
Dynamic Loop Self-scheduling with
Distributed Data for MPI Applications

Master Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

High Performance Parallel And Distributed Computing

https://hpc.dmi.unibas.ch

Advisor: Prof. Dr. Florina M. Ciorba

Supervisor: Jonas Henrique Müller Korndörfer

Nderim Shatri

nderim.shatri@stud.unibas.ch

HS16-062-234

31.08.2023

Acknowledgment

I am very grateful to have the opportunity to choose this path and to conclude my Mas-

ter’s studies as part of the HPC group at the University of Basel. I want to thank Prof.

Dr. Florina M. Ciorba for her advice, guidance throughout the project, and the input she

delivered. Always supportive and open to discussion, Prof. Dr. Florina M. Ciorba encour-

aged me throughout the Thesis. Also, I am grateful to have been supervised by Dr. Jonas

Henrique Muller Korndorfer, who was continuously available for help, advice, and feedback.

He was open to proposing a solution to issues, roadblocks, and bugs, even in the late hours.

Additionally, I want to thank Mr. Gian-Andrea Wetten, who introduced the prior work

of this Thesis. Furthermore, I want to thank my parents, Nazif and Safete Shatri, who

were permanently supportive throughout the Thesis. Always being ready to help indirectly,

they indeed encouraged me during this time. Last, I would like to thank my friends and

colleagues for their support and open ears, even though I had to cancel some events and

nights out.

Abstract

The development of supercomputers reaching exascale performance allowed computationally-

intensive applications to execute immense workloads. Most significant scientific applications

are executed in large HPC systems containing heterogeneous processors. They are ultimately

leading to uneven performance progress among the parallel processing elements. The im-

mense workloads are often affected by non-uniform memory accesses, algorithms, and idling

processors, which lead to an imbalanced execution affecting a scientific application’s perfor-

mance. Various self-scheduling techniques have been proposed and developed to mitigate

load imbalance and minimize scheduling overhead, as finding optimal schedules for parallel

execution is NP-hard.

Applications sharing the property of being implemented with distributed data tend to handle

the immense data required by dividing the data among processes. In most cases, commu-

nication among the processes is required, whereas scientists can benefit from the popular

programming paradigm Message Passing Interface(MPI). A further approach to tackle load

imbalance is work-stealing. In work-stealing, idling processes can be thieves who try to steal

the work and data from slower processes, referred to as victims. This involves communica-

tion, which reduces load imbalance significantly with minimal scheduling overhead.

A library that can be integrated into MPI applications implemented with distributed data

is the load balance for MPI(LB4MPI) library. In this work, we extended the work-stealing

algorithm in LB4MPI to employ dynamic self-scheduling techniques for MPI applications.

The work to be stolen relies on the scheduling technique used at a steal request. Further,

we adapted and extended the random victim selection by two additional victim selection

strategies, which bear the placement of the process into account.

The performance has been evaluated in four different applications, consisting of Pisolver,

Mandelbrot, SPH-EXA(Sedov), and miniAMR. In Pisolver, we achieved a significant per-

formance increase of up to 25.96%, depending on the configurable load imbalance factor. In

Mandelbrot, LB4MPI shows a communication overhead leading to a performance decrease

but can highlight the importance of having an immense workload to benefit the application’s

performance. The real scientific application SPH-EXA(Sedov) shows insignificant induced

communication overhead. The miniAMR helped to detect the limitations of LB4MPI, which

consists of extending the library by a work-borrowing method.

Table of Contents

Acknowledgment . ii

Abstract . iii

1 Introduction 1

2 Background 3

2.1 Scheduling . 3

2.2 Static Scheduling . 3

2.3 Dynamic Scheduling . 4

2.3.1 Self-scheduling (SS) . 4

2.3.2 Fixed Size Chunking(FSC) . 4

2.3.3 Guided Self-scheduling (GSS) . 4

2.3.4 Trapezoidal Self-scheduling (TSS) . 5

2.3.5 Factoring (FAC) . 5

2.3.6 Weighted Factoring (WF) . 5

2.3.7 Adaptive Self-scheduling . 6

2.4 Work-stealing . 6

2.4.1 Victim Selection . 6

2.4.2 LB4MPI . 7

3 Related Work 8

4 Methods 11

4.1 Implementation of Work stealing in LB4MPI 11

4.1.1 Scheduling techniques in LB4MPI . 11

4.1.2 Concept of Work stealing in LB4MPI 12

4.1.3 Coordinator . 13

4.1.3.1 Random victim selection . 14

4.1.3.2 Locality-Aware Work Stealing 15

4.1.3.3 Naive locality-aware Work stealing 16

4.1.4 Worker . 18

4.1.5 Data type handling in LB4MPI . 18

4.1.5.1 One-dimensional data type 18

4.1.5.2 Cubic data type . 19

4.1.6 Deserialization and Serialization . 20

Table of Contents v

4.2 Integration of LB4MPI . 21

4.2.1 Workflow of the integration . 21

4.2.2 Configuration . 22

4.2.3 Parameters . 23

4.2.4 Data setup . 23

4.2.5 Start loop . 24

4.2.6 Chunk calculation . 24

4.2.7 End loop . 25

5 Results 26

5.1 Design of the Experiments . 26

5.2 Pisolver . 27

5.2.1 Comparison of different workload imbalances 27

5.2.2 Performance evaluation . 28

5.2.3 Iterations stolen . 32

5.2.4 Steal attempts . 34

5.2.5 Coefficient of variance after LB4MPI 36

5.2.6 Send and receive time per chunk . 37

5.3 Mandelbrot . 38

5.3.1 Performance evaluation . 39

5.3.2 Iterations stolen . 39

5.3.3 Steal attempts . 40

5.3.4 Coefficient of variance after LB4MPI 41

5.4 SPH-EXA - Sedov . 42

5.4.1 Performance evaluation . 42

5.4.2 Iterations stolen . 43

5.4.3 Steal attempts . 44

5.4.4 Send and receive time per chunk . 45

5.5 miniAMR . 46

5.5.1 Performance evaluation . 47

5.5.2 Limitations . 47

6 Conclusion 49

7 Future work 51

Bibliography 52

Appendix A Appendix 55

A.1 Extended results Pisolver . 55

A.1.1 Comparison of varying workload imbalance 55

A.1.2 Results with 0% induced workload imbalance 56

A.1.3 Results with 20% induced workload imbalance 60

Table of Contents vi

A.1.4 Results with 30% induced work imbalance 64

A.1.5 Results with 40% induced workload imbalance 68

A.2 Extended results Mandelbrot . 72

A.3 Extended results SPH-EXA (Sedov) . 76

A.4 Extended results miniAMR . 80

1
Introduction

The demand for high-performing computer systems induced the development of supercom-

puters reaching exascale performance, allowing scientific parallel applications to conduct

data-intensive computations. Most large scientific applications scale up to many processes

where different factors may impact the implementation. Load imbalance, scheduling over-

heads, communication costs, and hardware inferences can negatively impact the performance

of those applications. Computationally-intensive applications having idling processors lead

to uneven execution, which can appear from facets of application, algorithm, and computer

systems[1, 2]. Efficient dynamic scheduling and load balancing can mitigate load imbalance.

Numerous scheduling techniques have been proposed over time[1, 3, 4], as finding optimal

schedules is NP-hard[5]. To minimize load imbalance and scheduling overhead, dynamic self-

scheduling addresses specific application- and system-induced performance deviations[6].

MPI[7] is a widely used parallel program paradigm to write parallel code by communication

across processors. With MPI, one can facilitate the communication of applications within a

distributed area but has to overcome the challenge of aligning a schedule.

Another approach to mitigate the negative factors in applications implemented with dis-

tributed data is the well-studied work-stealing algorithm by Blumofe et al[8]. Work stealing

allows more performant processes to take work from a less performant process by dynam-

ically communicating and receiving a fraction of the work and data. Hence, work stealing

is a dynamic load balance technique that follows a policy where whenever a processor runs

out of work, it tries to ”steal” work from another processor. The induced communication

cost should be lower than the remaining process execution time to be a beneficial load

balance technique. By incorporating a simple yet effective victim selection strategy, the

induced communication cost can be lower than the actual victim process would have taken.

A random victim selection has been proven as a computationally cheap calculation[8, 9].

Another aspect of work-stealing is the amount of data and work that will be stolen by a

process. A process might impact performance by stealing more work to induce a higher

execution time than originally needed by the victim process. Hence, an efficient work-

stealing algorithm depends on the induced communication cost, the amount of work and

data to be stolen, and the computation to select a victim. Furthermore, executing distributed

applications in high-scaled environments can cause degradations of balancing the loads in

Introduction 2

work-stealing[10]. Thus, the performance can increase when processes can steal within their

executing node.

LB4MPI[2, 11], Load Balancing for MPI, has been introduced to provide various dynamic

and adaptive scheduling techniques as a library to integrate into scientific applications.

Originally designed for applications with replicated data, a distributed approach to employ

work-stealing has been added[11]. The work-stealing algorithm follows a coordinator-worker

approach, using a random victim selection strategy. Each process is statically decomposed

to perform the application’s computation, whereas, at a steal, the work and data to be

stolen rely on a manually defined ”steal ratio”.

In this work, we extended the LB4MPI coordinator-worker approach work-stealing with

a new way to calculate the work that will be stolen by a worker. By benefitting from the

available scheduling techniques in LB4MPI, we introduced dependence on the self-scheduling

techniques in the calculated amount of work and data stolen. Furthermore, we provided

two additional victim selection strategies where a process might only steal from the same

node other processes execute. To benchmark the performance, we decided to integrate the

modified LB4MPI in four applications: Pisolver, SPH-Exa (Sedov)[12, 13], Mandelbrot, and

miniAMR[14].

In Pisolver, LB4MPI improved the performance by a factor ranging from 11.95% to 25.96%

depending on the input parameters. In Mandelbrot and SPH-Exa (Sedov), the integration

led to a higher induced communication cost which degraded the performance. However,

those applications highlight the importance of choosing a suitable application that needs to

be optimized in performance.

In the following sections, we provided the background on which the LB4MPI has been

developed. Furthermore, we will discuss the related work which tackles previous work in

dynamic self-scheduling techniques and work-stealing. Then, we will discuss the concept of

the merged work-stealing algorithm with dynamic self-scheduling techniques. Afterward, we

evaluated the performance in four different applications with distinct measurements. In the

last two sections, we summarized the project and gave inputs for future work.

2
Background

New methodologies to enhance the performance of different applications have been developed

and published over time. In the following, we present different variations of scheduling

techniques that are commonly used. Each has further adaptions and improvements for

either specific or generic problem sets used in different applications. Furthermore, a brief

overview of work-stealing and LB4MPI is given.

2.1 Scheduling
The data may be centralized, replicated, or distributed in a distributed system. A central-

ized data approach follows the policy that data is located in a single processor, and other

processors need to access the data by communicating with that location. A replicated data

approach states that during execution, each processor working on a problem has its local

replica of the data required. In a distributed data approach, the data is distributed among

nodes. With non-uniform memory access (NUMA) Multiprocessors, the need for an efficient

schedule is raised. The NUMA architecture states that each processor has local memory. In

addition, a CPU can access the memory remotely, which is significantly slower than access-

ing a processor’s local memory. Having data that lies in various processors requires data

movement among the processors. Hence, one must encounter several issues to achieve an

efficient schedule: memory access interference, random processor latencies, and others[3].

Scientific HPC applications solve a particular problem, e.g., Molecular Dynamics, which

requires scheduling for enhanced execution performance. The principal source of optimizing

execution time in parallel applications is loops. Loops may be regularly loaded or irregularly

by having, for instance, a sparse matrix multiplication. For this reason, many propositions

have emerged. We present static scheduling and dynamic scheduling methods in the follow-

ing.

2.2 Static Scheduling
Static Scheduling algorithms share the property that the loop is divided into equal-sized

chunks of data where iterations are executed in parallel per processing element. Such

Background 4

scheduling methods can be Block scheduling, cyclic scheduling, and a hybrid form of block-

cyclic scheduling[15]. As the name suggests, block scheduling divides the loop into blocks

or chunks of [N/P] iterations, where N is the number of iterations and P is the number of

processors. As we have multiple processors, each block is assigned to a processor. Cyclic

scheduling assigns loop iterations to processors in a cyclic order. Hence, Processor p will ex-

ecute the iterations p, p+P , p+2P , . . . , where P is the number of processors executing the

loop. The hybrid form, block-cyclic scheduling, assigns blocks of a fixed size to processors,

and if the block size shrinks to one, the execution will be cyclic scheduling. Static scheduling

is well-suited for regular workloads. However, static algorithms do not consider the variation

of execution time per iteration. This happens when computations do not require the same

time for a chunk. Load imbalance may occur due to data load, different processor speeds,

and communication time.

2.3 Dynamic Scheduling
Static scheduling methods and dynamic scheduling methods differ in the fact that static

scheduling is employed before the execution starts. On the contrary, dynamic scheduling

methods calculate their data chunks to allocate during execution time. Therefore, there is

a higher risk that communication overhead is critical to reducing execution time.

2.3.1 Self-scheduling (SS)
SS is partitioning the loops into subtasks containing one or more iterations [3]. Processors

allocate and execute one subtask at a time until no subtasks are left to process. Assigning

one task at a time provides an optimal load balance. Contrary, the overhead is significant, as

only one subtask is assigned. Fixed-size chunking is the procedure in which a subtask has a

fixed number of iterations. The chunk sizes are calculated dynamically to reduce scheduling

overhead as an improvement of SS. Problems occur with fine and coarse granularity of the

work and data. Fine granularity might lead to overhead, and contrary coarse granularity

might cause load imbalance.

2.3.2 Fixed Size Chunking(FSC)
FSC[16] improved the scheduling overhead of SS by scheduling chunks of a larger size.

Chunks are added to a queue from which idling processing elements can take their chunks

of iterations.

2.3.3 Guided Self-scheduling (GSS)
GSS [3]assigns several iterations to each processor. A parallel loop is supposed to be executed

on p processors. With the assumption that each processor p starts executing some iterations

of L at a different time, the goal is that processors finish at approximately the same time

by assigning blocks of iterations at idle processors. Additionally, an incoming processor p∗
should leave enough iterations to keep the remaining p−1 processors busy by sending several

Background 5

iterations xi to them. Thus, each idle processor pi operates: xi = [Ri/p]; Ri+1 = Ri–xi, and

the range of iterations assigned to the i−th processor is given by [N−Ri+1, . . . , N−Ri+xi],

where R1 = N and N is the total number of iterations. This leads to decreasing chunk sizes

over execution time. The process leads to low overhead and load balancing in most cases.

2.3.4 Trapezoidal Self-scheduling (TSS)
TSS[17] is based on a linearly decreasing chunk function which aims to remove the overhead

disadvantage of GSS. The chunks are calculated linearly by specifying the first chunk size

f and the last chunk l, where it is suggested to set f = N/2l while N the is the number of

chores and depends on the number of total iterationsI.

δ =
f − l

N − 1

N =
2I

f + l

C(1) = f

C(i) = f − (i− 1)δ (2.1)

2.3.5 Factoring (FAC)
Factoring has been proposed by [4] to mitigate the case in which GSS suffers from load

imbalances. This case might occur when allocating too many iterations in early chunks to

a processor that cannot finish the task by the time the other processors finish. Although

FAC is similar to GSS, the main difference is that iterations are scheduled in probabilistic

computed batches of P equal-size chunks. The total number of iterations per batch is a

fixed ratio of those remaining. The chunk sizes are then decreased with finishing batches.

bj =
P

2
√

Rj

σ

µ

xj = 2 + b2j + bj

√
b2j + 4, j > 0 (2.2)

As in 2.2 displayed, the chunk size xj depends on the total processors P , iterations remaining

Rj , and the coefficient of variance [σ/µ].

Depending on the variance of iterations, factoring degenerates into FSC when there is no

variance, and with significant variance, it degenerates to SS. Factoring is considered the

generalized version of FSC and GSS. However, probabilistic methods require knowledge

about the processes’ data and work distribution which is not always available.

2.3.6 Weighted Factoring (WF)
A modification of the factoring has been done by [18] and is an adaption to FAC. In GSS and

FAC, large chunks are assigned in the beginning to smooth the variance among processors

to achieve approximately the same finishing time. Contrary to FAC, WF has the rule

of thumb to assign half of the remaining work in early batches. This heuristic has been

evaluated experimentally. However, the main difference lies in including weights for different

Background 6

processor speeds. A fast processor eventually gets a larger batch to work on. The weights

are estimated by benchmarking the system a priori and stay constant during execution.

2.3.7 Adaptive Self-scheduling
All listed dynamic scheduling techniques above, SS, FSC, TSS, GSS, FAC, and WF are

non-adaptive. However, adaptive self-scheduling techniques attempt to reduce overhead

by adapting to the system’s performance. Among the adaptive self-scheduling techniques,

there exists a Bold strategy[19] where the first chunk is calculated on a bolder approach.

Chunk sizes are calculated based on the mean and standard deviation of the execution time,

as well as estimates of the scheduling overhead. Apart from the Bold strategy[19], many

proposed adaptive self-scheduling techniques were based on non-adaptive techniques. For

instance, the adaptive weighted factoring (AWF)[6, 20] has been introduced to consider

the cumulative performance during an application’s previous computations apart from the

weights in WF[18].

2.4 Work-stealing
Work stealing is the idea that underutilized processors attempt to “steal” work from working

processors. This concept has already been introduced by Blumofe et al.[8], where under-

worked adjacent processors can steal from the process tree. Later works have been in-

troduced, resulting in the popular approach: randomized work-stealing algorithm (RWS).

Each processor maintains a ready deque data structure of threads. The ready deque has two

ends, a top, and a bottom. This data structure allows threads to be inserted and removed

on either end. Generally, a processor gets work by removing the thread at the bottom of

its ready deque until it becomes empty. Then, the work-stealing can begin. A processor

becomes a thief and attempts to steal work from a victim processor. The victim processor

is chosen uniformly at random. If the victim processor has some work, the thief obtains the

ready deque from the victim and begins to work on the top thread. The thief starts a new

attempt if the victim processor has no work available.

As communications through processors are required, taking care of the communication over-

head is crucial. Such a possibility is when multiple thieves try to steal work from victim

processors. Another aspect that might be considerable is the amount of work that a thief

might steal. However, over time variations and extensions of the work-stealing methods

have been proposed [9, 11, 21].

2.4.1 Victim Selection
In work stealing, we define the processor who “steals” the work as the thief. The victim is the

processor chosen by the thief. In most earlier works, the victim has been chosen randomly.

However, taking the locality of a processor within a large HPC cluster might be beneficial

for performance, as systems might be highly distributed in their memory approach. How

to choose a victim processor is called victim selection. Another relevant aspect is the tasks

that will be stolen, meaning the workload of the victim.

Background 7

In a distributed memory environment, the processors employ a master-worker execution

model[9, 11]. A global processor is then responsible for orchestrating task distribution

among its workers. Considering the topologies and orchestrating work to processors with a

low communication rate is beneficial for load balancing.

Instead of choosing a victim uniform randomly [8], weight and priority assignments can be

done [22]. Each worker gets a priority to calculate a task, and larger priorities are assigned

to larger tasks. Based on the priority, a thief can steal a large dividable task instead of a

smaller task. Before a steal request starts, the workers are listed and chosen based on the

priorities [22]. Analogous is the approach of assigning weights to the worker. With this, the

thief sends only a steal request and can obtain larger tasks to work on.

The amount to steal from a victim is also crucial. Avoiding complex calculations from the

work amount, pragmatic ways are chosen. In classical work-stealing [8], only one task is

stolen at a time. However, there have been adaptions to take half of the tasks stolen from

idle workers [21]. Another approach is to calculate the total load of each processor and select

the victim with the highest workload.

2.4.2 LB4MPI
Load Balancing for(4) MPI is an MPI-based load balancing library that contains non-

adaptive and adaptive dynamic loop self-scheduling techniques. With implementations in

C and FORTRAN90, it is programmed to support scientific applications on HPC[2]. As

LB4MPI supports fourteen scheduling techniques, the tool can be used for various scientific

applications to encounter load balancing. Recent extensions initially supported load balanc-

ing through distributed work and data by a work-stealing algorithm[11]. The work-stealing

algorithm employs a coordinator-worker approach. By defining a coordinator who is respon-

sible for selecting a victim, a worker may send requests to steal work to the coordinator.

By relaying the steal requests to a possible victim, the victim sends the work directly to the

thief. At a steal, the amount of work to be stolen is relying on a static steal-ratio to steal

an amount of work.

In this work, we extended the LB4MPI by allowing a process to steal an amount based on a

self-scheduling technique. Furthermore, we extended and experimented with two new victim

selection strategies that consider the locality of a node.

3
Related Work

Various works have been proposed as applications implemented with distributed data are

arising due to memory limitations. Work-stealing has been a popular approach to engaging

in distributed HPC systems and balancing workloads.

One strategy has been proposed by Acar et al.[23] and introduced Locality-guided work steal-

ing. They studied the data locality of the work-stealing scheduling algorithm on hardware-

controlled shared-memory systems. By defining lower and upper bounds of cache misses

when using work-stealing, they introduced an adaption to the work-stealing algorithm. The

adaptions organize an affinity that a process can have for work obtained. Hence, at a steal,

the obtained work is prioritized to threads with an affinity for the work. Each process main-

tains a directed acyclic graph (dag) consisting of threads. Instead of working directly on

threads, the algorithm operates on individual nodes in the computation dag. Execution is

divided into time steps, such that a process either works on a node – assigned node - or

tries to steal work at each time iteration. Based on the locality of nodes, the working-steal

algorithm may perform relatively poorly. This can be when specific program applications

that access the same data are not close in the computational graph. These types of applica-

tions have been called iterative data-parallel applications. A heuristic modification has been

introduced as locality-guided work stealing to get a good locality for iterative data-parallel

applications. Each thread can be given an affinity for a process. When a process obtains

work, it prioritizes threads with an affinity for it. In addition to the deque, each process

maintains a mailbox constructed as a FIFO queue consisting of pointers to the process-affine

thread. There are then two differences between the locality-guided work-stealing and work-

stealing algorithms. First, a process will push the thread onto the deque and the tail of

the mailbox. In work-stealing, only the thread will be pushed onto the deque. Second, a

process will try to obtain work from its mailbox before attempting a steal. This requires

synchronization between the mailbox and deque, as threads might be there twice. So, the

thread is executed once. With this structure, data locality is considered, and they achieved

a performance increase of up to 50% under multiprocessors to traditional work-stealing

algorithms.

Hierarchical Work Stealing [9] is designed to tackle heavy communication-intensive appli-

cations on a distributed platform. They balance the load between the thief and the victim

Related Work 9

processor on the cluster level. This means a large amount of work can be stolen in a victim

cluster. Therefore, the HWS needs information about the platform, divided into some pro-

cessor groups connected with fast links. The restriction of processors that can steal from

another group is required to limit the risk of congestion between groups. A chosen processor

may send steal requests within a group and is considered the group’s leader. Therefore, tasks

are distributed by the group’s leader, which usually contains much work. The user gives a

limit by distinguishing tasks with a large amount of work. They can be global tasks that

can be stolen between groups. Local tasks belong to a single group. The leader executes

only global tasks, and they balance the load between groups and manage the load inside

their groups. Furthermore, leaders decide if the task will be executed on a local stack or in

a global task. The workers within a group execute only local tasks and perform the work-

stealing algorithm within their group. With this approach, they increased a performance

improvement of 20 percent of the execution time over standard algorithms used in a merge

sort.

Chen et al.[24]. consider work-stealing within the modern multi-socket CPU architectures

and overcome the issues of traditional work-stealing methods, which struggle with the ac-

cessibility of data from the fast local memory. Therefore, they implemented a locality-aware

work-stealing (LAWS) algorithm. The locality-awareness is aimed at reducing the memory

accesses in multi-socket CPU architectures. By having a load-balanced task allocator that

equally splits and stores the data of a program for all memory nodes. The task allocator is

also responsible for allocating tasks to sockets where the data is stored. After the allocation,

the tree-shaped tasks are put into an execution graph. Applying the Divide and Conquer

principle, the tasks are organized into cache-friendly sub-trees. This reduction of memory

accesses led to a performance increase of up to 54.2% in AMD-based platforms or 48.6% on

Intel-based platforms compared to classical work-stealing schedulers.

An evaluation on the eight thousand compute nodes scale has been done by [10]. They

investigated the communication latencies on work stealing with new metrics to highlight is-

sues in work-stealing algorithms executing on 8’192 MPI processes. They used deterministic

work stealing by choosing a victim in a round-robin fashion. Using the deterministic work-

stealing approach and comparing it with a modified version of the random work-stealing

method showed that communication latencies matter explicitly when choosing a victim from

a physical distance of the node. The modified version of random work stealing implies that

one thief steals half of the victim’s work because the thief has the remaining work when the

processor becomes a victim.

Drebes et al. [25] considered work pushing to optimize data locality for benchmarks with

asymmetric dependences. Work pushing is the transfer of tasks to workers executing on

NUMA nodes containing the tasks’ input data, which optimizes the read accesses. Combin-

ing topology awareness within the work-stealing algorithm could improve the performance

of benchmarks running on NUMA nodes.

The N-body problem has been stated in physics as the prediction of individual motions of a

group of masses interacting with each other by forces during time. N-body problems consist

computationally of irregular loops and irregular data, which induce, among other things,

load imbalance. Hence, Banicescu and Flynn[1, 26, 27] introduced Fractiling. Fractiling is

Related Work 10

the combination of Factoring and Tiling. Factoring is the process wherein the size for each

consecutive batch scheduled is half of the previous batch. Tiling is the process of assigning

processing elements to an area. Each subtile has then an iteration space, and work is

assigned in the form of decreasing batches. Work is allocated to tiles with fractal shuffled

row-major numbering to spread the work evenly. When a processing element finishes its

tiles, it can borrow loads from other slower processing elements and finish their tiles.

A dynamic load balancing and data migration library for performance improvement of sci-

entific applications on parallel and distributed computing systems has been developed by

[2] and is called the LB Migrate library. LB Migrate uses the coordinator-work execution

model. The master processor is responsible for assigning chunks of tasks to all the worker

processors. Furthermore, the master processor needs to track the execution performance of

the worker processors based on their task completion time. Then, the master processor can

distribute data from one worker to another whenever there is a computational load imbal-

ance. However, all processors execute work and ask the coordinator processor for more work

when nearly finished. The master processor decides, based on the information obtained, if

he gives his iterations or requests a slower worker to migrate tasks. The LB migrate has

various DLS techniques and can use only one technique at a time. With the recent exten-

sion of Wetten [11] of the LB4MPI library, it is possible to allow scheduling with distributed

data. His approach combines Work-Stealing based on a coordinator-worker method to allow

scheduling with distributed data. The victim selection strategy employed uses a random

victim selection. However, when a thief processor runs out of work, he can only obtain a

fixed work ratio. The fixed steal ratio is a static value decided by the user.

In this work, we provided a further extension to the LB4MPI library. The LB4MPI li-

brary allows balancing MPI applications implemented with a distributed data approach by

employing a work-stealing algorithm. The work-stealing algorithm is based on a coordinator-

worker approach where various dynamic scheduling techniques[2, 11] can be chosen. In this

approach, the coordinator handles incoming steal requests by choosing a victim. Further-

more, the steal amount of the data can be defined by the chunk calculation of the scheduling

technique. Last but not least, we introduced two new victim selection strategies. The first

is a locality-aware victim selection strategy where steal requests may only be in processes

executing within the same node by inducing intra-node communication. The second strat-

egy is a naive locality-aware approach where the coordinator chooses a victim based on the

coordinator’s guess that does not include induced communication.

4
Methods

4.1 Implementation of Work stealing in LB4MPI
This section presents the implementation of work stealing in LB4MPI. We will first show how

the framework applies the coordinator-worker approach by introducing our concept of work-

stealing. Then, we will dive into a more detailed insight into the roles of the coordinator

and workers. At the end of this chapter, we will give an overview of the workflow within

LB4MPI.

4.1.1 Scheduling techniques in LB4MPI
Applications can be implemented with replicated, centralized, or distributed data. Repli-

cated data refers to parallel processes having a copy of the original data in their memory.

Centralized data is the concept where one process keeps the data, whereas the data is ac-

cessed by other processes executing. Applications implemented with a distributed approach

follow the principle that data is partitioned for each process which allows to use of less

memory per process. Initially, the LB4MPI library provided various scheduling techniques

for applications using replicated data. With the recent extension, those scheduling tech-

niques have been adapted for applications implemented with distributed data. By giving a

parameter to the LB4MPI library, various techniques are deployed. Each process performs

a computation to calculate its chunks based on one of the techniques in the following table

4.1. The IDs of the scheduling techniques also correspond to the environment variable value

for the scheduling technique in LB4MPI.

Methods 12

LB4MPI SCHEDULING
Scheduling techniqe Abbreviation id
STATIC static 0
Self-scheduling SS 1
Fixed size chunking FSC 2
Modified FSC mFSC 3
Guided Self-scheduling GSS 4
Trapezoidal Self scheduling TSS 5
Factoring FAC 7
Weighted Factoring wFAC 8
Adaptive weighted Factoring AWF 9
Batch AWF AWF-B 10
Chunk AWF AWF-C 11
Batch AWF (chunk times) AWF-D 12
Chunk AWF (chunk times) AWF-E 13
Adaptive Factoring AF 14
Simulation Assisted SimAS 15

Table 4.1: Scheduling techniques in LB4MPI

4.1.2 Concept of Work stealing in LB4MPI
The idea of LB4MPI is to use the library as an API for applications that work with dis-

tributed data and work in a distributed environment. How the data is organized depends on

the application. Hence, LB4MPI cannot do data-partitioning of an application’s data. The

work-stealing in LB4MPI follows a coordinator-worker approach. The coordinator, usually

the rank with the ID 0, will handle steal requests from workers and forward those steal

requests to other workers. The worker might become either a thief or a victim.

The illustration in Figure 4.1 shows a successful and unsuccessful steal request in LB4MPI.

Initially, the data was equally distributed among the processes. The work itself is divided

into chunks that need to be calculated. Hence, the chunk sizes vary. Each process works

on its work and fulfills the calculation of an application. At the point where one process

finishes its work, it will try to ask for more work. The worker with rank ID 3 becomes a thief

and asks the coordinator for work by sending a STL-request. The coordinator relays the

STL-request to the worker with the rank ID 1. As the worker with the rank ID 1 is already

working on its last chunk of data, the worker with the rank ID 1 rejects the steal request

by sending a REJ-tag. After receiving the REJ-tag, the coordinator searches for another

possible victim. Hence, he relays the STL-tag to another worker. The worker will look at

the data and recognize that the work is unfinished. Accepting the STL-request makes the

worker a victim with the rank ID 2. The victim will send its next unstarted chunk of work

to the thief with the rank ID 3. The thief will obtain the work directly from the victim and

work on the data chunk.

With this basic concept, we can crystallize three roles with different responsibilities. The

coordinator is responsible for handling the steal requests and relaying the steal request to

a worker by applying a victim selection strategy. Therefore, the coordinator performs a

type of victim selection strategy. The worker might be a victim who either rejects the steal

request or calculates the next chunk to be sent to the thief. Hence, the victim is responsible

for calculating the next chunk sent to the thief. The thief sends the steal request after

Methods 13

finishing his work and must ensure receiving the complete data at a successful steal that

goes with the chunk.

Coordinator

Rank 0

b c da

Data and work

Worker

Rank 1

f g he

Data and work

Victim

Rank 2

j k li

Data and work

Thief

Rank 3

n o pm

Data and work

1. STL4. STL

2. STL

3. REJ

5. WRK

k

k

Figure 4.1: Work stealing in LB4MPI - rejecting steal request
and successful steal request: In green, we can see the data chunks
already calculated by the employed scheduling techniques. The work
currently being worked on in yellow and red shows the work that will
be sent.

4.1.3 Coordinator
The coordinator maintains a queue where incoming requests are tagged and inserted into

the queue. The tags might be of type STL Tag which indicates a steal request, a REJ Tag

which means a reject message obtained by a worker, or a TRM Tag which marks the end

of execution of a worker. Using a coordinator-worker approach, the coordinator cannot

steal to prevent deadlocks. As the coordinator is responsible for relaying the steal request

to the possible victim, it must follow a policy by choosing a victim. In LB4MPI, we have

three different approaches to selecting a victim. The first is the random victim selection,

the second is a locality-aware victim selection, and the last is a naive locality-aware victim

selection.

Methods 14

4.1.3.1 Random victim selection

To select a victim randomly in LB4MPI, we maintain a list of which possible victims might

be chosen from. The list in listing 4.1 is created and distributed among the workers so that

each worker obtains a list of the available victims.

1 info->availableVictim = (int *) malloc(sizeof(int) * info->lastRank);

2 for (worker = info->firstRank; worker <= info->lastRank; worker++) {

3 info->availableVictim[worker] = (worker != info->myRank);

4 }

Listing 4.1: Inizialization of list with available victims

At some point during the execution, the coordinator will receive a steal request by an

MPI Recv() as listed in 4.2. The tag might either be of the type STL TAG obtained by a

thief or REJ TAG received by a rejecting worker.

1 MPI_Recv(chunkInfo, 2, MPI_LONG, mStatus.MPI_SOURCE, STL_TAG, info->comm, &

tStatus);

2

3 // OR

4

5 MPI_Recv(chunkInfo, 2, MPI_LONG, mStatus.MPI_SOURCE, REJ_TAG, info->comm, &

tStatus);

Listing 4.2: Coordinator receives either STL Tag or REJ Tag

However, the resulting step in both tags is the same: the coordinator randomly chooses a

victim. In 4.3, the availableV ictim list has been trimmed to choose victims who might

be all other victims except for the coordinator or the thief. We can see in line 21 that the

method get random victim is called to choose the victim. The method get random victim

requires the sum of potential victims in get sum potential victims. Based on this sum, the

weights are added to the variable vis and looked if it fits the randomly chosen victimInd.

Ultimately, the victim is chosen, and the coordinator sends a steal request to the victim.

1 int get_sum_potential_victims(int *weights, int size) {

2 int sum = 0;

3 for (int i = 0; i < size-1; i++)

4 sum += weights[i];

5 return sum;

6 }

7

8 int get_random_victim(int *weights, int size) {

9 int sum = get_sum_potential_victims(weights, size);

10 int victimInd = rand() % sum + 1;

11 int victim = 0;

12 int vis = 0;

13 while (1) {

14 vis += weights[victim];

15 if (vis == victimInd)

16 break;

17 victim++;

18 }

Methods 15

19 return victim;

20 }

21 victim = get_random_victim(info->availableVictim, info->lastRank);

22 MPI_Send(chunkInfo, 1, MPI_LONG, victim, STL_TAG, info->comm);

Listing 4.3: Random victim selection in LB4MPI

4.1.3.2 Locality-Aware Work Stealing

Although random victim selection has been shown in [8] as a reasonable way of selecting

a victim, we extended our library with a further approach. Locality-aware work stealing

follows the idea that processes executing on nodes in a wide-ranged HPC system are limited

to stealing only within the node. Intra-node communication is faster than inter-node com-

munication due to a node’s hardware. As multiple processes can be executed within a node,

we try to reduce the work-stealing’s communication latencies by allowing processes to steal

only within a node containing multiple processes. However, in distributed MPI applications,

we have the drawback that information between processes is not set by default. This means

that a coordinator cannot know where the workers are executing. So, the coordinator needs

to be informed and needs to store the locality of a process to perform the victim selection.

This approach involves communication so that a process can inform the coordinator which

node it executes. Assuming that each node of an HPC system has a unique name, we bene-

fitted from the MPI function of MPI Get processor name. This will return the node name

where a rank is executing. The code issuing the communication of the node names is listed

in 4.4. The workers know the node they are executing by getting the processor name. Then,

they need to inform the coordinator where they are executing by sending their node name

to the coordinator. The coordinator maintains a list of the node names where the indices

represent the rank ID of the worker.

1 MPI_Get_processor_name(info->node_name, &name_len);

2 if (info->comm == MPI_COMM_NULL){

3 MPI_Send(info->node_name, NODENAMESIZE, MPI_CHAR, 0, 0, MPI_COMM_WORLD

);

4 } else {

5 for (int i = 1; i < info->commSize; i++) {

6 char nodename[50];

7 MPI_Recv(nodename, NODENAMESIZE, MPI_CHAR, i, 0, MPI_COMM_WORLD, &

tStatus);

8 strcpy(info->all_node_names[i], nodename);

9 }

10 }

Listing 4.4: Coordinator receives the node name and worker send

the node name

So, the list is now stored on the coordinator’s side and contains all information of processes

executing in the nodes. By mapping the thief’s node name, the coordinator knows then

where the processes are executing. Based on the list, the coordinator randomly chooses a

Methods 16

victim operating on the same node as the thief. The function to map is represented in the

listing 4.5

1 long get_same_nodes(infoDLS *info, long* same_node_ranks, MPI_Status mStatus)

{

2 long same_node_count = 0;

3 // Loop to map the node names to the thief where his id is stored in

mStatus.MPI_SOURCE

4 for (int i = 0; i < info->commSize; ++i) {

5 if (strcmp(info->all_node_names[mStatus.MPI_SOURCE], info->

all_node_names[i]) == 0 && i != mStatus.MPI_SOURCE) {

6 same_node_ranks[same_node_count++] = i;

7 }

8 }

9 return same_node_count

10 }

11 // same_node_ranks contains now the ids of the available processes in the node

of thief

12 victim = (long) same_node_ranks[rand() % same_node_count];

Listing 4.5: Coordinator maps the list containing the node names

to same ranks as the thief and returns the list

We use only one coordinator responsible for handling steal requests, so the cross-node com-

munication latencies cannot be avoided entirely. However, through this approach, we aimed

to reduce the possible latencies in sending data and work from the victim to the thief.

Due to hardware restrictions, inter-node communication is less performant than intra-node

communication. Hence, we assumed that sending data within a node might reduce the

communication time performing a process-to-process data transfer.

4.1.3.3 Naive locality-aware Work stealing

As locality-aware work stealing needs additional communication and, therefore, additional

time to communicate, we included an instead naive way to perform locality-aware work

stealing. So, to reduce this communication latency and take care not to involve heavy

computations to select a victim, we adapted the random victim selection in the following

way: Under the assumption that an HPC system employs a space-filling-curve (SFC) [28],

such that it follows a linear order that processes are executing. The communication size is

the sole known condition by every process. Hence, the coordinator has no prior knowledge

about the environment in which the program is executing. A coordinator will estimate which

node a worker is executing on at an incoming steal request. By getting the rank ID of the

thief, the coordinator will choose among half of the processes to select a victim randomly.

We let the coordinator divide the communication group size by two, as this will work in

a small execution containing two processes per node. Hence, dividing the communication

group size by two will lead to a margin containing half of the processes.

An example of a possible execution can be seen in 4.2. We can see an application executing

on four nodes with six processes each. This yields 24 processes that an application uses. So,

the sole number that is known by all processes, including the coordinator, is the group size

Methods 17

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18 19 20

21 22 23

Node 1 Node 2

Node 3 Node 4

= processes STL-Tag = possible victims

STL-Tag

WRK-Tag

Figure 4.2: Example of Naive locality-aware work stealing:
The dotted arrows represent the possible successful steal request from
the coordinator to the victim.

of 24 in this case. Consider a steal request from the process with the rank ID 12. It will

communicate to the coordinator with the rank ID 0 that it requests work. The coordinator

must estimate based on the rank ID 12 on which node it executes. As the coordinator knows

the group size of the communicator, he will do the following: The coordinator will divide the

group size by 2, yielding size/2 and, in this example, 14. If the size/2 exceeds the rank ID

14, it will fill its possible victim list with values up until size. As this might not get all the

possible victims, the coordinator will fill the remaining list with values lower than the rank

ID 14 until the list contains size/2 elements. Otherwise, the coordinator will fill the list with

values lower than the rank ID received. As this also does not get all the possible victims,

the coordinator will fill the remaining list with values higher than the rank ID 14 until the

list contains size/2 elements. In this case, the coordinator creates a list of possible victims

containing these values: list = [15, 16, 17, 18, 19, 20, 21, 22, 23, 13, 12, 11]. Among this list,

the coordinator chooses a victim randomly to select by chance a victim that is running on

the same node.

The estimation relies solely on the rank ID and the MPI Comm size, which determines

the group size of a communicator. As we are always taking half of the group size of a

communicator, a coordinator might choose a victim that operates on the same node as the

thief. Furthermore, this yields a wide margin by using half of the group size. However,

the margin can be set finer by using a higher number to divide the MPI Comm size In

a distributed system without communication, gathering all the executing nodes for one

process is inconceivable with MPI. Hence, we extended to have a hybrid version between

the random victim selection strategy and the locality-aware work stealing that does not

involve communication and a loaded computation.

Methods 18

4.1.4 Worker
Each worker might become a thief who requests data from the coordinator. On the other

hand, each worker might also become a victim who either rejects the steal request or accepts

it and sends its next chunk to the thief. How much data a worker should send and receive

is based on the chunk calculation based on the scheduling techniques employed in LB4MPI.

Thus, the amount of data to steal or to send depends on the outcome of the scheduling

technique used during execution. How the data is sent and received is an essential task that

the thief and the victim must overcome.

4.1.5 Data type handling in LB4MPI
HPC applications vary in operating data types to perform calculations. LB4MPI is not

directly operating on the data and is not intended to pursue data modifications. However,

LB4MPI takes the pointers to the data to communicate them to the processors. Further-

more, it sets the indices of the computation that an application is performing. Nevertheless,

it should be able to be integrated with various data structures, such as one-dimensional

arrays, cubic arrays, and complex objects.

4.1.5.1 One-dimensional data type

Assuming an application uses a one-dimensional array with the primitive data type long

where each index of the array represents a different workload. LB4MPI employs a scheduling

technique responsible for creating chunks of the array and returning the calculated indices

of the array to the application. At a steal request, this is straightforward. The victim will

first calculate the chunk to send. Then, it will communicate the chunk to the thief using a

call with MPI Send. As listed in 4.6, we can see the communication made by the victim.

Alongside the WRK TAG, the variable to steal and the variable info → data.array are

sent. The variable info → data.array represents a pointer pointing to the data, and to steal

contains the chunk size calculated by the employed scheduling technique.

1 MPI_Send(info->data.array, to_steal, info->data.oldtype, chunkInfo[0],

2 WRK_TAG, info->crew);

Listing 4.6: Victim sends chunk to the thief

The thief will wait for the blocking to send and receive the chunk calculated in the following

way (4.7). Obtaining the WRK TAG, the thief might continue on this newly received data.

1 MPI_Recv(info->data.array, number_amount, info->data.oldtype, mStatus.

MPI_SOURCE, WRK_TAG,

2 info->crew, &tStatus);

Listing 4.7: Thief receives chunk of data from the victim

Methods 19

4.1.5.2 Cubic data type

Such a cubic array, sending a more complex data type, is more complicated to achieve with

MPI. Let us consider a cubic data array as in 4.3.

= calculated chunk to send

x y

z

Figure 4.3: Chunk to send to the thief in a cube

To send this chunk with MPI, we need the following: First, we need to know how large the

data is in the dimensions x, y, and z, which are obtained by the application and parsed to

LB4MPI. Secondly, MPI provides a method named MPI Type create subarray(). Essen-

tially, this method will create a new derived MPI Datatype that knows how the cube is

structured by providing the dimensions. Then, we must commit this newly created datatype

and prepare it to send. By performing the computation on the x-dimension, we will always

send a cube slice as listed in 4.8.

1 void set_cubic_DataType(infoDLS *info, int chunk_size) {

2 int sizes[3] = {chunk_size, info->cubic_data.dim_y, info->cubic_data.dim_z

};

3 int subsizes[3] = {chunk_size, info->cubic_data.dim_y, info->cubic_data.

dim_z};

4 int starts[3] = {0, 0, 0};

5 MPI_Type_create_subarray(3, sizes, subsizes, starts, MPI_ORDER_C, info->

cubic_data.oldtype, &info->cubic_data.newtype);

6 MPI_Type_commit(&(info->cubic_data.newtype));

7 }

8

9 set_cubic_DataType(info, to_steal);

Listing 4.8: Preparing a cubic slice by creating a new data type

We parse the cubic array’s first index to send and receive the pointer pointing to the array.

The newly created MPI Datatype is then responsible for setting the correct indexes.

1 // Victim side

2 set_cubic_DataType(info, to_steal);

3 MPI_Send(&(info->cubic_data.cubic_array[0][0][0]), 1, info->cubic_data.newtype

, chunkInfo[0], WRK_TAG, info->crew);

4 // Thief side

5 set_cubic_DataType(info, to_steal);

6 MPI_Recv(&(info->cubic_data.cubic_array[0][0][0]), 1, info->cubic_data.newtype

, mStatus.MPI_SOURCE, WRK_TAG,

7 info->crew, &tStatus);

Listing 4.9: Three-dimensional send and receive

Methods 20

With this approach, we managed to send and receive a slice of a cubic data structure.

However, this depends on the application because the cubic data needs to be contiguous

in space. Having a sparse cube, unpredicted behavior might happen. Hence, we have the

concept of serialization and deserialization.

4.1.6 Deserialization and Serialization
As LB4MPI is written in the programming language C and, unlike C++, C does not provide

objects. Therefore, serialization on the application side is needed before using LB4MPI. By

creating function pointers that can be parsed to LB4MPI, we can indirectly influence the

behavior in the application and perform work stealing on the serialized task. For instance, let

us look at a C ++ object called Node which the application used to perform computations.

First, we need to create a serialization function that takes the Node and returns a string

with the help of the ostringstream and archive from boost(4.10.

1 std::string serializeNode(const Node &t) {

2 // creates a string stream ss

3 std::ostringstream ss;

4 // boost to serialize string stream ss

5 boost::archive::text_oarchive oa{ss};

6 oa << t;

7 return ss.str();

8 }

Listing 4.10: Serialization on the application

Second, we create a function pointer on the application side that can be parsed to LB4MPI.

1 void dMap(void* in, int start, int end, MPI_Datatype* out_type,void** out, int

* len) {

2 Node *t = static_cast<Node *>(in);

3 std::string ts= serializeNode(*t);

4 *out_type = MPI_BYTE;

5 std::string *out_str = new std::string(std::move(ts));

6 *out = static_cast<void*>(const_cast<char*>(out_str->data()));

7 *len = out_str->size();

8 }

Listing 4.11: Function pointer for serialization on the application

Third, we create the counterparts, which include the deserialization and the function pointer

to call later on the deserialization, as illustrated in listing 4.12.

1 Node deserializeNode(const std::string &in) {

2 // input will be streamed in ss

3 std::istringstream ss(in);

4 // input will be deserialized through boost

5 boost::archive::text_iarchive ia{ss};

6 Task obj;

7 ia >> obj;

8 return obj;

9 }

Methods 21

10

11 void nMap(void* in, int start, int end, MPI_Datatype* out_type, void** out,

int* len) {

12 const std::string tstring(static_cast<char*>(in),*len);

13 Node a = deserializeNode(tstring);

14 }

Listing 4.12: Deserialization on the application

In listing 4.11 and 4.12, we encounter dMap and nMap. These function pointers can be

parsed to DLS Data Setup, which sets the data for LB4MPI.

1 void (*ser_pointer)(void*, int, int, MPI_Datatype*, void**, int*) = &dMap;

2 void (*deser_pointer)(void*, int, int, MPI_Datatype*, void**, int*) = &nMap;

3 DLS_DataSetup (&iInfo, reinterpret_cast<void*>(&nodeList[0]), NULL, MPI_BYTE,

ser_pointer, deser_pointer);

Listing 4.13: Calling LB4MPI function DLS DataSetup

Later, the victim calls the function pointer to serialize the data at a successful steal request.

This serialization call will then serialize the chunk calculated to steal. On the other hand,

the thief will receive the serialized data but needs to deserialize it such that the thief works

then on the stolen chunk.

4.2 Integration of LB4MPI
LB4MPI is designed to benefit distributed applications by allowing work stealing for various

data types. In this section, we will go through the workflow of LB4MPI, which finally leads

to successful integration in the application.

4.2.1 Workflow of the integration
In 4.4, we can see the integration workflow an application needs to use LB4MPI successfully.

Starting on the application side, the factor data will come into play instantly. Depending

on the data, one must ensure that the data might need serialization for the library written

in C. However, the first call to LB4MPI is DLS Parameters Setup which requires var-

ious parameters that the library needs. Then, a decision must be made if the data has

a three-dimensional form or belongs to a one-dimensional array of a primitive data type,

leading to choosing either DLS CubicDataSetup or DLS DataSetup. As LB4MPI aims

to be wrapped around heavy-loaded code blocks in the application, the DLS StartLoop

will initiate the scheduling right before the while loop. After that, the DLS StartChunk

is responsible for the work-stealing algorithm and chunking of the data. At a success-

ful steal, GetChunkSizeWS is called within the library. Both latter calls are needed

to send the newly indexed chunk back to the application where the computation occurs.

DLS EndChunk signalizes the LB4MPI that the Chunk has been finished. As the integra-

tion happens during a continuous while loop, a check is needed if there is further data to

work on. Hence, DLS Terminated? will check if processes work on the data. Last but not

Methods 22

least, DLS Endloop is called, and LB4MPI will finish its scheduling and check if results

need to be printed based on the user’s input.

Serialize Input

DLS_Parameters_
Setup

DLS_CubicDataSetup DLS_DataSetup

DLS_StartLoop

DLS_StartChunk

DLS_EndChunk

GetChunkSizeWS

DLS_EndLoopDLS_Terminated?

cubic_data?

no

yes

Print results

Application's
computation

yes no

Application owner's input

optional in LB4MPI

call within LB4MPI

call to LB4MPI

Figure 4.4: Implementation workflow of LB4MPI

4.2.2 Configuration
An important aspect of our work is to make LB4MPI highly configurable. We added dif-

ferent environment variables by allowing various scheduling techniques and victim selec-

tion strategies. In table 4.2, we can see the possible environment variables that can be

parsed to LB4MPI. For instance, in the variable LB4MPI ITERATIONS INFO, we pro-

vided the possibility to print data gathered during the execution, including the number of

iterations completed and chunk sizes scheduled per process and per total execution. As

various print statements can affect the performance of LB4MPI, the environment variable

LB4MPI ITERATIONS INFO is mutable.

Methods 23

Configuration of the environment variables
Environment variable Value Description
LB4MPI STEAL RATIO 0-100 Fraction of the workload that is going to be stolen
LB4MPI SCHEDULING 0-14 Sets the DLS (Static, SS, FSC, mFSC, GSS..)
LB4MPI WS SCHEDULING 0-14 Steal amount calculated on DLS
LB4MPI LAWS 0, 1 Activates locality-aware work stealing
LB4MPI nLAWS 0, 1 Activates naive locality-aware work stealing
LB4MPI ITERATIONS INFO 0, 1 Activates the possible .csv output files
LB4MPI DIR ID string Sets the name of the output directory

Table 4.2: Environment variables to set up different possibilities
in LB4MPI

4.2.3 Parameters
We provide a library with various options that require different input from the application.

In listing 4.14, we can see input parameters DLS Parameters Setup requires. The cus-

tomized struct infoDLS will be set according to the parsed parameters where they can set

the adaptive scheduling techniques, providing that work stealing should be enabled and the

wished output name. By setting all the parameters, we gather the general conditions to use

LB4MPI.

1 void DLS_Parameters_Setup(MPI_Comm icomm, infoDLS *info, int numProcs, int

requestWhen, int breakAfter, int minChunk, double h_overhead, double sigma

, int nKNL, double Xeon_speed, double KNL_speed, int workStealing, char *
info_name)

Listing 4.14: DLS Parameters Setup

4.2.4 Data setup
LB4MPI is capable of dealing with one-dimensional and three-dimensional data of primitives.

The one-dimensional case includes serialized objects when they have been transformed to

a char array. Hence, the DLS DataSetup will set up the struct DataElement with the

function pointers shown in listing 4.11. The DataElement is part of the struct of infoDLS,

which provides the library with all information.

1 void DLS_DataSetup(infoDLS *info, void *data, void *results, MPI_Datatype

oldtype, fMapPtr dMap, fMapPtr nMap) {

2 DataElement dt;

3 dt.array = data;

4 dt.oldtype = oldtype;

5 dt.DLS_IterMap = dMap;

6 dt.DLS_DeSer = nMap;

7 dt.results = results;

8 info->data = dt;

9 info->n_dim = 0;

Listing 4.15: DLS Parameters Setup

Methods 24

Similarly to the one-dimensional in 4.15 case, the cubic data array needs a setup 4.16.

However, additional information, such as the dimensions, is needed to initialize the new

data type.

1 void DLS_DataSetup_Cubic(infoDLS *info, double ***data, MPI_Datatype oldtype,

int dim_x, int dim_y, int dim_z) {

2 CubicDataElement cdt;

3 cdt.cubic_array = data;

4 cdt.dim_x = dim_x;

5 cdt.dim_y = dim_y;

6 cdt.dim_z = dim_z;

7 cdt.oldtype = oldtype;

8 info->cubic_data = cdt;

Listing 4.16: DLS Parameters Setup

4.2.5 Start loop
After initializing the required data, the DLS StartLoop is called. Here, the first and last

iteration indices are given to let the library know how many iterations need to be scheduled.

It is also possible to give the requested scheduling technique if it has originally not been

passed over the environment variable. Furthermore, it sets the various environment variables

or provides default values if some variables are not defined. Then, the DLS StartLoop

continues to set up the initial chunk sizes for every process involved. As the name suggests,

this function is called at the beginning of the loop.

4.2.6 Chunk calculation
Within the loop, the DLS ChunkCalculationWS should be called. The work-stealing

algorithm operates from this method. This will ultimately set the start and end indices

of the chunks to calculate and return to the application. As listed in 4.17, the processes

probe with MPI IProbe() for messages within their message queue. The coordinator looks

for the three tags: STL-, REJ-, and TRM -tag. If there is a STL-tag or a REJ-tag, the

coordinator chooses a victim by the victim selection strategy. Otherwise, the coordinator

receives a TRM -tag to be informed that a process has finished all the iterations. The worker

checks for STL- and WRK-tags. If the worker receives a STL-tag from the coordinator,

the worker checks if it has remaining work. Then, it either sends a REJ-tag back to the

coordinator or accepts the STL-tag and sends its work to the requesting worker. Otherwise,

a worker can receive a WRK-tag which shows that a steal request has been successful and

work will be obtained.

1 MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, info->crew, &MsgInQueue, &mStatus);

2 while (MsgInQueue) {

3 if worker {

4 case (STL_TAG):

5 if remaining_work {

6 send_work();

7 } else {

Methods 25

8 // Reject Steal request

9 send_rej();

10 }

11 case (WRK_TAG):

12 receive_work();

13 case (TRM_TAG):

14 // finished all iterations, no work left

15 return;

16 } else { // Coordinator

17 case REJ_TAG:

18 // relay STL_Tag to new victim

19 select_new_victim_by_strategy()

20 case STL_TAG:

21 // relay STL_Tag to victim

22 select_victim_by_strategy()

23 case TRM_TAG:

24 return;

25 }

26 }

Listing 4.17: DLS ChunkCalculationWS - Pseudo Code

4.2.7 End loop
When all iterations are scheduled and the computation of the parallelized loop is finished,

the execution of LB4MPI ends. At this point, information about the performance of the

total execution is obtained. So, the application is then decoupled from the use of LB4MPI.

5
Results

The following will present the results obtained by integrating LB4MPI into the four applica-

tions, Pisolver, Mandelbrot, MiniAMR[14], and SPH-Exa (Sedov)[12]. All the experiments

have been executed on the miniHPC[29] of the University of Basel. The mini HPC system

contains 22 computing nodes of Intel Xeon E5-2640 nodes on which the experiments were

executed.

5.1 Design of the Experiments
The experiments have been designed according to the table 5.1. We executed each appli-

cation with 10 scheduling techniques consisting of seven non-adaptive dynamic scheduling

techniques and three static ones with a fixed steal ratio. The ten scheduling techniques

have used the three introduced victim selection strategies, random work-stealing naive- and

locality-aware work-stealing. Each experiment was executed 5 times and led to a total of

1′050 experiments performed. Due to the possibility of configuring the workload imbalance,

Pisolver has been chosen. Mandelbrot has been selected to perform the experiments as this

is a workload-imbalanced application. Furthermore, SPH-EXA (Sedov)[12] is a real-used

scientific application for smoothed particle hydrodynamics. Finally, miniAMR[14] has been

chosen, as it is a significant MPI application executable in a large distributed environment.

Having various applications leads to building and adapting the LB4MPI to a generic envi-

ronment for multiple datatypes.
Table 5.1: Design of the experiments

Factors Values Properties

Applications
Process-level parallelism

Mandelbrot (distributed) N = 1,048,576,144 — T = 1500 — Total loops = 3 — Modified loops = 3

Pisolver N = 2,000,000 — T = 150 —Total loops = 2 — Modified loops = 1

SPH-EXA Sedov N = 216,000,000 — T = 100 — Total loops = 16 — Modified loops = 1

miniAMR N = 110,080 — T = 200 — Total loops = 2 — Modified loops = 1

Process-level Scheduling

LB4MPI-RWS
rws static Randomized work stealing and chunk calculation is based upon a steal ratio

rws ss, rws FSC, rws mFSC, rws tss, rws gss, rws fac, rws wf Randomized work stealing and chunk calculation is based on dynamic and non-adaptive self-scheduling technique

LB4MPI-LAWS
laws static Locality aware work stealing and chunk calculation is based upon a steal ratio

laws ss, laws FSC, laws mFSC, laws tss, laws gss, laws fac, laws wf Locality aware work stealing and chunk calculation is based on dynamic and non-adaptive self-scheduling technique

LB4MPI-nLAWS
nlaws static Naive locality aware work stealing and chunk calculation is based upon a steal ratio

nlaws ss, nlaws FSC, nlaws mFSC, nlaws tss, nlaws gss, nlaws fac, nlaws wf Naive locality aware work stealing and chunk calculation is based on dynamic and non-adaptive self-scheduling technique

Steal Ratio 25%,35%,50% Percentage to steal from the remaining iterations on the victim thread for rws static

Computing nodes

miniHPC-KNL
Intel(R) Xeon Phi(TM) CPU 7210 (1 socket, 64 cores)

P=64 cores without hyperthreading, Pinning: OMP PLACES=cores OMP PROC BIND=close

miniHPC-Xeon
Intel Broadwell E5-2640 v4 (2 sockets, 10 cores each)

P=20 cores without hyperthreading, Pinning: OMP PLACES=cores OMP PROC BIND=close

miniHPC-Cascade Lake
Intel Xeon Gold 6258R (2 sockets, 28 cores each)

P=56 cores without hyperthreading, Pinning: OMP PLACES=cores OMP PROC BIND=close

Metrics

TPar Parallel execution time of the loops

LIB Work load imbalance

NSteal Number of successful stealing operations

Results 27

5.2 Pisolver
Pisolver is a C/C++ implementation of parallel workloads in an MPI environment for

message exchange with blocking or non-blocking pairwise and collective operations on a

Cartesian grid topology. It intends to test the performance of distributed memory parallel

applications. Initially, it followed a distribution with replicated data, which was changed to

a version that uses distributed data. It is a suitable test benchmark, as we can parse the

initial workload with a workload imbalance parameter in percentage. The algorithm gen-

erates random numbers up to the given workload while considering the maximum possible

given workload imbalance. Based on the configured imbalanced workload Pisolver achieves

an imbalanced workload during execution. The input data is generated during execution,

resulting in a one-dimensional array consisting of the datatype long. During the execution,

it will take the workload and perform the computations where LB4MPI can dynamically

schedule the distributed data with the work-stealing algorithm. The experiments have been

executed with an input imbalanced workload of 0%, 20%, 30%, and 40% while the long

array contained up to 680′000 iterations as a workload. Additionally, the environment was

set to have ten nodes containing each 20 processes.

5.2.1 Comparison of different workload imbalances
By comparing the configured workload imbalance in Pisolver, we can see that with an

increasing percentage, the application’s parallel execution time increased. Thus, we expected

that a higher workload imbalance would mean a longer execution time for the application.

As shown in figure 5.1, an increasing workload in Pisolver is followed by a longer parallel

execution time per rank. Furthermore, we can see the employed scheduling techniques

during the experiments. The best-performing scheduling technique is the static division

with a fixed steal-ratio of 50%. On the other hand, a static execution without LB4MPI

leads to the worst performance. In the following subsections, we dive into the details of the

executions with the different workload imbalances.

Results 28

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

100

200

300

400

500

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)
Configured workload imbalance

0 %
20 %
30 %
40 %

Figure 5.1: Comparison of the parallel execution time about
the scheduling techniques used and categorized by the dif-
ferent input workload imbalance: In the x-axis, we can see all
the scheduling techniques employed during execution. The y-axis cor-
responds to the parallel execution time in seconds. Furthermore, the
plot is categorized by the configured workload imbalance of 0%, 20%,
30%, and 40%.

5.2.2 Performance evaluation
Following the last section, we analyzed how Pisolver performed with different workload

imbalances. First, the performance is compared with 0% and 20% workload imbalance and

then with 30% and 40% load imbalance.

In figure 5.2a, the experiments executed with no LB4MPI are similar to those achieved with

LB4MPI. All the scheduling techniques seem to perform equivalently in their execution with

a maximal difference in the performance of 5.55%. The parallel execution time is in the range

of 200s for every scheduling technique.

Comparing the results in 5.2b, we can notice that the employed scheduling techniques

performed better than the application without LB4MPI. The performance increase of the

LB4MPI lies between 11.95% to 25.96%. The differences in the victim selection strategy

seem to make a significant difference in performance. However, the employed locality-aware

and naive locality-aware victim selection strategies do not induce communication overhead

to the experiment. Among the scheduling techniques employed, the rws STATIC50 is

performing the best.

The experiments performed with a workload imbalance of 30%, respectively of 40%, are

shown in figure 5.3. In both, the integrated LB4MPI library leads to increased performance.

However, by comparing the performance ranges relative to the execution without LB4MPI,

we can see an increased performance range of 17.05% to 33.61%. for a workload imbalance of

30%, respectively a range of 7.02% to 28.22% with a workload imbalance of 40%. Again, the

rws STATIC50 outperformed the employed scheduling techniques. Furthermore, the com-

Results 29

munication overhead of the victim selection strategies seems not to lead to communication

overhead.

In both figures 5.2 and 5.3, the static scheduling with an input steal ratio of 25%, 35%, and

50% outperform the dynamic scheduling technique in the distributed version of Pisolver.

The input steal ratio parameter of 50% performs better than the steal ratios with 25% and

35%.

Results 30

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

50

100

150

200

250

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

1.2277%

0.9643%

0.8512%

1.1646%

1.1742%

1.1584%

1.1140%

5.5469%

0.8638%

0.9536%

0.8919%

0.9816%

0.9152%

1.1859%

1.1705%

1.1598%

1.1746%

0.9734%

0.8812%

1.0030%

0.8634%

0.9627%

0.8453%

1.1847%

1.1502%

1.1439%

1.1200%

0.9070%

0.8629%

1.0562%

0.0000%

(a) Pisolver with 0% workload imbalance

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

50

100

150

200

250

300

350

400

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

-11.8952%

-11.6514%

-11.9466%

-11.5132% -20.3702%

-23.0126%

-25.2809%

-11.9117%

-11.9004%

-11.7294%

-11.8894%

-11.6448%

-11.8628%

-11.4900% -20.3558%

-22.9384%

-25.2546%

-11.8871%

-11.8763%

-11.7412%

-11.8728%

-11.5232%

-11.9343%

-11.4116% -20.2209%

-22.7400%

-25.9575%

-11.8883%

-11.8744%

-11.7264%

0.0000%

(b) Pisolver with 20% workload imbalance

Figure 5.2: Pisolver executed with 0% and 20% workload im-
balance: On the x-axes, we show the employed scheduling tech-
niques, whereas on the y-axes, the parallel loop execution time is
shown. Furthermore, the black color represents the results of the
static execution without LB4MPI. The red bar illustrates the worst-
performing dynamic scheduling technique. The green bar represents
the best-performing scheduling technique. The black labels above the
bars are the percentage differences from the static version without
LB4MPI.

Results 31

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

100

200

300

400

500
Pa

ra
lle

l l
oo

p
ex

ec
ut

io
n

tim
e

(s
)

-17.4097%

-17.1782%

-17.5286%

-17.0788% -27.4276%

-30.3879%

-33.5422%

-17.4255%

-17.4094%

-17.2782%

-17.4019%

-17.1756%

-17.4390%

-17.0480% -27.4105%

-30.4093%

-33.5401%

-17.4176%

-17.3991%

-17.2574%

-17.3726%

-17.1495%

-17.5015%

-17.0648% -27.2641%

-30.2271%

-33.6116%

-17.3688%

-17.4043%

-17.2521%

0.0000%

(a) Pisolver with 30% workload imbalance

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

100

200

300

400

500

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

-7.4276%

-7.1649%

-7.5761%

-7.0591%

-20.1054%

-23.7065%

-28.2515%

-7.4435%

-7.4292%

-7.2815%

-7.3941%

-7.1540%

-7.3716%

-7.0238%

-20.0488%

-23.6865%

-28.2167%

-7.4220%

-7.4020%

-7.2011%

-7.4101%

-7.0543%

-7.5384%

-7.0024% -19.8004%

-23.5162%

-27.6733%

-7.4304%

-7.4076%

-7.2706%

0.0000%

(b) Pisolver with 40% workload imbalance

Figure 5.3: Pisolver executed with 30% and 40% workload
imbalance: On the x-axes, we show the employed scheduling tech-
niques, whereas on the y-axes, the parallel loop execution time is
shown. Furthermore, the black color represents the results of the
static execution without LB4MPI. The red bar illustrates the worst-
performing dynamic scheduling technique. The green bar represents
the best-performing scheduling technique. The black labels above the
bars are the percentage differences from the static version without
LB4MPI.

Results 32

5.2.3 Iterations stolen
We measured the iterations executed by the processes and gathered the total amount of

stolen iterations. Investigating the number of iterations stolen in figure 5.4 shows the total

work stolen about the total number of iterations scheduled. Hence, only a fraction of the

total work has been stolen at a small percentage rate. In figure 5.4a with an input workload

imbalance of 0%, not many iterations are stolen compared to the employed scheduling tech-

niques. However, the work stolen is increased as soon as the input workload imbalance to

20%. Moreover, static scheduling techniques with a fixed steal ratio steal the most iterations.

Their amount of work stolen ranges from approximately 4.1% to 7.2%. Considering the total

iterations of two million, the total stolen work corresponds to 82′000 to 144′000 iterations,

where a higher steal ratio leads to more stolen work. Similarly, a further increase of the

workload imbalance of 30% and 40% is shown in figure 5.5. Again, static scheduling with

a fixed steal ratio steals the most iterations. Moreover, an increasing workload imbalance

leads to more stolen work. Interestingly, dynamic self-scheduling techniques do not steal

much work compared to the static case with a fixed steal ratio. Hence, this indicates that

the work available to steal is less, as processes already perform self-scheduling techniques to

tackle load imbalance.

Results 33

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f i
te

ra
tio

ns

1e6

0.0032%

0.0035%

0.0000%

0.0064%

0.0052%

0.0052%

0.0040%

0.0038%

0.0045%

0.0036%

0.0040%

0.0039%

0.0001%

0.0068%

0.0054%

0.0048%

0.0043%

0.0041%

0.0053%

0.0039%

0.0028%

0.0030%

0.0000%

0.0054%

0.0042%

0.0040%

0.0034%

0.0032%

0.0041%

0.0029%

Iterations Work stolen

(a) Pisolver with 0% workload imblance

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f i
te

ra
tio

ns

1e6

0.0870%

0.1493%

0.2387%

6.5867%

5.0965%

4.0930%

0.0098%

0.1927%

0.0293%

0.1491%

0.0877%

0.1455%

0.2385%

7.2321%

5.4101%

4.2376%

0.0098%

0.1876%

0.0294%

0.1455%

0.0870%

0.1493%

0.2387%

6.6105%

5.1005%

4.0941%

0.0098%

0.1929%

0.0293%

0.1492%

Iterations Work stolen

(b) Pisolver with 20% workload imbalance

Figure 5.4: Pisolver executed with 0% and 20% workload im-
balance - Relation of total iterations scheduled and total
work stolen: The y-axes display the total number of iterations per-
formed on average. The x-axes show the employed scheduling tech-
niques. On top of the blue bars, we can see the fraction of work that
has been stolen per scheduling technique with the corresponding per-
centage.

Results 34

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f i
te

ra
tio

ns

1e6

0.0870%

0.1493%

0.2387%

6.5867%

5.0965%

4.0930%

0.0098%

0.1927%

0.0293%

0.1491%

0.0877%

0.1455%

0.2385%

7.2321%

5.4101%

4.2376%

0.0098%

0.1876%

0.0294%

0.1455%

0.0870%

0.1493%

0.2387%

6.6105%

5.1005%

4.0941%

0.0098%

0.1929%

0.0293%

0.1492%

Iterations Work stolen

(a) Pisolver with 30% workload imbalance

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f i
te

ra
tio

ns

1e6

0.0873%

0.2181%

0.2405% 8.4101%

6.7188%

5.5233%

0.0098%

0.2837%

0.0293%

0.2180%

0.0879%

0.2100%

0.2412% 9.3367%

7.1404%

5.7305%

0.0098%

0.2754%

0.0294%

0.2100%

0.0872%

0.2180%

0.2405% 8.4115%

6.7076%

5.5302%

0.0098%

0.2837%

0.0293%

0.2180%

Iterations Work stolen

(b) Pisolver with 40% workload imbalance

Figure 5.5: Pisolver executed with 30% and 40% workload
imbalance - Relation of total iterations scheduled and to-
tal work stolen: The y-axes display the total number of iterations
performed on average. The x-axes show the employed scheduling tech-
niques. On top of the blue bars, we can see the fraction of work that
has been stolen per scheduling technique with the corresponding per-
centage.

5.2.4 Steal attempts
Another aspect that we are interested in is measuring the steal attempts and comparing them

to the number of successful steals during the experiments. In figure 5.6, the total amount

of steal attempts in relation to the successful steals during the experiments is illustrated.

Results 35

By comparing the executed version of Pisolver with 20% induced work imbalance with no

induced work imbalance, we can see that the number of steals is significantly higher in naive

locality-aware work-stealing. Generally, we can see that the naive locality-aware victim

selection strategy leads to more attempts to steal the work from other ranks. However,

the locality-aware victim selection strategy requests work similarly to the random victim

selection strategy. Comparing the employed scheduling techniques, the dynamic scheduling

techniques are performing more steal attempts to steal the work. Furthermore, the success

rates are similar to ca. 30% in the scheduling techniques using a locality-aware or random

victim selection strategy. Contrary, the naive locality-aware strategy has a lower successful

steal attempts with ca. 10%. As the performance evaluation showed that the differences

in the used victim selection strategies were insignificant, we can conclude that the amount

of work to be stolen matters more. Hence, even if the naive locality-aware victim selection

strategies yielded higher total requests, the induced communication overhead did not affect

the performance considerably.

Results 36

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

2.7707%

7.1990%

0.0079%

11.0263%

11.2621%

11.0853%

11.0385%

10.4694%

6.3355%

7.1737%

2.6760%

4.8257%

0.0179%

6.9371%

6.5544%

6.4315%

6.3112%

6.1827%

5.0368%

4.8337%

2.6767% 6.8069%

0.0044%

9.4599%

9.4765%

9.6647%

9.8077%

9.2394%

6.4722%

6.5838%

Steal attempts
Successful steals

(a) Pisolver with 0% workload imbalance

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

31.8884%

31.2080%

30.4781%

31.9353%

31.5275%

31.5440%

32.9816%

30.8168%

32.4949%

31.1599%

9.6273%

9.9883%

10.0142%

10.4024%

10.2732%

10.5760%

7.2629%

10.0582%

8.8277% 10.0244%

31.8761%

31.1627%

30.5348%

31.9648%

31.4576%

31.5793%

32.9809%

30.7961%

32.5007%

31.1634%

Steal attempts
Successful steals

(b) Pisolver with 20% workload imbalance

Figure 5.6: Pisolver executed with 0% and 20% workload im-
balance - Number of steal attempts versus successful steals
per scheduling technique: The fraction of the successful steal re-
quests is given within the orange bars. The x-axis lists the scheduling
techniques. The y-axis shows the total number of steal attempts and
successful steals labeled by the fraction of successful steal requests.

5.2.5 Coefficient of variance after LB4MPI
During the execution, each process performs its own data chunk. Having in Pisolver an

induced workload imbalance, we were interested in the outcome of the c.o.v obtained by all

process execution times. In figure 5.7, we can see that for Pisolver executed with a workload

imbalance of 20%, the c.o.v is in the range of 0.00002% to 0.00003%. This showed that the

processes were finishing their execution with differences in microseconds.

Results 37

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

c.
o.

v
(%

)

1e 6

Figure 5.7: Pisolver with 20% load imbalance - Calculated
c.o.v of the parallel loop execution times obtained: On the
x-axis, the scheduling techniques are listed. On the y-axis, one can
see the c.o.v. of the parallel loop execution time

5.2.6 Send and receive time per chunk
This section presents the variations of sending and receiving chunks. We measured the send

time within the responsible victim’s MPI Send, which sends the work to the coordinator.

On the other hand, we measured the time to receive a chunk by the thief within its cor-

responding MPI Recv(). In both cases, we took measurements before and after the MPI

operation.

As the iterations are sent in chunks varying in sizes from the victim processor to the thief

processor, we illustrate the time to send and receive a chunk for a rank in figure 5.8. The

chunk send times have fewer outliers than the chunk receive times. This might be due to

synchronization overhead, as the sending side can put the work and data in the buffer and

continue to send. Besides, the receiving side waits until the work and data are delivered.

Hence, we have a slightly more extended time on the receiving side. Another factor that

influences the send and receive times is the workload that will be sent. So, larger chunks

of data need automatically more time to be received. A good example is the send time of

rws GSS, which has larger chunks to send at the beginning of the chunk calculation. When

the victim prepares the work, it depends on how much its remaining work will be sent,

leading to a higher send time in the outliers. On the contrary, the thief waits to gather the

data and execute, which means it has a more considerable receive time.

Results 38

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Ti
m

e
(s

)
Chunk send times

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

Ti
m

e
(s

)

Chunk receive times

Figure 5.8: Pisolver executed with 20% workload imbalance
- Send and receive times of the work per iteration: Here, a
representation of the end and receive times of the work and data to
be delivered from the victim to the thief is shown. On the y-axis,
the needed time is shown. The scheduling techniques are listed on
the x-axis. In blue, one can see the distribution of the minimum,
average, and maximum time needed. The light blue area represents
the occurrences of time needed.

5.3 Mandelbrot
Mandelbrot is an initially replicated sample C application that calculates the Mandelbrot

set[30]. In [11], the experiments have been performed to engage with thread-level scheduling.

So, we adapted the application to execute the experiments with process-level scheduling

during this work. To perform the experiments, we used 1′500 time steps with a 1′024×1′024

pixel size on eight nodes containing each of 16 processes. In the following experiments, we

wanted to understand how the LB4MPI performs with an application with no real data

input but a set of maximal iterations executed. Furthermore, Mandelbrot is an imbalanced

Results 39

application where we integrated the LB4MPI.

5.3.1 Performance evaluation
Compared to the distributed version of mandelbrot without LB4MPI, the work-stealing al-

gorithm performs poorer by a factor of two, as shown in figure 5.9. Hence, communication

costs have been introduced to an application where balancing is not necessarily required.

However, we can still see and compare the performance of the scheduling technique incor-

porated with the victim selection strategy. Noticeably, the victim selection strategy naive

locality-aware scheduling achieves the best performance among the other strategies. Further-

more, dynamic scheduling techniques perform better than the static steal ratio scheduling

technique. So, weighted factoring steal amount calculation in combination with a naive

locality-aware victim selection strategy performs the best out of the other techniques.

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

50

100

150

200

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

0.9272%

13.1462% 1.6522%

12.7606%

12.9234%

13.0784%

14.7615% 2.9906%

1.0683%

12.9221%

6.0360%

16.4183% 6.8103%

16.0021%

15.2352%

16.0458%

15.6626% 6.3956%

6.4269%

15.9306%

0.6081%

17.2740%

0.8872%

22.5056% 12.8356%

12.5109%

17.1332%

0.9352%

0.0000%

12.5217%

-45.0811%

Figure 5.9: Mandelbrot - Parallel loop execution time in com-
parison with the no LB4MPI version On the x-axes, we show the
employed scheduling techniques, whereas on the y-axes, the parallel
loop execution time is shown. Furthermore, the black color represents
the results of the static execution without LB4MPI. The red bar il-
lustrates the worst-performing dynamic scheduling technique. The
green bar represents the best-performing scheduling technique. The
green labels above the bars are the percentage differences from the
best-performing scheduling technique.

5.3.2 Iterations stolen
Looking at the relation between stolen work and iterations completed during the experiment,

we can see that generally, a maximal amount of 0.48% have been stolen. Having around

8′000 iterations scheduled per rank leads to a lower amount of work to be stolen by a

rank; for instance, 0.48% of 8′000 iterations means that 38.4 iterations have been stolen on

average. Thus, having a lower amount of iterations that will be stolen would induce a higher

Results 40

communication cost, as can be seen in 5.10.

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f i
te

ra
tio

ns

0.0376%

0.0040%

0.0040%

0.4769%

0.3297%

0.2419%

0.0472%

0.0032%

0.0411%

0.0046%

0.0363%

0.0035%

0.0022%

0.2176%

0.1518%

0.1170%

0.0327%

0.0017%

0.0334%

0.0026%

0.0513%

0.0015%

0.0013%

0.4869%

0.3569%

0.2865%

0.0528%

0.0008%

0.0630%

0.0005%

Iterations Work stolen

Figure 5.10: Mandelbrot - Relation of total iterations sched-
uled and total work stolen: The y-axes display the total number
of iterations performed on average. The x-axes show the employed
scheduling techniques. On top of the blue bars, we can see the frac-
tion of work that has been stolen per scheduling technique with the
corresponding percentage.

5.3.3 Steal attempts
The higher induced communication cost can also be seen in the ratio between successful steals

and steal attempts in 5.11. There are scheduling techniques that have had successful steals.

However, about the total number of requests to the coordinator, this would be a relatively

poor quote, as only a few steal requests have been successful. Thus, the work-stealing

algorithm induces in this application more communication overhead, as the application can

benefit from the load balance it achieves. Interestingly, scheduling techniques responsible for

stealing a fixed amount of work, such as FSC, STATIC25, STATIC35, and STATIC50,

induced a higher communication overhead merged with all victim selection strategies.

Results 41

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

100

200

300

400

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

0.8665%

0.0047%

0.0062%

1.0341%

1.1089%

1.1510%

1.0866%

0.0048%

0.9458%

0.0054%

0.7721%

0.0043%

0.0035%

0.6930%

0.7109%

0.7711%

0.7037%

0.0027%

0.7182%

0.0033%

1.1660%

0.0016%

0.0018%

1.0717%

1.2247%

1.4043%

1.1913%

0.0012%

1.4298%

0.0006%

Steal attempts
Successful steals

Figure 5.11: Mandelbrot - Number of steal attempts versus
successful steals per scheduling technique: The fraction of the
successful steal requests is given within the orange bars. The x-axis
lists the scheduling techniques. The y-axis shows the total number of
steal attempts and successful steals labeled by the fraction of success-
ful steal requests.

5.3.4 Coefficient of variance after LB4MPI
Each process during the computation performs its own data chunk. Hence, when a process

finishes its chunks, it asks for work from the coordinator and receives it from the selected

victim. So, by the end of an experiment, we should have a lower amount of c.o.v in parallel

execution times. Looking at figure 5.12, we achieve a low c.o.v in percentage with all schedul-

ing techniques. Interestingly, the random and locality-aware victim selection strategies have

scheduling techniques with a higher c.o.v. Among the scheduling techniques, FAC, GSS,

TSS, and WF have higher c.o.v rates ranging up to 0.08% whereas the lowest c.o.v appears

to be at 0.04%.

Results 42

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.00

0.02

0.04

0.06

0.08

0.10

0.12

c.
o.

v
(%

)

Figure 5.12: Mandelbrot - Calculated c.o.v of the parallel
loop execution times obtained: On the x-axis, the scheduling
techniques are listed. On the y-axis, one can see the c.o.v. of the
parallel loop execution time

5.4 SPH-EXA - Sedov
SPH-EXA is an application of the smoothed particle hydrodynamic (SPH) technique, cal-

culated by the Lagrangian method [13]. This application is designed to counter harmful

elements such as imbalanced multi-scale physics, unique time-stepping, halos exchange, and

prolonged ranged forces in physical calculations. It is part of the SPHY NX project, de-

signed to perform SPH on astrophysics applications[12]. We chose to integrate the LB4MPI

extensions into the Sedov blast calculation of the SPH-EXA due to the encountered chal-

lenges in serializing the C + +−objects used to pass into LB4MPI. The experiments were

performed on eight nodes with 16 processes, whereas the input size was on 4003 particles

within a time-step of 50.

5.4.1 Performance evaluation
Resembling the application with LB4MPI and without LB4MPI leads to decreasing perfor-

mance in SPH-EXA Sedov, as illustrated in figure 5.13. However, the difference between

the LB4MPI and the library without lies in the range between 10 to 20 seconds. Among

the chosen victim selection strategies, the naive locality-aware and random victim selection

strategies perform better than the locality-aware work stealing. In this application, dynamic

and static scheduling techniques are performing similarly.

Results 43

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

10

20

30

40

50

60

70

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

0.0000%

1.1501%

1.2405%

1.1757%

1.2098%

1.2859%

1.1370%

1.0636%

0.1724%

1.2977%

0.0862%

1.2160%

1.3041%

1.1717%

1.1968%

1.2306%

1.1166%

1.2678%

0.1279%

1.1138%

11.9345%

13.1566%

13.0481%

13.1125%

13.0838%

13.0474%

13.3384%

13.3605%

12.2637%

13.1339%

-15.6314%

Figure 5.13: SPH-Exa Sedov - Parallel loop execution time
in comparison with the no LB4MPI version On the x-axes,
we show the employed scheduling techniques, whereas on the y-axes,
the parallel loop execution time is shown. Furthermore, the black
color represents the results of the static execution without LB4MPI.
The red bar illustrates the worst-performing dynamic scheduling tech-
nique. The green bar represents the best-performing scheduling tech-
nique. The green labels above the bars are the percentage differences
from the best-performing scheduling technique.

5.4.2 Iterations stolen
Analyzing the total iterations performed by a rank and the relation to the stolen work in

figure 5.14 allows us to see the constant appearing ratio of stolen work. The values range

between 0.54% to 1.04%, translating into 43.2 to 83.2 stolen iterations. Having this low

number of work stolen lies like the well-balanced SPH-EXA Sedov application. In this case,

the naive locality-aware are stealing double the amount of the other employed strategies. The

scheduling techniques show no larger difference in work than the steal in this experiment.

Results 44

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f i
te

ra
tio

ns

0.6735%

0.5969%

0.6693%

0.6693%

0.6794%

0.6752%

0.6719%

0.6763%

0.6741%

0.5927%

1.0374%

0.9372%

1.0405%

1.0413%

1.0340%

1.0381%

1.0318%

1.0364%

1.0362%

0.9165%

0.6662%

0.5853%

0.6679%

0.6624%

0.6678%

0.6629%

0.6672%

0.6700%

0.6692%

0.5865%
Iterations Work stolen

Figure 5.14: SPH-EXA Sedov - Relation of total iterations
scheduled and total work stolen: The y-axes display the total
number of iterations performed on average. The x-axes show the
employed scheduling techniques. On top of the blue bars, we can see
the fraction of work that has been stolen per scheduling technique
with the corresponding percentage.

5.4.3 Steal attempts
A further measurement that we are interested in SPH-EXA Sedov is the successful steals

operating during the experiments shown in figure 5.15. The total number of requests sent

to the coordinator lies in the area of 500 for the random and locality-aware victim selection

strategy. However, the naive locality-aware scheduling techniques have more additional

requests sent to the coordinator. Especially, nlaws WF and nlaws FAC exceeded with

over 800 total requests sent to the coordinator. Although having more requests to the

coordinator, the naive locality-aware scheduling methods are on par with the random victim

selection strategy in performance.

Results 45

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

200

400

600

800

1000

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

11.5183%

10.0004%

11.4471%

11.4950%

11.7176%

11.6197%

11.5394%

11.6387%

11.5522%

9.9698%

13.5104%

10.3056% 13.2353%

13.3708%

13.3389%

13.3290%

13.1859%

13.5416%

13.3044%

9.6008%

11.4656%

9.8856%

11.4704%

11.3758%

11.4687%

11.4328%

11.5306%

11.5307%

11.5661%

9.9263%
Steal attempts
Successful steals

Figure 5.15: SPH-EXA Sedov - Number of steal attempts
versus successful steals per scheduling technique: The fraction
of the successful steal requests is given within the orange bars. The
x-axis lists the scheduling techniques. The y-axis shows the total
number of steal attempts and successful steals labeled by the fraction
of successful steal requests.

5.4.4 Send and receive time per chunk
The integrated version of LB4MPI needs a serialization of the objects of SPH-EXA Sedov.

Hence, we measured the serialization and the send time, respectively, the receive time and

deserialization, as both are needed to deal with objects.

This can be seen in figure 5.16. The send and receive times range to 0.2 seconds for a chunk

appearing at every victim selection strategy. Another factor is the dynamic and static

scheduling techniques used. Here, FSC, WF, and mFSC tend to have lower send times. The

static scheduling techniques with a fixed steal ratio, GSS, and TSS have longer outlying

send times. However, the mean send times to send a chunk appear to be the same for all

scheduling techniques. On the receiving side, the scheduling technique’s mean appears to

be similar. Outliers emerge at every scheduling technique, but the discrepancy between the

scheduling techniques is more minor than the disparity of the send times obtained.

Results 46

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ti
m

e
(s

)
Chunk send times

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Ti
m

e
(s

)

Chunk receive times

Figure 5.16: SPH-EXA Sedov - Send and receive times of
the work per iteration: Here, a representation of the end and
receive times of the work and data to be delivered from the victim
to the thief is shown. On the y-axis, the needed time is shown. The
scheduling techniques are listed on the x-axis. In blue, one can see
the distribution of the minimum, average, and maximum time needed.
The light blue area represents the occurrences of time needed.

5.5 miniAMR
The miniAMR[14] introduced in the Mantevo benchmark executes stencil calculation on a

unit cube computational domain. The domains are further divided into blocks and cells

to refine the objects pushed through the mesh. Furthermore, cells can communicate ghost

values with adjacent blocks. Every block has an equal amount of cells in each direction,

and blocks can describe distinct levels of refinement within the larger mesh with adaptive

mesh refinement. Hence, the calculated grids have a fixed position in the finer mesh. The

application has multiple configurable options such as block sizes, time steps, number of

refinements, and numerous objects to collide with the grid calculated.

Results 47

The distributed application is suitable to test and integrate the LB4MPI with cubic datatypes.

The experiments have been conducted to simulate an expanding sphere on eight nodes with

16 processes per node. As we can see in the results, the application tends not to collaborate

well with the work-stealing algorithm in LB4MPI.

5.5.1 Performance evaluation
In the following, we will look at an experiment where LB4MPI is not collaborating well with

the application. As illustrated in figure 5.17, we can first see the low parallel execution time

of the miniAMR without LB4MPI.

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

5

10

15

20

25

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

3.2300%

4.7137%

2.5525%

5.1488%

3.4447%

9.0155%

3.1429%

23.0694%

23.1201%

22.8583%

22.7929%

23.9612%

23.2302%

23.3433%

34.4067% 22.9354%

0.0000%

4.1846%

1.3847%

2.4286%

3.6109%

24.2967%

2.6509%

-93.6902%

Figure 5.17: miniAMR - Parallel loop execution time in com-
parison with the no LB4MPI version On the x-axes, we show the
employed scheduling techniques, whereas on the y-axes, the parallel
loop execution time is shown. Furthermore, the black color represents
the results of the static execution without LB4MPI. The red bar il-
lustrates the worst-performing dynamic scheduling technique. The
green bar represents the best-performing scheduling technique. The
green labels above the bars are the percentage differences from the
best-performing scheduling technique.

5.5.2 Limitations
Although miniAMR uses a distributed execution, the library does not elaborate well with

work-stealing. The application uses adaptive mesh refinement by starting initially from

the block sizes corresponding to the number of processes used. The refinement steps can

generally be configured and parsed into the application, filling the finer grid into cells. By

configuring a maximum amount of blocks used in the application, we can scale the experi-

ments to our fulfillment. Nevertheless, the initialization points consist of an initial number

of processes which in our experiments corresponds to 128 processes. However, when the

work-stealing applies, the grid will be imbalanced, and a process will have one more cell

Results 48

that can be placed over other cells. In miniAMR, checksums are applied to ensure the

correctness of the grid. By stealing work from other processes, these checksums cannot

be calculated and traced where the grid is imbalanced. Additionally, a configurable error

threshold is applied where at exceeding the value, the application will stop executing. Gath-

ering these conditions, the current work-stealing in LB4MPI cannot be integrated correctly

into miniAMR. However, the experience raised awareness of the limitations of LB4MPI. An

expansion is needed to incorporate LB4MPI to work with these types of applications. An

interesting aspect might be to extend the library by a work borrowing method where the

thief becomes a borrower, and the victim becomes a lender. Another possibility would be

to include a checksum function in LB4MPI.

6
Conclusion

This work extended the LB4MPI’s work-stealing algorithm, a library that can be used

with distributed MPI applications using dynamic loop-scheduling techniques. It provides 15

possible loop-scheduling techniques and three different victim selection strategies, random,

locality-aware, and naive locality-aware victim selection. Furthermore, it can deal with data

mapping, including one-dimensional or cubic data applications. Additionally, we provided a

way to serialize and deserialize data streams that come for applications using complex data

types. We evaluated the performance of four applications, Pisolver, Mandelbrot, SPH-EXA

Sedov, and miniAMR, executing them on a multi-core system.

Pisolver had benefitted by using LB4MPI when the input workload imbalance was higher

than zero. Generally, the static scheduling techniques with a fixed steal ratio performed best

by reaching a performance increase of 25.96%. Differences in the victim selection strategy

have not had a significant impact. Moreover, this shows that having a certain amount of

imbalance, the work-stealing might help to improve the performance even if the stolen work

from the iterations is not very significant. However, Pisolver also showed that stealing 50%

of the scheduled chunk can lead to a significant performance improvement.

Mandelbrot helped determine how the LB4MPI performed in an application without explicit

data input. Due to the nature of Mandelbrot, which uses a fixed amount of iterations to

perform a relatively simple equation, the LB4MPI performed worse by a factor of two. Yet,

we think a greater workload leads to a bigger work imbalance in Mandelbrot, where LB4MPI

could improve performance.

SPH-EXA Sedov incorporated with LB4MPI was a challenging application to integrate

the LB4MPI in. As LB4MPI is written in C, an application-side serialization of the data

is required. Hence, LB4MPI can serialize before a send by calling function pointers on

the application side and send the work to another process by calling function pointers to

deserialize the data. The performance was slightly worse by 10s compared to the application

without MPI. However, this undermines the difficulty of finding applications with a high

load imbalance that can be tackled with the work-stealing in LB4MPI. Contrary to the

results obtained by Pisolver, the method to use here would be the random victim selection

strategy with Factoring as a scheduling method.

Experiments with miniAMR have shown two future key points: Not every application can

Conclusion 50

be integrated with the current version of LB4MPI, and the need to study the data de-

pendency needs to be considered more for future work. However, it was a good sample

application to include an extension of LB4MPI that can handle cubic data using the cus-

tomizable MPI Datatype function. Distributed MPI applications with high load imbalance

can benefit from LB4MPI’s work-stealing algorithm.

7
Future work

Work-stealing merged with dynamic loop self-scheduling techniques is an excellent way to

deal with MPI applications’ load imbalances. During this work, the performance evalua-

tions depended on applications using different data types within their calculation. However,

choosing the proper application to experiment on can be difficult, as lines of code, the

complexity of the domain, and code interpretation are critical points for integrations. So,

to evaluate the LB4MPI work-stealing algorithm with cubic data types and objects, fur-

ther distributed applications need to be chosen. By providing a variety of self-scheduling

techniques and victim selection strategies, the exploration with different applications can

undermine the benefits of LB4MPI.

Another exciting aspect would be to use different scheduling techniques in an experiment.

For example, process A executes with GSS, process B executes with a FAC, while the steal

amount depends on the victim process.

In Pisolver, we showed that LB4MPI achieves a significant performance increase. Further,

using a fixed steal-ration of 50% was more beneficial. It would be interesting to see how the

fixed steal ratio performs with a scheduling technique.

As previously shown, the LB4MPI has limitations when dealing with applications that rely

on checksums. So, to make the LB4MPI more adaptable to different distributed applications,

we can propose two ways to collaborate with those applications. One point would be to

extend a checksum function that checks the correctness of an application’s data. Another

point might be to extend the method by using process-level work-borrowing, such that

LB4MPI can deal with another technique used in distributed systems.

To achieve a generic application that can deal with almost all data types, a C + + im-

plementation of LB4MPI would be needed. While having the advantage in C + + to use

object-oriented programming, in-built callable functions, and generic data types, compre-

hensive coverage of distributed applications can be achieved.

Bibliography

[1] I. Banicescu and S.F. Hummel. Balancing processor loads and exploiting data locality

in n-body simulations. In Supercomputing ’95:Proceedings of the 1995 ACM/IEEE

Conference on Supercomputing, pages 43–43, 1995.

[2] Ali Mohammed, Ahmed Eleliemy, Florina M. Ciorba, Franziska Kasielke, and Ioana

Banicescu. An approach for realistically simulating the performance of scientific appli-

cations on high performance computing systems. Future Generation Computer Systems,

111:617–633, 2020.

[3] Constantine D. Polychronopoulos and David J. Kuck. Guided self-scheduling: A prac-

tical scheduling scheme for parallel supercomputers. IEEE Transactions on Computers,

C-36(12):1425–1439, 1987.

[4] Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring: A method

for scheduling parallel loops. Commun. ACM, 35(8):90–101, aug 1992.

[5] David S Johnson. The np-completeness column: an ongoing guide. Journal of Algo-

rithms, 6(3):434–451, 1985.

[6] Ioana Banicescu and Vijay Velusamy. Load balancing highly irregular computations

with the adaptive factoring. In Proceedings of the 16th International Parallel and

Distributed Processing Symposium, IPDPS ’02, page 195, USA, 2002. IEEE Computer

Society.

[7] MPI. Mpi: A message-passing interface standard version. https://www.mpi-forum.

org/docs/. Accessed: 2022-12-12.

[8] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations

by work stealing. J. ACM, 46(5):720–748, sep 1999.

[9] Jean-Noël Quintin and Frédéric Wagner. Hierarchical work-stealing. In Pasqua

D’Ambra, Mario Guarracino, and Domenico Talia, editors, Euro-Par 2010 - Parallel

Processing, pages 217–229, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[10] Swann Perarnau and Mitsuhisa Sato. Victim selection and distributed work stealing

performance: A case study. In 2014 IEEE 28th International Parallel and Distributed

Processing Symposium, pages 659–668, 2014.

[11] Gian-Andrea Wetten. Dynamic scheduling in hpc using a distributed data approach.

2022.

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/

Bibliography 53

[12] Cabezón, R. M., Garćıa-Senz, D., and Figueira, J. Sphynx: an accurate density-based

sph method for astrophysical applications. A&A, 606:A78, 2017.

[13] Danilo Guerrera, Aurélien Cavelan, Rubén M. Cabezón, David Imbert, Jean-Guillaume

Piccinali, Ali Mohammed, Lucio Mayer, Darren Reed, and Florina M. Ciorba. Sph-exa:

Enhancing the scalability of sph codes via an exascale-ready sph mini-app, 2019.

[14] Aparna Sasidharan and Marc Snir. Miniamr - a miniapp for adaptive mesh refinement.

2016.

[15] Hui Li, Sudarsan Tandri, Michael Stumm, and Kenneth C. Sevcik. Locality and loop

scheduling on numa multiprocessors. In 1993 International Conference on Parallel

Processing - ICPP’93, volume 2, pages 140–147, 1993.

[16] C.P. Kruskal and A. Weiss. Allocating independent subtasks on parallel processors.

IEEE Transactions on Software Engineering, SE-11(10):1001–1016, 1985.

[17] T.H. Tzen and L.M. Ni. Trapezoid self-scheduling: a practical scheduling scheme for

parallel compilers. IEEE Transactions on Parallel and Distributed Systems, 4(1):87–98,

1993.

[18] Susan Flynn Hummel, Jeanette Schmidt, R. N. Uma, and Joel Wein. Load-sharing

in heterogeneous systems via weighted factoring. In Proceedings of the Eighth Annual

ACM Symposium on Parallel Algorithms and Architectures, SPAA ’96, page 318–328,

New York, NY, USA, 1996. Association for Computing Machinery.

[19] Torben Hagerup. Allocating independent tasks to parallel processors: An experimental

study. Journal of Parallel and Distributed Computing, 47(2):185–197, 1997.

[20] I. Banicescu and V. Velusamy. Performance of scheduling scientific applications with

adaptive weighted factoring. In Parallel and Distributed Processing Symposium, Inter-

national, volume 1, pages 791,792,793,794,795,796,797,798,799,800,801, Los Alamitos,

CA, USA, apr 2001. IEEE Computer Society.

[21] Yizhuo Wang, Yang Zhang, Yan Su, Xiaojun Wang, Xu Chen, Weixing Ji, and Feng Shi.

An adaptive and hierarchical task scheduling scheme for multi-core clusters. Parallel

Computing, 40(10):611–627, 2014.

[22] Ryusuke Nakashima, Hiroshi Yoritaka, Masahiro Yasugi, Tasuku Hiraishi, and Seiji

Umatani. Extending a work-stealing framework with priorities and weights. In 2019

IEEE/ACM 9th Workshop on Irregular Applications: Architectures and Algorithms

(IA3), pages 9–16, 2019.

[23] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work

stealing. In Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms

and Architectures, SPAA ’00, page 1–12, New York, NY, USA, 2000. Association for

Computing Machinery.

Bibliography 54

[24] Quan Chen and Minyi Guo. Locality-aware work stealing based on online profiling and

auto-tuning for multisocket multicore architectures. ACM Trans. Archit. Code Optim.,

12(2), jul 2015.

[25] Andi Drebes, Karine Heydemann, Nathalie Drach, Antoniu Pop, and Albert Cohen.

Topology-aware and dependence-aware scheduling and memory allocation for task-

parallel languages. ACM Trans. Archit. Code Optim., 11(3), aug 2014.

[26] Ioana Banicescu and Susan Flynn Hummel. Balancing processor loads and exploiting

data locality in n-body simulations. In Proceedings of the 1995 ACM/IEEE Confer-

ence on Supercomputing, Supercomputing ’95, page 43–es, New York, NY, USA, 1995.

Association for Computing Machinery.

[27] Samuel Russ, Ioana Banicescu, Mark Bilderback, and Sheikh Ghafoor. A fault-tolerant

system for balancing the load of data-parallel applications a manuscript submitted for

consideration to the distributed systems engineering journal special issue on dependable

distributed systems. 01 1999.

[28] Jonas H. Müller Korndörfer, Mario Bielert, Laércio L. Pilla, and Florina M. Ciorba.

Mapping matters: Application process mapping on 3-d processor topologies. 2021.

[29] Prof. Dr. Florina M. Ciorba. minihpc: Small but modern mini hpc. https://hpc.dmi.

unibas.ch/en/research/minihpc/. Accessed: 2023-08-28.

[30] Benoit B. Mandelbrot. Fractal aspects of the iteration of z →Λz(1- z) for complex Λ

and z. Annals of the New York Academy of Sciences, 357(1):249–259, 1980.

https://hpc.dmi.unibas.ch/en/research/minihpc/
https://hpc.dmi.unibas.ch/en/research/minihpc/

A
Appendix

A.1 Extended results Pisolver
A.1.1 Comparison of varying workload imbalance

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

100

200

300

400

500

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

Configured workload imbalance
0 %
20 %
30 %
40 %

Figure A.1: Comparison of the parallel execution time about
the scheduling techniques used and categorized by the dif-
ferent input workload imbalance: In the x-axis, we can see all
the scheduling techniques employed during execution. The y-axis cor-
responds to the parallel execution time in seconds. Furthermore, the
plot is categorized by the configured workload imbalance of 0%, 20%,
30%, and 40%.

Appendix 56

A.1.2 Results with 0% induced workload imbalance

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

50

100

150

200

250

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

1.2277%

0.9643%

0.8512%

1.1646%

1.1742%

1.1584%

1.1140%

5.5469%

0.8638%

0.9536%

0.8919%

0.9816%

0.9152%

1.1859%

1.1705%

1.1598%

1.1746%

0.9734%

0.8812%

1.0030%

0.8634%

0.9627%

0.8453%

1.1847%

1.1502%

1.1439%

1.1200%

0.9070%

0.8629%

1.0562%

0.0000%

Figure A.2: Pisolver executed with 0% workload imbalance:
On the x-axes, we show the employed scheduling techniques, whereas
on the y-axes, the parallel loop execution time is shown. Furthermore,
the black color represents the results of the static execution with-
out LB4MPI. The red bar illustrates the worst-performing dynamic
scheduling technique. The green bar represents the best-performing
scheduling technique. The black labels above the bars are the per-
centage differences from the static version without LB4MPI.

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

10000

20000

30000

40000

50000

Pa
ra

lle
l c

os
t (

s)

1.2277%

0.9643%

0.8512%

1.1646%

1.1742%

1.1584%

1.1140%

5.5469%

0.8638%

0.9536%

0.8919%

0.9816%

0.9152%

1.1859%

1.1705%

1.1598%

1.1746%

0.9734%

0.8812%

1.0030%

0.8634%

0.9627%

0.8453%

1.1847%

1.1502%

1.1439%

1.1200%

0.9070%

0.8629%

1.0562%

0.0000%

Figure A.3: Pisolver executed with 0% workload imbalance:
On the x-axes, we show the employed scheduling techniques, whereas
on the y-axes, the parallel loop execution cost is shown. Furthermore,
the black color represents the results of the static execution with-
out LB4MPI. The red bar illustrates the worst-performing dynamic
scheduling technique. The green bar represents the best-performing
scheduling technique. The black labels above the bars are the per-
centage differences from the static version without LB4MPI.

Appendix 57

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f i
te

ra
tio

ns

1e6

0.0032%

0.0035%

0.0000%

0.0064%

0.0052%

0.0052%

0.0040%

0.0038%

0.0045%

0.0036%

0.0040%

0.0039%

0.0001%

0.0068%

0.0054%

0.0048%

0.0043%

0.0041%

0.0053%

0.0039%

0.0028%

0.0030%

0.0000%

0.0054%

0.0042%

0.0040%

0.0034%

0.0032%

0.0041%

0.0029%

Iterations Work stolen

Figure A.4: Pisolver executed with 0% workload imbalance -
Relation of total iterations scheduled and total work stolen:
The y-axes display the total number of iterations performed on aver-
age. The x-axes show the employed scheduling techniques. On top
of the blue bars, we can see the fraction of work that has been stolen
per scheduling technique with the corresponding percentage.

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

2.7707%

7.1990%

0.0079%

11.0263%

11.2621%

11.0853%

11.0385%

10.4694%

6.3355%

7.1737%

2.6760%

4.8257%

0.0179%

6.9371%

6.5544%

6.4315%

6.3112%

6.1827%

5.0368%

4.8337%

2.6767% 6.8069%

0.0044%

9.4599%

9.4765%

9.6647%

9.8077%

9.2394%

6.4722%

6.5838%

Steal attempts
Successful steals

Figure A.5: Pisolver executed with 0% workload imbalance
- Number of steal attempts versus successful steals per
scheduling technique: The fraction of the successful steal requests
is given within the orange bars. The x-axis lists the scheduling tech-
niques. The y-axis shows the total number of steal attempts and
successful steals labeled by the fraction of successful steal requests.

Appendix 58

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

Ti
m

e
(s

)

Chunk send times

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

1e 5 Chunk receive times

Figure A.6: Pisolver executed with 0% workload imbalance
- Send and receive times of the work per iteration: Here, a
representation of the end and receive times of the work and data to
be delivered from the victim to the thief is shown. On the y-axis,
the needed time is shown. The scheduling techniques are listed on
the x-axis. In blue, one can see the distribution of the minimum,
average, and maximum time needed. The light blue area represents
the occurrences of time needed.

Appendix 59

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0

1

2

3

4

5

c.
o.

v
(%

)

1e 6

Figure A.7: Pisolver executed with 0% workload imbalance
- Calculated c.o.v of the parallel loop execution times ob-
tained: On the x-axis, the scheduling techniques are listed. On the
y-axis, one can see the c.o.v. of the parallel loop execution time

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.000

0.005

0.010

0.015

0.020

0.025

0.030

m
ax

/m
ea

n

Figure A.8: Pisolver executed with 0% workload imbalance
- Imbalanced factor max/mean On the x-axis, the scheduling
techniques are listed. On the y-axis, one can see the imbalanced
factor of the parallel loop execution time

Appendix 60

A.1.3 Results with 20% induced workload imbalance

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

50

100

150

200

250

300

350

400

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

-11.8952%

-11.6514%

-11.9466%

-11.5132% -20.3702%

-23.0126%

-25.2809%

-11.9117%

-11.9004%

-11.7294%

-11.8894%

-11.6448%

-11.8628%

-11.4900% -20.3558%

-22.9384%

-25.2546%

-11.8871%

-11.8763%

-11.7412%

-11.8728%

-11.5232%

-11.9343%

-11.4116% -20.2209%

-22.7400%

-25.9575%

-11.8883%

-11.8744%

-11.7264%

0.0000%

Figure A.9: Pisolver executed with 20% workload imbalance:
On the x-axes, we show the employed scheduling techniques, whereas
on the y-axes, the parallel loop execution time is shown. Furthermore,
the black color represents the results of the static execution with-
out LB4MPI. The red bar illustrates the worst-performing dynamic
scheduling technique. The green bar represents the best-performing
scheduling technique. The black labels above the bars are the per-
centage differences from the static version without LB4MPI.

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

10000

20000

30000

40000

50000

60000

70000

80000

Pa
ra

lle
l c

os
t (

s)

-11.8952%

-11.6514%

-11.9466%

-11.5132% -20.3702%

-23.0126%

-25.2809%

-11.9117%

-11.9004%

-11.7294%

-11.8894%

-11.6448%

-11.8628%

-11.4900% -20.3558%

-22.9384%

-25.2546%

-11.8871%

-11.8763%

-11.7412%

-11.8728%

-11.5232%

-11.9343%

-11.4116% -20.2209%

-22.7400%

-25.9575%

-11.8883%

-11.8744%

-11.7264%

0.0000%

Figure A.10: Pisolver executed with 20% workload imbalance:
On the x-axes, we show the employed scheduling techniques, whereas
on the y-axes, the parallel loop execution cost is shown. Furthermore,
the black color represents the results of the static execution with-
out LB4MPI. The red bar illustrates the worst-performing dynamic
scheduling technique. The green bar represents the best-performing
scheduling technique. The black labels above the bars are the per-
centage differences from the static version without LB4MPI.

Appendix 61

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f i
te

ra
tio

ns

1e6

0.0870%

0.1493%

0.2387%

6.5867%

5.0965%

4.0930%

0.0098%

0.1927%

0.0293%

0.1491%

0.0877%

0.1455%

0.2385%

7.2321%

5.4101%

4.2376%

0.0098%

0.1876%

0.0294%

0.1455%

0.0870%

0.1493%

0.2387%

6.6105%

5.1005%

4.0941%

0.0098%

0.1929%

0.0293%

0.1492%

Iterations Work stolen

Figure A.11: Pisolver executed with 20% workload imbalance
- Relation of total iterations scheduled and total work stolen:
The y-axes display the total number of iterations performed on aver-
age. The x-axes show the employed scheduling techniques. On top
of the blue bars, we can see the fraction of work that has been stolen
per scheduling technique with the corresponding percentage.

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

31.8884%

31.2080%

30.4781%

31.9353%

31.5275%

31.5440%

32.9816%

30.8168%

32.4949%

31.1599%

9.6273%

9.9883%

10.0142%

10.4024%

10.2732%

10.5760%

7.2629%

10.0582%

8.8277% 10.0244%

31.8761%

31.1627%

30.5348%

31.9648%

31.4576%

31.5793%

32.9809%

30.7961%

32.5007%

31.1634%

Steal attempts
Successful steals

Figure A.12: Pisolver executed with 20% workload imbal-
ance - Number of steal attempts versus successful steals per
scheduling technique: The fraction of the successful steal requests
is given within the orange bars. The x-axis lists the scheduling tech-
niques. The y-axis shows the total number of steal attempts and
successful steals labeled by the fraction of successful steal requests.

Appendix 62

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Ti
m

e
(s

)

Chunk send times

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

Ti
m

e
(s

)

Chunk receive times

Figure A.13: Pisolver executed with 20% workload imbalance
- Send and receive times of the work per iteration: Here, a
representation of the end and receive times of the work and data to
be delivered from the victim to the thief is shown. On the y-axis,
the needed time is shown. The scheduling techniques are listed on
the x-axis. In blue, one can see the distribution of the minimum,
average, and maximum time needed. The light blue area represents
the occurrences of time needed.

Appendix 63

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

c.
o.

v
(%

)

1e 5

Figure A.14: Pisolver executed with 20% workload imbalance
- Calculated c.o.v of the parallel loop execution times ob-
tained: On the x-axis, the scheduling techniques are listed. On the
y-axis, one can see the c.o.v. of the parallel loop execution time

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.000

0.005

0.010

0.015

0.020

0.025

0.030

m
ax

/m
ea

n

Figure A.15: Pisolver executed with 20% workload imbalance
- Imbalanced factor max/mean On the x-axis, the scheduling
techniques are listed. On the y-axis, one can see the imbalanced
factor of the parallel loop execution time

Appendix 64

A.1.4 Results with 30% induced work imbalance

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

100

200

300

400

500

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

-17.4097%

-17.1782%

-17.5286%

-17.0788% -27.4276%

-30.3879%

-33.5422%

-17.4255%

-17.4094%

-17.2782%

-17.4019%

-17.1756%

-17.4390%

-17.0480% -27.4105%

-30.4093%

-33.5401%

-17.4176%

-17.3991%

-17.2574%

-17.3726%

-17.1495%

-17.5015%

-17.0648% -27.2641%

-30.2271%

-33.6116%

-17.3688%

-17.4043%

-17.2521%

0.0000%

Figure A.16: Pisolver executed with 30% workload imbalance:
On the x-axes, we show the employed scheduling techniques, whereas
on the y-axes, the parallel loop execution time is shown. Furthermore,
the black color represents the results of the static execution with-
out LB4MPI. The red bar illustrates the worst-performing dynamic
scheduling technique. The green bar represents the best-performing
scheduling technique. The black labels above the bars are the per-
centage differences from the static version without LB4MPI.

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

20000

40000

60000

80000

100000

Pa
ra

lle
l c

os
t (

s)

-17.4097%

-17.1782%

-17.5286%

-17.0788% -27.4276%

-30.3879%

-33.5422%

-17.4255%

-17.4094%

-17.2782%

-17.4019%

-17.1756%

-17.4390%

-17.0480% -27.4105%

-30.4093%

-33.5401%

-17.4176%

-17.3991%

-17.2574%

-17.3726%

-17.1495%

-17.5015%

-17.0648% -27.2641%

-30.2271%

-33.6116%

-17.3688%

-17.4043%

-17.2521%

0.0000%

Figure A.17: Pisolver executed with 30% workload imbalance:
On the x-axes, we show the employed scheduling techniques, whereas
on the y-axes, the parallel loop execution cost is shown. Furthermore,
the black color represents the results of the static execution with-
out LB4MPI. The red bar illustrates the worst-performing dynamic
scheduling technique. The green bar represents the best-performing
scheduling technique. The black labels above the bars are the per-
centage differences from the static version without LB4MPI.

Appendix 65

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f i
te

ra
tio

ns

1e6

0.0873%

0.2181%

0.2405% 8.4101%

6.7188%

5.5233%

0.0098%

0.2837%

0.0293%

0.2180%

0.0879%

0.2100%

0.2412% 9.3367%

7.1404%

5.7305%

0.0098%

0.2754%

0.0294%

0.2100%

0.0872%

0.2180%

0.2405% 8.4115%

6.7076%

5.5302%

0.0098%

0.2837%

0.0293%

0.2180%

Iterations Work stolen

Figure A.18: Pisolver executed with 30% workload imbalance
- Relation of total iterations scheduled and total work stolen:
The y-axes display the total number of iterations performed on aver-
age. The x-axes show the employed scheduling techniques. On top
of the blue bars, we can see the fraction of work that has been stolen
per scheduling technique with the corresponding percentage.

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

32.1838%

31.2158%

31.1569%

31.8452%

31.4580%

31.5288%

33.1641%

30.8183%

32.5862%

31.2264%

9.5304%

9.8439%

9.8857%

10.4315%

10.2226%

10.5427%

6.6429%

10.1070%

8.6378% 9.9698%

32.1798%

31.2128%

31.1639%

31.9183%

31.4068%

31.5347%

33.1641%

30.7994%

32.5976%

31.2195%

Steal attempts
Successful steals

Figure A.19: Pisolver executed with 30% workload imbal-
ance - Number of steal attempts versus successful steals per
scheduling technique: The fraction of the successful steal requests
is given within the orange bars. The x-axis lists the scheduling tech-
niques. The y-axis shows the total number of steal attempts and
successful steals labeled by the fraction of successful steal requests.

Appendix 66

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Ti
m

e
(s

)

Chunk send times

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

Ti
m

e
(s

)

Chunk receive times

Figure A.20: Pisolver executed with 30% workload imbalance
- Send and receive times of the work per iteration: Here, a
representation of the end and receive times of the work and data to
be delivered from the victim to the thief is shown. On the y-axis,
the needed time is shown. The scheduling techniques are listed on
the x-axis. In blue, one can see the distribution of the minimum,
average, and maximum time needed. The light blue area represents
the occurrences of time needed.

Appendix 67

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

c.
o.

v
(%

)

1e 6

Figure A.21: Pisolver executed with 30% workload imbalance
- Calculated c.o.v of the parallel loop execution times ob-
tained: On the x-axis, the scheduling techniques are listed. On the
y-axis, one can see the c.o.v. of the parallel loop execution time

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.000

0.005

0.010

0.015

0.020

0.025

0.030

m
ax

/m
ea

n

Figure A.22: Pisolver executed with 30% workload imbalance
- Imbalanced factor max/mean On the x-axis, the scheduling
techniques are listed. On the y-axis, one can see the imbalanced
factor of the parallel loop execution time

Appendix 68

A.1.5 Results with 40% induced workload imbalance

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

100

200

300

400

500

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

-7.4276%

-7.1649%

-7.5761%

-7.0591%

-20.1054%

-23.7065%

-28.2515%

-7.4435%

-7.4292%

-7.2815%

-7.3941%

-7.1540%

-7.3716%

-7.0238%

-20.0488%

-23.6865%

-28.2167%

-7.4220%

-7.4020%

-7.2011%

-7.4101%

-7.0543%

-7.5384%

-7.0024% -19.8004%

-23.5162%

-27.6733%

-7.4304%

-7.4076%

-7.2706%

0.0000%

Figure A.23: Pisolver executed with 40% workload imbalance:
On the x-axes, we show the employed scheduling techniques, whereas
on the y-axes, the parallel loop execution time is shown. Furthermore,
the black color represents the results of the static execution with-
out LB4MPI. The red bar illustrates the worst-performing dynamic
scheduling technique. The green bar represents the best-performing
scheduling technique. The black labels above the bars are the per-
centage differences from the static version without LB4MPI.

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

20000

40000

60000

80000

100000

Pa
ra

lle
l c

os
t (

s)

-7.4276%

-7.1649%

-7.5761%

-7.0591%

-20.1054%

-23.7065%

-28.2515%

-7.4435%

-7.4292%

-7.2815%

-7.3941%

-7.1540%

-7.3716%

-7.0238%

-20.0488%

-23.6865%

-28.2167%

-7.4220%

-7.4020%

-7.2011%

-7.4101%

-7.0543%

-7.5384%

-7.0024% -19.8004%

-23.5162%

-27.6733%

-7.4304%

-7.4076%

-7.2706%

0.0000%

Figure A.24: Pisolver executed with 40% workload imbalance:
On the x-axes, we show the employed scheduling techniques, whereas
on the y-axes, the parallel loop execution cost is shown. Furthermore,
the black color represents the results of the static execution with-
out LB4MPI. The red bar illustrates the worst-performing dynamic
scheduling technique. The green bar represents the best-performing
scheduling technique. The black labels above the bars are the per-
centage differences from the static version without LB4MPI.

Appendix 69

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f i
te

ra
tio

ns

1e6

0.0875%

0.2117%

0.2395% 9.3433%

7.4263%

6.1522%

0.0098%

0.2788%

0.0293%

0.2119%

0.0873%

0.2046%

0.2386% 10.2984%

7.9147%

6.4007%

0.0099%

0.2723%

0.0294%

0.2044%

0.0874%

0.2119%

0.2396% 9.3289%

7.4299%

6.1353%

0.0098%

0.2789%

0.0293%

0.2119%

Iterations Work stolen

Figure A.25: Pisolver executed with 40% workload imbalance
- Relation of total iterations scheduled and total work stolen:
The y-axes display the total number of iterations performed on aver-
age. The x-axes show the employed scheduling techniques. On top
of the blue bars, we can see the fraction of work that has been stolen
per scheduling technique with the corresponding percentage.

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

31.9531%

30.5102%

30.4450%

31.8245%

31.1961%

31.2911%

33.1641%

29.1814%

32.7319%

30.5670%

8.9361%

9.8559%

9.8768%

9.9764%

9.6133%

10.4404%

4.1743%

10.1211%

6.6573%

9.9573%

31.9384%

30.5059%

30.4510%

31.7972%

31.2348%

31.3501%

33.1639%

29.1963%

32.7294%

30.5719%

Steal attempts
Successful steals

Figure A.26: Pisolver executed with 40% workload imbal-
ance - Number of steal attempts versus successful steals per
scheduling technique: The fraction of the successful steal requests
is given within the orange bars. The x-axis lists the scheduling tech-
niques. The y-axis shows the total number of steal attempts and
successful steals labeled by the fraction of successful steal requests.

Appendix 70

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.0000

0.0002

0.0004

0.0006

0.0008

Ti
m

e
(s

)

Chunk send times

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.0000

0.0002

0.0004

0.0006

0.0008

Ti
m

e
(s

)

Chunk receive times

Figure A.27: Pisolver executed with 40% workload imbalance
- Send and receive times of the work per iteration: Here, a
representation of the end and receive times of the work and data to
be delivered from the victim to the thief is shown. On the y-axis,
the needed time is shown. The scheduling techniques are listed on
the x-axis. In blue, one can see the distribution of the minimum,
average, and maximum time needed. The light blue area represents
the occurrences of time needed.

Appendix 71

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.0

0.5

1.0

1.5

2.0

c.
o.

v
(%

)

1e 5

Figure A.28: Pisolver executed with 40% workload imbalance
- Calculated c.o.v of the parallel loop execution times ob-
tained: On the x-axis, the scheduling techniques are listed. On the
y-axis, one can see the c.o.v. of the parallel loop execution time

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.000

0.005

0.010

0.015

0.020

0.025

0.030

m
ax

/m
ea

n

Figure A.29: Pisolver executed with 40% workload imbalance
- Imbalanced factor max/mean On the x-axis, the scheduling
techniques are listed. On the y-axis, one can see the imbalanced
factor of the parallel loop execution time

Appendix 72

A.2 Extended results Mandelbrot

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

50

100

150

200

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

0.9272%

13.1462% 1.6522%

12.7606%

12.9234%

13.0784%

14.7615% 2.9906%

1.0683%

12.9221%

6.0360%

16.4183% 6.8103%

16.0021%

15.2352%

16.0458%

15.6626% 6.3956%

6.4269%

15.9306%

0.6081%

17.2740%

0.8872%

22.5056% 12.8356%

12.5109%

17.1332%

0.9352%

0.0000%

12.5217%

-45.0811%

Figure A.30: Mandelbrot: On the x-axes, we show the employed
scheduling techniques, whereas on the y-axes, the parallel loop execu-
tion time is shown. Furthermore, the black color represents the results
of the static execution without LB4MPI. The red bar illustrates the
worst-performing dynamic scheduling technique. The green bar rep-
resents the best-performing scheduling technique. The black labels
above the bars are the percentage differences from the static version
without LB4MPI.

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

5000

10000

15000

20000

25000

30000

Pa
ra

lle
l c

os
t (

s)

0.9272%

13.1462% 1.6522%

12.7606%

12.9234%

13.0784%

14.7615% 2.9906%

1.0683%

12.9221%

6.0360%

16.4183% 6.8103%

16.0021%

15.2352%

16.0458%

15.6626% 6.3956%

6.4269%

15.9306%

0.6081%

17.2740%

0.8872%

22.5056% 12.8356%

12.5109%

17.1332%

0.9352%

0.0000%

12.5217%

-45.0811%

Figure A.31: Mandelbrot: On the x-axes, we show the employed
scheduling techniques, whereas on the y-axes, the parallel loop execu-
tion cost is shown. Furthermore, the black color represents the results
of the static execution without LB4MPI. The red bar illustrates the
worst-performing dynamic scheduling technique. The green bar rep-
resents the best-performing scheduling technique. The black labels
above the bars are the percentage differences from the static version
without LB4MPI.

Appendix 73

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f i
te

ra
tio

ns

0.0376%

0.0040%

0.0040%

0.4769%

0.3297%

0.2419%

0.0472%

0.0032%

0.0411%

0.0046%

0.0363%

0.0035%

0.0022%

0.2176%

0.1518%

0.1170%

0.0327%

0.0017%

0.0334%

0.0026%

0.0513%

0.0015%

0.0013%

0.4869%

0.3569%

0.2865%

0.0528%

0.0008%

0.0630%

0.0005%

Iterations Work stolen

Figure A.32: Mandelbrot - Relation of total iterations sched-
uled and total work stolen: The y-axes display the total number
of iterations performed on average. The x-axes show the employed
scheduling techniques. On top of the blue bars, we can see the frac-
tion of work that has been stolen per scheduling technique with the
corresponding percentage.

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

100

200

300

400

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

0.8665%

0.0047%

0.0062%

1.0341%

1.1089%

1.1510%

1.0866%

0.0048%

0.9458%

0.0054%

0.7721%

0.0043%

0.0035%

0.6930%

0.7109%

0.7711%

0.7037%

0.0027%

0.7182%

0.0033%

1.1660%

0.0016%

0.0018%

1.0717%

1.2247%

1.4043%

1.1913%

0.0012%

1.4298%

0.0006%

Steal attempts
Successful steals

Figure A.33: Mandelbrot - Number of steal attempts versus
successful steals per scheduling technique: The fraction of the
successful steal requests is given within the orange bars. The x-axis
lists the scheduling techniques. The y-axis shows the total number of
steal attempts and successful steals labeled by the fraction of success-
ful steal requests.

Appendix 74

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Ti
m

e
(s

)

Chunk send times

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0

1

2

3

4

5

Ti
m

e
(s

)

1e 5 Chunk receive times

Figure A.34: Mandelbrot - Send and receive times of the work
per iteration: Here, a representation of the end and receive times of
the work and data to be delivered from the victim to the thief is shown.
On the y-axis, the needed time is shown. The scheduling techniques
are listed on the x-axis. In blue, one can see the distribution of the
minimum, average, and maximum time needed. The light blue area
represents the occurrences of time needed.

Appendix 75

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.00

0.02

0.04

0.06

0.08

0.10

0.12

c.
o.

v
(%

)

Figure A.35: Mandelbrot - Calculated c.o.v of the parallel
loop execution times obtained: On the x-axis, the scheduling
techniques are listed. On the y-axis, one can see the c.o.v. of the
parallel loop execution time

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

m
ax

/m
ea

n

Figure A.36: Mandelbrot - Imbalanced factor max/mean On
the x-axis, the scheduling techniques are listed. On the y-axis, one
can see the imbalanced factor of the parallel loop execution time

Appendix 76

A.3 Extended results SPH-EXA (Sedov)

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

10

20

30

40

50

60

70

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

0.0000%

1.1501%

1.2405%

1.1757%

1.2098%

1.2859%

1.1370%

1.0636%

0.1724%

1.2977%

0.0862%

1.2160%

1.3041%

1.1717%

1.1968%

1.2306%

1.1166%

1.2678%

0.1279%

1.1138%

11.9345%

13.1566%

13.0481%

13.1125%

13.0838%

13.0474%

13.3384%

13.3605%

12.2637%

13.1339%

-15.6314%

Figure A.37: SPH-EXA Sedov: On the x-axes, we show the em-
ployed scheduling techniques, whereas on the y-axes, the parallel loop
execution time is shown. Furthermore, the black color represents the
results of the static execution without LB4MPI. The red bar illustrates
the worst-performing dynamic scheduling technique. The green bar
represents the best-performing scheduling technique. The black labels
above the bars are the percentage differences from the static version
without LB4MPI.

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

2000

4000

6000

8000

Pa
ra

lle
l c

os
t (

s)

0.0000%

1.1501%

1.2405%

1.1757%

1.2098%

1.2859%

1.1370%

1.0636%

0.1724%

1.2977%

0.0862%

1.2160%

1.3041%

1.1717%

1.1968%

1.2306%

1.1166%

1.2678%

0.1279%

1.1138%

11.9345%

13.1566%

13.0481%

13.1125%

13.0838%

13.0474%

13.3384%

13.3605%

12.2637%

13.1339%

-15.6314%

Figure A.38: SPH-EXA Sedov: On the x-axes, we show the em-
ployed scheduling techniques, whereas on the y-axes, the parallel loop
execution cost is shown. Furthermore, the black color represents the
results of the static execution without LB4MPI. The red bar illustrates
the worst-performing dynamic scheduling technique. The green bar
represents the best-performing scheduling technique. The black labels
above the bars are the percentage differences from the static version
without LB4MPI.

Appendix 77

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f i
te

ra
tio

ns

0.6735%

0.5969%

0.6693%

0.6693%

0.6794%

0.6752%

0.6719%

0.6763%

0.6741%

0.5927%

1.0374%

0.9372%

1.0405%

1.0413%

1.0340%

1.0381%

1.0318%

1.0364%

1.0362%

0.9165%

0.6662%

0.5853%

0.6679%

0.6624%

0.6678%

0.6629%

0.6672%

0.6700%

0.6692%

0.5865%

Iterations Work stolen

Figure A.39: SPH-EXA Sedov - Relation of total iterations
scheduled and total work stolen: The y-axes display the total
number of iterations performed on average. The x-axes show the
employed scheduling techniques. On top of the blue bars, we can see
the fraction of work that has been stolen per scheduling technique
with the corresponding percentage.

rws_m
FSC

rws_W
F

rws_TSS

rws_STATIC50

rws_STATIC35

rws_STATIC25

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_STATIC50

nlaws_STATIC35

nlaws_STATIC25

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC50

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

200

400

600

800

1000

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

11.5183%

10.0004%

11.4471%

11.4950%

11.7176%

11.6197%

11.5394%

11.6387%

11.5522%

9.9698%

13.5104%

10.3056% 13.2353%

13.3708%

13.3389%

13.3290%

13.1859%

13.5416%

13.3044%

9.6008%

11.4656%

9.8856%

11.4704%

11.3758%

11.4687%

11.4328%

11.5306%

11.5307%

11.5661%

9.9263%

Steal attempts
Successful steals

Figure A.40: SPH-EXA Sedov - Number of steal attempts
versus successful steals per scheduling technique: The fraction
of the successful steal requests is given within the orange bars. The
x-axis lists the scheduling techniques. The y-axis shows the total
number of steal attempts and successful steals labeled by the fraction
of successful steal requests.

Appendix 78

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ti
m

e
(s

)

Chunk send times

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Ti
m

e
(s

)

Chunk receive times

Figure A.41: SPH-EXA Sedov - Send and receive times of
the work per iteration: Here, a representation of the end and
receive times of the work and data to be delivered from the victim
to the thief is shown. On the y-axis, the needed time is shown. The
scheduling techniques are listed on the x-axis. In blue, one can see
the distribution of the minimum, average, and maximum time needed.
The light blue area represents the occurrences of time needed.

Appendix 79

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

c.
o.

v
(%

)

Figure A.42: SPH-EXA Sedov - Calculated c.o.v of the paral-
lel loop execution times obtained: On the x-axis, the scheduling
techniques are listed. On the y-axis, one can see the c.o.v. of the
parallel loop execution time

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_STATIC25

rws_STATIC35

rws_STATIC50

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_STATIC50

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_STATIC25

nlaws_STATIC35

nlaws_STATIC50

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.00

0.01

0.02

0.03

0.04

0.05

m
ax

/m
ea

n

Figure A.43: SPH-EXA Sedov - Imbalanced factor max/mean
On the x-axis, the scheduling techniques are listed. On the y-axis, one
can see the imbalanced factor of the parallel loop execution time

Appendix 80

A.4 Extended results miniAMR

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0

5

10

15

20

25

Pa
ra

lle
l l

oo
p

ex
ec

ut
io

n
tim

e
(s

)

3.2300%

4.7137%

2.5525%

5.1488%

3.4447%

9.0155%

3.1429%

23.0694%

23.1201%

22.8583%

22.7929%

23.9612%

23.2302%

23.3433%

34.4067% 22.9354%

0.0000%

4.1846%

1.3847%

2.4286%

3.6109%

24.2967%

2.6509%

-93.6902%

Figure A.44: miniAMR: On the x-axes, we show the employed
scheduling techniques, whereas on the y-axes, the parallel loop execu-
tion time is shown. Furthermore, the black color represents the results
of the static execution without LB4MPI. The red bar illustrates the
worst-performing dynamic scheduling technique. The green bar rep-
resents the best-performing scheduling technique. The black labels
above the bars are the percentage differences from the static version
without LB4MPI.

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

static

Scheduling technique

0.0

0.5

1.0

1.5

2.0

2.5

Pa
ra

lle
l c

os
t (

s)

1e6

1650.8062%

1005.7925%

1376.7768%

1077.6830%

959.2886% 466.0165%

1517.3033%

3838.2762%

3839.9006%

3831.5222%

3829.4300%

3866.8161%

3843.4229%

3847.0416%

0.0000%

3833.9881%

2236.0335% 1733.6749%

1684.3957%

2423.8766%

1294.2086%

261.9570%

1772.3790%

-99.7476%

Figure A.45: miniAMR: On the x-axes, we show the employed
scheduling techniques, whereas on the y-axes, the parallel loop execu-
tion cost is shown. Furthermore, the black color represents the results
of the static execution without LB4MPI. The red bar illustrates the
worst-performing dynamic scheduling technique. The green bar rep-
resents the best-performing scheduling technique. The black labels
above the bars are the percentage differences from the static version
without LB4MPI.

Appendix 81

rws_m
FSC

rws_W
F

rws_TSS

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

200

400

600

800

1000

Nu
m

be
r o

f i
te

ra
tio

ns

0.0326%

0.0369%

0.0343%

0.0213%

0.0167%

0.0366%

0.0325%

0.0487%

0.0463%

0.0289%

0.0327%

0.0292%

0.0378%

0.0343%

0.0007%

0.0000%

0.0000%

0.0013%

0.0000%

0.0002%

0.0012%

0.0005%

0.0009%

Iterations Work stolen

Figure A.46: miniAMR - Relation of total iterations sched-
uled and total work stolen: The y-axes display the total number
of iterations performed on average. The x-axes show the employed
scheduling techniques. On top of the blue bars, we can see the frac-
tion of work that has been stolen per scheduling technique with the
corresponding percentage.

rws_m
FSC

rws_W
F

rws_TSS

rws_SS

rws_GSS

rws_FSC

rws_FAC

nlaws_m
FSC

nlaws_W
F

nlaws_TSS

nlaws_SS

nlaws_GSS

nlaws_FSC

nlaws_FAC

laws_m
FSC

laws_W
F

laws_TSS

laws_STATIC35

laws_STATIC25

laws_SS

laws_GSS

laws_FSC

laws_FAC

Scheduling technique

0

50

100

150

200

250

300

350

Nu
m

be
r o

f r
eq

ue
st

s t
o

th
e

co
or

di
na

to
r

0.1019%

0.1156%

0.1072%

0.0667%

0.0522%

0.1143%

0.1015%

0.1412%

0.1338%

0.0839%

0.0952%

0.0847%

0.1103%

0.1005%

0.0024%

0.0000%

0.0000%

0.0047%

0.0000%

0.0008%

0.0043%

0.0017%

0.0031%

Steal attempts
Successful steals

Figure A.47: miniAMR - Number of steal attempts versus
successful steals per scheduling technique: The fraction of the
successful steal requests is given within the orange bars. The x-axis
lists the scheduling techniques. The y-axis shows the total number of
steal attempts and successful steals labeled by the fraction of success-
ful steal requests.

Appendix 82

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.0000

0.0005

0.0010

0.0015

0.0020

Ti
m

e
(s

)

Chunk send times

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Ti
m

e
(s

)

Chunk receive times

Figure A.48: miniAMR - Send and receive times of the work
per iteration: Here, a representation of the end and receive times of
the work and data to be delivered from the victim to the thief is shown.
On the y-axis, the needed time is shown. The scheduling techniques
are listed on the x-axis. In blue, one can see the distribution of the
minimum, average, and maximum time needed. The light blue area
represents the occurrences of time needed.

Appendix 83

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

c.
o.

v
(%

)

1e 5

Figure A.49: miniAMR - Calculated c.o.v of the parallel loop
execution times obtained: On the x-axis, the scheduling tech-
niques are listed. On the y-axis, one can see the c.o.v. of the parallel
loop execution time

rws_FAC

rws_FSC

rws_GSS

rws_SS

rws_TSS

rws_W
F

rws_m
FSC

laws_FAC

laws_FSC

laws_GSS

laws_SS

laws_STATIC25

laws_STATIC35

laws_TSS

laws_W
F

laws_m
FSC

nlaws_FAC

nlaws_FSC

nlaws_GSS

nlaws_SS

nlaws_TSS

nlaws_W
F

nlaws_m
FSC

Scheduling technique

0

1

2

3

4

m
ax

/m
ea

n

1e 5

Figure A.50: miniAMR - Imbalanced factor max/mean On
the x-axis, the scheduling techniques are listed. On the y-axis, one
can see the imbalanced factor of the parallel loop execution time

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)
Translation from German original

Title of Thesis:

Name Asse sor: __

Name Student: __

Matriculation No.: __

With my signature I declare that this submission is my own work and that I have fully
acknowledged the assistance received in completing this work and that it contains no
material that has not been formally acknowledged. I have mentioned all source materials
used and have cited these in accordance with recognised scientific rules.

Place, Date: _______________________ Student: ____________________________

Will this work be published?

No

Yes. With my signature I confirm that I agree to a publication of the work (print/digital)
in the library, on the research database of the University of Basel and/or on the
document server of the department. Likewise, I agree to the bibliographic reference in
the catalog SLSP (Swiss Library Service Platform). (cross out as applicable)

Publication as of: ___

Place, Date: _______________________ Student: ____________________________

Place, Date: _______________________ Assessor: ____________________________

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis

	Acknowledgment
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Scheduling
	2.2 Static Scheduling
	2.3 Dynamic Scheduling
	2.3.1 Self-scheduling (SS)
	2.3.2 Fixed Size Chunking(FSC)
	2.3.3 Guided Self-scheduling (GSS)
	2.3.4 Trapezoidal Self-scheduling (TSS)
	2.3.5 Factoring (FAC)
	2.3.6 Weighted Factoring (WF)
	2.3.7 Adaptive Self-scheduling

	2.4 Work-stealing
	2.4.1 Victim Selection
	2.4.2 LB4MPI

	3 Related Work
	4 Methods
	4.1 Implementation of Work stealing in LB4MPI
	4.1.1 Scheduling techniques in LB4MPI
	4.1.2 Concept of Work stealing in LB4MPI
	4.1.3 Coordinator
	4.1.3.1 Random victim selection
	4.1.3.2 Locality-Aware Work Stealing
	4.1.3.3 Naive locality-aware Work stealing

	4.1.4 Worker
	4.1.5 Data type handling in LB4MPI
	4.1.5.1 One-dimensional data type
	4.1.5.2 Cubic data type

	4.1.6 Deserialization and Serialization

	4.2 Integration of LB4MPI
	4.2.1 Workflow of the integration
	4.2.2 Configuration
	4.2.3 Parameters
	4.2.4 Data setup
	4.2.5 Start loop
	4.2.6 Chunk calculation
	4.2.7 End loop

	5 Results
	5.1 Design of the Experiments
	5.2 Pisolver
	5.2.1 Comparison of different workload imbalances
	5.2.2 Performance evaluation
	5.2.3 Iterations stolen
	5.2.4 Steal attempts
	5.2.5 Coefficient of variance after LB4MPI
	5.2.6 Send and receive time per chunk

	5.3 Mandelbrot
	5.3.1 Performance evaluation
	5.3.2 Iterations stolen
	5.3.3 Steal attempts
	5.3.4 Coefficient of variance after LB4MPI

	5.4 SPH-EXA - Sedov
	5.4.1 Performance evaluation
	5.4.2 Iterations stolen
	5.4.3 Steal attempts
	5.4.4 Send and receive time per chunk

	5.5 miniAMR
	5.5.1 Performance evaluation
	5.5.2 Limitations

	6 Conclusion
	7 Future work
	Bibliography
	A Appendix
	A.1 Extended results Pisolver
	A.1.1 Comparison of varying workload imbalance
	A.1.2 Results with 0% induced workload imbalance
	A.1.3 Results with 20% induced workload imbalance
	A.1.4 Results with 30% induced work imbalance
	A.1.5 Results with 40% induced workload imbalance

	A.2 Extended results Mandelbrot
	A.3 Extended results SPH-EXA (Sedov)
	A.4 Extended results miniAMR

