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Abstract

High-Performance Computing (HPC) systems face significant challenges regarding energy consump-
tion and carbon footprint. Inefficient utilization of resources within HPC applications exacerbates
these issues. Existing energy monitoring solutions, such as Green Algorithms, Ganglia/Prometheus,
SLURM (Simple Linux Utility Resource Management) energy plugin, and PMT (Power Measure-
ment Toolkit), operate independently and lack integration, comparison, and accessibility, hindering
comprehensive energy optimization efforts. To address this gap, we propose an integrated energy
measurement framework operating on multiple levels (system, node, job, application) and leverag-
ing various software tools (e.g. PMT, SLURM, Ganglia, Prometheus, LIKWID). This framework
aims to provide holistic insights into application energy consumption, and facilitating targeted
optimization strategies. Experimental evaluations across different configurations (MPI, OpenMP,
hybrid) and system setups, including variations in CPU frequencies, were conducted to validate
the proposed solution. Key findings include the correlation between increased ranks/threads and
reduced energy consumption, the impact of NUMA, and the influence of CPU frequency on energy
efficiency. This thesis underscores the importance of integrated energy monitoring and optimiza-
tion in HPC environments to mitigate costs, reduce carbon footprint, and promote sustainability.
Additionally, it highlights challenges in software installation and usage, which must be addressed
for effective implementation of energy-efficient practices in HPC.
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Chapter 1

Introduction

Problem Statement The fragmented state of current energy measurement solutions in High-
Performance Computing (HPC) systems hinders comprehensive insights into energy consumption
patterns. This inhibits the development of targeted optimization strategies for enhancing energy
efficiency and sustainability across node, job, and application levels. Overcoming challenges related
to programming paradigms, software installation, and utilization is critical for effective implemen-
tation of energy-efficient practices in HPC.

Motivation

(a)

Increasing Operational Costs: As the computational demands of HPC systems continue
to grow, so do their operational costs, especially in terms of energy consumption. Energy-
aware systems help in optimizing energy usage, thereby reducing operational expenses. By
implementing energy measurement approaches, organizations can accurately track and analyze
energy usage patterns to identify areas for improvement and cost savings.

Environmental Impact: HPC systems consume substantial energy, contributing to their en-
vironmental footprint. Energy-aware systems and integrated energy measurement approaches
allow for better power consumption management, reducing carbon emissions and environmen-
tal impact. By optimizing energy usage, HPC facilities can work towards achieving sustain-
ability goals and minimizing their overall environmental footprint.

Power Density Challenges: HPC systems often face power density challenges due to
the high concentration of computing resources within limited physical spaces. Energy-aware
systems help efficiently manage power distribution and cooling requirements, mitigating power
density challenges. Integrated energy measurement approaches provide insights into power
usage at various levels of the system architecture, enabling better optimization strategies to
effectively address power density issues.

Scalability: In HPC environments, organizations constantly seek to expand computational
capabilities to meet increasing demands, making scalability crucial. Energy-efficient systems
ensure that organizations achieve scalability without compromising energy efficiency. Inte-
grated energy measurement approaches enable scalability assessments by providing real-time



data on energy consumption, facilitating informed decisions regarding system expansion and
resource allocation.

(e) Innovation: Innovation in HPC often revolves around improving performance while reducing
energy consumption. Energy-aware systems foster innovation by encouraging the develop-
ment of more efficient hardware architectures, software algorithms, and system management
techniques. Integrated energy measurement approaches support innovation by providing valu-
able insights into energy usage patterns and guiding the design and implementation of novel
energy-saving solutions.

(f) Sustainable Objectives: Sustainability has become critical for organizations across various
industries, including HPC. Energy-aware systems align with sustainable objectives by pro-
moting efficient resource utilization and reducing wastage. Integrated energy measurement
approaches help monitor progress toward sustainability goals by tracking energy consumption,
identifying areas for optimization, and facilitating continuous improvement initiatives.

Existing Solutions In Chapter 3 of the related work, various existing solutions have been thor-
oughly discussed. These solutions, such as PMT (Power Measurement Toolkit) and LIKWID (Like
I Know What I'm Doing), are instrumental in calculating the energy consumption of applications
within High-Performance Computing (HPC) environments. Additionally, SLURM (Simple Linux
Utility Resource Management) has been identified as a tool capable of estimating the energy usage
of jobs based on job accounting data. Furthermore, energy management tools like Ganglia and
Prometheus operate at the hardware level, offering insights into energy usage patterns. Despite
the availability of these tools, there remains a significant gap in integrating them into a cohesive
and holistic solution within the HPC environment. Currently, no comprehensive platform allows
system administrators or users to gain a unified overview of energy consumption and identify areas
of energy wastage. The current lack of integration is hindering the effective management of energy
resources and optimization of efficiency within HPC infrastructures. In essence, while individual
tools exist for specific aspects of energy management in HPC, there is a pressing need for a unified
solution that seamlessly integrates these tools. Such a holistic platform would empower stakeholders
to make informed decisions regarding energy consumption, ultimately leading to enhanced resource
utilization and sustainability within HPC environments.

Research Goals Energy consumption of HPC systems is an increasingly important topic to study
in light of global concern for sustainability and reducing carbon emissions. The goals of this master
thesis are:

e to develop an integrated approach for energy measurement on multiple levels (system, node,
job, application).

e to run experiments, extract insights and explore ways with different energy configurations.

e and to report these energy measurements to system administrators and end users.

This research goes beyond analysis and delves into implementation, with a specific focus on repli-
cating the proposed energy measurement framework within the sciCORE HPC infrastructure at the
University of Basel. By integrating energy measurement capabilities across node, job, and appli-
cation levels, a comprehensive understanding of energy utilization within sciCORE’s HPC clusters
can be achieved.



Proposed Solution

1. Review of Existing Systems:

e The study will critically analyze existing energy-monitoring platforms to discern their
capabilities and limitations.

e The existing system where experiments were conducted on sciCORE and miniHPC clus-
ter.

2. Multi-level Energy Measurement:

e The research targets four distinct levels:

(a) Node-level: Tools like Ganglia and Prometheus are used to calculate the energy
consumption at the node level.

(b) Job-level: SLURM, a job scheduler, will be used, though it has limitations like
the inability to measure energy for multiple concurrent jobs on shared assets dis-
tinctively.

(c) Application-level: At the application level, the intricacies of software execution
significantly influence energy consumption profiles. Leveraging tools such as LIK-
WID and Performance Monitoring Tools (PMT), this thesis aims to analyze
the energy footprint of individual applications running within HPC environments.
By correlating application characteristics with energy consumption data, insights
can be gained into optimization opportunities that balance performance with en-
ergy efficiency.

(d) System Wide: Carbon footprint calculator is used to generate system wide carbon
footprint for the user.

3. Comparative Analysis:

e Various experiments were set up, altering node configurations, job setups, and application
structures and different programming paradigms (OpenMP, MPI and Open+MPI).
The outcomes were utilized to compare the energy-monitoring capabilities across the
three aforementioned levels and different frequency levels.

4. Unified Data Model:
e Finally a wrapper script has been created that integrates all the energy components and

gives the user energy consumption at different levels (node, job and application).

Highlights Main Highlights of the thesis are:

e The experiments were run on two clusters miniHPC and sciCORE.

e Identified and analysed the energy consumption within different programming paradigms like
OpenMP, MPI, Hybrid (OpenMP+MPI) on different CPU frequency levels

e Extracted energy at node level, job level and application level and finally generated the carbon
footprint for our experiments.

e Integrating energy measurement capabilities at the node, job, and application levels and pro-
viding a unified command-line tool aims to facilitate informed decision-making for sustainable
and efficient HPC operations.



Outline The docuement is structured as follows: It begins with an Introduction in Chapter 1,
which outlines the study’s goals. Chapter 2 provides background information, giving context to
ongoing experiments in related systems, i.e., miniHPC and sciCORE. Moving forward, Chapter 3
delves into existing research and literature on energy use in high-performance computing (HPC)
systems. In Chapter 4, the Methods section explains the tools used in the experiments and how
they were set up. Results are then presented in Chapter 5, followed by a discussion and analysis
of those results in Chapter 6. Finally, Chapter 7 wraps up the thesis by summarizing the main
findings, highlighting the study’s contributions, and suggesting directions for future research.



Chapter 2

Background

2.1 High-Performance Computing (HPC) Architecture

High-Performance Computing (HPC) systems are pivotal in addressing complex computational
problems across various scientific and engineering domains. These systems typically consist of
interconnected clusters of computing nodes designed to deliver massive computational power.In
this study, attention has been directed towards two High-Performance Computing (HPC) clusters:
miniHPC and sciCORE.

2.1.1 miniHPC Cluster

miniHPC is a distributed computing platform comprised of multiple computing nodes intercon-
nected through high-speed networks at the University of Basel with the HPC research groupl[l].
miniHPC boasts a peak performance of 28.9 double-precision TFLOP/s. It comprises four types
of nodes, as described in Table 2.1. Each node in the miniHPC cluster is equipped with multi-
core processors, high-speed memory, and access to shared storage resources. The architecture of
miniHPC is designed to facilitate parallel processing and efficient data exchange among nodes. We
have primarily used the nodes cl-node002 and cl-node003 for our experiments on the partition
xeon. The architecture/ thread topology is mentioned in the Table 2.2

2.1.2 sciCORE Cluster

The sciCORE facility [4], managed by the scientific computing center at the University of Basel,
offers a specialized high-performance computing (HPC) environment tailored to support data and
computation intensive research endeavors. sciCORE aims to provide seamless access to HPC re-
sources and expertise, enabling researchers to effectively utilize computational methods in their
scientific endeavors, with a focus on facilitating innovative research.

sciCORE presently manages a cutting-edge high-performance computing setup, segmented into
three specialized environments catering to distinct scientific requisites. This infrastructure com-
prises 228 nodes interconnected via InfiniBand and Ethernet 100G, housing around 13,500 CPU
cores and offering 70 TB of distributed memory with a substantial disk storage capacity of 11 PB.
Currently, the facility accommodates over 800 users, with an annual consumption rate of nearly 30



Table 2.1: Architecture of miniHPC and sciCORE Clusters

Component Details
miniHPC Cluster

Nodes 28

Total Cores 166

Total RAM 3392 GB

Total GPUs 2

Total Disk 37 TB
Interconnect Eth 10G, OmniPath 100G
Operating System CentOS
sciCORE Cluster

Nodes 223

Total Cores 14528

Total RAM 79 TB

Total GPUs 128

Total Disk 16 PB
Interconnect Eth 100G, Infiniband
Operating System CentOS




Table 2.2: System Configuration for node002 and node003 on partition xeon

CPU
CPU name Intel Xeon CPU E5-2640 v4 @ 2.40GHz
CPU type Intel Xeon Broadwell EN/EP/EX processor
CPU stepping 1
Threads per core 1

Hardware Thread Topology

Sockets 2
Cores per socket 10
Threads per core 1
Cache Topology
Size: 32 kB
Level 1 Cache groups: (0 ) to (19)
Size: 256 kB
Level 2 Cache groups: (0 ) to ( 19)
Size: 25 MB
Level 3 Cache groups: ( 0-9 ) and ( 10-19 )
NUMA Topology
NUMA domains 2

Processors: ( 0-9 )

Distances: 10 (to same domain), 21 (to other domain)
Domain 0 Free memory: 31268.9 MB

Total memory: 31914 MB

Processors: ( 10-19 )

Distances: 21 (to same domain), 10 (to other domain)
Domain 1 Free memory: 31573.4 MB

Total memory: 32253.8 MB




million CPU hours, encompassing 14 million job executions. The technical details of the cluster are
mentioned in the table 2.1. We have used the nodes sgi63 and sgi64 on partition al00 to extract
the energy components for our experiments. The system configuration for the nodes is mentioned
in the table 2.3.

Table 2.3: System Configuration of sgi63 and sgi64 on partition al00

CPU
CPU name AMD EPYC 7742 64-Core Processor
CPU type AMD K17 (Zen2) architecture
CPU stepping 0
Threads per core 1

Hardware Thread Topology

Sockets 2
Cores per socket 64
Threads per core 1
Cache Topology
Size: 32 kB
Level 1 Cache groups: (0 ) to ( 127)
Size: 512 kB
Level 2 Cache groups: (0 ) to ( 127)
Size: 16 MB
Level 3 Cache groups: (0-3 ), (4-7), ..., ( 124-127)
NUMA Topology
NUMA domains 2

Processors: ( 0-63 )

Distances: 10 (to same domain), 32 (to other domain)
Domain 0 Free memory: 404396 MB

Total memory: 515716 MB

Processors: ( 64-127)

Distances: 32 (to same domain), 10 (to other domain)
Domain 1 Free memory: 500014 MB

Total memory: 516066 MB

2.1.3 Programming Paradigms for HPC

Efficient utilization of HPC resources relies heavily on employing suitable programming paradigms
that leverage parallelism and optimize computational workflows. In this study, we investigated the
energy consumption over three key programming paradigms commonly used in HPC environments:
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1. OpenMP (Open Multi-Processing): OpenMP is a widely adopted shared-memory par-
allelization model that allows developers to parallelize code across multiple threads within
a single node. It provides a simple and flexible approach for leveraging parallelism in HPC
applications, particularly suitable for shared-memory architectures found in miniHPC and
sciCORE nodes.

2. MPI (Message Passing Interface): MPI is a message-passing library standard used for
parallel computing across distributed memory architectures. It enables communication and
coordination between separate nodes in an HPC cluster, making it well-suited for scaling
applications across multiple computing resources. Both miniHPC and sciCORE support MPI,
facilitating distributed computing tasks across their respective clusters.

3. Hybrid Programming: Hybrid programming combines the strengths of both OpenMP
and MPI paradigms to achieve optimal performance in HPC applications. By leveraging
shared-memory parallelism within individual nodes (using OpenMP) and distributed-memory
parallelism across nodes (using MPI), hybrid programming offers a powerful approach to
harnessing the computational capabilities of modern HPC systems.

This thesis scrutinizes and contrasts the energy consumption profiles of distinct programming
paradigms (OpenMP, MPI, and hybrid) on miniHPC and sciCORE platforms. By analyzing the
energy characteristics of these paradigms, we have attempted to furnish insights into their efficiency
and suitability for diverse computational tasks in HPC environments. Furthermore, this study seeks
to enrich the broader comprehension of energy-conscious programming methodologies within high-
performance computing.

11



Chapter 3

Related Work

This chapter presents a critical analysis of the related literature and highlights potential areas for
improvement.

Ghislain Landry et al. [10] proposed a runtime framework for improving the energy efficiency
of HPC systems without requiring prior knowledge of the applications running on the system.
The framework consists of two main component: A phase detection method identifies the different
phases of an HPC system’s workload. A phase is when the system’s workload exhibits similar
characteristics. The phase detection method uses statistical and machine learning techniques to
identify the different phases. A partial phase recognition technique uses the results of the phase de-
tection method to adjust the system’s power and performance settings dynamically. The technique
considers the current phase of the workload, the system’s resources, and the user’s performance
requirements. The paper evaluates the effectiveness of the proposed framework using real-world
workloads and benchmarks. The results show that the framework can save up to 15 percent of
energy without degrading the performance of the applications.

Jumie Yuventi and Roshan Mehdizadeh [11] discussed the shortcomings of PUE (Power Usage
Effectiveness). They propose several alternative metrics for communicating data center energy con-
sumption. These metrics include data center infrastructure efficiency (DCIE), energy use intensity
(EUI), and carbon footprint. The paper argues that these alternative metrics are more accurate
and informative than PUE and should be used to communicate data center energy consumption.

The paper by Axel Auweter et al. [5] evaluates the energy-aware scheduling capabilities of the
IBM LoadLeveler on SuperMUC, a leading HPC system. The study examines how LoadLeveler
predicts execution times and power consumption based on different CPU frequencies, contrasting
these predictions with accurate benchmark measurements. Given that the prediction model aligns
well with actual application workloads, it evaluated a substantial part of SuperMUC’s applications.
The research paper proposes a two-step approach to energy-aware scheduling on heterogeneous
supercomputers. The first step is to predict the power consumption of each application at different
CPU frequencies. The second step is to select the CPU frequencies for each application, considering
the power and performance predictions and the application deadlines. The paper evaluates the
approach using a set of real-world applications and shows that it can achieve significant energy
savings without significantly impacting performance.

Tsafack Chetsa et al.[l1] proposed a method for predicting and improving the energy perfor-
mance of HPC systems. The method uses hardware performance counters to collect data about
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the system’s behavior. This data is then used to train a model to predict the system’s energy con-
sumption. The model can then optimize the system’s performance by adjusting the CPU frequency
or the number of cores used. The paper evaluates the proposed method using a set of real-world
HPC applications and shows that it can achieve significant energy savings without significantly
impacting performance.

"Power Signatures of High-Performance Computing Workloads” by Jacob Combs et al. [12],
shows that simple feature-based signatures can accurately capture the power consumption behavior
of HPC workloads. They used a dataset of 13 HPC workloads running on four different hardware
platforms to train a classifier that could distinguish between the workloads based on their power
signatures, where classifiers achieved an accuracy of 85 percent.

The paper ”Predicting the Energy and Power Consumption of Strong and Weak Scaling HPC
Applications” by Hayk Shoukourian et al.[37] presents a method for predicting HPC applications’
energy and power consumption with strong and weak scaling. The proposed method uses a two-step
approach: first, a power model is used to predict the power consumption of each application at a
single processor; second, a scaling model is used to predict the application’s power consumption
at multiple processors. The research paper examines the effectiveness of the proposed method by
testing it on a range of HPC applications. It accurately forecasts energy and power consumption
of HPC applications with strong and weak scaling.

The paper by Christian Conficoni et al.[13] proposes a control strategy to achieve significant
energy savings for hot-water-cooled supercomputers. The strategy uses a model-based approach to
predict the cooling system’s power consumption. Then, it optimizes the operation of the cooling
system, such as by adjusting the pump speed and the water temperature. The paper evaluates the
proposed strategy using a simulation model and shows that it can achieve energy savings without
significantly impacting the supercomputer’s performance.

A global survey [22] of HPC centers found that most use energy- and power-aware job scheduling
and resource management solutions. The most common approaches are to throttle the CPU fre-
quency of idle nodes, power them down, use DVFS, and use workload-aware scheduling algorithms.
There is a growing interest in using more sophisticated energy- and power-aware job scheduling and
resource management solutions. However, there are still some challenges in this area, such as the
need for more accurate power models for HPC systems, the difficulty of incorporating energy and
power constraints into job scheduling algorithms, and the need to balance energy efficiency with
performance.

Connor Imes et al. [20] proposed a method for using machine learning classifiers to improve the
energy efficiency of application resource scheduling in HPC systems. The proposed method is a
promising approach that can achieve significant energy savings without significantly impacting the
performance of the applications. However, some challenges must be addressed before the method
can be widely adopted, such as dealing with the uncertainty of application resource requirements
and system power consumption and developing more efficient algorithms for scheduling applications
using the predicted resource settings.

The paper by Jan Weglarz et al.[12] discusses APIs and tools for controlling energy and power
consumption in high-performance computing (HPC) systems. It analyzes the approaches, control
methods, optimization criteria, programming examples, and benchmarks used in state-of-the-art
research on energy-aware HPC. The paper also presents solutions for specific types of HPC sys-
tems, such as workstations, clusters, grids, and clouds. It discusses optimization metrics, such as
execution time, energy used, power consumption, and temperature. The paper also describes the
control methods used in existing approaches, such as scheduling, DVFS/DFS/DCT, power cap-
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ping, application optimizations, and hybrid approaches. Finally, the paper presents open areas and
recommendations for future research.

ATI-Driven Holistic Approach to Energy Efficient HPC [10] proposes a new approach to energy
efficiency in high-performance computing (HPC) systems. The approach uses artificial intelligence
(AI) to model the performance and power consumption of HPC systems and to develop scheduling
policies that optimize energy efficiency while meeting the performance requirements of applications.
The proposed approach takes a holistic view of energy efficiency, considering the entire HPC system,
from the hardware to the software. It uses Al to model the performance and power consumption
of all the components in the system, which allows it to develop scheduling policies that optimize
energy efficiency while meeting the performance requirements of applications.

The paper by Gence Ozar et al. [32] introduces a method for constructing a predictive energy
model tailored for High-Performance Computing (HPC) runtime systems, leveraging supervised
learning capabilities. Initially, the process involves gathering sensor data and relevant performance
metrics directly from the HPC system. This data then serves as the foundation upon which a
supervised learning algorithm is trained, with the specific intent of forecasting the CPU’s power
consumption and the anticipated number of instructions that will be retired. Armed with this
predictive model, the system can astutely determine the most suitable CPU frequency during a
job’s execution, aiming to optimize energy efficiency and minimize overall consumption within the
HPC system.

Laurens Versluis et al. [41] proposed a method for holistic analysis of data center operations,
using fine-grained data to reveal new operational aspects and help improve data center performance
and efficiency. The authors argue that a holistic approach is needed that considers the entire
system, from the hardware to the software. The authors showcase the advantages of their method
by implementing it on a data center infrastructure consisting of more than 300 nodes. They made
over 30 significant observations that can aid in tasks related to performance engineering, such as
forecasting data center load and designing data center infrastructure.

Eishi Arima et al. [3] have introduced the convergence of malleability and power management
in HPC systems. Malleability refers to the ability of an HPC system to dynamically scale its
resources to meet the changing needs of applications. In contrast, power management refers to
the techniques used to reduce the power consumption of an HPC system. The paper proposes a
framework for converging malleability and power management in HPC systems based on dynamic
resource allocation, co-scheduling, and application malleability. The paper evaluates the framework
using a simulation study and shows that it can achieve significant energy savings over traditional
approaches.

The paper by Issa Saba et al.[36] proposes a new approach to energy-efficient scheduling of
applications on CPU-GPU heterogeneous systems. The approach uses machine learning to optimize
co-scheduling, resource partitioning, and power capping jointly. First, it uses machine learning
to predict the execution time of each application on each type of resource. Then, it uses this
information to co-schedule applications to minimize the overall execution time of the applications.
It also uses machine learning to partition resources between applications to minimize contention and
maximize performance. Finally, it uses machine learning to cap the system’s power consumption
to meet power constraints. The paper evaluates the proposed approach using a simulation study
and shows that it can achieve significant energy savings over traditional approaches.

In the research paper by Thomas Jakobsche et al. [39], they introduce a research methodology
that examines approximately 350,000 jobs executed over a two-month span. The goal was to uncover
the relationship between the causes of job delays and potential strategies to lessen these wait times.
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The results of these analyses could aid both users and system operators in understanding the factors
behind prolonged job wait times and methods to curtail them. The primary cause identified was
that these delays stem from Quality of Service (QoS) limitations.

One of the studies by Pawel Bratek et al. [3] investigates the benefits of heterogeneous Dynamic
Voltage and Frequency Scaling (DVFS) in improving the energy efficiency of data-parallel appli-
cations on multicore CPU systems. Using two use cases, it demonstrated up to 20 percent energy
savings with heterogeneous scaling on a specific server. To facilitate this, two efficient pruning algo-
rithms were introduced, significantly reducing the computational cost compared to the brute-force
method. The approach also proved effective on 64-core AMD EPYC processors, achieving up to a
13 percent efficiency advantage over traditional DVFS methods.

3.1 Tools and framework that manage energy

Matthias Maiterth et al. [29] have introduced GEOPM, a framework for exploring power and energy
optimizations on heterogeneous platforms. GEOPM is an open-source and collaborative framework
that fosters community research on power management strategies. Researchers can share their work
and collaborate on new ideas through the platform. GEOPM is also designed to be portable and
scalable for various hardware platforms. The paper presents a case study of how GEOPM was
used to develop a power management strategy for the SuperMUC supercomputer. The case study
shows how GEOPM can be used to optimize the power consumption of a supercomputer while
still meeting the performance requirements of the applications running on the system. The paper
outlines the challenges and opportunities for future research on GEOPM. Some of the significant
challenges include the need for more precise power models for heterogeneous platforms, more efficient
optimization algorithms for power management, and more realistic simulation models of power
management strategies.

Neha Gholkar et al. [16] proposed a method called PShiter that can improve the performance
of HPC jobs by dynamically shifting power. PShiter uses a feedback controller to monitor the
performance of the job and adjust the power allocation accordingly. The controller can detect
when a job is experiencing performance degradation due to power constraints and take corrective
action to improve the performance. The paper evaluates the proposed method using an HPC system
simulation model and shows that PShiter can significantly improve performance for various HPC
jobs. It discusses challenges and opportunities for future research in dynamic power shifting for HPC
jobs. These challenges include developing more accurate power models for HPC systems, developing
more efficient feedback controllers, and addressing the challenges of coordinating power shifting
across multiple jobs. The paper also discusses some of the opportunities for future research in this
area, such as developing methods for incorporating uncertainty into the power models, developing
methods for optimizing the performance-power trade-off for HPC jobs, and developing methods for
integrating dynamic power shifting with other techniques for improving the performance of HPC
jobs.

The paper ”COUNTDOWN Slack: a Run-time Library to Reduce Energy Footprint in Large-
scale MPI Applications” by Daniele Cesarini et al. [9] proposes a run-time library called COUNT-
DOWN Slack that can reduce the energy footprint of large-scale MPI applications. COUNTDOWN
Slack works by exploiting Slack in the communication phases of MPI applications. Slack is the time
difference between the end of a communication phase and the start of the next computation phase.
COUNTDOWN Slack identifies Slack and then uses it to reduce the system’s power consumption.
The paper evaluates COUNTDOWN Slack using a variety of MPI applications and shows that
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COUNTDOWN Slack can achieve significant energy savings without significantly impacting the
performance of the applications.

EAR[11] is an energy management framework for supercomputers developed by the Barcelona
Supercomputing Center (BSC). EAR is designed to optimize the energy efficiency of supercom-
puters by dynamically managing the power consumption of the system’s nodes. EAR works by
monitoring the power consumption of the nodes and the workload running on them. It then uses
this information to determine how to allocate resources to the nodes to maximize energy efficiency.
EAR can also be used to implement various energy-saving policies, such as throttling the CPU
frequency of idle nodes or powering down nodes that are not being used. EAR has been evalu-
ated on various supercomputers and has been shown to achieve significant energy savings without
significantly impacting the performance of the applications running on the system.

The Power Measurement Toolkit (PMT) [15] is a high-level software library for collecting power
consumption measurements on various hardware platforms. It is written in C++ and is available
for Linux-based systems. PMT provides a standard interface to measure the energy usage of devices
such as CPUs and GPUs in critical application sections. It can be used to monitor and evaluate
applications’ energy efficiency and optimize the power consumption of HPC systems. PMT is easy
to use, provides accurate power measurements, and is extensible and open-source.

Researchers [1] integrated the Power Measurement Toolkit (PMT) into the SPH-EXA simulation
framework. This integration reveals energy consumption patterns across multiple devices, aiding
in identifying areas of the simulation code that could be more energy-efficient. Using subsonic tur-
bulence simulations for validation, they compared PMT’s energy data with Slurm system readings.
They also examined the energy usage in systems with adjustable GPU frequencies, highlighting the
potential for energy savings by optimizing GPU compute frequencies. It is noted, however, that
current GPUs lack the nuanced frequency scaling of CPUs and do not allow users to control their
dynamic frequency scaling, limiting energy conservation opportunities.

Table 3.1: Comparative Analysis of EAR, PMT, and PShifter Systems

] Feature H EAR \ PMT \ PShifter ‘
Purpose Reduces energy | Provides tools | Improves perfor-
consumption of | for = managing | mance of HPC

computing sys-
tems

power consump-
tion

jobs

Techniques used

Dynamic power

Dynamic power

Dynamic power

management, management, shifting
workload man- | workload man-
agement agement, energy
accounting
Flexibility Flexible Flexible, scal- | Not as flexible
able
Scalability Scalable Scalable Not as scalable

Energy awareness

Energy-aware

Not as energy-
aware

Not as energy-
aware
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3.2 Green Algorithms

The GREENER principles provided by Loic Lannelongue et al.[25] serve as a comprehensive guide
to promote environmentally conscious computational science. The six cornerstone principles are:

e Governance: Advocate for strong governance frameworks to underline the importance of
green computational science.

e Responsibility: Ensure entities are answerable for the environmental impact of their com-
putational procedures.

e Estimation: Utilize techniques to quantify and relay the environmental effects of computa-
tional processes.

e Energy and embodied impacts: Examine comprehensive lifecycle influences within com-
putational endeavors, spanning hardware to software.

e New collaborations: Forge alliances among computational scholars, environmental advo-
cates, and decision-makers to tackle the sustainability issues inherent in computational science.

e Education and Research: Bolster educational and research initiatives concentrating on the
environmental aspects of computational science to unearth and promote sustainable practices.

By staying true to the GREENER principles, all involved parties can significantly mitigate
the ecological impact of computational science, championing the larger cause of environmental
preservation in the face of climate change.

Another paper by Loic Lannelongue et al.[28] addresses the increasing concern regarding the
carbon footprint of computational research, attributed to factors such as the energy consumption
of computers, embodied emissions of hardware, and data storage and transportation emissions. To
estimate this footprint, the authors introduce several methodologies, including the LEAF (Labora-
tory Efficiency Assessment Framework) framework. Emphasizing the escalating energy demands of
computers, the paper underscores the significance of evaluating and understanding this footprint
to steer computational science towards a more environmentally sustainable path.

Loic Lannelongue, Michael Inouye, and collaborators highlight [17] s the bioinformatics field’s
substantial and growing carbon footprint, primarily attributed to computer energy consumption,
hardware emissions, data storage and transport. To mitigate this, the authors suggest strategies like
utilizing renewable energy sources, adopting energy-efficient computing infrastructure, algorithm
optimization,[27] and facilitating data sharing. These measures, they argue, are essential to ensure
sustainability in bioinformatics.

In the article ”Carbon footprint, the (not so) hidden cost of high-performance computing” [24],
multiple strategies exist for curtailing the carbon footprint of High-Performance Computing (HPC):

e Transitioning to more energy-conscious computing architectures.
e Refining algorithms to lessen computational demands.
e Promoting data-sharing practices, thereby reducing storage and transportation overheads.

e Harnessing renewable energy sources for HPC infrastructure.
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Innovations, like quantum computing[26], introduce potential avenues for further reductions.
Quantum systems, known for their energy frugality compared to traditional setups, may soon take
over certain HPC functionalities.

Tackling the carbon implications of HPC is multifaceted, but with a variety of available strate-
gies, we can step forward in our battle against climate change. In this thesis, the Green Computing
aspect is bound to be very important because the idea is to have sustainable methods that we
continue using HPC facilities while putting less pressure on the environment. We need to balance
performance and sustainability, which would lead to further innovations.
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Chapter 4

Methods

4.1 NAS Benchmarks

NAS (NASA Advanced Supercomputing) Benchmarks [6] are a suite of benchmarks developed by
NASA to evaluate the performance of parallel supercomputers and high-performance computing
(HPC) systems. These benchmarks are designed to stress different aspects of HPC systems, in-
cluding computation, communication, and memory performance. They are widely used in the HPC
community to assess and compare the performance of various hardware architectures, compilers,
libraries, and system configurations. Below is a description of the NAS benchmarks:

A. CG (Conjugate Gradient): CG benchmark evaluates the performance of sparse matrix-
vector multiplication and iterative solution techniques. This solves a system of linear equations
using the conjugate gradient method.This benchmark stresses both floating-point computation
and memory bandwidth.

B. MG (Multi-Grid): MG benchmark assesses the performance of multi-grid methods for solv-
ing elliptic partial differential equations. It uses a series of mesh refinements and smoothing
operations to solve the equations iteratively. MG benchmark evaluates both computation and
memory access patterns.

C. FT (Fast Fourier Transform): FT benchmark measures the performance of the fast Fourier
transform (FFT) algorithm. It computes the discrete Fourier transform of a 3D complex array.
This benchmark primarily evaluates floating-point computation performance.

D. IS (Integer Sort): IS benchmark evaluates the performance of sorting algorithms. It sorts
a large array of integers using the radix exchange sort algorithm. IS benchmark primarily
assesses memory access patterns and cache efficiency.

E. EP (Embarrassingly Parallel): EP benchmark measures the performance of simple embar-
rassingly parallel operations. It computes the dot product of two large vectors. This benchmark
primarily evaluates floating-point computation performance and scalability.

F. BT (Block Tri-diagonal): BT benchmark evaluates the performance of solving a block
tri-diagonal system of equations. It simulates the three-dimensional heat equation in a block-
structured grid. BT benchmark stresses both computation and communication performance.
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G. LU (Lower-Upper Symmetric Gauss-Seidel): LU benchmark assesses the performance
of solving a system of linear equations using the Lower-Upper Symmetric Gauss-Seidel (LU-
SGS) method. It simulates the solution of a 3D partial differential equation. LU benchmark
evaluates both computation and communication performance.

H. SP (Scalar Pentadiagonal): SP benchmark evaluates the performance of solving a scalar
pentadiagonal system of equations. It simulates the solution of a 3D scalar transport equation
on a regular grid using a fifth-order accurate finite difference method. The problem involves
solving a pentadiagonal system of equations at each grid point. SP benchmark primarily
assesses both computation and communication performance, as well as memory access patterns.

These NAS benchmarks provide a standardized set of workloads for evaluating and comparing
the performance of HPC systems. They are often used in research, procurement, and optimization
efforts to assess the suitability of hardware and software configurations for specific computational
workloads. We have used only the SP, BT and LU as these represent Pseudo Applications which
are closer to general applications and are a representation of real world applications as show in
Figure 4.1.

IS Pseudo

Applications

- S~
EP FT
I\

S £~
Kernels

2__x
CG MG

Figure 4.1: NAS Benchmarks

4.2 RAPL vs IPMI

RAPL (Running Average Power Limit) sensors and IPMI (Intelligent Platform Management
Interface) sensors[21] serve different purposes in computer hardware monitoring. In this thesis,
the Power Measurement Toolkit has been used, which extracts the data at the application level to
extract the energy information via RAPL sensors. IPMI sensors are used across the whole node,
and we have monitored the energy extracted from IPMI via Ganglia (in miniHPC) and Prometheus
(in sciCORE). Table 4.1 shows the clear distinction on how the sensors differ from each other.
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Aspect RAPL IPMI

Scope Provides energy consumption | Provides a comprehensive
data for specific components | view, covering all components
(e.g., CPU, DRAM, cache). of each node in a system.

Granularity Fine-grained view at the com- | Broader perspective across the
ponent level. entire node.

Limitation May mnot cover all compo- | Offers insights into overall
nents, focusing mainly on | power usage but may lack de-
CPU, memory, and cache. tailed component-level data.

Advantage Allows monitoring and analy- | Provides insights into the
sis of energy consumption at | overall power usage of the
specific hardware elements. hardware.

Table 4.1: Comparison between RAPL and IPMI

4.3 Energy Measurement Tools

4.3.1 PMT (Power Measurement Tool)

The Power Measurement Toolkit (PMT)[15] is a C++ library designed specifically for Linux sys-
tems. Its purpose is to interact with the APIs provided by hardware vendors to gather data on
power consumption. It supports a range of hardware architectures, including GPUs (using NVML
for NVIDIA and rocm-smi for AMD), CPUs (using RAPL or LIKWID), and other architectures like
Xilinx FPGAs. Additionally, it can interface with physical power sensors such as PowerSensor2.

PMT’s main functionality involves a background thread within the profiled application that
communicates with the chosen backend (such as NVML) to collect power consumption information.
The Figure 4.2 is a sample example on how the Rapl-test reports energy. The frequency of sampling
depends on the hardware and backend being used; for instance, NVML supports sampling up to
every 10 milliseconds, while RAPL supports sampling up to every 500 milliseconds.

To install PMT, users can utilize either CMake or a Spack recipe. The library operates in two
modes: dump-mode, which records timestamps and power measurements for later analysis, and
measurement-mode, which provides the average power consumption of the profiled code for quick
energy-efficiency estimations.

Integration into C++ and Python applications involves adding PMT functionalities to the code.
For C++, this includes including the PMT header, initializing PMT, and wrapping the region of
interest with activation and deactivation function calls. In Python, integration can be simplified
using Python bindings or decorators provided by PMT as shown in 4.3

PMT introduces a minimal overhead, typically around 1 millisecond in C++ and 10 milliseconds
in Python. However, this overhead accumulates when multiple decorators are employed.

In summary, PMT offers a flexible solution for monitoring power consumption across various
hardware architectures, with straightforward integration into both C++ and Python applications.
PMT was installed in both miniHPC and sciCORE clusters.
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[naraya®00l@dmi-cl-login ~]$ Rapl-test echo "This is my energy consumption"
This i1s my energy consumption

Runtime: 0.00669694 s

Joules: J

Watt: 322 W

Figure 4.2: Sample Rapl-Test with PMT

Power Measure-
ment Toolkit A AL
Y
Python Bindings ROCM
Y
Python Decorators — RAPL
— Arduino

Figure 4.3: Power Measurement Toolkit structure: the library interfaces with different power mea-

surement back ends. The library also includes Python bindings and decorators to ease the mea-
surement for application users.[15]
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Lua API Python API Marker API

Lua RT LIWID Core C APl and GPU APIs

LIKWID suid

Perf _event Hwloc Pinning Lib CUDA
deamon

LINUX OS KERNEL NVIDIA GPUs

Figure 4.4: LIKWID 5 Architecture [38]

4.3.2 LIKWID (Like I Know What I’'m Doing)

LIKWID[19] is a performance analysis tool designed for High-Performance Computing (HPC) sys-
tems. It provides a set of command-line utilities and APIs for analyzing the performance of parallel
applications running on multi-core processors. The architecture of LIKWID consists of several
components as shown in the the Figure 4.4:

e Data Acquisition Layer (DAL) [18]:The DAL is responsible for collecting hardware per-
formance counters and other relevant metrics from the underlying hardware. It uses platform-
specific interfaces (such as PAPI, perf_events, or APM) to access performance monitoring
features provided by the CPU architecture as mentioned in the 4.4 as Linux OS Kernel and
NVIDIA GPU’s

o likwid-suid Daemon [18]: The likwid-suid daemon is a setuid root utility in LIKWID
that allows non-root users to access hardware performance counters. By default, accessing
hardware performance counters usually requires root privileges due to security concerns. How-
ever, the likwid-suid daemon addresses this limitation by providing a secure mechanism for
non-root users to access these counters. This daemon is responsible for managing access to
hardware performance counters and ensuring that users have the necessary permissions to
collect performance data.

¢ HWLOC (Hardware Locality) Library [18]: HWLOC is an open-source library used to
discover and represent the hierarchical topology of modern computing systems. LIKWID uti-
lizes HWLOC to gather information about the system’s hardware topology, including details
such as the number of cores, sockets, caches, NUMA (Non-Uniform Memory Access) domains,
and their interconnections. This information is crucial for optimizing thread/process place-
ment, memory access patterns, and affinity settings to improve performance in multi-core and
parallel computing environments.
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e Pinning Library [18]: LIKWID provides a pinning library that allows users to bind threads
or processes to specific CPU cores. CPU pinning is a technique used to control the placement
of threads/processes on CPU cores, which can help improve performance by reducing cache
contention, enhancing cache locality, and minimizing NUMA effects. The pinning library
in LIKWID facilitates CPU pinning operations, enabling users to optimize thread/process
placement for better performance.

e Perf event Component [18]: Perfevent is a Linux kernel subsystem that provides an
interface for accessing hardware performance monitoring features. LIKWID utilizes Perf_event
to access hardware performance counters and collect performance data. Perf_event allows
LIKWID to monitor various aspects of processor performance, including cache misses, branch
mispredictions, instruction throughput, and other relevant metrics.

e Lua API (Application Programming Interface): LIKWID provides a Lua API that
allows users to interact with LIKWID’s core functionality programmatically using Lua scripts.
With the Lua API, users can access hardware performance counters, collect performance data,
perform analyses, and customize monitoring tasks. This API abstracts the low-level details of
LIKWID’s core library (likwid-perfctr), providing a higher-level scripting interface for easier
use.

e Lua RT (Lua Runtime) [18]: Lua RT refers to the Lua runtime environment provided
within LIKWID for executing Lua scripts. It allows users to write scripts in Lua to perform
various tasks related to performance monitoring and analysis. Lua RT provides the neces-
sary runtime environment for executing Lua scripts within the context of LIKWID, ensuring
compatibility and integration with LIKWID’s core functionality.

o Marker API [18]: LIKWID provides a Marker API that allows developers to insert instru-
mentation points (markers) into their code. Markers serve as points of interest where LIKWID
can start or stop collecting performance data. Developers can use markers to identify specific
sections of code for performance analysis.

e Counting Groups|[18]: LIKWID organizes performance counters into counting groups.Counting
groups represent logical collections of hardware events related to specific performance aspects,
such as cache behavior, floating-point operations, or memory accesses. Users can select which
counting groups to monitor based on their analysis requirements.

e Profile API [18]: LIKWID provides a Profile API that allows users to define and manage
performance analysis profiles. Profiles specify the configuration of performance counters and
other settings for a particular analysis task. Users can create, save, and load profiles to
streamline the performance analysis workflow.

e Control and User Interface (CUI) [18]: The CUI provides a command-line interface
for interacting with LIKWID.It allows users to specify which performance metrics they are
interested in collecting and analyzing. Users can configure LIKWID through command-line
options or configuration files.

Overall, the architecture of LIKWID[18] is designed to provide a flexible and extensible framework
for collecting, processing, and analyzing performance data on HPC systems. Since PMT only offers
the extraction of energy from RAPL sensors (only for Intel), we have used LIKWID, which is more
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: 4.37705 s
Measure for socket ® on CPU 0

: 101.44 Joules
: 23.1754 Watt

: 436.318 Joules
: 99.6831 Watt

Measure for socket 1 on CPU 64

: 97.8143 Joules
1 22.3471 Watt

: 431.524 Joules
: 98.5879 Watt

Figure 4.5: Sample Result of likwid-powermeter command

diverse and supports multiple architectures other than Intel. It offers a range of features to support
performance tuning, optimization, and debugging of parallel applications.

LIKWID [35] offers the likwid-powermeter tool to access and measure energy consumption
using the RAPL interfaces as shown in the Figure 4.5. Here, you can see the power measurement
calculated at the socket level. This tool allows you to:

e Query energy consumption: Retrieve energy readings for specific packages (e.g., CPU,
memory) within a certain time period.

e Calculate power consumption: Based on the energy readings and time interval, calculate
the average power consumption in Watts.

e View Turbo Mode info: Get information about available Turbo Mode steps on Turbo
Mode enabled processors.

likwid-perfctr and Energy Events: While likwid-powermeter offers basic energy information, it is
often beneficial to analyze energy consumption alongside other performance metrics. LIKWID’s
likwid-perfctr tool enables this by providing access to RAPL counters as "events.” These events
can be included alongside other performance counters when configuring and reading data with
likwid-perfctr as shown in the Figure 4.6. This allows for:

e Correlating energy consumption with other performance metrics: Analyze how different events
or configurations, such as thread affinity or scheduling strategies, impact both performance
and energy consumption.

e Custom analysis and visualization: Integrate energy data with other performance data for
comprehensive analysis and visualization using tools like scripts or external libraries.
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Limitations

Basic energy measurement: likwid-powermeter provides basic energy and power read-
ings.

Requires user configuration: Selecting appropriate energy events with likwid-perfctr
requires understanding specific hardware capabilities and desired analysis goals.

4.3.3 SLURM Energy Monitoring

SLURM Energy [13] is an extension of the SLURM workload manager that provides energy-aware
scheduling capabilities. It enables users to allocate computing resources based on energy consump-
tion, allowing for more efficient use of power in large-scale computing environments.

SLURM Energy monitoring [2] typically involves the following steps:

1.

Configuration: SLURM Energy needs to be properly configured on the system to monitor
energy consumption. This may involve setting up power measurement tools and integrating
them with SLURM.

. Job Submission:Users submit jobs to SLURM with energy monitoring options enabled.

This allows SLURM to track energy consumption during job execution.

. Monitoring: During job execution, SLURM monitors energy usage at the node level and

possibly at other levels (e.g., job level, application level).

Reporting: SLURM provides reports on energy consumption for completed jobs. These
reports may include total energy usage, energy usage per node, and other relevant metrics.

. Resource Allocation: Based on energy consumption data, SLURM can make informed

decisions about resource allocation for future jobs. It may prioritize energy-efficient nodes or
adjust job scheduling to minimize overall energy usage.

SLURM Energy monitoring[2] can help organizations optimize their computing infrastructure
for energy efficiency, leading to cost savings and reduced environmental impact. SLURM relies on
plugins to gather energy consumption data from various sources:

Hardware Sensors: Plugins like ‘Energy Accounting' and ‘External Sensors‘ offer data
collection mechanisms.

Energy Accounting‘ Plugin: Utilizes in-band interfaces like IPMI (Intelligent Platform
Management Interface) or RAPL (Running Average Power Limit) on compatible hardware to
access power data directly from compute nodes.

External Sensors‘ Plugin: Collects data from external systems like power meters or mon-
itoring tools managed outside SLURM.

Data Collection: These plugins periodically sample energy consumption data (power draw)
and temperature (if supported) for each compute node.
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Group 1: ENERGY

INSTR_RETIRED_ANY
CPU_CLK_UNHALTED_CORE
CPU_CLK_UNHALTED_REF
TEMP_CORE
PWR_PKG_ENERGY
PWR_PPO®_ENERGY
PWR_DRAM_ENERGY

I
|

Iy
|
|
|
|
|
|
|

+

————— —— + — 4+

Runtime (RDTSC) [s]
Runtime unhalted [s]
Clock [MHz]

CPI
Temperature [C]
Energy [J]
Power [W]
Energy PPO [J]
Power PPO [W]
Energy DRAM [J]
Power DRAM [W]

Figure 4.6: Sample result of perfctr in LIKWID
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Figure 4.7: General Overview of LIKWID communication

Data Processing and Accounting

e The collected energy consumption data is integrated with SLURM’s accounting system.

e This integration allows associating energy consumption with specific jobs or users, enabling
insights into resource usage and energy costs.

e Tools like ‘sacct‘ and ‘sreport‘ can be used to report on energy consumption alongside tradi-
tional job metrics like CPU time or memory usage. We have used sacct extensively in this
thesis to retrieve the energy reported by SLURM as shown in the Figure 4.8

Benefits

e Improved Resource Management: By monitoring energy consumption, administrators
can identify resource allocation strategies that optimize performance while minimizing energy
usage.

e Cost Awareness: Energy usage reports can help users and administrators understand the
energy footprint of their jobs and promote energy-efficient practices.

e Power Capping: SLURM offers features for setting power caps on individual nodes or the
entire cluster, allowing for control over energy expenditure.

Limitations[43]

e Hardware Dependence: Functionality relies on compatible hardware with features like
IPMI or RAPL for in-band data acquisition.
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[naraya0001@dmi-cl-login ~]$ sacct --format=JobID,JobName,ConsumedEnergyRaw
JobName ConsumedEnergyRaw

2153584 3246728
2153584. 3291166
2153584. 23600
2153584. 13720
2153584. 12812
2153584. 13644
2153584. 99194
2153584. 59612
2153584. 53008
2153584. 52192
2153584. 416020
2153584. 253234
2153584. 223520
2153584. 225152

A
A.x
A.x
A.x
.B.x
.B.x
.B.x
.B.x
.C.x
.C.x
.C.x
.C.x

Figure 4.8: sacct command to retrieve the energy consumed in Joules with JobID and JobName

e Plugin Configuration: Setting up plugins might require configuration specific to the hard-
ware and monitoring infrastructure.

e Data Accuracy: The accuracy of energy data can vary depending on the chosen plugin and
underlying hardware capabilities.

Overall, SLURM’s [43] [2] energy monitoring capabilities provide valuable insights into resource
utilization and energy consumption in HPC environments. This information can be used to optimize
job scheduling, promote energy-efficient practices, and ultimately reduce operational costs.

4.3.4 Prometheus

Prometheus[34] is a monitoring and alerting toolkit that is open-source, and it is designed for
reliability and scalability. It is widely used in cloud-native environments and provides a flexible
platform for monitoring various components of distributed systems.

Key features of Prometheus include[34]:

e Multi-dimensional data model[34]: Prometheus stores time-series data with key-value
pairs, allowing flexible querying and aggregation based on various dimensions such as instance,
job, and labels.

e PromQL[34]: Prometheus Query Language (PromQL) allows users to query and manipulate
time-series data easily. It supports functions for aggregation, filtering, and mathematical
operations.
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e Scalability[34]: Prometheus is horizontally scalable, allowing it to handle large volumes
of metrics from thousands of nodes. It uses a pull-based model, where Prometheus scrapes
metrics from instrumented targets at regular intervals.

e Service discovery[34]: Prometheus supports various service discovery mechanisms, includ-
ing static configuration, DNS-based discovery, and integrations with cloud providers such as
Kubernetes.

e Alerting[34]: Prometheus provides built-in support for alerting based on defined alerting
rules. It can send alerts via email, PagerDuty, or other alerting systems.

e Integration[34]: Prometheus can be integrated with other monitoring systems and data
visualization tools. It has a rich ecosystem of exporters for collecting metrics from different
services and applications.

Prometheus is commonly used for monitoring infrastructure, applications, and services in cloud-

native environments. It helps operators and developers gain insights into system performance,
diagnose issues, and ensure reliability and scalability of distributed systems. In the Figure 4.9, we
can see the a basic Prometheus architecture.

Prometheus Components[33]

1.

Rules: Rules in Prometheus are configurations that define conditions or expressions based
on Prometheus Query Language (PromQL). These rules are evaluated periodically against the
collected time-series data. If the condition defined in a rule is met, Prometheus generates an
alert. Rules allow users to define complex monitoring scenarios and trigger alerts based on
specific thresholds or conditions. Rules can be configured directly in the Prometheus server
configuration file.

. Alertmanager: Alertmanager is a separate component that manages alerts generated by

Prometheus. It receives alerts from Prometheus server and then handles them based on config-
ured rules and notification settings. Alertmanager supports various features such as deduplica-
tion, grouping, silencing, and routing of alerts to different receivers like email, PagerDuty, Slack,
or custom webhooks. It enhances the flexibility and manageability of alerting in Prometheus.

. Scrape Discovery: Scrape discovery is a mechanism in Prometheus for dynamically discovering

and monitoring targets without manual configuration. Prometheus supports several service
discovery mechanisms, including Kubernetes service discovery, DNS-based service discovery, EC2
auto-discovery, and more. These mechanisms allow Prometheus to automatically discover and
monitor new instances of services, containers, or applications as they are added or removed from
the environment. Scrape discovery simplifies the monitoring setup in dynamic and ephemeral
environments like container orchestration platforms.

Services: In the context of Prometheus, services refer to the targets or endpoints that Prometheus
monitors and collects metrics from. These services can be applications, containers, databases,
servers, or any other system or component that exposes metrics in a format Prometheus un-
derstands. Prometheus uses various service discovery mechanisms to dynamically discover and
monitor these services. Exporters are often used to expose metrics from services that do not
natively support Prometheus metrics format.
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Figure 4.9: An illustration of the Prometheus architecture

5. Storage: Storage in Prometheus refers to the persistence layer where collected time-series data is
stored. Prometheus uses a local on-disk storage engine by default, storing data in a custom time-
series database format optimized for fast querying and retrieval. The storage engine efficiently
compresses and indexes the time-series data to optimize disk usage and query performance.
Prometheus also supports remote storage integrations with systems like Thanos or long-term
storage solutions like Amazon S3 or Google Cloud Storage for storing historical data beyond the
retention period of the local storage.

Prometheus is deployed on sciCORE for monitoring the nodes in the cluster and the it is
presented as https://metrics.unibas.ch which is only available at the sciCORE building and is
not public. The Figure 4.10 represents the power consumption when the application bt-B was ran
for 10 iterations. This graphs is represented when the query is used as shown in the Listing 4.1.
We can make a command-line request using curl to query a Prometheus server for monitoring data
as shown in the Listing 4.2.
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[

c 1709199580.732,

Listing 4.3: Json Response from Prometheus server

| telegraf_ipmi_sensor{host= ,unit= }

Listing 4.1: Query to extract power consumption in prometheus for node sgi51

| curl -sG --data
-urlencode sgibl.cluster.bc2.ch\
watts\

Listing 4.2: Curl command to query Prometheus

4.3.5 Ganglia

“Ganglia”[31] is a monitoring system designed to be scalable and distributed. It is mainly used to
track high-performance computing systems, clusters, and grids. It provides real-time monitoring,
trending, and visualization of system and application performance metrics. The architecture of
Ganglia [7] is designed to be modular, flexible, and highly scalable. Below is a description of its
essential components and their roles:
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Q  telegraf_ipmi_sensor{host="sgi51.cluster.bc2.ch" , unit= "watts"} (2]

Table  Graph
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11:40

W telegraf_ipmi_sensor(_name="sys_power", host="sgi5 .cluster.bc2.ch’, instance="localnost:9108", jeb="graphite’, unit="watts’)

Figure 4.10: Power consumption of bt-B on node sgi51 in Prometheus at sciCORE

. Ganglia Monitoring Daemon (gmond) [30]:

e The gmond daemon runs on each node (or host) in the monitored cluster.

e It collects local system metrics, such as CPU utilization, memory usage, network activity, disk
I/0, and custom application metrics.

e gmond aggregates the collected metrics and periodically sends them to one or more Ganglia
metadata collection points (gmetad).
. Ganglia Metadata Daemon (gmetad)[30]:
e The gmetad daemon collects and stores metrics received from multiple gmond daemons in a
centralized location.

e It organizes the metrics into a hierarchical tree-like structure based on the cluster’s logical
and physical layout.

e gmetad can store the aggregated metrics in a Round-Robin Database (RRD) format for
historical trend analysis.

e It provides a web-based interface for querying and visualizing the collected metrics, known as
the Ganglia Web Frontend.
. Ganglia Web Frontend[30]:

e It is a web-based graphical user interface for accessing monitoring data.

e Users can view real-time and historical performance metrics for hosts, clusters, or grid re-
sources.

e Users can customize dashboards, create graphs, set alerts, and analyze trends using the inter-
active interface.
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e The front end retrieves monitoring data from gmetad and presents it in a user-friendly format
using HTML, JavaScript, and CSS.

4. Hierarchical Structure[30]:

e Ganglia organizes monitored entities (hosts, clusters, grids) into a hierarchical tree structure.

e Each node in the hierarchy represents a cluster or a group of hosts, with child nodes repre-
senting individual hosts or sub-clusters.

e This hierarchical structure allows users to navigate and manage monitoring data effectively,
particularly in large-scale distributed environments.

5. Scalability and Fault Tolerance[30]:

e Ganglia’s architecture is designed for scalability and fault tolerance.
e It can monitor thousands of hosts and metrics in distributed computing environments.

e Multiple gmond daemons can send metrics to multiple gmetad instances, providing redun-
dancy and load balancing.

e Ganglia’s decentralized architecture minimizes single points of failure and ensures robustness
in large-scale deployments.

Overall, Ganglia’s architecture[30] provides a comprehensive solution for monitoring and man-
aging the performance of complex distributed computing environments. It offers real-time insights
into system and application behavior for administrators and users alike. In the Figure 4.12 we can
see the power consumption of application bt-A with increasing number of threads in OpenMP.

{ Web Frontend }

Gmetad

Figure 4.11: Ganglia Architecture Diagram
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Figure 4.12: Power consumption of bt-A with increasing number of threads over Ganglia

4.4 Green Algorithms Code for System Wide Carbon Foot-
print Generation

Green Algorithms Code [27] has been used in this thesis to generate the carbon footprint of the
user on the High Performance Computing cluster. The code provides a cluster.yaml file that has
to be updated with the hardware information of the nodes on the cluster as shown in the Figure
4.13 where you need to update the CPU and GPU model information for the specific partitions
and their TDP (Thermal Design Power). The script works for SLURM as a workload manager and
script could be modified for other workload managers.

The carbon footprint of an algorithm[27] is determined by estimating the energy consumption
of the algorithm and multiplying it by the carbon intensity associated with producing that energy
in a particular location:

To calculate the carbon footprint, the following formula is utilized: To calculate the carbon
footprint, the following formula is utilized:

Carbon footprint = Energy consumption x Carbon intensity (4.1)

The energy consumption is calculated as follows:

Energy consumption = Runtime x

(Power draw for cores x Usage + Power draw for memory) x PUE x PSF  (4.2)

Here, the power draw for the computing cores depends on the CPU model and the number
of cores, while the power draw for memory depends solely on the memory size. The usage factor
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cluster_name: "hpc-cluster"
granularity_memory_request:
partitions:
xeon:
type: CPU
model: "Intel(R) Xeon(R) E5-2640 @ 2.40 GHz"

TDP:

amd:
type: GPU

model: "AMD EPYC 7742 64-Core Processor"
TDP:

gpu:
type: CPU
model: "Intel® Xeon® Gold 6258R Processor @ 2.70 GHz"

TDP:

Figure 4.13: Sample information to be updated on cluster YAML

(defaulted to 1 for full usage) adjusts for the actual core usage. PUE (Power Usage Effectiveness)
represents the additional energy required to operate the data center (e.g., cooling, lighting). PSF
(Pragmatic Scaling Factor) is applied for multiple identical runs, such as testing or optimization.

The carbon intensity is influenced by the location and the methods used to generate electricity.
It is important to note that the ”energy consumption” mentioned above is location-independent.
One of the sample results for the same is shown in the the Figure 4.14
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...This is equivalent to:
- 14 tree-months
- driving 78 km
- 0.27 flights between Paris and London

...24.4% of your jobs failed, which represents a waste of 1 kgCO2e (1.32 tree-months).
...0n average, you request at least 9.9 times the memory you need. By only requesting the memory

you needed, you could have saved 779 gC02e (0.85 tree-months).

Energy used: 29.08 kWh
- CPUs: 16.31 kWh (56%)
- GPUs: 0.00 kwh (0%)
- Memory: 1.10 kWh (4%)
- Data centre overheads: 11.67 kWh (40%)
Carbon intensity used for the calculations: 467 gC02e/kWh

Summary of your usage:
- First/last job recorded on that period: 2024-01-03/2024-03-23
- Number of jobs: 897 (678 completed)
- Core hours used/charged: 644.3 (CPU), 0.0 (GPU), 644.3 (total).
- Total usage time (i.e. when cores were performing computations):
- CPU: 7 days, 13:14:52.269000
- GPU: 0:00:00
Total wallclock time: 1 day, 19:46:50
Total memory requested: 63,364 GB

Figure 4.14: Sample carbon footprint generated by Green Algorithms code
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4.5 Experimental Setup

Factor Values Properties
Applications BT Block Tri-diagonal Solver
SP Scalar Penta-Diagonal Solver
LU Lower Upper Gauss-Siedel Solver
Problem Size A B, C Standard test problems; 4X size in-
crease going from one class to the
next
Paradigms OpenMP (T) Increasing the number of threads
1, 2, 4, 8, 16, 20
MPI (P): Increasing number of processes
1, 4,9, 16, 25 and 36 with 1 node and 2 nodes
Hybrid (P:T) The ratio of processes to threads
1:16, 2:8, 8:2. 16:1
System miniHPC partition: xeon
sciCORE partitions: rtx-8000 and al00
Node Level in Watts miniHPC: Ganglia
sciCORE: Prometheus
Energy Job Level in Joules miniHPC: SLURM
Consumption sciCORE: SLURM is disabled
Metrics Application Level Joules miniHPC: PMT and Likwid
sciCORE: PMT and Likwid
System Wide in kWh miniHPC: Green Algorithm
sciCORE: Green Algorithms
CPU Frequency low, medium, high, highm1 Different CPU frequency levels
Repetition 10 Repeated Experiments for mean

and median

Table 4.2: Experimental setup for factorial experiments.

Applications

e Three applications are considered: BT (Block Tri-diagonal Solver), SP (Scalar Penta-Diagonal
Solver), and LU (Lower Upper Gauss-Siedel Solver). These represent different computational
workloads with varying characteristics.

Problem Size:
e Three standard test problems denoted as A, B, and C are used.

e Each problem size is increased by a factor of 4X going from one class to the next, providing
a range of problem complexities to assess performance and energy consumption.
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Paradigms:

e OpenMP (T): Shared-memory parallelism is explored with varying numbers of threads (1,
2, 4, 8, 16, 20).

e MPI (P): Distributed-memory parallelism is examined with varying numbers of processes
(1, 4, 9, 16, 25, 36) on one node and two nodes.

e Hybrid (P:T): Combination of OpenMP and MPI paradigms with different ratios of pro-
cesses to threads (1:16, 2:8, 8:2, 16:1), providing insights into mixed parallelism strategies.

System:
e Two HPC Systems are utilized:

— miniHPC: Utilizes Xeon processors.
— sciCORE: Utilizes RTX-8000 and A100 processors.

e The presence of different hardware configurations may influence performance and energy
consumption.

Energy Consumption Metrics:
e Energy consumption is measured at multiple levels:

— Node Level: Wattage consumption at the node level with Ganglia and Prometheus.
— Job Level: Total energy consumed per job in Joules via SLURM.

— Application Level: Energy consumption specific to each application in Joules with PMT
and LIKWID.

— System Wide: Total energy consumption in kWh, providing an overview of system-wide
energy usage.

CPU Frequency:

e Various CPU frequency levels are investigated, including low, medium, high, and highml, to
understand how CPU performance states affect energy consumption and performance.

Repetition:

e Each experiment is repeated 10 times to ensure statistical significance and calculate mean
and median values for performance and energy consumption metrics.

Total Experiments:

e The total number of experiments is calculated by multiplying the number of values for each
factor with the number of repetitions, resulting in 2700 experiments.

This setup is designed to comprehensively evaluate the performance and energy consumption char-
acteristics of different parallel computing paradigms under varying conditions, providing insights
into their suitability for different applications and problem sizes on diverse HPC systems.
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Chapter 5

Results

In this section, the results of the study on the energy consumption of NAS benchmarks using three
programming paradigms: OpenMP, MPI, and Hybrid (a combination of OpenMP and MPI) are
presented. Data has been collected at the node level, job level, and application level. Given the
extensive nature of the study, which involved close to 2700 experiments, only relevant data will be
included in the results section. Repetitive data will be available in the appendix of this thesis.

5.1 OpenMP Experiments
5.1.1 miniHPC and sciCORE

For the OpenMP programming paradigm on the miniHPC system, experiments were conducted by
varying the number of threads from 1 to 20. The energy consumption trends for each application
and program size combination are depicted in Figure 5.1 for the miniHPC cluster and the Figure
5.2 for sciCORE Cluster. The graphs in both the figures illustrates the comparison of mean energy
consumption versus the number of threads for the NAS benchmark BT (Block Tri-diagonal
Solver) across three different job scheduling systems: PMT, SLURM, and Ganglia and Prometheus
for sciCORE. Each line represents the mean/median energy consumption as the number of threads
varies from 1 to 20.

e The blue line represents the mean/median energy consumption for PMT, showing a noticeable
decrease as the number of threads increases.

e The orange line depicts the mean/median energy consumption for SLURM, which follows a
similar decreasing trend with increasing thread count, albeit at a different rate compared to
PMT. This is disabled on sciCORE so we do not have the SLURM energy data for sciCORE

e The green line represents the mean/median energy consumption for Ganglia in miniHPC and
Prometheus in sciCORE. It shows a decrease in energy consumption with increasing thread
count, although with slightly different fluctuations compared to PMT and SLURM.

Additionally, annotations on the Ganglia line indicate the corresponding mean time values, pro-
viding insights into the relationship between computational efficiency and energy consumption. It
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is observed that as the mean/median time decreases, there is a corresponding decrease in mean/-
median energy consumption, indicating improved computational efficiency.

5.2 MPI Experiments
5.2.1 miniHPC

The graphs in the Figure 5.3 compares the mean energy consumption versus the number of processes
for the NAS benchmark LU (Lower-Upper Gauss-Seidel solver) across three different job
scheduling systems: PMT, SLURM, and Ganglia.

e The blue line represents the mean energy consumption for PMT, which exhibits a decreasing
trend as the number of processes increases.

e The orange line depicts the mean energy consumption for SLURM, showing a similar decreas-
ing trend with increasing process count, albeit at a different rate compared to PMT.

e The green line represents the mean energy consumption for Ganglia, showcasing a decrease in
energy consumption with increasing process count, although with slightly different fluctuations
compared to PMT and SLURM.

Annotations on the Ganglia line indicate the corresponding mean time values, providing insights
into the relationship between computational efficiency and energy consumption. It is observed
that as the mean time decreases, there is a corresponding decrease in mean energy consumption,
indicating improved computational efficiency.

5.2.2 sciCORE

Similarly, experiments on the sciCORE system revealed exactly the same energy consumption trends
for OpenMP with varying thread counts as show in the Figure 5.6.

e The blue line represents the mean energy consumption for PMT, which exhibits a decreasing
trend as the number of processes increases.

e Since SLURM is disabled on sciCORE we do not have SLURM energy data here.

e The green line represents the mean energy consumption for Prometheus, showcasing a decrease
in energy consumption with increasing process count.

5.2.3 MPI experiments with 2 nodes

The graph the Figure 5.7 illustrates the relationship between the number of processes (1, 4, 9,
16, 25 and 36 ) and energy consumption, as well as runtime, for three different scenarios (SP-A,
SP-B, and SP-C) in an MPI (Message Passing Interface) setting across two nodes cl-node002 and
cl-node003.

For each scenario:
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e The blue line represents the energy consumption measured by PMT (Performance Monitoring
Tool).

e The red line represents the energy consumption measured by SLURM, a job scheduling system.

e The green line represents the total node energy consumption, calculated by summing the
energy consumption of individual nodes (node_002 and node_003).

Additionally, each scenario includes runtime values plotted with a secondary y-axis (black line).
Observations:

e In SP-A, as the number of processes increases, there is a significant decrease in energy con-
sumption, with a notable difference between PMT and SLURM measurements. Total node
energy shows a similar trend, decreasing with increasing processes.

e In SP-B, a similar trend is observed, with a significant decrease in energy consumption as
processes increase, again with differences between PMT and SLURM measurements. Total
node energy follows a comparable pattern.

e In SP-C, energy consumption tends to decrease as the number of processes increases, with
variations between PMT and SLURM measurements. Total node energy reflects this trend.

Overall, the graphs provide insights into the energy consumption patterns across different pro-
cess configurations in MPI settings, aiding in understanding resource utilization and optimization
strategies for parallel computing applications.

5.3 Hybrid Experiments

The graphs in the Figure 5.8 illustrate the performance metrics (time and energy consumption) for
three different LU benchmarks (LU-A, LU-B, and LU-C) across various process-to-thread configu-
rations. Each subplot represents one benchmark, with one subplot for time and another for energy
consumption.

In each subplot:

e The x-axis represents different process-to-thread configurations, where the format ”x:y” de-
notes x processes and y threads.

e The y-axis represents the corresponding performance metric, either time (in seconds) or energy
consumption (in Joules).

For each benchmark:

e Different process-to-thread configurations are represented by colored bars, with each color
corresponding to a specific configuration.

e The height of each bar indicates the value of the performance metric (time or energy con-
sumption) for the corresponding configuration.

Observations:

47



LU-A - Time

81
6 B
v
£
}_ 4 -
21
0 T T
1:4 2:8 44 8:2 41
Process:Threads
LU-B - Time
35 1.4
2 2:8
. 44
25 1 Il 82
. 4
aEJ 204 41
F
15 A
10 1
5 o
0 T T
1:4 2:8 44 8:2 41
Process:Threads
LU-C - Time
150 1 14
2:8
1251 o
100 1 |_I:}Y]
[} 4]
£
E 754
50
25 1
0 T T
1:4 2:8 44 8:2 41
Process:Threads

Energy

48

LU-A - Energy
800 1:4
2:8
. 44
600 - N 32
> 3
g 4]
& 400
200 A
0 T T
1:4 2:8 44 8:2 41
Process:Threads
LU-B - Energy
3500 14
3000 1 28
44
25001 . 82
§ 2000 4 -4
g
w 1500 A
1000 1
500 -
0 T T
1:4 2:8 44 8:2 41
Process:Threads
LU-C - Energy
14000 1 L4
2:8
12000 1 44
4]
8000 A
6000 -
4000
2000 A
0 T T
1:4 2:8 44 8:2 41
Process:Threads

Figure 5.8: Hybrid (OpenMP+MPI) experiments for LU application




e For LU-A and LU-B benchmarks, configurations with higher thread counts generally exhibit
lower time and energy consumption compared to configurations with fewer threads. This
trend suggests improved parallel performance with increased thread utilization.

e In contrast, for the LU-C benchmark, the relationship between thread count and performance
metrics is less consistent. While some configurations with higher thread counts show lower
performance metrics, this trend is not as pronounced as in LU-A and LU-B. This variation may
be due to differences in the computational workload and resource utilization characteristics
of the LU-C benchmark.

Overall, the graph provides insights into the performance characteristics of LU benchmarks
under different process-to-thread configurations, aiding in the optimization of resource allocation
and workload distribution strategies for parallel computing tasks.

5.4 CPU Frequency vs Energy

This section describes the affect of changing frequency on power consumption at the frequencies,
low, medium, highm1 and high. The graph in the Figure 5.9 illustrates the relationship between
different frequencies and energy usage for various thread configurations (1, 4, 8, 12, 16, and 20
threads) in the bt-C benchmark. The trends remain the same for SP and LU application and the
graphs are provided in the appendix.

Key Features:

e Bar Plot: Each group of bars represents a specific thread configuration, with different colors
indicating different frequencies.

e X-axis: Indicates the frequencies (low, medium, highm1, high).
e Y-axis: Represents the energy usage (in Joules).
e Legend: Provides a key to interpret the colors, indicating the number of threads.

e Annotations: Each bar is annotated with the corresponding runtime (in seconds) to provide
insights into the trade-off between energy usage and runtime.

The graph facilitates the analysis of energy consumption patterns across various frequencies and
thread configurations, aiding in optimizing performance and resource utilization strategies for the
bt-C benchmark.

5.5 Integration of all Energy components: The Utility Tool

The primary objective of this thesis revolves around the comprehensive integration of energy con-
sumption data across different levels: application, job, and node. Leveraging the robust capabilities
of LIKWID, a powerful performance monitoring tool, we aim to delve into the intricacies of energy
usage at the application level.

The submitted SLURM job script defines specific parameters for job execution and initiates the
execution of the srun_energy script on the allocated compute nodes. Within the srun_energy
script, the Likwid module is loaded to facilitate the measurement of energy consumption and
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Frequency vs. Energy Usage for Different Thread Configurations for bt-C
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Figure 5.9: Frequency vs. PMT energy Usage for different thread configurations for bt-C

various performance metrics using Likwid’s versatile tools such as likwid-powermeter and likwid-
perfctr. Additionally, the script captures real-time power consumption data from the SLURM
environment.

The resulting data is meticulously stored in individual output files corresponding to each job.
Notably, the extraction of current Watts from the SLURM scontrol information provides insights
into node-level energy consumption. It’s worth mentioning that at sciCORE, we used Prometheus
for extracting and analyzing node-level energy consumption data, thus enriching our understanding
of energy dynamics at different levels of computation. The provided Bash script offers a systematic
approach to extract energy-related data from various sources, contributing to a comprehensive
understanding of energy consumption across different computational levels: application, job, and
node.

e File Number: The script extracts a unique identifier for each dataset from the filename,
facilitating data organization and identification.

e Application-level Energy: It captures energy consumption at the application level, pro-
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[naraya0001@dmi-cl-login FinalScript]$ bash reporting

File number: 2153824, app-level-Energy: 2667.896000, job-level-joules: 10075|, Node-level-Joules: 12000.820288
File number: 2153825, app-level-Energy: 2825.443170, job-level-joules: 9855|, Node-level-Joules: 13447.147648
File number: 2153826, app-level-Energy: 2117.396635, job-level-joules: 11215|, Node-level-Joules: 12056.695252

File number: 2153827, app-level-Energy: 1945.715023, job-level-joules: 4566|, Node-level-Joules: 9864.316964
File number: 2153828, app-level-Energy: 2588.648620, job-level-joules: 7522|, Node-level-Joules: 9954.012963

Figure 5.10: Utility Tool Showing Energy information at all levels

viding insights into resource utilization patterns and efficiency.

e Socket-level Energy: The script aggregates energy consumption at the socket level, offering
hardware-specific energy usage metrics.

e Node-level Power Consumption: Real-time power consumption data is obtained, aiding
in the assessment of energy utilization at the node level.

e Job-level Energy Accounting: Consumed energy data from SLURM job accounting is
retrieved, providing a broader context for energy usage within the job environment.

This Bash script serves as a valuable tool for researchers and practitioners in analyzing and opti-
mizing energy efficiency in high-performance computing environments, enabling informed decision-
making regarding resource allocation and application performance. The Figure 5.10 shows the
extracted energy at different level for the jobs run for the user.
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Chapter 6

Discussion

6.1 OpenMP

When increasing the number of threads from 1 to 4 to 8 to 12 to 16 to 20, and observing a decrease
in energy consumption, several conclusions can be drawn:

1. Efficiency Improvement: The decrease in energy consumption suggests that utilizing
more threads leads to more efficient utilization of computational resources. This implies that
parallelizing the computation among multiple threads allows for better resource utilization and
potentially reduces overall energy consumption.

2. Power Consumption: As the number of threads increases and the computation is com-
pleted faster, the instantaneous power consumption during computation may increase due to higher
computational intensity. However, since the overall energy consumption is decreasing, it indicates
that the reduction in runtime outweighs the increase in power consumption, resulting in a net
decrease in energy usage.

3. Scalability: The observed decrease in energy consumption with an increasing number of
threads indicates good scalability of the application with respect to energy efficiency. This suggests
that the application can effectively leverage additional computational resources provided by multi-
threading without significantly increasing energy consumption.

Overall, the trend of decreasing energy consumption with an increasing number of threads
implies that parallelization can contribute to energy-efficient execution of computational tasks,
potentially leading to more sustainable and cost-effective computing solutions. Additionally, un-
derstanding the relationship between power consumption, computational intensity, and energy effi-
ciency is essential for optimizing both performance and energy consumption in parallel computing
applications.

6.2 MPI

When increasing the number of processes from 1 to 4 to 9 to 16 in MPI, and observing a decrease
in energy consumption, several conclusions can be drawn:
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e Efficiency Improvement: The decrease in energy consumption suggests that distribut-
ing the workload across more processes leads to more efficient utilization of computational
resources. This indicates that parallelizing the computation allows for better resource utiliza-
tion and potentially reduces the overall energy consumption.

e Communication Overhead: With more processes, there may be less communication over-
head compared to fewer processes, leading to reduced energy consumption. This could be due
to more efficient data exchange and synchronization mechanisms implemented in MPI as the
number of processes increases.

e Scalability: The observed decrease in energy consumption as the number of processes in-
creases indicates good scalability of the application with respect to energy efficiency. This
suggests that the application can effectively leverage additional computational resources with-
out significantly increasing energy consumption.

Overall, the trend of decreasing energy consumption with an increasing number of processes in
MPI implies that parallelization can contribute to energy-efficient execution of computational tasks,
potentially leading to more sustainable and cost-effective computing solutions.

e Power and Energy Relationship: Since power is the rate of energy consumption, when
energy consumption decreases but the computation is completed in a shorter time (due to
parallelization), the power consumption per unit time, or power, may increase. This is because
the same amount of energy is consumed over a shorter period, leading to a higher instantaneous
power consumption during computation.

e Computational Intensity: As the number of processes increases, the computational in-
tensity (the amount of computation performed per unit time) also increases. This higher
computational intensity results in higher power consumption during the computation phase,
even though the overall energy consumption decreases.

e Performance Efficiency: The increase in power consumption with higher computational
intensity can be seen as a trade-off for improved performance and reduced runtime. While
the instantaneous power consumption may be higher, the overall energy consumption is lower
due to the shorter runtime, resulting in better performance efficiency.

6.3 Hybrid

The decreased energy consumption in the combinations where the ratio of processes to threads is
2:8, 4:4 and 8:2 can be attributed to several factors:

1. Reduced Context Switching: With more threads per process (8:2), the workload can be
distributed among the threads, minimizing the need for the operating system to constantly
switch context between different processes. This context switching process itself consumes
energy.

2. Improved Cache Utilization: Threads within a process share the same memory space,
including the CPU cache. With more threads (8:2), there is a higher chance of relevant data
residing in the cache, reducing the need to fetch data from slower main memory, which is
more energy-intensive.
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3. Efficient Thread Management: The operating system can schedule threads within a pro-
cess more efficiently than managing separate processes. This reduces idle time for processing
resources, leading to lower overall energy usage.

However, it is important to consider the specific workload:

o If the tasks are highly independent and do not share data, a higher number of processes (2:8)
might be beneficial. This allows for better parallelism and utilization of multiple cores.

o If the tasks are tightly coupled and share data frequently, a higher number of threads (8:2)
within a few processes might be more energy-efficient due to the factors mentioned above.

In conclusion: The optimal ratio for energy efficiency depends on the specific workload. In
general, with workloads that benefit from thread-level parallelism and data sharing, a higher ratio
of threads to processes (like 8:2) can lead to decreased energy consumption due to reduced context
switching, improved cache utilization, and efficient thread management.

6.4 Affect of different CPU frequencies

The graphs 5.9 provides valuable insights into the energy consumption behavior of the system under
different thread configurations and frequencies over miniHPC. Following points could explain the
trends:

1. Energy Efficiency with Thread Configurations: The graph illustrates how the energy
consumption at the node level changes with varying thread configurations. Generally, as the
number of threads increases, the energy consumption decreases. This aspect we noticed in
the OpenMP section

2. Effect of Frequency on Energy Consumption: The graph also showcases the impact
of different frequencies on energy consumption. Higher frequencies typically result in lower
energy consumption, indicating that tasks can be completed more quickly at higher clock
speeds, thus reducing the overall energy usage.

3. Diminishing Returns with Thread Counts: While increasing the number of threads gen-
erally leads to reduced energy consumption, the graph suggests that there may be diminishing
returns beyond a certain thread count. In other words, the energy efficiency gains become
less significant as more threads are added. This phenomenon could be due to factors such as
resource contention or overhead associated with managing a larger number of threads.

4. Trade-off Between Energy Efficiency and Runtime: It is important to note that while
optimizing for energy efficiency, there’s often a trade-off with computational speed as runtimes
are better with increase in number of threads.

6.5 Corner Cases: NUMA effect

In high-performance computing (HPC), NUMA [23] zones refer to Non-Uniform Memory Access
zones. NUMA zones arise in systems with multiple processors or cores, where each processor or
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core has its own memory bank. However, NUMA zones specifically refer to Non-Uniform Memory
Access zones within a single node or NUMA system. In a NUMA system, memory is physically
distributed across multiple memory banks, and each processor or core has local access to a portion
of the memory. Accessing memory that is local to a processor or core is faster than accessing remote
memory, which is farther away in terms of physical distance.

NUMA[23] zones represent the different regions of memory within a single node, with varying
access latencies depending on whether the memory is local or remote to a particular processor or
core. Managing NuMA zones effectively is important for optimizing memory access performance
in NUMA systems, as minimizing the impact of non-uniform memory access latencies can improve
overall system performance and efficiency. Strategies such as memory affinity, thread placement,
and data locality optimization are commonly used to optimize memory access patterns and reduce
the effects of NUMA zones in HPC applications.

The peaks in energy consumption as shown in the 6.1 at thread counts of 12 and 16 could indeed
be attributed to NUMA effects.

When the number of threads is increased, it can lead to increased memory access patterns,
which may not be uniformly distributed across all memory banks. In NUMA architectures, different
memory banks may have different access latencies, resulting in non-uniform memory access patterns.

As the number of threads increases, the memory access patterns may change, causing some
threads to access memory in different NUMA zones with higher latency. This can lead to increased
contention for memory resources and higher energy consumption, especially at thread counts where
the memory access patterns result in increased NUMA effects, such as at 12 and 16 threads.

To mitigate the impact of NUMA effects on energy consumption, optimizing memory access
patterns, thread affinity, and workload distribution can be beneficial. Additionally, profiling and
analyzing memory access patterns can help identify and address potential bottlenecks associated
with NUMA effects in HPC applications. NUMA affect was only noted significantly for LU-A and
SP-A applications over miniHPC. The nodes in miniHPC have lesser cores (20) than in sciCORE
(128) would be one of the reasons, why the NUMA affect is more prevalent in the former.

6.6 My carbon footprint

As per the figure 6.2, from 1.Aug 2023 to 2.April 2024, my utilization of the miniHPC cluster has
resulted in a carbon footprint of 15 kgCO2 (kilogram of carbon dioxide equivalent per kilogram),
equivalent to 16 tree-months or driving 87 km. Despite achieving completion for 742 out of 980 jobs,
24.3% job failure rate indicates inefficiency, leading to the emission of 1 kgCO2e. Furthermore, a
significant overestimation of memory needs approximately 10 times higher than necessary, suggests
a potential reduction in carbon emissions by requesting only required resources. Energy usage is
dominated by CPU utilization (55%), followed by data center overheads (40%), while GPUs remain
unused. With a carbon intensity of 467 gCO2e/kWh, the total energy consumption stands at 32.46
kWh. This period saw 8 days and 7 hours of CPU usage out of 2 days and 6 hours of wall-clock time,
with a total memory request of 69,874 GB. This comprehensive analysis underscores opportunities
for enhancing efficiency and reducing environmental impact in future HPC cluster usage.
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Median Energy in Joules

lu-A: Median Energy vs Thread Count (PMT vs SLURM vs Ganglia)
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Figure 6.1: NUMA affect on miniHPC
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...This is equivalent to:
- 16 tree-months
- driving 87 km
- 0.30 flights between Paris and London

...24.3% of your jobs failed, which represents a waste of 1 kgC02e (1.57 tree-months).
...0n average, you request at least 10.0 times the memory you need. By only requesting the memory

needed, you could have saved 1 kgC02e (1.15 tree-months).

Energy used: 32.46 kWh
- CPUs: 17.96 kWh (55%)
- GPUs: 0.00 kwh (0%)
- Memory: 1.48 kWh (5%)
- Data centre overheads: 13.02 kWh (40%)
Carbon intensity used for the calculations: 467 gC02e/kWh

Summary of your usage:
- First/last job recorded on that period: 2023-10-15/2024-04-01
- Number of jobs: 980 (742 completed)
- Core hours used/charged: 818.9 (CPU), 0.0 (GPU), 818.9 (total).
- Total usage time (i.e. when cores were performing computations):
- CPU: 8 days, 7:31:30.338000
- GPU: 0:00:00
Total wallclock time: 2 days, 6:09:18
Total memory requested: 69,874 GB

Figure 6.2: My carbon footprint for this thesis on miniHPC Cluster
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Chapter 7

Conclusion

7.1 Contributions from the work

In this thesis, we have established an infrastructure for integrated energy monitoring on High-
Performance Computing (HPC) systems. Using various software solutions such as PMT, LIKWID,
Ganglia, and others, a bash wrapper script has been written to report energy consumption in an
integrated and comparative manner.

Our setup underwent rigorous testing using multiple applications from the NAS benchmark
suite, encompassing different programming paradigms and CPU frequencies across diverse HPC
systems, including sciCORE and miniHPC. A comparative analysis employing plots, graphs, and
tables provided valuable insights into energy consumption patterns.

Throughout this endeavor, several vital lessons were learned. We encountered challenges such
as SLURM data unavailability inside jobs and the requirement for extensive permissions for specific
software like LIKWID. Additionally, inconsistencies were observed in reporting, notably with PMT
consistently reporting lower values.

Despite these challenges, our data analysis revealed significant findings, we collected the data
across node, job, and application levels. Notably, we observed that increasing the number of
ranks/threads led to reduced energy consumption, with some NUMA effects as corner cases and
higher CPU frequencies were associated with lower energy usage.

In conclusion, our integrated energy monitoring solution offers users a comprehensive tool-set
for obtaining detailed insights into energy consumption across various levels (node, job, application)
in HPC environments. By leveraging this infrastructure, users can identify optimal rank/thread
combinations, pinpoint energy-wasting applications, and ultimately work towards reducing their
carbon footprint by optimizing their experiments. This framework represents a significant step
towards promoting energy efficiency and sustainability in HPC research and practice.

7.2 Future Work

While the integrated energy monitoring infrastructure presented in this thesis represents a signifi-
cant advancement in understanding energy consumption patterns in HPC systems, several avenues
for future research and improvement remain to be explored. In this section, potential directions for
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future work have been outlined based on the limitations and opportunities identified during this
research.

7.2.1 Job Co-location Strategies

Job co-location is the simultaneous execution of multiple compute tasks on the same hardware
resources. It presents an opportunity to improve resource utilization and energy efficiency in HPC
clusters. Future work could investigate novel job scheduling algorithms and co-location strategies
that intelligently group compatible tasks based on their resource requirements, communication pat-
terns, and affinity to minimize contention and resource fragmentation. By strategically co-locating
jobs, we can reduce idle resource time and mitigate energy wastage associated with underutilized
hardware, thereby enhancing overall system efficiency. Develop algorithms or heuristics to deter-
mine which jobs should be co-located on the same node based on various factors such as resource
requirements, communication patterns, and workload characteristics. This decision-making process
could consider factors like job runtime, resource utilization, and potential energy savings. The
following combination of factors could be taken into account

e Compute Job + Compute Job: Investigate whether co-locating compute-intensive jobs on
the same node leads to increased energy consumption due to higher CPU utilization or whether
these jobs can efficiently share resources and benefit from parallel execution. Analyze the
impact of workload characteristics such as CPU usage patterns and memory access patterns
on energy consumption.

e Compute Job + Memory Job: Explore the energy implications of co-locating compute-
intensive jobs with memory-intensive jobs. Determine whether memory-bound jobs can ben-
efit from the presence of compute-bound jobs on the same node by leveraging idle CPU
resources or whether the competition for memory bandwidth leads to increased energy con-
sumption.

¢ Memory Job + Memory Job: Evaluate the energy efficiency of co-locating memory-bound
jobs on the same node. Analyze the impact of memory contention and cache utilization on
energy consumption and performance. Investigate whether memory-bound jobs can effectively
share memory resources without significantly impacting energy consumption.

e Compute Job + Network Job: Assess the energy implications of co-locating compute-
intensive jobs with network-bound jobs. Analyze the impact of network communication over-
head on energy consumption and performance. Investigate whether co-location leads to energy
savings by reducing data transfer latency or whether it increases energy consumption due to
higher network utilization.

e Other Combinations with I/O bound jobs: Extend the analysis to other combinations of
job types, such as I/O-bound jobs, to understand their energy implications when co-located on
the same node. Investigate the trade-offs between resource sharing and contention in different
co-location scenarios and their impact on energy efficiency.
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Chapter 8

Appendix

bt-A:Mean_Energy vs Thread Count (PMT vs SLURM vs Ganglia) bt-A: Median Energy vs Thread Count (PMT vs SLURM vs Ganglia)
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Figure 8.1: BT for Class A, OpenMP
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Figure 8.2: BT for Class B, OpenMP

bt-C: Mean Energy vs Thread Count (PMT vs SLURM vs Ganglia)
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Figure 8.3: BT for Class C, OpenMP

sp-A: Mean Energy vs Thread Count (PMT vs SLURM vs Ganglia)
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Figure 8.9: LU for Class C, OpenMP
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Figure 8.28: BT for Class a, MPI on 2 nodes node002 and node003
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Figure 8.29: BT for Class b, MPI on 2 nodes node002 and node003
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Figure 8.31: SP for Class a, MPI on 2 nodes node002 and node003
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Figure 8.32: SP for Class b, MPI on 2 nodes node002 and node003

75



Energy (Joules)

Energy (Joules)

Processes vs Energy and Runtime for SP-C for 2 nodes in MPI

200000

150000

100000

50000

—e— PMT Energy (SP-C)
—®~ SLURM Energy (sP-C)
—e— Total Node Energy (SP-C) from 002 and 003

=
8
3

w
8
8

Runtime (seconds)

200

100

Processes

(a) Mean

Median Processes vs Energy and Runtime for SP-C for 2 nodes in MPI

200000

150000

100000

Energy (Joules)

50000

—e— PNT Energy (SP-C)
—e— SLURM Energy (SP-C)
—e— Total Node Energy (5P-C) from 002 and 003

\
\\

5 10 15

20 25 30 35
Processes

(b) Median
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Frequency vs. Energy Usage for Different Thread Configurations for bt-A
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Figure 8.40: BT-A:Affect of CPU frequencies on the application level energy consumption for
different thread count
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Figure 8.41: BT-A:Affect of CPU frequencies on the node level energy consumption for different
thread count
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Figure 8.42: BT-B:Affect of CPU frequencies on the application level energy consumption for
different thread count
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Figure 8.43: BT-B:Affect of CPU frequencies on the node level energy consumption for different
thread count
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Figure 8.44: BT-C:Affect of CPU frequencies on the application level energy consumption for
different thread count

85



Frequency vs. Node Level Energy for Different Thread Configurations for bt-C

408569.84 sec

Threads
400000 4 1 Thread
4 Threads
B 8 Threads
350000 BN 12 Threads
EEN 16 Threads
20 Threads
300000 A 9]
(IJ
w
©
@ 8 g
> < 0 n
&> i n o o
g 250000 0 S ] _
i S 8 3 )
] o > g
g 3 3 £
2 200000 - <
_GUJ 4
S v
z
&
o
150000 - Q
n
9
g ] o o] v
S @ @ @ 7}
w O o w w
100000 o B 3 u NG n o,
e0gy 888, S 88 228
Syog 2oy oy Sadgg So28 8
N o N o 1 o ) © in © @ ~ & © 9
- SR N s N9, T o TR o I NO o,
Lo S D N m “ia~"o W is o N~
50000 A ~ A B nens 4 I ® N~ N
M 0 m n <+ m © o~ N & o m ™~ A
o m m < © Mm 0N N
N o N o Q N O 2 N o 3
o~ o © - 3 v
- - -
low medium highm1 high
Frequency

Figure 8.45: BT-C:Affect of CPU frequencies on the node level energy consumption for different
thread count
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Figure 8.46: LU-A:Affect of CPU frequencies on the application level energy consumption for
different thread count
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Figure 8.47: LU-A:Affect of CPU frequencies on the node level energy consumption for different
thread count
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Figure 8.48: LU-B:Affect of CPU frequencies on the application level energy consumption for
different thread count
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Figure 8.49: LU-B:Affect of CPU frequencies on the node level energy consumption for different
thread count
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Figure 8.50: LU-C:Affect of CPU frequencies on the application level energy consumption for
different thread count
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Figure 8.51: LU-C:Affect of CPU frequencies on the node level energy consumption for different
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Figure 8.52: SP-A:Affect of CPU frequencies on the application level energy consumption for dif-
ferent thread count
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Figure 8.53: SP-A:Affect of CPU frequencies on the node level energy consumption for different
thread count
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Figure 8.54: SP-B:Affect of CPU frequencies on the application level energy consumption for dif-
ferent thread count
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Figure 8.55: SP-B:Affect of CPU frequencies on the node level energy consumption for different
thread count
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Figure 8.56: SP-C:Affect of CPU frequencies on the application level energy consumption for dif-
ferent thread count

97



Frequency vs. Node Level Energy for Different Thread Configurations for sp-C

169198.37 sec

Threads
1 Thread
160000 - 4 Threads
B 8 Threads
BN 12 Threads
140000 1 N 16 Threads
20 Threads
@
"
S
120000 - g g o
< @ @
o ® o
o n :
) = 5 ~
<4 i N =
g 100000 o <, 0
3 2 2
g =]
- c
o 80000 1 2
<]
2 o
b
8
60000 - o o
— [ o (%)
© v 0 O O
Q (7] n
? oy R oo o v g N Uy
& b 9] N a8 - g a o n g Qo
H o ©
40000 A ~© 0 u W o mD u 2w © a0 v mn o 2 v
oy g8y 25 5g s gangd
© © %N "X Yoo ~3dTg g N3RSy
NN © o © 9 n 3R 2 m oo 9
~ o © & © ® o 0~ Ao o o ® ~
=8 s S0 g St g SRR
20000 n o n o S Q S5
— — - —
low medium highm1 high
Frequency

Figure 8.57: SP-C: Affect of CPU frequencies on the node level energy consumption for different
thread count
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Frequency vs. Energy Usage for Different Thread Configurations for bt-B at sciCORE
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Figure 8.58: BT-A: Affect of CPU frequencies on the application level energy consumption for
different thread count at sciCORE

99
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Figure 8.59: BT-B: Affect of CPU frequencies on the application level energy consumption for
different thread count at sciCORE
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Frequency vs. Energy Usage for Different Thread Configurations for BT-C at sciCORE
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Figure 8.60: BT-C:Affect of CPU frequencies on the application level energy consumption for
different thread count at sciCORE

101
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Figure 8.61: LU-A: Affect of CPU frequencies on the application level energy consumption for
different thread count at sciCORE
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Figure 8.62: LU-B: Affect of CPU frequencies on the application level energy consumption for
different thread count at sciCORE
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Figure 8.63: LU-C: Affect of CPU frequencies on the application level energy consumption for
different thread count at sciCORE
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Figure 8.64: SP-A: Affect of CPU frequencies on the application level energy consumption for
different thread count at sciCORE
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Figure 8.65: SP-B: Affect of CPU frequencies on the application level energy consumption for
different thread count at sciCORE
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Figure 8.66: SP-C: Affect of CPU frequencies on the application level energy consumption for
different thread count at sciCORE
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