we defined 2 abort rules. The first addresses the case, where the agent is unable
to complete a game, whereas the second refers to periods where there is no improvement in the score.

• We used 2 different exploration strategies. Firstly, a greedy agent with a low starting ϵ and a small decay per
game. Secondly, the curious agent, with a high starting ϵ but a larger decay. The reason for this decision: The
agent plays a similar number of games until the ϵ is 0 no matter which strategy is applied.

The results of the experiments are presented in Table 2. The maximum score achieved was 93 for the configuration
highlighted in green. Certain parameter combinations clearly perform worse in comparison to others, particularly a
higher learning rate. In all cases, the larger value resulted in an abortion of the training run.

To evaluate the impact of extending the training duration, we used the best parameter configurations from the
previous analysis and trained the agent for 7 hours. The evolution of the score over all 1 089 played games is displayed

6

Table 1: Design of factorial experiments to train the AI agent.

Factor Value Properties

Application Deep Q-learning model
Input size= {11, 15}
Hidden size = 256
Output size = 3

Exploration strategy Decaying ϵ-greedy
Curious agent: ϵstart = 0.7,ϵdecay = 0.005
Greedy agent: ϵstart = 0.3,ϵdecay = 0.0025

Optimization pace Learning rate lr = {0.001, 0.01}

Value of future reward Discount factor γ = {0.5, 0.9}

Metric Performance of AI agent Highest number of eaten apples in a game

Computing system Acer Predator PH315-55
1 CPU Intel i7-12700H, 2.7 GHz; 14 cores
32 GB RAM, 24 MB cache

Execution control Training time and abort rules
Maximal training time: 90 minutes
Abort if game not finished after 5 minutes
Abort if score was not improved after 20 minutes

in Figure 4. Even though the highest score of 104 was larger than before, no additional advancements in the agents’
playing ability were observed. The average score is only slightly increasing, and the score per game depicted many
spikes. Nonetheless, we employ this model for our artificial intelligence adversary. This way, there is a possibility for
the human contender to win.

Table 2: The highest score of each training run with the corresponding parameter setting. The highest score was 93.

Exploration strategy

Greedy Curious

Input layer size Input layer size

11 15 11 15

Learning rate

Discount factor
0.9 89 93 88 5

0.001
0.1 83 19 7 5

0.01 Discount factor
0.9 4 2 2 2

0.1 4 2 2 2

4 Which Celebrity you look like?

The primary purpose of this application is for visitors to capture a photo of themselves using the connected camera,
which is then compared to images in a database of celebrities to find the one that most resembles the visitor.

The process flow of our implementation is presented in Figure 5. Initially, the current camera input is displayed
on 4 screens as a video stream. A user can initiate the matching process by tapping the ’start’ screen. Moreover, a
consent message is exhibited to respect user privacy by explaining the purpose of the captured image. The example
of what this looks like can be found in Figure 14 in Appendix C.

After the user starts, a countdown appears to allow time for preparing to take the photo, as depicted in Figure 15.
Subsequently, the taken picture gets saved, and then, face detection and matching with images of famous people are
carried out. A message on the µ-Cluster screens indicates the ongoing process, as illustrated in Figure 16.

Finally, the taken photo, the image of the most similar celebrity and their name, the QR code for finding infor-
mation about the celebrity database and a restart button are displayed. See Figure 17 for an example with certain
components.

Details of the code are omitted. However, the simplified relationship diagram can be found in Figure 8 in Appendix

7

Figure 4: Evolution of the score during 7 hours of training and 1 089 played games. The neural network had an input layer
size of 15. We used a greedy exploration strategy with ϵstart = 0.3 and ϵdecay = 0.0025. The learning rate was set to 0.001
and the discount factor was 0.9.

Start
application

Display video
stream

Start camera

Take picture

Give consent

Show results

Restart

Face detection
and matching

Figure 5: Flow diagram for the ’Which Celebrity you look like?’ implementation. The colors correspond to distinct
components of the project, as shown in Figure 8 in Appendix A. Green depicts the entry point and blue relates to the main
components of the application. Trapezoids represent necessary user input.

A. Here are some of the key aspects of our implementation.

4.1 MPI Group Communication

Unlike the ’Play Snake against an AI Opponent’ implementation, where we created our own communication methods,
we used MPI groups8 to allow communication between ranks. The purpose of MPI groups is to create additional
group communicators with only a few ranks within an MPI world communicator. The MPI command to create them
is split which is available in mpi4py as well.

Our contribution is to allow group communicators to be created based on world rank assignments to group
identifiers stored in Python dictionaries. The implementation can be found in Code 2. Once the group communicator
is in place, all MPI communication primitives can be used.

8https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/ (accessed 2023-11-26)

8

https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/

Code 2: Python code to create MPI group communicators from a dictionary containing the group assigement of the
world communicator ranks.

1 # Assignment of world ranks to groups.

2 groups = {1: [1,2,4],

3 2: [0,3,5]}

4

5 # comm: The MPI world communicator.

6 for key, item in groups.items():

7 if comm.rank in item:

8 group_id = key

9

10 # New rank numbers are 0,...,size, with increasing order of comm.rank 1->0, 2->1, 4->2.

11 group_comm = comm.Split(group_id, comm.rank)

4.2 Celebrity Database: CelebA

The celebrity images are taken from CelebA [3]. The database is available online9 and contains 202 599 images of
no more than 10 177 celebrities. The images are stored with sequential numbers. Each picture is available in two
versions. First, the original image and second, as an aligned and cropped image of just the face. There is a mapping
from image names to a celebrity identification number. The names of the celebrities are available on request.

To facilitate the face matching during the demonstration, the face detection for the celebrity photos is done in
advance. The resulting face information is stored in 16 files because we will perform face matching on 16 ranks of the
cluster. It is not feasible to use the whole database for our purpose because it would take too long even if it is done
in parallel. As a solution, we use only one image for each of the 10 177 celebrities. Still, each of the precomputed
files has a size of about 70 MB.

Currently, the splitting process is suboptimal. It selects only the first image of each celebrity in the database,
which may not be the most appropriate for the matching process. Furthermore, some of these images are unsuitable
for display due to their sexually suggestive nature. At present, only the aligned and cropped images are used for
display, which has the drawback of having few pixels. Thus, an improved splitting process needs to be implemented
in the future.

4.3 Face Detection and Matching

For face detection, Python’s cv2 library from OpenCV10 is used. Utilizing the Haar11 cascade pretrained face
detector returns the recognized face information.

Face matching is used to find the celebrity image that most closely resembles the user’s face. We employ the
structural similarity index measure (SSIM) provided by Python’s scikit image12 package. The SSIM produced falls
within the range of [-1,1], with higher numbers indicating greater similarity. Face matching is performed across
multiple ranks. After completing their individual computations, the highest SSIM score from each rank is gathered
into a list to determine the overall best match.

Our current implementation yields results. However, the routine should be extensively tested in the future to
evaluate its quality. We must match numerous photographs of different individuals against the celebrity database to
determine if the algorithms function with any input. Additionally, we should conduct tests with pre-stored photos
to establish if the same photo compares reliably to the same celebrity repeatedly.

9https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html (accessed 2023-11-25)
10https://opencv.org/ (accessed 2023-11-26)
11https://docs.opencv.org/4.x/db/d28/tutorial_cascade_classifier.html (accessed 2023-11-26)
12https://scikit-image.org/docs/stable/auto_examples/transform/plot_ssim.html (accessed 2023-11-26)

9

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://opencv.org/
https://docs.opencv.org/4.x/db/d28/tutorial_cascade_classifier.html
https://scikit-image.org/docs/stable/auto_examples/transform/plot_ssim.html

5 How much Pi you like?

The aim of this application is to show parallel computing in action. Computing the digits of pi (π) is one possible
way. The number π is familiar to most people. Since the µ-Cluster is used during public exhibitions, we think it is
more appropriate than other common demonstrations of parallel computing, such as visualizing the Mandelbrot set.

To offer an understanding of the steps involved, the process flow is shown in Figure 6. The idea is as follows: A
user can choose how many digits of π they want to calculate. To select the desired number of digits, a user can tap
on the screen with the corresponding number. To give an idea of what this looks like, a screen capture is shown in
Figure 18 in Appendix D.

We then create groups of workers with 1, 2, 4 and 8 ranks. Each of these groups computes the chosen number
of digits in a distributed manner. It is important to us that the user can see the progress of the individual groups.
The participating ranks have distinct colors to indicate which group they belong to. In addition, each rank displays
a message showing its identification number and its share of the workload. An example is shown in Figure 19.

The computational steps involved will be explained further below, but before now it is sufficient to mention that
each step is indicated by a corresponding message. Examples are provided inFigure 20, Figure 21 as well as Figure 22
in Appendix D.

Finally, along with some summary messages, two graphs are displayed as a result. First, a pie chart showing how
many digits have been computed compared to what is currently known and second, a bar chart showing the execution
time of each worker group. The example can be found in Figure 23.

Start
application

Pi digits
selection

Create groups
of workers

Compute Pi
distributed

Select digits

Show result
plots

Restart

Figure 6: Flow diagram for the ’How much Pi you like?’ implementation. The colors correspond to distinct components of
the project, as shown in Figure 9 in Appendix A. Green depicts the entry point, blue relates to the main components of the
application, and purple stands for commonly available functionality. Trapezoids represent necessary user input.

This report is not intended to cover the details of the code. To get an idea of how the application is structured,
a simplified relationship diagram can be found in Figure 9 in Appendix A. Similar to the implementation of ’Which
Celebrity you look like?’, the communication between ranks is facilitated through the use of MPI groups. The
calculation is the main contribution, which we will discuss next.

5.1 Pi Computation

In the past year, the known number of π digits has grown enormously. A project at the UAS Grison calculated a
record 62.8 trillion in August 2021.13 However, this was not valid for long, as Emma Haruka Iwao increased the
number of known pi digits to 100 trillion by using Google infrastructure in 2022.14. A threefold increase compared
to the 2019 record. All those record attempts used a software called γ-cruncher15 which is based on a generalized
hypergeometric series developed by the Chudnovsky brothers in 1988 [4].

13https://www.fhgr.ch/en/themenschwerpunkte/applied-future-technologies/davis-centre/pi-challenge/ (accessed 2023-11-25)
14https://cloud.google.com/blog/products/compute/calculating-100-trillion-digits-of-pi-on-google-cloud (accessed 2023-11-
25)

15http://www.numberworld.org/y-cruncher/ (accessed 2023-11-25)

10

https://www.fhgr.ch/en/themenschwerpunkte/applied-future-technologies/davis-centre/pi-challenge/
https://cloud.google.com/blog/products/compute/calculating-100-trillion-digits-of-pi-on-google-cloud
http://www.numberworld.org/y-cruncher/

The Chudnovsky Series

The Chudnovsky series is defined as [5]:

1

π
= 12

∞∑
k=0

(−1)k(6k)!(13591409 + 545140134k)

(3k)!(k!)36403203k+3/2
(4)

The formula is highly convergent, adding on average 14.18 digits to π per iteration. Details regarding the computation
of the convergence rate can be found in [6, p. 44]. We excluded the fractional power in the denominator from the
infinite sum, as it is independent of k:

1

π
=

12

6403203/2

·
∞∑
k=0

(−1)k(6k)!(13591409 + 545140134k)

(3k)!(k!)36403203k

(5)

To overcome the precision problems that arise from the fact that numbers with many digits are not accurately
represented in a computer using the IEEE standard floating-point definition [7], we used Python’s decimal module.
16

Distributing the Workload across Ranks

The summation in Equation (5) can be distributed easily by assigning a share of the overall iterations to each rank
in the worker group. However, preliminary tests have indicated that the execution time is all but linear in k, as
presented in Table 3. While the initial 400 iterations take 3 seconds, the final 400 require more than 3 minutes,
clearly a case of load imbalance.

Table 3: Execution time for the first 2 000 iterations of k of Chudnovsky summation in portions of 400.

Start iteration End iteration Execution time (MM:SS)

0 399 00:03

400 799 00:19

800 1199 00:47

1200 1599 01:43

1600 1999 03:03

To achieve greater acceleration in computing the Chudnovsky summation in parallel, it is necessary to allocate
varying portions of the total number of iterations to each rank. Simply put, there should be uniform execution times
across all ranks. Our solution is to calculate the number of iterations on each rank through an evenly distributed
execution time. The Chudnovsky series is said to have a runtime complexity of O(n · log(n)3).17 We assume to be
able to compute the execution time with the runtime complexity as follows:

execution time = k · log(k)b, (6)

with k being the number of iterations. Trying different values for b indicated that in our case b = 14. The reason
for the much larger exponent in experiments compared to the runtime complexity might be the representation of π
with Python’s decimal module for arbitrary precision, instead of just computing the digits as done by γ-cruncher.

With Equation (6), we can compute the total execution time for the total number of iterations. The time is divided
into equal portions given the number of ranks. Knowing the left-hand side of Equation (6) allows us to solve for k.
Thus, the start and end of the Chudnovsky summation can be calculated on every rank. An example of applying this
method is shown in Table 4. The execution time of each iteration block is not equal, but noticeably more balanced
when compared to the usage of equal-sized portions. This approach is suitable for our case. Having a certain degree
of imbalance when demonstrating the µ-Cluster could increase visitors’ interest in parallel computing issues.

16https://docs.python.org/3/library/decimal.html (accessed 2023-11-25)
17http://www.numberworld.org/y-cruncher/internals/formulas.html (accessed 2023-11-26)

11

https://docs.python.org/3/library/decimal.html
http://www.numberworld.org/y-cruncher/internals/formulas.html

Table 4: Execution time for the first 2 000 iterations of k of Chudnovsky summation. The portions are computed by solving
the function t = k · log(k)14 for k where t is the evenly distributed execution time.

Start iteration End iteration Execution time (MM:SS)

0 1149 01:00

1150 1454 00:59

1455 1672 01:02

1673 1848 01:03

1849 1999 01:07

6 Displaying Information

In the course of this project, we also updated the displayed information. This includes new QR code images as well
as logos of Python packages used for our implementation. Furthermore, information about the µ-Cluster is now
displayed directly. We created 8 new images, each showing some aspects of the cluster. For instance, details about
the Odroids or the network connecting them. It is designed to be shown on 8 screens arranged in a 2×4 layout.

To give an idea of what this looks like, screen captures can be found in Appendix E. An example of showing some
of the information is displayed in Figure 24, some of the QR codes are presented in Figure 25 and lastly, a view of
the logos is depicted in Figure 26.

The implementation is rather simple, using MPI groups to communicate between the ranks. The simplified
relationship diagram can be found in Figure 10 in Appendix A.

7 Conclusion and Future Work

In this project, we developed visually appealing applications for public demonstrations of the µ-Cluster. The visitors
can now interact with the demonstrations utilizing both gamepad and touchscreen functionalities. The applications
can run on a single machine, as demonstrated by the exemplary screen captures provided. However, the project’s
success cannot be evaluated until executed on the µ-Cluster.

To achieve this goal, we must update the Odroids’ operating system. Once the cluster is operational, we will
conduct extensive testing of our implementation. Additionally, we require further experimentation with the CelebA
database splitting process. Finally, a visual inspection of the non-cropped, original images is unavoidable to ensure
that they are suitable for display at exhibitions.

References

[1] L. Dalcin and Y.-L. L. Fang, “mpi4py: Status update after 12 years of development,” Computing in Science &
Engineering, vol. 23, no. 4, pp. 47–54, 2021. doi: 10.1109/MCSE.2021.3083216.

[2] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th Global Edition. Pearson Deutschland,
2021.

[3] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

[4] R. P. Agarwal, H. Agarwal, and S. K. Sen, Birth, growth and computation of pi to ten trillion digits (2013),
pp. 363–423. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-32377-0 22.

[5] D. H. Bailey, P. B. Borwein, J. M. Borwein, and S. Plouffe, “The quest for pi,” The Mathematical Intelligencer,
vol. 19, pp. 50–56, 07 1997. doi: 10.1007/BF03024340.

[6] L. Milla, “An efficient determination of the coefficients in the Chudnovskys’ series for 1/π,” The Ramanujan
Journal, vol. 57, 02 2022. doi: 10.1007/s11139-020-00330-6.

12

https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1007/978-3-319-32377-0_22
https://doi.org/10.1007/BF03024340
https://doi.org/10.1007/s11139-020-00330-6

[7] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019 (Revision of IEEE 754-2008), pp. 1–84,
2019. doi: 10.1109/IEEESTD.2019.8766229.

13

https://doi.org/10.1109/IEEESTD.2019.8766229

A Project Structure Diagrams

rankdisplay.py

class RankDisplay

Display messages and
images.

Draw game canvas,
the snake, and the
food.

snake.py

Application loop

Welcome screen

Player name input

Game

bestlist.py

class PlayedGame

Store relevant
information of a finished
game.

class Bestlist

Manage the high score
list represented as a
priority queue.

game.py

class Game

Game logic and game
loop.

Encoding the game state
and applying actions
suggested from the AI
agent.

virtualkeyboard.py

class VirtualKeyboard

Display the virtual
keyboard.

Handle game
controller input.

bot.py

class Bot

Representing the AI
agent: Model training
and usage.

Training experiments

qmodel.py

class QNet

Neural network
architecture.

class QTrainer

Optimization and
training step.

gamepad.py

class Gamepad

Handle gamepad input.

communication.py

class Communication

Point-to-point and
collective
communication based on
mpi4py.

plotting.py

Plot training results.

constants.py

Global constants

Screen and game
canvas sizes.

Global font

Colors

Figure 7: Simplified relationship diagram for the ’Play Snake against an AI Opponent’ implementation. The colors correspond
to distinct components of the project. Green depicts the entry point, blue relates to the main components of the application,
orange signifies code dedicated to the AI agent, and gray indicates universal constants available.

14

wholook.py

Application loop

Show video stream
and start application.

Take photo, do face
detection and
matching.

Display results

constants.py

Global constants

Screen and game
canvas sizes.

Global font

Colors

display.py

class Display

Display messages,
images and camera
stream.

group_communication.py

class Group

Store relevant
information of an MPI
group communicator.

Create group
communicators

Basic communication

camera.py

class Camera

Start system camera and
get input frame.

Split the input into
smaller parts.
Store and load taken
user photo.

celebrities.py

class Celebrities

Represents celebrity
image data, does face
detection and face
matching.

Data preparation

Prepare dataset and
detect faces in celebrity
images.

Figure 8: Simplified relationship diagram for the ’Which Celebrity you look like?’ implementation. The colors correspond
to distinct components of the project. Green depicts the entry point, blue relates to the main components of the application,
purple stands for commonly available functionality, and gray indicates universal constants available.

15

computation.py

Distribute workload to
ranks within a group and
initiate Pi computation.

howmuchpi.py

Application loop

Select digits

Pi computation

Display results

plots.py

Create result plots.

experiments.py

Execution time
experiments.

Complexity analysis.

verify.py

Verify Pi computation by
comparing with known results.

chudnovsky.py

Compute Pi with Chudnovsky
formula.

constants.py

Global constants

Screen and game
canvas sizes.

Global font

Colors

display.py

class Display

Display messages,
images and camera
stream.

group_communication.py

class Group

Store relevant
information of an MPI
group communicator.

Create group
communicators

Basic communication

Figure 9: Simplified relationship diagram for the ’How much Pi you like?’ implementation. The colors correspond to distinct
components of the project. Green depicts the entry point, blue relates to the main components of the application, purple stands
for commonly available functionality, orange signifies code dedicated to experiments, and gray indicates universal constants
available.

16

info.py

Application loop

Display cluster
information images.

Display QR code
images.

constants.py

Global constants

Screen and game
canvas sizes.

Global font

Colors

display.py

class Display

Display messages,
images and camera
stream.

group_communication.py

class Group

Store relevant information of an MPI
group communicator.

Create group communicators

Basic communication

Figure 10: Simplified relationship diagram for the ’Display Information’ implementation. The colors correspond to distinct
components of the project. Green depicts the entry point, purple stands for commonly available functionality, and gray
indicates universal constants available.

17

B Screen captures of ’Play Snake against an AI Opponent’

Figure 11: The two screens where the user is asked to provide their preferred pseudonym. One showing the instructions and
the other the virtual keyboard controlled with the gamepad. Picture taken while executing the ’Play Snake against an AI
Opponent’ application on our own individual machine, allowing up to 6 MPI ranks.

18

Figure 12: The situation before the game begins, displaying a countdown on the lower right screen for the user to be ready.
Picture taken while executing the ’Play Snake against an AI Opponent’ application on our own individual machine, allowing
up to 6 MPI ranks.

19

Figure 13: The view while playing the game. The lower left screen shows the number of eaten apples. The lower right screen
displays the remaining game time. Picture taken while executing the ’Play Snake against an AI Opponent’ application on our
own individual machine, allowing up to 6 MPI ranks.

20

C Screen captures of ’Which Celebrity you look like?’

Figure 14: Show camera capture and allow user to start the application by tapping the screen. Picture taken while executing
the ’Which Celebrity you look like?’ application on our own individual machine, allowing up to 6 MPI ranks.

21

Figure 15: Display countdown on the lower right screen for the user to get ready for the photo. Picture taken while executing
the ’Which Celebrity you look like?’ application on our own individual machine, allowing up to 6 MPI ranks.

22

Figure 16: Show computing workers. Picture taken while executing the ’Which Celebrity you look like?’ application on our
own individual machine, allowing up to 6 MPI ranks.

23

Figure 17: Display the results: The name and the photo of the celebrity the user resembles most, together with the restart
button. Picture taken while executing the ’Which Celebrity you look like?’ application on our own individual machine,
allowing up to 6 MPI ranks.

24

D Screen captures of ’How much Pi you like?’

Figure 18: Welcome screen: By touching the appropriate screen, the user selects the number of digits of pi they wish to
calculate. Picture taken while executing the ’How much Pi you like?’ application on our own individual machine, allowing up
to 6 MPI ranks.

25

Figure 19: Chudnovsky series iteration with two groups. 4 ranks in red and 1 in gold. Each rank in red has a different
workload. Picture taken while executing the ’How much Pi you like?’ application on our own individual machine, allowing up
to 6 MPI ranks.

26

Figure 20: Ranks within a group wait for all to finish, being able to combine the results. 3 ranks in the red group have
already completed their workload. Picture taken while executing the ’How much Pi you like?’ application on our own individual
machine, allowing up to 6 MPI ranks.

27

Figure 21: Ranks in the group red combined the individual results and are computing Pi. The single worker from gold is
still occupied with iterating. Picture taken while executing the ’How much Pi you like?’ application on our own individual
machine, allowing up to 6 MPI ranks.

28

Figure 22: The red group has finished and waits for gold. Picture taken while executing the ’How much Pi you like?’
application on our own individual machine, allowing up to 6 MPI ranks.

29

Figure 23: After all worker groups have completed their tasks, the execution time and some more information is displayed.
Pushing ’restart’ will restart the application. Picture taken while executing the ’How much Pi you like?’ application on our
own individual machine, allowing up to 6 MPI ranks.

30

E Screen captures of ’Displaying Information’

Figure 24: Show information about the cluster. Picture taken while executing the ’Displaying Information’ application on
our own individual machine, allowing up to 6 MPI ranks.

31

Figure 25: Show QR codes that lead to further content. Picture taken while executing the ’Displaying Information’ appli-
cation on our own individual machine, allowing up to 6 MPI ranks.

32

Figure 26: Show the logos of Python and used packages. Picture taken while executing the ’Displaying Information’
application on our own individual machine, allowing up to 6 MPI ranks.

33

	Introduction
	Motivation
	Contribution
	Outline

	Background
	MPI
	The Odroid
	The -Cluster
	Deep Q-Learning

	Play Snake against an AI Opponent
	Process Flow and Code Structure
	Efficient Message sending within the MPI Communicator
	Virtual Keyboard
	The AI Opponent

	Which Celebrity you look like?
	MPI Group Communication
	Celebrity Database: CelebA
	Face Detection and Matching

	How much Pi you like?
	Pi Computation

	Displaying Information
	Conclusion and Future Work
	Project Structure Diagrams
	Screen captures of 'Play Snake against an AI Opponent'
	Screen captures of 'Which Celebrity you look like?'
	Screen captures of 'How much Pi you like?'
	Screen captures of 'Displaying Information'

