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Abstract

This thesis investigates how well fuzzy hashing methods work in High Performance Computing
(HPC) systems to improve malware detection. In light of growing concerns about the security of
these critical infrastructures, traditional Cyber Security measures are insufficient, requiring the de-
velopment of novel defenses against highly skilled attackers. By integrating fuzzy hashing techniques
like TLSH, ssdeep ,”Strings” and Machoke, we propose a novel application tailored for the unique
challenges posed by HPC systems. We illustrate the flexibility and potential gains these approaches
provide for detecting HPC binaries as malware through a series of empirical assessments, including
the creation of a proof-of-concept framework. Our results demonstrate significant progress in static
binary detection, adding to the field of Cyber Security by offering a more sophisticated view of
malware classification in High Performance Computing environments. With TLSH, we can classify
more than 80% of HPC binaries with high confidence and reach F1 scores as high as 0.95. This
work closes a significant research gap and establishes the foundation for further studies into the
application and optimization of fuzzy hashing to improve the security of HPC systems.
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Chapter 1

Introduction

In a time where High-Performance Computing (HPC) systems play an important role in advancing
scientific and industrial research, ensuring their security is of utmost importance. This thesis delves
at the field of malware detection specifically within the context of recognizing HPC applications.
The increasing intricacy and size of HPC settings provide distinctive difficulties and weaknesses,
making them attractive targets for unscrupulous individuals. Conventional Cyber Security solu-
tions often prove inadequate in dealing with the complex threats presented in these settings.

This work aims to overcome this gap by analyzing current malware detection approaches and their
application to HPC systems. The primary objective is to assess the adaptability and improvement
potential of these strategies in identifying High-Performance Computing (HPC) binaries or appli-
cations as if they were malware. This thesis examines several detection techniques, but lays the
primary focus on the application of hash analysis as a tool for static detection of malware.

Although there are binary/malware detection frameworks out there, they are mostly oriented to-
ward dynamic analysis as opposed to static analysis. Examining a program’s activity while it’s
operating is known as dynamic analysis, and it may be more successful in discovering certain kinds
of malware. However, depending just on dynamic analysis might be unfeasible for HPC systems,
where real-time speed and efficiency are critical. These frameworks can fail to detect possible risks
in HPC binaries quickly and accurately enough to not affect system performance.

Currently, there is a huge lack in research explicitly addressing malware detection in High-Performance
Computing (HPC) systems. This thesis tackles this gap by presenting a new approach: the use
of fuzzy hashing algorithms for HPC binaries and application detection. Fuzzy hashing, largely
recognized in digital forensics for finding similar although not identical data, presents a potential
way for identifying versions of HPC binaries. This use of fuzzy hashing in the context of HPC
is innovative, establishing this thesis as a pioneering effort in examining its efficacy. By adapting
fuzzy hashing to the particular issues offered by HPC systems, this study intends to advance the
subject of Cyber Security in a path that still needs to be explored.



1.1 Motivation

Administrators of High-Performance Computing systems have a significant interest in knowing the
activities occurring on these platforms. There is a need for clear insight into the operations, pro-
cesses, and applications running on HPC systems. This understanding is vital for maximizing
performance and ensuring that the systems are utilized for their intended scientific or computa-
tional goals. Monitoring who is utilizing HPC resources and for what purposes is another essential
component. In contexts where HPC systems are shared resources, such as in research universi-
ties, it’s necessary to maintain track of utilization trends. This assists in properly controlling the
systems, ensuring that they are utilized responsibly and for the intended research or computing
activities. Protection against malware and hostile actors is a major concern for HPC systems.
Users and administrators are especially mindful of risks like hashcat, used for password cracking,
or cryptocurrency miners that waste computational resources [10]. Ensuring these systems are
protected against such exploitative malware is essential for sustaining the integrity and security of
HPC environments.

The fundamental research question this thesis will address is: Can fuzzy hashing be successfully
utilized to identify or classify supplied binaries in High-Performance Computing systems and obtain
trustworthy intelligence? This investigation looks into the possibility of fuzzy hashing as a tool for
Cyber Security in HPC systems, specifically focusing on its capacity to distinguish and classify
different sorts of binaries, which might include both legitimate programs and possible malware.

1.2 Challenges

The challenge in utilizing fuzzy hashing to identify or classify binaries in HPC systems lies in
their inherent complexity. Binaries in these systems may be compared to complicated drawings
comprising nested sub-pictures in a recursive manner [14]. This makes effectively recognizing and
classifying them via fuzzy hashing a non-trivial effort. Effectively interpreting these hierarchical
structures is essential to successful detection and classification.

A key challenge in this study is the limitation imposed by privacy considerations. Often, there
is an impossibility to directly access the binaries for analysis, resulting to a dependence on static
analysis. This constraint implies that the study must traverse the problem of obtaining relevant and
correct information from binary without the benefit of dynamic investigation, making the process
more complicated and subtle.

Another problem is the necessity for rapid metadata collection and generating intelligent estimates
based on this information. The act of acquiring information fast and correctly, and then utilizing
this data to make educated predictions about the nature of the binary, is important. This speed
and efficiency are critical in HPC systems, where delay or inaccuracy may lead to serious security
risks or performance hindrances.

While conventional solutions for this particular topic have not been developed, there are current so-
lutions that handle comparable challenges, but with different purposes. These technologies, mostly
designed for different settings such as digital forensics or data analysis, involve approaches that
might be equivalent to fuzzy hashing in recognizing and classifying data. However, their aims and



application fields vary greatly from the emphasis of this study. This thesis studies the possibilities
of adapting these current approaches to the particular environment and needs of HPC systems for
detection and classification.

1.3 Goals

The main goal of this project is to develop a proof of concept framework particularly tailored to
handle the issues of employing fuzzy hashing for recognizing and classifying binaries in HPC systems.
The objective is to design a system that is flexible and successful in multiple HPC situations, giving
a standardized way to dealing with the difficulties and privacy limitations involved with binary
analysis in these systems. By doing this, the study will not only address the present problems but
also give a useful resource to the larger HPC community, boosting Cyber Security measures across
diverse HPC platforms.

The key to achieving our goals is carrying out fuzzy hashing correctly. This approach, notable for its
potential to discover and classify comparable but not identical data sets, is seen as the basic answer
to the issues highlighted. An important part of this approach is to guarantee that it is both quick
and generic. The framework designed must be capable of swiftly processing and interpreting data,
a need given the high-performance nature of HPC computers. Additionally, the solution must be
general enough to be useful across a broad variety of HPC settings, independent of their individual
setups or the sorts of applications they execute.

To further enhance and verify the solution, the study will include established guidelines and dis-
coveries from the area of malware detection. This involves assessing current approaches, evaluating
their usefulness, and changing them as appropriate for the context of HPC systems. The objective
is to expand upon the present body of knowledge, customizing it to provide a more robust, efficient,
and successful solution to malware detection in HPC systems utilizing fuzzy hashing.

1.4 Our Contribution

The objective is to provide techniques that offer a more thorough, nuanced comprehension of the
data in addition to recognizing patterns and variances in binary. This might include merging
several fuzzy hashing methods or integrating them with other analytical tools in order to increase
the precision and effectiveness of malware classification and detection.

Research and advancement of these improved fuzzy hashing methods directly contributes to strength-
ening HPC system security procedures. This discovery may greatly aid in protecting HPC settings
from complex malware attacks by offering a more efficient tool for binary identification and classifi-
cation. The knowledge obtained from this research may lead to the development of new standards
and best practices for HPC system security.

Besides security, HPC administrators can gain an introspective view into theirs systems and know
which user is submitting which job for which purpose. This metadata gives insight into batch jobs
and can categorize them into self created categories, like weather or physics simulation. This can
prevent misuse of resources and

Entities in both academic and industrial sectors that rely on HPC systems for complex compu-
tations and data processing will have a vested interest in the success of this research. Enhanced
security protocols may augment the dependability and authenticity of their output, guaranteeing



that these formidable computational instruments continue to be secure and operational for impor-
tant investigations and advancements.



Chapter 2

Background

2.1 Fuzzy Hashers

Fuzzy hashing is a technique used in Computer Science, particularly in Cyber Security, to identify
files or data that are similar to each other. Fuzzy hashing accepts little changes in the data, allowing
for the discovery of similarities, in contrast to classical hashing, which seeks to produce a unique
identifier or hash for each separate piece of data. Conventional hashing is good at verifying exact
matches but not very effective at identifying patterns or similarities because it generates whole new
hashes for even the smallest changes to the material.

By generating comparable hashes for files that are similar but not identical, fuzzy hashing adds
flexibility. This function is especially helpful for identifying malware variants in the field of Cyber
Security. Malware frequently modifies itself slightly to avoid detection; yet, fuzzy hashing allows
these small changes to be connected to known malware, improving detection.

Comparing two text passages can be used to illustrate the fuzzy hashing idea. Fuzzy hashing mea-
sures the degree of similarity between two texts, regardless of differences, whereas standard hashing
determines whether two texts are exactly the same, producing a binary answer. This method works
well for handling data that comes from the same source but has undergone minor changes or cor-
ruptions, allowing for a more sophisticated identification of the connections across datasets.

Note that in this thesis the words sample and binary are used interchangeably.

ssdeep - Context triggered piece wise hashing

Ssdeep is a fuzzy hasher which uses a method called context-triggered piecewise hashing [12] . With
this method, a file is divided into many segments, each of which is bounded by the context of the
data. This means that the hash is generated using the file’s structure rather than its whole content.
With this technique, ssdeep can produce a hash that accurately captures the general organization
and content pattern of the file.

Ssdeep compares two files and produces a similarity score that indicates how similar the files are
to one another. For instance, ssdeep can determine that two files are essentially identical even if
they have variations, such as a few altered lines in a document or changes in a malware variants.



This score is especially helpful for detecting changed or updated malware, which are variants of the
same file that have been modified.

The segments of ssdeep vary in length, unlike the fixed-size blocks used in standard hashing. Its
capacity to identify similarities in files that have seen little modifications is largely dependent on this
variability. After file segmentation, ssdeep creates a hash for each part. These hashes are shorter
than standard cryptographic hashes and intended to capture the substance of each section. For
this, ssdeep uses a rolling hash technique [12]. Because it can be calculated fast across a window
of data that goes through the file, a rolling hash is efficient. The hash is updated according to
incoming and outgoing data as the window progress.

To compare ssdeep hashes, the library uses its own compare function. This function measures
the edit distance between two strings, s; and sy, defined as the minimum number of operations
required to transform s; into so. These operations can include changing, inserting, or deleting a
single character. When comparing two ssdeep fuzzy hashes, the resulting score ranges from 0 to
100, with 0 indicating no match and 100 signifying an identical match. Typically, a score of 80 or
above is considered to indicate a confident match.[13]

TLSH - Locality Sensitive Hashing

Trend Micro Locality Sensitive Hash (TLSH) is a fuzzy hasher developed by Trend Micro. TLSH is
currently the defacto standard for malware detection. Since its release, the fuzzy hasher has been
introduced into Virustotal and Malwarebazaar, two industry standard platforms for collecting file
samples and classifying malware in the Cyber Security field.

The TLSH algorithm starts by processing the byte string through a sliding window of size 5 bytes.
This window goes through the byte string and obtains triplets of bytes. The Pearson hash function
[16] is used for analyzing each triplet, to reduce collision and improve the uniform distribution. As
a result, the captures are the frequency of different triplet hash values by the count of increments of
matching bucket counts. After the sliding window analysis, each triplet’s frequency is represented
as an array of bucket counts. TLSH generates three quartile points from this array. A statistical
metric known as a quantile splits a collection of data into four equal pieces. In this case, the al-
gorithm finds numbers such that 25% of the bucket counts are below or equal to the first quartile
(1), 50% are below or equal to the second quartile (¢2), and 75% are below or equal to the third
quartile (¢3). The bucket counts’ total distribution may be summed up using these quartiles.

The body of the TLSH hash is created by examining each bucket’s count relative to the quartile
points. For each bucket, a 2-bit encoding gets created, based on which quartile range the count
falls into. If the count is less than or equal to g1, then 00 is returned; if it’s between ¢l and ¢2, 01
is returned; if it’s between ¢2 and ¢3, 10 is emitted; and if it’s above ¢3, 11 is emitted. This process
converts the bucket array into a binary string that reflects the statistical profile of the data.

Combining the binary string of the digest body and the hex format of the digest header, which
includes quartile and checksum details, creates the final TLSH hash. This final hash accurately
represents the statistics and content of the data.

The scoring of TLSH is non-conventional, compared to the other fuzzy hashers. A score of 0
indicates a perfect match, while higher scores indicate the dissimilarity of two TLSH hashes. This



feature gives the user the possibility to choose the false positive tolerance (risk tolerance) and self
determine the scope of TLSH. [15]

Machoke - Call Flow Graph Hashing

Machoke, which shares its name with a Pokémon character, is a tool specifically created for identi-
fying malware in binary files. The foundation of it is an idea known as a Call Flow Graph (CFG).
A CFG is simply a map that illustrates the Assembly language level interactions and calls between
various parts of a computer program, namely functions. Compared to higher-level programming
languages, this level is more comprehensive and closer to machine code. The CFG is utilized by Ma-
choke to log the progression of these function invocations. Machoke divides the code into sections
known as fundamental blocks whenever a function calls another function inside the code. Then,
in order to keep track of these call points, it gives each one a distinct number. Machoke uses the
reverse engineering program Radare2 to analyze the binary file and comprehend its structure. The
positions and specifics of these function calls inside each block are determined by Radare2 once it
decodes the binary file. Originally, Machoke first creates a unique hash value for each code block
using MD5 hashing in its first version, but in this thesis an alternative hashing technique called
MurmurHash3 generates a 32-bit hash for every block instead. Then, a single lengthy string is
created by combining these distinct hashes from every block. The final string is then what is called
a Machoke hash. [8]

L]
1loc_6000000006403BCE.

004038CB MOV ECX, DWORD PTR [ESP + 0x1C]

©00403BCF LEA EBX, DWORD PTR [ECX + ESI]

004038D2 MOVSX EDX, BYTE PTR [EAX + EBX]

©04038D6 PUSH EDX

004038D7 PUSH 0x405F78

©04038DC CALL loc_0000000600403CAC :0x00403cc

1loc_6000000006403BE1

00403BE1 MOV EDI, EAX

00403BE3 MOV EAX, ESI

00403BE5 CDQ

00403BES IDIV DWORD PTR [ESP + 0x28]

00403BEA SUB EDI, 0x405F78

00403BFO MOVSX EAX, BYTE PTR [EDX + OXA4SFEC]

00403BF7 PUSH EAX

00403BF8 PUSH OX405F78

00403BFD CALL 1oc_0000000600403CAC : 0x00463cc

1loc_6060000006463C02

00403C02 LEA ECX, DWORD PTR [EBP + EDI + 0x405F78]
©0403C09 ADD ESP, Ox10
00403C0C SUB ECX, EAX
©0403COE MOV EAX, ECX
00403C10 CDQ
00403C11 IDIV EBP
00403C13 MOV EAX, DWORD PTR [ESP + ©x10] (
00403C17 INC EST \
00403C18 CMP ESI, EAX \

00403C1A MOV DL, BYTE PTR [EDX + 0x405F78]
0040320 MOV BYTE PTR [EBX], DL
00403C22 JL loc_00000000004038C7 : 0x09403bcT

- -
/ ™

v S
1loc_0600000000403C24 loc_0000006000403BCT /
00403C24 POP EBX 00403BC7 MOV EAX, DWORD PTR [ESP + 0x18] | /

/
/

Loc_6060600000463C25

00403C25 MOV EAX, DWORD PTR [ESP + ©0x18]
00403C29 MOV BYTE PTR [EAX + ESI], 6x0
00403C2D MOV EAX, EST

00403C2F POP ESI

00403C30 POP EBP

©0403C31 POP EDI

00403C32 POP ECX

©0403C33 RET

Figure 2.1: Example Call Flow Graph of a function and its call blocks [2]
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Two obvious disadvantages can be spotted here. First, since every functions hashed flow get concate-
nated, the final output size is dependent on the number of functions and can be roughly estimated
by the size of the binary. Because of this, comparing Machoke hashes scales with the size of the
sample. The second disadvantage is the disassembling of the sample itself. Generating the hash has
the same performance problem like comparing them. With bigger samples (assuming bigger means
more functions), this fuzzy hasher scales very poorly.

With Jaccard distance calculation, a machoke hash gets treated as a string and the comparison
returns a score from 0 to 1, where 0 is no match and 1 is a perfect match. Jaccard distance is
defined as follows:

_|ANB|
- JAUB|

Where A and B are sets of the tokenized Machoke hash. The token size was set to 4 characters per
token.

J(A, B)

Strings with TLSH

This fuzzy hasher is a hybrid construction between the UNIX strings command, which returns a
list of strings contained in a binary and TLSH. However, using only the UNIX strings command
still has the same problematic in performance like Machoke. To enhance this approach, the use of
TLSH for hashing the output of the ”strings” command gets incorporated. This change separates
the performance of the comparison from the variable output size of the ”strings” command by
significantly reducing the output to the fixed size of a TLSH hash.

This fuzzy hasher differs from plain TLSH by only hashing the strings and not the whole binary.

11



Chapter 3

Related Work

A major gap in the field of High-Performance Computing (HPC) is the lack of established practices
for recognizing and categorizing HPC binaries. This lack of focused strategies is an indication of
a serious flaw in the way that existing cybersecurity techniques apply to HPC systems. Because
HPC systems have different operating needs and features from traditional computing systems, they
require specific methodologies for binary analysis and malware detection.

According to Tsujita et al. [19] HPC jobs can be classified by metadata analysis. They have shown
that high CPU and memory utilization correlate with high I/O. Information about the electric
power consumption can divide jobs in high I/O jobs or high computation jobs.

In 2018, Ates et al. [7] introduced ”Taxonomist,” a method for identifying applications on su-
percomputers by analyzing patterns in resource usage. By analyzing their activity, this machine
learning-based method enables the categorization of programs and the identification of illicit behav-
iors, including malware. This study is relevant to the field of malware detection in high-performance
computing (HPC) settings because it offers a framework for spotting unusual application behavior,
which is an important factor in detecting possible malware in HPC binaries.

Budiardja et al. (2016) [9] explore XALT, a tool for monitoring library function utilization in
high-performance computing (HPC) systems. It describes the transparent way in which XALT
gathers job-level and link-time data, with particular attention to its function-tracking capability
that allows programs to identify the precise library functions they use. This makes it possible to
analyze program usage more precisely, which helps with security and optimization initiatives.

Jakobsche et al. (2021) [11] presents an Execution Fingerprint Dictionary (EFD) for recognizing
HPC applications by capturing system metric patterns during execution. Inspired by Shazam, this
approach achieves over 95% F-score in application identification using just one system statistic
within the first two minutes of operation, greatly reducing the amount of data required. This
method, which uses little data to achieve high application identification accuracy, provides a low-
weight and effective mechanism for tracking and maybe identifying abnormalities or malware in
HPC systems.

12



Peisert (2010) [17] investigates the idea of ”fingerprinting” HPC systems in order to recognize
communication and computational characteristics, with a particular emphasis on dynamic analysis
using MPI data monitoring. The goal of this technique is to distinguish between typical program
use and any abuses like resource exploitation or illegal access. Peisert’s research highlights the
possibility of using communication patterns as markers of unusual activity, which is pertinent to
my study. It implies that comparable tactics might improve malware detection in HPC binaries by
spotting departures from normal application behaviors.

13



Chapter 4

Methodology

The execution relies on three consecutive phases. The first phase emphasizes the gathering of the
data. Since this thesis tries to solve a current practical problem, it needs data from current actively
used binaries. After the relevant labeled binaries have been retrieved, the fuzzy hashing has to
start, where samples need to be hashed and labeled correctly to fit the database schema and be
saved concurrently. The last phase relies on analysing the samples and return a prediction for each
sample based on the application of the fuzzy hashers.

Thresholds are defined as limits set to each fuzzy hashers returned score. It is optimal to only
accept results on which the fuzzy hasher is certain to have the false positive rate as low as positive.
The goal of this methodology is, to empirically test which thresholds are acceptable as a match and
from which threshold we want to return a "No Match” and not accept the result for a prediction.

4.1 Data Gathering
4.1.1 Malware Dataset

To compare the effectiveness of the fuzzy hashers, a labeled dataset is necessary. Meaning a dataset
which already has each sample mapped to a family. This allows easier testing and validation of the
predictions. The dataset was sourced from vx-underground, a key repository giving a wide number
of malware samples. This platform is essential for Cyber Security research and malware analysis,
providing access to real-world malware instances that contribute in the development of stronger
security solutions. More than 5TB of data is available on the platform. Ranging from malware
creation, detection to samples mapped to their families.

The process of obtaining data required using the vx-underground[5] website, where each malware
sample is available for individual download. To accommodate the enormous volume of samples,
web scraping techniques were deployed. This requires web scraping to explore the site, discover
download paths for each sample, and then execute a series of GET calls for quick access. This
was done through python and the requests[18] library, needed for the web requests. Safety was
a primary concern in handling the samples, each of which was securely zipped with the password
‘infected’. Before extraction, an exclusion was configured in the antivirus Microsoft Defender to by-
pass any automatic blocking or removal of the samples with the samples. The unzipping procedure

14



was automated using 7z[1] paired with a PowerShell script, providing a safe and orderly extraction
of the malware samples.

The malware dataset consists of 208646 samples and 527 families in which a family represents a
malware family like AgentTesla and its samples are different versions of the same malware.

40000 Distribution of families

35000

30000

Number of samples
N
o
o
o
o

- |“H||||
0 ||IIIIIIIIIIlllllllllllllllllllllllllll ..........

Families

Figure 4.1: Distribution of malware families

4.1.2 Scicore

There were no pre-made datasets available for the purpose of this study. So, the research turned
to using modules from the Scicore[4] High-Performance Computing system. These modules were
chosen because they are used often and are marked as applications. They have executable files,
which are key for this project. The main source for collecting data was the /scicore/apps/soft
directory on Scicore. This directory was important because it had different applications, each in its
own folder, like OpenMalaria[6]. These applications also had folders for different versions.

To collect the data, the main task was to pick out the main executable file (like ’'OpenMalaria’ in its
application) from the ’bin’ folders. It was important to only take these main files and not the other
extra files that are usually found in these folders. A list was made to keep track of where these
main files were located. Then, a Python script was used to gather all these files and organize them
in a way that’s useful for further study and analysis. The root folder is the dataset, the subfolders
are the families and the files in the subfolders are samples of the respective family. This method
made sure that the collected data was relevant and ready for the next steps in the research.

The Scicore dataset consists of 2066 samples and 334 families, in which families are referred to ap-

plications like OpenMalaria and samples are its subversion of previous releases or different compiler
toolchains.
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Figure 4.2: Distribution of samples per family in Scicore dataset

4.2 Fuzzy Hashing

For the experiments to work, the following framework was built as a semi automatic pipeline from
the sample as a binary to the fuzzy hash into the database. The framewok is labeled in this way,

because the user can provide arbitrary binaries in the folder structure pictured above and call the
python file.

E Family 1

| :g:g 1. ssdeep

2. TLSH
h Family 2 3. Machoke ‘

4. Strings
1010
1010

Figure 4.3: Enter Caption
The following tasks will be handled by the framework:

1. Connect to the database and create the tables.
2. Enumerate all the subfolders and treat them as a family.

3. For every sample, take all four fuzzy hashes and time their performance.

16



4. Combine the result including the SHA256 hash as the ID and send it to the database.

With this framework, arbitrary samples and families can be fuzzy hashed and saved into a database
for further processing. In this case, Python was the language used to implement the functionalities
and Jupyter notebooks for further processing. This software stack was purposefully chosen, because
most of the fuzzy hashers have wrapper libraries built with python which made it the obvious choice.

The main methodology of testing is focused on the use of the ROC curve 4.3.1 and F1 score 4.3.2
as the primary comparison of the effectiveness. To reach those two parameters, which lead to the
results, the data has to be prepared and the compared accordingly. Normalizing the data follows
the usual process of removing "NaN”s and checking the consistency of the data. TLSH and ssdeep
will always return a hash for a sample, given the size is greater than 32 bytes. TLSH will also
return TNULL” as a fuzzy hash for samples which do not fit the implementation. Important to
mention is that Machoke will not work on non compiled samples, like python scripts, bash scripts
or also compiled samples which do not meet the requirement for Radare2 to be reversed.

4.3 Data Analysis

To analyse the cleaned data, two important statistical tools will be used, the ROC curve and the F1
score. These tools will define how well the fuzzy hashers can predict the family of a sample, based
on their metrics. This way we can statistically show the effectiveness of the fuzzy hashers on the
datasets and understand if they are meaningful. Since we are only interested on the performance of
the Scicore dataset, the malware dataset acts as a pseudo cross validation test set. Every metric the
Scicore dataset returns we will validate on the malware dataset, since it is known [15] that TLSH
and ssdeep are effective in recognizing malware on a dataset with 109 distinct binary malware files
from three malware families.

4.3.1 Receiver Operating Characteristic (ROC) Curve

A Receiver Operating Characteristic (ROC) curve is a graphical representation to evaluate the
performance of a classification model at various threshold settings. It plots two parameters:

1. True Positive Rate (TPR): Also known as sensitivity, measures the proportion of actual
positives correctly identified. It is calculated as:

TP

TPR= ————
TP+ FN

(4.1)

where T'P is the number of true positives and F'N is the number of false negatives.

2. False Positive Rate (FPR): Measures the proportion of actual negatives that are incor-
rectly identified as positives. It is calculated as:

FP

FPR= ———
= FpiTn

(4.2)

where F'P is the number of false positives and T'N is the number of true negatives.

17



The ROC curve plots TPR against FPR at different threshold levels. A model with perfect pre-
diction has a curve that goes straight up the y-axis and then along the x-axis. The area under
the curve (AUC) quantifies the overall ability of the model to distinguish between the positive and
negative classes. An AUC of 1 indicates perfect classification, while an AUC of 0.5 suggests no
classification.

The variables are defined for this usecase as follows:

e True Positive (TP): A sample from the dataset gets matched with its corresponding family

e False Positive (FP): A sample from the dataset gets matched with a different family from
the same dataset

e True Negative (TIN): A sample has no match if the corresponding family does not exist

e False Negative (FN): A sample from the dataset has no match, but the corresponding
family exists in the dataset

4.3.2 F1-Score

The F1-Score is a statistical metric used to evaluate the accuracy of a binary classification model,
particularly in scenarios with imbalanced class distributions. It harmoniously combines precision
and recall into a single measure, providing a balanced view of the model’s performance. The
F1-Score is crucial in situations where both false positives and false negatives carry significant
importance. The formula for the F1-Score is:

F1=2x 22"
p+r

(4.3)

For this specific use case, precision and recall are defined with respect to samples and families as
follows:

e Precision (p): The proportion of samples correctly identified as belonging to their respective
families among all the samples identified as part of a certain family. It is calculated as:

TP

= — 4.4
TP+ FP (44)

p
where T'P represents the true positives (samples correctly matched with their family) and F' P

represents the false positives (samples incorrectly matched with a different family).

e Recall (r): The proportion of samples correctly identified as belonging to their respective
families among all the samples that actually belong to that family. It is calculated as:

TP

"= TP+ FN (45)

where TP represents the true positives and F'N represents the false negatives (samples from
a family not correctly identified).
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4.3.3 Edi Curve

The last statistical tool used in this thesis is the Edi curve. This tool was created by the author of
the paper from the necessity to gain an absolute view of the predictions made by the fuzzy hashers.
The idea behind this is to measure, in absolutes,the precision based on thresholds while at the same
time having a perspective of the total samples that are cut off.

With this addition, the curve represents a more practical perspective on the predictions, which the
other two statistical tools do not. Without the knowledge of the amount of samples still being
classified, a true positive rate is in this usecase irrelevant. For example, having a 99% true positive
rate is great but if only 3 of 2000 are in the threshold range where this true positive rate applies
than it is meaningless.

e Total: The amount of samples still being considered to have a match.

T
total = — 4.6
ota 5 (4.6)
Where S is the size of the dataset and 7" the amount of samples of the subset of S in the
respective threshold.

Precision is taken from the F1 score subsection 4.3.2. T'wo points on the Edi curve are highlighted.
First is the intersection of precision and recall from the F1 score and second the argmin of total
and precision. This allows to define two thresholds in which a range can be interpreted. With this
range, based on the requirements of the use case, a specific threshold can be set to allow either
more samples to be predicted or have an exact prediction on a smaller dataset.

To summarize this tool, the Edi curve can be seen as the quantitative metric and the F1 score with

precision and recall as the qualitative metric. With the Edi curve, absolute values can be analyzed,
while the F1 score might help to interpret trends more accurately.
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Chapter 5

Results

This chapter goes into the results of the methods. The plots were made with the assistance of the
miniHPC [3] to run scheduled jobs. All of the statistics involving the malware dataset had to be
created with the miniHPC, since O(n?) comparisons were needed (for the any to any comparison of
the fuzzy hasher distance functions) with n = 2 % 10° which results in 1.99 x 10'° comparisons. To
measure the performance and accuracy of the fuzzy hashers, an any to any comparison is necessary,
meaning to compare every fuzzy hash, like TLSH for example, to all the others in the dataset and
take the minimum difference score for TLSH and String and the maximum for ssdeep.

The scicore dataset was small enough that the computation could be split into first preparing all
the combinations in a matrix, saving it therefore in RAM and only then to compute the difference
of every entry in parallel. This process was faster than reading from the dataset one by one and
decreased I/0O.

After the preparation of the measures explained in chapter 4, the end result is a matrix with every
sample from the original dataset, matched with its best predicted family and the corresponding
score. A sample row looks like this:

1D True Family | Predicted Family TLSH 1 TLSH 2 Diff Score
8932331 | Blackmoon Blackmoon T1004423DD114... T1154423DD114... 1

Table 5.1: Example row of the comparison with TLSH

In the following plots, the goal is not only to show how good the fuzzy hashers can predict the
family of a sample, but to also gain a view about their thresholds and which have to be chosen, for
the best results. Therefore, in each incremental threshold step the dataset gets smaller, because
the rows with a ”Diff Score” of higher or lower than a threshold get removed temporarily. Setting a
threshold is essential to reduce the false positive rate. If the fuzzy hasher always predicts a family,
independent of the final score but given it always takes the minimum, for TLSH as an example,
then it would also consider a match if the score was 3000 which is not acceptable, as can be seen
in [15].

The source code of the results have been made available online: https://github.com/edizeqiri/obstkorb
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5.1 Machoke

This fuzzy hasher will not be listed together with the other ones, because of its poor performance
compared to the others. Less than 1% of the dataset had a match and even then the FP rate was
over 60%. Thus, Machoke will be neglected from the comparison.

Since disassembling takes a significant amount of computing power, we could not fuzzy hash the
complete malware dataset with Machoke. The scicore dataset could be completely hashed and a
small subset of the malware dataset. The miniHPC could not be used, since we would have to load
malware on the miniHPC, which belongs to the University of Basel and by their regulation is not
allowed to have malware on it. Therefore, only a small subset of 300 samples could be hashed and
tested. The small dataset size does not return accurate statistical results and will therefore not be
shown. For the interested reader, figures for Machoke can be found in the Appendix A

5.2 ROC Curves

Figure 5.1-5.2 and Table 5.1-5.2 visualize the performance of the true positive rate against the false
positive rate based on specific thresholds. For TLSH and Strings, the curve was generated with
thresholds from 0 — 300 and for ssdeep from 0 — 100. The dotted line shows the accuracy of a
random classifier.

ROC Curve for TLSH, strings and ssdeep
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Figure 5.1: ROC Curve of the Scicore dataset
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TLSH
0.913

SSDEEP
0.782

Strings
0.861

Table 5.2: Area under the curve for Figure 5.1

TLSH is leading this result, closely followed by ”Strings” and ssdeep making the 3rd place. TLSH
and ”Strings” follow a similar pattern where the TP rate increases rapidly and then flatten out
with a higher threshold. Ssdeep has a linear development, which shoes that increasing the threshold
does not greatly benefit the TP rate.

True Positive Rate
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Figure 5.2: ROC Curve of the malware dataset

TLSH
0.969

ssdeep
0.995

Strings
0.965

AUC

Table 5.3: Area under the curve for Figure 5.2

TLSH and ”Strings” are very close visually and their area under the curve could be rounded up to
be the same. Ssdeep has a near perfect score visually and by the area under the curve, the malware
and scicore dataset have noticeable differences. To get a better understanding of this result, other
metrics have to be put into perspective. First, we will consider the file size a factor for the difference.
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mean | 1.71e406 mean | 4.76e+06
std | 5.73e406 std | 2.30e+07
min | 2.74e+402 min | 9.90e+01
25% | 1.08e+05 25% | 1.52e+04
50% | 3.13e+05 50% | 1.43e+05
75% | 1.09e+06 75% | 1.39e+06
max | 7.95e+07 max | 3.53e+08
Table 5.4: Table describing the file size for the = Table 5.5: Table describing the file size for the
malware dataset scicore dataset
1e6 Median file size of Scicore and Malware
3.5 1 —
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Figure 5.3: Median file size of the datasets

It is clearly visible by the tables Table 5.4, Table 5.5 and Figure 5.3 that the scicore dataset has
bigger samples than the malware dataset. This can be a factor for the big difference in AOC from
Figure 5.1 and Figure 5.2. Therefore, the Pearson correlation will show if the file size does correlate
with the TP rate.
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Scicore | Malware
Pearson | -0.0411 | -0.0264
p-value | 0.458 0.592

Table 5.6: Pearson correlation of file size and TP rate for Scicore and malware dataset

Since a Pearson correlation coefficient of 0 indicates no correlation and the Pearson values are very
close to 0, file size and TP rate do not correlate. The p-value is 0.46, which is quite high, reinforcing
the conclusion that there is likely no significant linear correlation between the variables.

The last conclusion has to be that the datasets have different sizes. The malware dataset is bigger

by a factor of 100. Reducing the dataset to the same size of the scicore dataset, while keeping the
file size distribution leads to the following ROC curve.

ROC Curve for TLSH, strings and ssdeep
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Figure 5.4: Reduced malware dataset to the size of the scicore dataset

TLSH | ssdeep | Strings
Area under the Curve | 0.616 | 0.715 0.623

Table 5.7: AUC for reduced malware dataset

This reduced malware dataset has now either 2 samples per family or 1% of the previous size of
the family to match the size of the scicore dataset. It is clearly visible in the ROC curve itself
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Figure 5.4 and in the Table 5.7, that the amount of samples drastically changes the results. TLSH
and ”Strings” both are below ssdeep, but all of the fuzzy hashers do not have a higher true positive
rate of 80%. This trend is similar in all ROC curves in this thesis that, with increased dataset size,
the true positive rate is increases.

This explains the tremendous difference in the ROC curves for the malware and Scicore datasets.
Not only can we now explain the differences but also gained new insight into the behaviour of how
fuzzy hashers behave based on the amount of data that is provided. In the following results, the
reduced malware dataset will be added as a third dataset for comparison.
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5.3 F1 Score

5.3.1 Malware

The following four graphs are the F1 scores with the corresponding precision and recall of the fuzzy
hashers mapped on the thresholds. The Y-axis is the score and the X-axis is the threshold.
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Figure 5.7: F1 score of ssdeep

For the malware dataset, TLSH precision decreases after a threshold of over 80-90 and recall does
not increase significantly more. The same is true for ”Strings” but with a threshold of 90-100. For
ssdeep, recall starts to decrease after 90-95 and precision stays constant.
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5.3.2 Scicore

F1 Score for strings

F1 Score for TLSH

1.0 T 72 1.0 54
1 |
1 |
1 |
0.8 1 1 0.8 1 :
1 1
1 1
1 1
1 |
1 |
0.6 1 ! 0.6 !
1 |
1 |
1 |
1 ]
1 |
0.4 4 ! 0.4 4 !
1 |
1 |
1 |
1 |
0.2 1 | 0.2 i
Tl—n | ’ i — fl
— recall | H — recall
—— precision | | —— precision
0.0 T - T T T T 0.0 vt T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Figure 5.8: F1 score of Strings

threshold

10

0.8

0.6

0.4 1

0.2 A

0.0

threshold

Figure 5.9: F1 score of TLSH

F1 Score for ssdeep

w
o

— fl
—— recall
—— precision

ﬁ

Fommm e

0

20

40 60 80 100
threshold

Figure 5.10: F1 score of ssdeep

On the Scicore dataset, the TLSH based fuzzy hashers behave similar, but ”Strings” is shifted to
the right. Both TLSH plots decrease in every metric which is not expected. Ssdeep stays the same
until a threshold of 70 and then recall decreases while precision increases. The highest F1 score of
0.95 is reached with TLSH.
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5.3.3 Reduced Malware
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Figure 5.11: F1 score of Strings
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Figure 5.12: F1 score of TLSH
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Figure 5.13: F1 score of ssdeep
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5.4 Edi Curve

Two dotted lines are visible for each Edi curve. The grey dotted line is placed to indicate which
threshold the F1 score has its peak. The blue line indicates the intersection of the precision graph
and the total graph, where total stands for the total amount of samples still being considered after
the threshold cut.
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Figure 5.14: Edi curve for Strings
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5.4.2 Scicore
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Figure 5.17: Edi curve for Strings
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Figure 5.19: Edi curve for ssdeep
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5.4.3 Reduced Malware
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Figure 5.20: Edi curve for Strings
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Figure 5.21: Edi curve for TLSH
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Chapter 6

Discussion

6.1 Malware vs Scicore

The vast difference in the results of the ROC curve can be explained by the size difference of the
datasets. The Scicore dataset is smaller by a factor of 100 compared to the malware dataset. By
doing the analysis with a reduced cut of the samples, the ROC curve of the malware dataset takes a
huge hit. This implies another finding. The more samples are hashed in the database, the higher is
the performance of the fuzzy hashers in accuracy. This can be rationally explained, because when
trying to find comparisons, more similar items help identify the right type.

This is also reflected on the other curves where the malware dataset is shown. The F1 Score and
Edi curve are near perfect in close to every metric (besides Machoke).

Since the database of a fuzzy hasher should always be extended, the performance increases with its
use. This finding shows that starting with a sparse dataset, fuzzy hashers can not shine from the
beginning. Strategies may have to be implemented like setting the threshold to much stricter range
to accurately predict, if the dataset is sparse and then increase the threshold when the dataset size
has increased.

Ssdeep does not lose its precision even with the reduced malware dataset. TLSH and ”Strings”
do have a lower precision in the reduced dataset even compared to the scicore dataset. This is an
indication that ssdeep performs better on malware or generally on the malware dataset, but with
the current results, it can not be fully explained. This has to be analyzed further.

6.2 Thresholds

The ROC curve and F1 Score give a good representation of the performance in each incremental
step of the threshold. A very important information, which is not shown in these two statistical
tools, is the actual amount of data still being hashed after the threshold cut. We can clearly see in
the ROC curve that restricting thresholds has diminishing returns in respect to increasing TP and
reducing FP. The missing information about the absolute amount of samples still being processed,
is visible on the Edi curve and partially in the F1 score.
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Depending on the use case and the requirements, the thresholds for TLSH and ”Strings” can be set
between 50-150, where a lower threshold means that predictions are more accurate but less samples
will be predicted. For ssdeep a threshold between 30-70 can be set, where a lower threshold means
that predictions are less accurate but more samples will be predicted. Two distinct use cases are
set as context. First is the requirement to identify as many samples as possible and cover the broad
scale of samples. The second requirement is being as exact as possible with the prediction and
ignoring the amount of samples being predicted but tolerating only the highest TP rate possible.
For Scicore specifically, setting a lower threshold for TLSH will be beneficial, since TLSH still can
have a prediction close to 80% of the dataset with an accuracy of close to 80% (see Figure 5.18).
The threshold can then increased as the dataset grows. This approach would have the best practical
benefit to correctly predict as many samples as possible. The same approach can be applied to the
other fuzzy hashers.

6.3 Performance of Prediction

The effectiveness of fuzzy hashers greatly depends on how much data they have to work with. They
do best when there’s a lot of data available right from the start. However, they can still improve
over time as more data gets added to their database, often from the hashers themselves when they
find a good match. But, if there are fewer than 1,000 hashed samples, the fuzzy hashers’ ability to
correctly identify what group a sample belongs to drops significantly.

When it comes to large datasets, such as those used for studying malware, fuzzy hashers are really
useful for identifying similar files. Choosing the right one is the challenging part. Based on the
analysis of malware datasets through ROC curves, ssdeep stands out because it generally shows
better results compared to others.

Despite ssdeep having a slight dip in its F1 score, which suggests a small drop in accuracy, it still
scores higher overall compared to others like TLSH and ”Strings,” which might show higher peaks
but are less consistent in their accuracy.

In terms of predicting a larger number of samples with accuracy, TLSH outperforms ssdeep, al-
though ssdeep is more precise in its predictions. Specifically for malware datasets, ssdeep can
confidently predict more than 32% of samples. But, for smaller datasets, its ability to classify
confidently drops, showing that while ssdeep is precise, it covers a smaller portion of the dataset
than TLSH and ”Strings,” which can confidently classify over 80% of the samples across various
datasets.

Looking at specific datasets, ssdeep’s accuracy in identifying true positives is lower compared to
other hashers. This contrast becomes more apparent in different datasets where TLSH struggles.
The size of the dataset often affects this outcome, affecting the balance between accuracy and the
ability to identify correct matches. The unique way ssdeep handles unmatched samples, compared
to TLSH which requires a user-defined threshold for the same, significantly influences how much of
the dataset it can cover.

All the fuzzy hashers can reach an accuracy of over 80%, but they differ in how much of the dataset
they can effectively cover. Ssdeep, while precise, is limited in the portion of the dataset it can
predict accurately, making it less suitable for smaller datasets. On the other hand, TLSH and
”Strings” provide reliable predictions for a larger percentage of samples across different datasets.
Overall, TLSH and ”Strings” are objectively better from the results in terms of precision and recall
together. ”Strings” is very close to TLSH in terms of these parameters, which can be explained by
the lost information of only taking the strings of a binary as input to the TLSH fuzzy hasher. With
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these results we can conclude that stripping a binary of everything but its strings will worsen the
performance of a fuzzy hasher.

6.4 Practicality

With these results, we have shown that, in a theoretical environment, fuzzy hashers (especially
TLSH) can perform very well in identifying the family of a binary. This framework was imple-
mented mainly in docker for managing dependencies and quickly running the image, MongoDB as
the NoSQL database which hosts the hashed samples and python for linking the applications with
hashing the binaries and predicting their families. In a HPC system, this can be implemented as
a pre routine before running a SLURM job, given an interface is built to fetch the binary in a
SLURM job. Since the login node has internet access, this implementation can communicate with
a database in the same network. On a home setup, with a server and client connected to a home
router with LAN] it took less than a second ( 0.3 seconds) to do fuzzy hash, and predict the family
of a sample, with an unoptimized script. We will not empiricaly show what the median time is for
a full search, because of the interference of other devices in the network and since this is not an
isolated environment.

The most barebone version requires only the fuzzy hashers and a lightweight python script for the

whole routine. We can see this as very practical to implement and add to current HPC systems
like Scicore or miniHPC. The only difficulty is retrieving the binary from a SLURM job.
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Chapter 7

Conclusion and Future Work

To summarize the results, TLSH is the overall winner and Machoke is the overall loser. HPC sys-
tems can use fuzzy hashers as a static tool to analyse malware and predict with high confidence
the right family of a binary. This solution is only relevant if future works include these findings
and progress on using fuzzy hashers. This tool alone in itself is not the final solution to the bigger
problem of knowing and understanding what runs on a HPC. It builds the fundamental work which
can be expanded not only to know and verify future jobs, but to eventually progress into preventing
executing of malicious, not intended or not allowed software.

The first problem which has to be solved in a future work is retrieving the main running binaries
(or scripts) from a SLURM job and fuzzy hash it. Currently, there is no solution to this problem
and SLURM jobs do not always give away which binary is the main one running. If, for example, a
SLURM job calls multiple bash scripts to prepare the work, one has to pinpoint the main running
application, before the jobs get executed. Doing it afterwards could help by gathering the data of
the longest running or most CPU intensive process. Still, if a malicious actor was involved, it would
have been too late.

The second problem is keeping the algorithm of retrieving the binary of a SLURM job and predict-
ing a family under the time requirement which Scicore or any other HPC will accept. For some
bigger binaries, it took more than 5 seconds of hashing alone. Exceptions can be created to ignore
these edge cases, but the risk either has to be accepted or mitigated.

The last problem to solve is using a combination of fuzzy hashers with the right weights to get
higher F1 scores. Future research should also look into using fuzzy hashers as features of a machine
learning model. TLSH and ssdeep specifically do have distinguishable differences in their hashing
ways which possibly could be used together to increase precision.

Ideally, fuzzy hashers like Machoke should be the most accurate in finding similarities, since the
binary gets disassembled and analyzed in its context. This is a research area which is not limited
to the HPC domain and more associated with the reverse engineering field. The current problem
in Machoke is, that only the call flow graph gets analyzed and not the function itslef. The call
flow gives decent insight into the architecture of an executable, if no packers are involved. Some
compilers, like MinGW, often add the same start call low which can be seen in some Machoke
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hashes. Removing this type of noise and improving the way binaries get compared (deeper than
just the call flow graph) could lead to helpful findings.

This research has opened multiple doors to further investigate the powers of fuzzy hashers and their
usage. We have shown that fuzzy hashers are not limited to the Cyber Security domain, but can
also be used in the HPC domain to solve a difficult task while still respecting the privacy of its
users.
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Appendix A

Machoke Scicore Plots
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Figure A.1: ROC curve for Scicore dataset with Machoke
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F1 Score for Machoke
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Figure A.2: F1 score for Scicore dataset with Machoke
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Edi Curve for Machoke
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Figure A.3: Edi curve for Scicore dataset with Machoke
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