
Automated Selection of Scheduling
Algorithms using Reinforcement

Learning in LB4MPI

Master Thesis

Faculty of Science of the University of Basel

Department of Mathematics and Computer Science

HPC Group

hpc.dmi.unibas.ch

Advisor: Prof. Dr. Florina M. Ciorba

Supervisor: Jonas H. M. Korndörfer

Andrei B̂ırgovan

andrei.birgovan@stud.unibas.ch

21-063-425

12th of June 2023

Acknowledgments

I want to express my sincere gratitude to Prof. Dr. Florina M. Ciorba for allowing me

to complete my Machine Intelligence Master’s thesis in the HPC group. Her constructive

feedback and valuable suggestions helped me stay motivated in chasing high-quality results.

Also, many thanks towards Jonas H. M. Korndörfer for being a great advisor. He was always

there to support me, and every interaction felt beyond beneficial. Special thanks go towards

each member of the HPC group for making my Master’s thesis an enjoyable experience.

I am beyond grateful to my beloved family and friends for their continuous support and

endless love.

Abstract

To meet the computational demands of scientific applications, high-performing computing

systems chase the exascale by incorporating an ever-increasing number of computing nodes.

One major source of overhead that results in sub-optimal usage of robust HPC systems

is the load imbalance. To combat this phenomenon, numerous dynamic loop scheduling

algorithms have been proposed. Deciding upon which loop scheduling technique to use is an

NP-hard problem. The manual selection for a specific application, loop, and system context

is error-prone and time-costly, due to the need for extensive experimentation. An automated

selection is required, where the scheduling technique is selected dynamically.

In this thesis, we extend the LB4MPI library with reinforcement learning features for an

automated selection of the most promising technique out of a portfolio of scheduling algo-

rithms. The library features seven agent types (five main agents and two meta agents),

four action selection policies (three main policies and a customizable one), and ten reward

metrics. The two meta-agents have been developed to swerve away from the scheduling tech-

nique selection problem. The ChunkParameterSelector would select the most promis-

ing chunk parameter size for SS, while the newly-proposed StealRatioSelector, which

is compatible with a distributed-data setup, would select the fraction of work to be stolen.

The implementation is validated and benchmarked using three scientific applications: PI-

SOLVER (available in both replicate-data and distributed-data versions), Mandelbrot, and

SPHYNX Evrard Collapse. The RL-based automated DLS algorithm or parameter selec-

tion results are compared against the theoretical highest-achieving selection, the Oracle.

The agents using looptime-based reward metrics are shown to achieve higher performance

than the load-imbalance rewarded ones. No long-term advantage is noticed regardless

of using QLearn or SARSALearn. In some cases, the RL agent’s selection achieves only a

0.69% performance loss over the Oracle. However, manually fixing the scheduling algorithm

to a random value yields a performance decline of 9.43% to 120.27%. The overhead of using

the RL features is between 0.001% and 0.022% of the application’s execution time. An

ANOVA examination is undergone to find the RL agent’s configuration item that causes the

most variance, and this is the reward-type.

Table of Contents

Acknowledgments ii

Abstract iii

List of Figures vi

List of Tables vii

List of Abbreviations viii

1 Introduction 1

2 Background 3

2.1 Workload Scheduling . 3

2.1.1 The Message Passing Interface . 3

2.1.2 The LB4MPI Library . 4

2.1.3 Scheduling Algorithms . 4

2.1.4 Work Stealing in Distributed Data Setups 6

2.1.5 Performance Metrics . 6

2.2 Reinforcement Learning . 8

2.2.1 Types of Policies . 9

2.2.2 Types of Reinforcement Learning Agents 9

3 Related Work 13

4 Implementation 16

4.1 The LB4MPI Library . 16

4.2 The Reinforcement Learning Extension . 18

4.3 Environment Variables . 23

4.4 List of Changes . 25

4.5 Compiling the Library . 26

4.6 Usage - Summary . 27

Table of Contents v

5 Experimental Results 28

5.1 The Computing System . 28

5.2 Replicated-data Experiments . 28

5.2.1 PISOLVER . 30

5.2.2 Mandelbrot . 34

5.2.3 SPHYNX Evrard Collapse . 39

5.3 Distributed-data Experiments . 43

5.3.1 PISOLVER (Distributed Version) . 44

5.4 Replaying the DLS Selection . 47

5.5 RL Component Overhead . 48

5.6 Potential Performance Gained . 49

5.7 Analysis of Variance . 50

5.8 Discussion . 52

6 Conclusions and Future Work 54

Bibliography 56

Appendix A Appendix a

List of Figures

1.1 Motivation . 2

2.1 Components of an Agent-Environment RL system. 8

4.1 Communication between LB4MPI and the RL agent when automatically deter-

mining the most promising DLS technique . 17

4.2 Components of the RL Agent . 19

4.3 Application’s workflow when using the C-based LB4MPI with RL features 27

5.1 Results summary for PISOLVER . 31

5.2 Chunk parameter selection per timestep for PISOLVER (15 %) 32

5.3 DLS selection per timestep for PISOLVER, 15 % workload imbalance 32

5.4 RL DLS selector configuration components comparison for PISOLVER 33

5.5 Results summary for Mandelbrot . 35

5.6 Chunk parameter selection per timestep for Mandelbrot 36

5.7 DLS selection per timestep for Mandelbrot . 37

5.8 Similarity of DLS selection compared with Oracle’s for Mandelbrot 38

5.9 RL DLS selector configuration components comparison for Mandelbrot 38

5.10 Results summary for SPHYNX Evrard Collapse 40

5.11 Chunk parameter selection per timestep for SPHYNX Evrard Collapse 41

5.12 DLS selection per timestep for SPHYNX Evrard Collapse 41

5.13 Similarity of RL DLS selection versus Oracle’s for SPHYNX Evrard 42

5.14 RL DLS selector configuration components comparison for SPHYNX Evrard . . 43

5.15 Results summary for the distributed version of PISOLVER 45

5.16 StealRatio selection per timestep for distributed PISOLVER 46

5.17 Parallel execution times for all replicated-data experiments grouped by the RL

configuration type . 51

5.18 Results of benchmarking automated selection strategies using time-stepping ap-

plications. Formula to calculate the decline in performance compared with the

Oracle: x% = (Tpar - TOracle
par) / TOracle

par × 100, where Tpar is the parallel execu-

tion time . 53

A.1 Performance summary for PISOLVER 0% workload imbalance b

A.2 DLS selection per timestep for PISOLVER with 0% workload imbalance b

A.3 Performance summary for PISOLVER 5% workload imbalance c

A.4 DLS selection per timestep for PISOLVER with 5% workload imbalance c

A.5 Performance summary for PISOLVER 10% workload imbalance d

A.6 DLS selection per timestep for PISOLVER with 10% workload imbalance d

A.7 Performance summary for PISOLVER 15% workload imbalance e

A.8 DLS selection per timestep for PISOLVER with 15% workload imbalance e

A.9 Performance summary for PISOLVER 20% workload imbalance f

A.10 DLS selection per timestep for PISOLVER with 20% workload imbalance f

A.11 Performance summary for PISOLVER 25% workload imbalance g

A.12 DLS selection per timestep for PISOLVER with 25% workload imbalance g

A.13 Performance summary for PISOLVER 30% workload imbalance h

A.14 DLS selection per timestep for PISOLVER with 30% workload imbalance h

A.15 RL chunk size selection for PISOLVER . i

List of Tables

2.1 Dynamic Load Scheduling techniques included in LB4MPI [1]. 5

3.1 Main characteristics of closely-related works. 15

4.1 Supported environment variables for LB4MPI / LB4OMP with RL features 24

5.1 Design of 1’835 factorial experiments for performance evaluation of LB4MPI with

RL features in replicated-data applications . 29

5.2 Design of 210 factorial experiments for evaluating the StealRatio selection 33

using RL features in a distributed-data setup . 44

5.3 Differences in total application execution time when the sequence of DLS tech-

niques achieved through automated or manual selection is replayed six times.

For PISOLVER, the percentage in parenthesis refers to the workload imbalance. 48

5.4 Measuring the overhead introduced through using the RL component 49

5.5 Potential performance gained through using the RL-based selection feature. For

PISOLVER, the percentage in parenthesis refers to the workload imbalance. . . . 50

5.6 One-factor ANOVA F-statistic . 51

5.7 Tukey’s Honestly Significantly Differenced analysis 52

List of Abbreviations

α The learning rate

ϵ Probability of exploiting the knowledge

γ The discount rate

τ Temperature parameter for softmax

L0 The loop with ID 0

T loop
par Parallel loop execution time

Tpar Parallel execution time (per whole application execution)

ANOVA ANalysis Of VAriance

c.o.v. Coefficient of Variance

DLS Dynamic Loop Scheduling

env var Environment Variable

eps-greedy The epsilon-greedy policy type

expl-1st The explore-first policy type

HPC High Performing Computing

LIB Load Imbalance

LT The looptime reward type

LT-avg The looptime-average reward type

MPI Message Passing Interface

PE Processing Element

RL Reinforcement Learning

RWS Random Work Stealing

SRS The StealRatioSelector meta agent

1
Introduction

The steady growth of computational demands in scientific applications indicates a need

for more powerful high-performance computing (HPC) systems, chasing the exascale. The

boost in performance is generally achieved through increasing the number of computing

nodes. To exploit the full potential of a robust HPC system with multiple levels of hardware

parallelism, parallelism in software needs to be exposed and expressed. Alongside the need

for synchronisation, management of parallelism, and communication costs, load imbalance

has been identified as a major overhead source leading to a decline in performance [2].

Load imbalance consists of idle processors, with work ready to be done that no processor has

started yet. It leads to disparate advancement among the processing units. Load imbalance

emerges from numerous application, algorithm, and system characteristics [3].

To mitigate the effects of load imbalance, scheduling aims to balance the workload in the pro-

cessor’s space and time. Dynamic loop scheduling (DLS) techniques efficiently improve load

balancing. Software libraries such as LB4OMP [3], LaPeSD libGOMP [2], and LB4MPI [1]

provide unified implementations of DLS algorithms, at thread or process levels. As there

is no one-fits-all solution [2], the problem to be solved is an algorithm selection one. Man-

ual selection of the DLS algorithm is proven to be inefficient, time-consuming, costly, and

human error-prone; hence, an automated DLS selection is required.

Recent works by Dhandayuthapani [4], Banicescu et al. [5], Sukhija et al. [6], Korndörfer

et al. [3], and Kury [7] use Machine Learning techniques for automated DLS selection dur-

ing execution time. Automated selectors have been successfully developed for thread level,

shared memory setups [7, 8]. Solving this problem for the more scalable distributed memory

configuration at the process level is an understudied topic. Based on previous work, Expert

Systems and Reinforcement Learning (RL) automated selection methods are worthwhile.

However, opting for the RL solution is shown to be more flexible when the DLS portfolio

needs to be changed. In addition to QLearn and SARSA RL agents being vastly encountered

in literature, these are not outperformed by variations such as DoubleQLearn, QVLearn, or

ExpectedSARSA [5, 7]. Rather, an agent’s performance is shown to be influenced by other

factors, such as the policy choice and reward metric used. Furthermore, Kury [7] demon-

Introduction 2

strated the potential of an automated chunk parameter selection, the ChunkLearner, as

an alternative to DLS selection. We will also explore this hypothesis by experimenting with

this meta RL agent, renamed into the ChunkParameterSelector.

On another topic, when following a centralised-data approach and using workload schedul-

ing, the scalability is compromised. To address these problems, the LB4MPI library also

supports applications where the data is distributed instead of replicated. Within Wetten’s

Master’s thesis [9], the LB4MPI library has been modified to support random work-stealing

(RWS) for distributed-data contexts. We will explore an RL-based automated selection of

the StealRatio through the StealRatioSelector meta RL agent.

Figure 1.1: Motivation

Figure 1.1 illustrates the motivation behind this Master’s thesis. The goal is to extend the

LB4MPI library with RL capabilities to solve the automated DLS algorithm selection prob-

lem. Pursuing a similar methodology, we experiment with automatically selecting the chunk

size parameter using a modified version of the Self Scheduling (SS) technique. Moreover,

we analyse the performance of various RL agent configurations through benchmarking using

three applications, PISOLVER [10], Mandelbrot [11], and SPHYNX Evrard Collapse [12],

on the miniHPC cluster [13]. Followingly, the focus shifts from a replicated data setup to

a distributed data one, and we use RL agents to select the most promising Steal Ratio

dynamically. This selection is benchmarked using a distributed-data version of PISOLVER.

This Master’s thesis is structured as follows. Chapter 2 offers the background information

further needed. Chapter 3 summarises the literature findings that lead to this topic’s exis-

tence. In chapter 4, the implementation choices are overviewed, while in chapter 5, a series of

experiments are discussed. While chapter 6 offers the conclusions and future work prospects,

the Appendix A brings completeness to the main body of the thesis. The Appendix mainly

contains auxiliary figures and plots regarding some of the experiments.

2
Background

In this chapter, important notions such as workload scheduling algorithms and performance

metrics are explained. Then, the focus shifts to Reinforcement Learning and the model-free

learning components, such as SARSA, QLearn, and their variants.

2.1 Workload Scheduling
In the context of splitting the work among processes (as opposed to workload division at the

thread level), the communication is achieved via the Message Passing Interface (MPI), as

explained in subsection 2.1.1. To improve workload balancing, several approaches to dividing

the workload among the Processing Elements (PEs) exist. The centralised data method

implies a global centralised task queue and a master process handing new work to available

PEs. Additionally, multiple algorithms able to perform this division exist, as explained in

subsection 2.1.3. As the full data should be replicated to each process’s internal memory,

this approach is a bottleneck in memory-bounded contexts. The alternative is following

a distributed data approach, as explained in subsection 2.1.4, where the work is equally

divided among the PEs before the application starts. To dynamically balance the load,

processes are now able to steal chunks of work from peers. The quality of the scheduling

methods can be verified using multiple metrics, as explained in subsection 2.1.5.

2.1.1 The Message Passing Interface
Parallel programs make use of application programming interfaces to ensure communication

among the processing units to achieve both data sharing and consistency in parallel regions.

The Message Passing Interface (MPI) [14] is the most used standard in distributed memory

contexts, where each parallel process only has access to its own local memory, and data-

sharing is achieved through message passing. The messages can either be of the point-to-

point type, such as MPI Send or MPI Recv, or collective communication, such as MPI Bcast.

By using MPI, scalability beyond the shared memory of geographically close components

can be achieved. This standard is compatible with C, C++, and Fortran applications.

Background 4

2.1.2 The LB4MPI Library
LB4MPI [1] is a library that contains a collection of Dynamic Loop Scheduling (DLS) algo-

rithms. By allowing processes to communicate using MPI, this library supports the execution

of scientific applications on High-Performance Computing (HPC) systems.

Available in both C and Fortran programming languages, this library is an extension of

the DLB tool, developed in 2007 by Cariño and Banicescu [15]. Mohammed et al. [1] built

DLS4LB on top of DLB tool, which in turn has been renamed as LB4MPI. The tool is used

for parallelising and balancing the workload of scientific applications with simple parallel

loops (1D loops) or nested parallel loops (2D loops) via efficiently distributing the workload

among available resources. Based on a master-worker model, chunks of iterations (calculated

based on the active DLS technique) are assigned by the master to workers whenever they

become available. When not serving requests, the master also acts as a worker [1]. Alongside

the centralised data approach, where each process replicates the whole work queue in its

own memory space, the library also offers support for the distributed data method [9].

The LB4MPI library offers support for 14 different workload scheduling techniques: STATIC,

SS, FSC, mFSC, GSS, TSS, FAC2, WF, AWF, AWF-B, AWF-C, AWF-D, AWF-E, and AF.

These algorithms will be detailed in the following subsection.

2.1.3 Scheduling Algorithms
The techniques described in this section are suitable for a replicated data setup, with all

processes able to access the full workload queue. In the context of HPC, scheduling is

the process of organising the parallel computing elements and the corresponding data in

the processor’s space and time. Through scheduling, the system’s performance boosting is

obtained by optimising the resource allocation. This assignment of tasks is non-trivial, as

the granularity of jobs differs, and the systems are often heterogeneous. Load balancing is

achieved when the total workload is properly distributed among all the processing units,

with the time corresponding to a process staying in an idle state being minimal.

Loops with little to no dependencies amongst iterations are major sources of parallelism [16].

Loop scheduling can either be static, where the tasks are divided and assigned to PEs

before application execution, or dynamic (DLS), where the tasks are divided and scheduled

during runtime [1]. Moreover, the DLS techniques can be further divided into non-adaptive

and adaptive, based on the moment when information affecting the scheduling decision is

gathered. In table 2.1, the two categories of DLS algorithms are expanded.

The static scheduling technique implies dividing the workload into a number of equally-

sized chunks that correspond to the total number of PEs. As this division happens before

executing the parallel code, the scheduling overhead is kept at a minimal value. Nonethe-

less, due to iterations requiring a non-equal amount of time to be completed (especially in

irregular loops), workload imbalance often occurs.

Background 5

Table 2.1: Dynamic Load Scheduling techniques included in LB4MPI [1].

Non-adaptive Adaptive

Self Scheduling (SS) [17] Adaptive Weighted Factoring (AWF) [18]

Fixed Size Chunking (FSC) [19] AWF Batch (AWF-B) [20]

Modified Fixed Size Chunking (mFSC) [21] AWF Chunk (AWF-C) [20]

Guided Self-Scheduling (GSS) [22] AWF Batch + overhead (AWF-D) [20]

Trapezoid Self-Scheduling (TSS) [23] AWF Chunk + overhead (AWF-E) [20]

Factoring2 (FAC2) [24] Adaptive Factoring (AF) [25]

Weighted Factoring (WF) [26]

Non-adaptive Scheduling Techniques

In this case, the scheduling decisions (e.g. determining the chunk size) depend on information

gathered prior to the execution of the applications.

In Self Scheduling (SS) [17], when a PE becomes idle and requests work, it receives a chunk

of size 1. Perfect load balancing is achieved, but the performance is degraded by the overhead

produced by many individual requests, each with high communication costs.

In Fixed Size Chunking (FSC) [19], the optimal chunk size for SS is calculated based on the

mean, standard deviation, and the overhead in the loop execution times, metrics received

as input. The mFSC [21] relaxes the need to know these metrics a priori.

In Guided Self-Scheduling (GSS) [22], chunks of larger size are allocated at the beginning,

with the chunk size decreasing based on the number of remaining iterations. Similarly, in

Trapezoid Self-Scheduling (TSS) [23], the chunk sizes also decrease, but linearly.

In Factoring (FAC), the chunk size is calculated by using a probabilistic model based on the

mean and standard deviation of execution times received as input. The modified version

FAC2 [24] is a more practical version. Half of the remaining iterations form a batch, and

the chunk size is calculated by splitting the batch in a round-robin fashion.

In Weighted Factoring (WF) [26], speed-based weights are associated with each PE before

the application’s execution. The chunk sizes are calculated using FAC and scaled properly.

Adaptive Scheduling Techniques

The latest information regarding the system or the application is collected while the program

is executed, and these are exploited for deciding the next chunk sizes.

Adaptive Weighted Factoring (AWF) [18] is based on WF, but the weight of each PE

is flexible. No prior knowledge about the workloads is needed, as information regarding

previous loops is considered. AWF Batch (AWF-B) [20] updates the weights not after

each time step but after every batch of a scheduled loop. Similarly, in AWF Batch with

scheduling overhead AWF-D [20], updates happen after each batch, and the scheduling

overhead is considered. In AWF Chunk (AWF-C) [20], the weights are updated after each

chunk, resulting in better load balancing, but increased overhead. In AWF-E [20], updates

happen after the execution of every chunk, and the scheduling overhead is also considered.

Background 6

Adaptive Factoring (AF) [25] behaves similarly to FAC, with the major difference that the

mean and standard deviation of loop execution times are collected dynamically.

2.1.4 Work Stealing in Distributed Data Setups
In a distributed data setup, the total workload is divided among the PEs following a static

division. In this way, each process would only hold in its memory the data it has to handle.

This approach is particularly suitable when the application is memory-bounding or when

the scalability of the system is desired. Regardless, the static division of work would likely

introduce a level of load imbalance, as the iterations are not guaranteed to require the same

level of effort. This effect can be reduced through work stealing.

In the work-shared policies exemplified in section 2.1.3, the idle PEs receive work from

a master process, which might become a bottleneck. Nonetheless, in the work-stealing

approach, idle PEs (the thieves) are responsible to find work themselves by querying busy

PEs (the victims) and stealing their workload. In this way, the overhead of the victim

is reduced. Yet, the cost of transferring the data among the processes is not negligible.

There are multiple strategies for selecting the victim, such as probing potential victims,

characterised by a tradeoff between larger searching overheads and having a lower number of

tasks to move. Currently, the LB4MPI library only supports Random Work Stealing (RWS),

where the victim is randomly selected from busy processes. In LB4MPI, the amount of work

to be stolen is fixed from 0% to 100% through the StealRatio environment variable [9].

The efficiency of the scheduling strategies aforementioned in this section highly depends on

the state of the environment, which is rather unpredictable and ever-changing. For example,

by manually fixing the most promising scheduling algorithm for the whole application run,

there is no guarantee this algorithm would remain the highest-performing choice during

the whole execution of the application. In the following subsection, we introduce a series

of metrics to be used in determining the performance of a DLS technique, which allow an

objective comparison of different approaches.

2.1.5 Performance Metrics
Among the metrics characterising the timestep performance of a loop scheduling algorithm,

Time Measuring and Load Balancing are widely encountered throughout the literature.

Below are the definitions of such metrics that we will use further throughout this thesis.

Time Measuring Metrics

• T loop
par (performance per loop) measures the execution time that the slowest process

requires to finish its share of work during a single loop. Practically, the term looptime

refers to the performance per loop for the slowest process. Likewise, the quantity Tpar
is the time needed to perform all the work during the whole application run and for

all the loops, and it is approximated to the sum of all T loopi
par .

Background 7

Load Balancing Metrics

• The percent load imbalance [27] is calculated using Equation 2.1, where Lmax is the

maximum load of any process, and L̄ is the mean load of all processes. Practically,

the loop’s parallel execution time can be used to quantify the load; hence, L can

be viewed as T loop
par . This metric measures the performance that could be reclaimed

through balancing the load. Any statistical property of the distribution is discarded.

percent load imbalance = (
Lmax

L̄
− 1)× 100% (2.1)

• The Coefficient of Variance (c.o.v.) [24] from Equation 2.2 characterise the amount of

variance in distributing the workload. The Standard deviation σ is needed to calculate

the c.o.v. (in Equation 2.3, Li is the load of the ith process out of n processes).

c.o.v. =
σ

L̄
(2.2)

σ =

√√√√ 1

n

n∑
i=0

(Li − L̄)2 (2.3)

• A positive skewness [27] (Equation 2.4) means that a small number of processes have

a load higher than average, while a negative skewness implies having a lower workload

on some processes. If the skewness is 0, the workload is normally distributed.

skewness =

1
n

n∑
i=0

(Li − L̄)3(
1
n

n∑
i=0

(Li − L̄)2
)3/2

(2.4)

• The kurtosis [27] (Equation 2.5) characterises the size and frequency of deviations

when distributing the workload. The workload is normally distributed if kurtosis is 0.

kurtosis =

1
n

n∑
i=0

(Li − L̄)4(
1
n

n∑
i=0

(Li − L̄)2
)2 − 3 (2.5)

However, no performance metric can provide a complete picture by itself. Hence, a mixture

of both time-measuring and load-balancing metrics will be used throughout this thesis.

Based on the assumption that the overall state of the application is not constant, a dynamic

selection of the scheduling algorithm is required. This selection should take into consid-

eration different performance metrics that are dynamically captured. An intelligent agent

could be trained to learn the environment and make informed decisions in order to au-

tomatically select the most promising DLS. In the following section, several Reinforcement

Learning methods and tools are introduced, which are later applied to resolve the automated

scheduling algorithm selection problem.

Background 8

2.2 Reinforcement Learning
Machine Learning (ML) is part of the wider field called Artificial Intelligence. The ML

agents are trained in decision-making and aim to determine future outcomes based on input

events. The vast domain of ML has three main branches, as follows [28]:

• Supervised Learning implies that the model learns from a labelled dataset under

guidance. It helps to solve problems such as Classification, Regression or Estimation,

by using Neural Networks, Bayesian Networks or Support Vector Machines.

• Unsupervised Learning hints that the model is trained on unlabeled data and fea-

tures extracted. Clustering or Prediction problems help in e.g. Big Data Visualisation

and are solved using algorithms such as K-means or Gaussian Mixture Models.

• Reinforcement Learning suggests that an agent learns the best actions in a trial-

and-error fashion. The problem solved is of Decision-making type, and most represen-

tative algorithms are Temporal-Difference Learning (e.g. QLearn and SARSALearn)

or Markov decision process, which in turn can be model-based or model-free.

In this Master’s thesis, we focus on the RL part. This branch of ML focuses on a goal-

oriented approach to learning problems that involve dealing with complex and unpredictable

environments. An agent learns how an environment changes through trial and error - after

performing an action, it is instantly presented with a reward and a new state, and it aims

to receive higher rewards. The RL agent performs an action and receives feedback on it,

the agent being guided in finding the correct solution, partially similar to what happens

in unsupervised learning. However, the agent is not guided on what is the most promising

action to perform next, behaviour specific to supervised learning.

Figure 2.1 illustrates the Agent-Environment interaction in an RL system at a random point

in time. Given a state S, the agent performs action A. Based on the impact A has on the

environment, the pair ⟨S,A⟩ is attributed a numerical value, the reward R.

Figure 2.1: Components of an Agent-Environment RL system.

The reward R is a scalar value describing the extent to which the new state S
′
is desirable.

Based on a reward function, the agent’s utility is defined, and the agent must learn what

action A
′
to perform next to maximize the expected rewards. Essentially, the current

outcome is compared with all past actions. After measuring the performance of an action,

the absolute value obtained is scaled into a relative one. For example, on the scale [−1, 1],

the action with the highest performance encountered so far is rewarded with 1, while a bad

action is rewarded with −1. A performance situated between the two extremes would get a

reward value closer to 0. When resolving the automated DLS algorithm selection problem,

the agent can consider any performance metric from section 2.1.5 to be rewarded.

Background 9

2.2.1 Types of Policies
An action selection policy is a mapping between states and actions. Policies determine what

action A should be performed in the current state S to get the agent to the next state S
′
.

The aim is to equip the RL agent with an action selection policy such that, in the long run,

it converges to finding the optimal actions given a sequence of states.

One key characteristic of RL is that the system is assessed continuously with the learning

process. There is a trade-off between exploration, where the agent performs new actions,

and exploitation, through which the already experienced best action should be performed.

Based on when the exploration phase happens, the following are possible policies.

• Explore-First policy implies that the first timesteps are used to

explore all state-action pairs ⟨S,A⟩. Hence, the exploration phase

would take no states × no actions steps. After exploring, the agent

exploits the gained knowledge for all the remaining period.

• Epsilon-Greedy policy indicates the exploration and exploitation

phases are not disjointed anymore, and each can happen anytime.

Based on the value of the randomly drawn float ϵ ∈ [0, 1], the agent

will explore a new action with a probability of 1− ϵ or exploit the

already-gained knowledge with a probability of ϵ.

An off-policy learning strategy assumes that the policy is not relevant when deciding if a

new action is good or bad. Oppositely, an on-policy assumes that experience comes from

the agent, aiming to improve the agent’s policy in real-time (an agent plays a game, and it

improves based on the gained experience, and then plays the game again).

2.2.2 Types of Reinforcement Learning Agents
When learning, two main groups of strategies can be observed - model free and model based.

In a model-based learning (e.g. Dyna, Prioritized Sweeping, RTDP) approach, the model is

used together with its corresponding utility function, which computes the expected reward

when performing a certain action. Based on the utility function, a policy can be derived.

In a model-free learning (e.g. Monte Carlo Control, Temporal-Difference) approach, a model

is not needed. Instead, an action-value function Q is used to derive a policy.

The model-based learning model is only appropriate when the environment allows finding a

model. During DLS technique selection, the environment is heavily influenced by random

factors, and determining a model is not feasible. Hence, a model-free approach is used.

Temporal-Difference (TD) is an implementation of model-free learning. Iteratively, the

approximated value of the optimal action is updated after each cycle (one time-step) based

on the new estimates. The next action to be performed is determined using a policy. Next,

two important TD algorithms (QLearn and SARSALearn) are overviewed and compared.

Background 10

QLearn

This model-free RL algorithm provides an off-policy TD control method. It is used to learn

the action-value Q function, which provides the expected reward of performing an action in

any given state. The Q function approximates the optimal value function Q∗ independently

of the policy being followed. The policy continues to have an impact on the sequence in

which state-action pairs are visited and changed [28]. Correct convergence to the optimal

solution occurs if all state-action pairs are continuously updated. An RL agent is tuned

using the following two parameters that decide how new information is absorbed. These

parameters are important when updating the Q-value in equation 2.6.

• The discount rate γ ∈ [0, 1] balances the value of immediate and long-term rewards.

Basically, if γ = 1 the whole execution, the agent would value the action far in the

future just as much as the current rewarded action, and for γ = 0, only the current

reward would matter. As the value of γ would impact the duration and quality of

the learning process, its value should start at a high value and decrease over time,

approaching a value closer to 0.

• α ∈ [0, 1] is the learning rate, and it dictates how much the agent values new

observations over old knowledge. From a global perspective, α should start at a large

value since, at first, all new information would bring the agent closer to discovering

the optimal policy. It should decay over time, assuming every piece of new knowledge

already gained places the agent in a state closer to the optimal one.

How the QLearn agent handles new information during any time step is defined by the

Q-value update rule in equation 2.6 [28]. At this point, the agent is in state S and has

performed action A. When updating the action-value function Q, it considers the old Q-

value, Q(S,A), the reward R gained for action A, and the potential Q-value of performing

the next action with a maximal Q-value, a, while in state S
′
(the agent’s new state).

Q(S,A) = Q(S,A) + α[R+ γmax
a

Q(S
′
, a)−Q(S,A)]. (2.6)

The QLearn pseudocode is displayed within Algorithm 1 [28].

Algorithm 1: Pseudocode for QLearn

Input: S - set of states; A - set of actions;
Output: Q - value function;

1 Initialise Q(S,A), ∀S ∈ S, A ∈ A(S) arbitrary and Q(terminal-state, -) = 0;
2 repeat
3 Initialise S;
4 repeat
5 Choose A from S according to the policy derived from Q;

6 Take action A and observe R (reward), S
′
(new state);

7 Q(S,A)← Q(S,A) + α[R+ γmaxaQ(S
′
, a)−Q(S,A)];

8 S ← S
′
;

9 until s is terminal ;

10 until there are no time-steps left ;
11 return Q;

Background 11

SARSALearn

SARSA is a model-free RL algorithm providing an on-policy TD control method. In the

SARSA context, the learning starts with being in the state S and performing an action A.

Based on the reward R, the agent enters the state S
′
and picks a new action, A

′
- the

name of the algorithm is based on this quintuple, (S,A,R, S
′
, A

′
). SARSA is used to learn

the action-value function by estimating Q(S,A). For a non-terminal state S, the update in

equation 2.7 [28] takes place, while for a terminal state, Q(S
′
, A

′
) is defined as zero.

Q(S,A) = Q(S,A) + α[R+ γQ(S
′
, A

′
)−Q(S,A)]. (2.7)

The pseudocode for SARSA can be found in Algorithm 2 [28].

Algorithm 2: Pseudocode for SARSA Learning

Input: S - set of states; A - set of actions;
Output: Q - value function;

1 Initialise Q(S,A), ∀S ∈ S, A ∈ A(S) arbitrary and Q(terminal-state, -) = 0;
2 repeat
3 Initialise S;
4 Select A from S according to the policy derived from Q;
5 repeat

6 Take action A and observe R (reward) and S
′
(new state);

7 Choose action A
′
from S

′
according to the policy (e.g. explore-first/ϵ-greedy);

8 Q(S,A)← Q(S,A) + α[R+ γQ(S
′
, A

′
)−Q(S,A)];

9 S ← S
′
;

10 A← A
′
;

11 until s is terminal ;

12 until there are no time-steps left ;
13 return Q;

QLearn versus SARSA

• These TD algorithms store the current state’s reward and the most promising action

for future use, and they converge provided the environment is finite.

• QLearn is an off-policy algorithm, while SARSA is on-policy. With a greedy policy,

both algorithms would reach the same outcomes; using other policies yields differences.

• While QLearn should converge to an optimal policy Q∗, SARSA only provides an

approximation of Q∗. QLearn is more aggressive, while SARSA is more conservative.

Sutton and Barto [28] demonstrate such behaviour through the Cliff Walking exper-

iment: given a task of moving from Start to Goal and avoiding falling off a cliff, the

QLearn agent prefers taking the shortest path, ignoring the risk of falling, while the

SARSA agent will take a longer but safer path, minimising the risks. Moreover, the

QLearn agent receives a smaller mean reward when compared with the SARSA agent.

• The QLearn agent is more useful in fast-paced environments where mistakes are not

costly. However, with expensive errors, SARSA is the preferable choice.

With larger state spaces, QLearn and SARSA do not scale well due to the memory-inefficient

Q-tables. Variants of the two algorithms have been explored, aiming to resolve the scalability

problem. Further, we look at the most promising alternative versions.

Background 12

DoubleQLearn

It has been observed that the standard QLearn uses the same values twice, to both select

and evaluate an action. This increases the likelihood of selecting exaggerated values, leading

to overoptimistic value assessments. DoubleQLearn detaches the selection process from

the evaluation. To do so, two value functions QA and QB are needed. For each update,

one function is randomly picked to determine the policy, while the other function is used in

determining its value. Update rules are found in Equations 2.8 and 2.9 [29].

QA(S,A) = QA(S,A) + α(S,A)
(
R+ γQB(S

′
, argmaxaQ

A(S
′
, A))−QA(S,A)

)
(2.8)

QB(S,A) = QB(S,A) + α(S,A)
(
R+ γQA(S

′
, argmaxaQ

B(S
′
, A))−QB(S,A)

)
(2.9)

QVLearn

In this variant of QLearn, both the Q and V functions are kept track of. While the V

function is trained using normal TD methods, the Q-values are learnt from the V -values

using the one-step QLearn algorithm (Algorithm 1). As the V -function does not consider

actions and it is updated more often, it might converge faster than the Q function. Equation

2.10 is followed when updating the V -function, ηt is 1 if the state S occurred, and 0 otherwise,

while Equation 2.11 explains how the Q-values are updated [30].

V (S) = V (S) + αδtet(S) with eligibility trace

et(S) = γλet−1(S) + ηt(S) and δt = R+ γV (S
′
)− V (S)

(2.10)

Q(S,A) = Q(S,A) + α(R+ γV (S
′
)−Q(S,A)) (2.11)

DeepQLearn

DeepQLearn improves QLearn by switching from a (not scalable) Q-table that expected

reward values into using a Neural Network that approximates the Q-value for an action

given a state. During the training process, the same iterative process is undergone, but

instead of updating the values, the Neural Nets weights are tuned [31].

Expected-SARSA

Under the observation that the SARSA’s convergence requires every state to be visited

infinitely often, sufficient exploration is provided. ExpectedSARSA is more flexible than the

classic SARSA, as it can either be off-policy based (if a greedy expected return is employed,

it gets transformed into QLearn) or on-policy (the expected return is computed for all

actions). The action-value function differs from the classic SARSA algorithm, and it follows

the rule in equation 2.12 [32].

Q(S,A) = Q(S,A) + α
(
R+ γ

∑
a

π(a|S
′
)Q(S

′
, a)−Q(S,A)

)
(2.12)

In a workload scheduling context, these techniques can be used for automatic algorithm

selection. A selection of literature-reviewed texts, including the topic of how RL can improve

automated DLS selection, is overviewed in the subsequent chapter.

3
Related Work

This chapter presents the literature context of this work. The related work is overviewed

and critically analysed while underlining potential improvements.

Ciorba et al. [2] show that no scheduling technique is guaranteed to improve every paral-

lel application’s performance in all circumstances. This result has been achieved using the

OpenMP-based library LaPeSD-libGOMP via benchmarking using different applications.

Based on the observation that certain scheduling techniques outperform others in differ-

ent scenarios, the automated scheduling algorithm selector we propose should be able to

alternate between multiple scheduling techniques in the portfolio when the context changes.

The premise of Korndörfer et al. [3] is that the scheduling options in OpenMP are insufficient

to address the load imbalance that arises during the execution of the multithreaded appli-

cation, and LB4OMP is proposed. For numerous application-system pairs, the scheduling

techniques in LB4OMP outperform the scheduling options in OpenMP. However, the manual

algorithm selection requirement has proven to be time-consuming and demanding, and the

selected algorithm is likely to underachieve in the future, demanding its change.

Mohammed et al. [8] proposed Auto4OMP as a novel automated load balancing tool for

OpenMP applications. It aims to resolve the manual DLS selection problem of LB4OMP [3].

Expert systems are used to determine the chunk parameter and the most promising schedul-

ing selection algorithm automatically during runtime. An 11% boost in performance, when

compared to LLVM’s schedule(auto), has been achieved by minimising the load imbalance at

the thread level. The drawback of expert systems is that with the addition or deletion of

any scheduling technique, the algorithm selection rules also need to change.

The work of Kury [7] is the closest related work to this thesis. RL techniques are used to

select the optimal scheduling algorithm, aiming to reduce the effect of load imbalance on

the performance of computationally-intensive applications. LB4OMP with RL can alternate

multiple scheduling techniques during run-time. The software implements three action se-

lection policies - Explore First, Epsilon Greedy, and Softmax, six reward methods based on

the execution time of all threads and five learning agent types, among which QLearn and

SARSALearn. Furthermore, a novel learning method is proposed, Chunk-Learning, which

searches for the optimal chunk size to be used together with the dynamic schedule. The

Related Work 14

evaluation methodology consists of benchmarking using Mandelbrot and SPHYNX Evrard

Collapse. Results show that while QLearn, SARSALearn, or other variations achieve sim-

ilar outcomes, the agent’s nature is not as important as the policy used or the reward

metric. Altogether, the results of using RL rarely outperform the expert systems proposed

in Auto4OMP. We will extend the process-level LB4MPI load balancing library with Kury’s

software. As the amount of application load imbalance seems to influence the selection

quality, we will study how different RL selection methods react to various levels of load

imbalance. Furthermore, we plan to upscale the benchmarking setup.

Pearce et al. [27] shows the percent imbalance does not reveal how quickly a balancing

algorithm can correct the imbalance. They proposed using statistical measures such as

standard-deviation σ, skewness, and kurtosis. We will test if these measures can improve

the RL agent’s DLS selection quality by modifying its reward function. By combining infor-

mation from Pearce et al. [27] and Hummel et al. [24], we conduct large-scale experiments

with a reward function based on the processes’ parallel execution time c.o.v. = σ/µ.

Rashid et al. [16] use RL for automated DLS algorithm selection. The authors have consid-

ered the QLearn and SARSA methods and have investigated the optimal values for α/γ; just

as Kury did, they concluded that QLearn and SARSA achieve similar results. A potential

problem leading to this finding could be not allocating sufficient time for the exploration

phase. To overcome this issue, we increase the number of time steps to 1’500 while spending

around 10% of time exploring. As they only evaluated the performance using one applica-

tion, QTM, one possibility is that the two RL agents are not the best fit for this particular

setup. We plan to test our implementation on at least three scientific applications.

Banicescu et al. [5] studies how process-level DLS-with-RL online selection improves the

load balancing in the time-stepping application QTM. For any number of processors, the

automated DLS selection statistically outperforms the DLS-only approach. While QLearn

and SARSA RL agents would differ from one another through their DLS selections, statisti-

cally, there is shown to be no advantage in picking one over another. It is also shown that

for a fixed number of processes, the RL agent is insensitive to variations of α and γ.

Boulmier et al. [33] study RL-based automated DLS selection. They propose a new ro-

bustness metric as the reward function, the flexibility, that measures how DLS techniques

resist facing execution time perturbations, but this is not always suitable. Experiments are

run on the SimGrid framework, which is a simulation of a large-scale computing system.

The QVLearn agent is shown to perform marginally better than other agents under extreme

conditions, and the RL component accounts for less than 0.01% of the application execution.

Wetten [9] extended the LB4MPI library with distributed-data load balancing capabilities.

Random Work Stealing is implemented as a way for processes that have finished their work-

load to help busy processes finish the work faster. The percentage of work to be stolen is

fixed through the StealRatio, and their experiments show the value of StealRatio does not

impact the application’s performance. The authors only conducted experiments on a rela-

tively small scale, with one application, Dist-D. We will verify this hypothesis by upscaling

the experiments through benchmarking using a distributed version of PISOLVER and 200

Related Work 15

processes. In our thesis, we conduct an RL-based selection of the StealRatio parameter

through a novel approach, the StealRatioSelector, which behaves similarly to Kury [7]’s

chunk parameter selector RL agent, but using a portfolio of StealRatios.

Table 3.1: Main characteristics of closely-related works.

Banicescu, Ciorba,
Srivastava, 2012 [5]

Boulmier,
Banicescu, Ciorba,
Abdennadher,
2017 [33]

Luc Kury, 2022 [7] This work

Library MPI-based MPI-based OpenMP based,
LB4OMP [3]

MPI-based,
LB4MPI [1]

Scheduling techniques STATIC, AWF-B,
AWF-C, AF, FAC2,
GSS, mFSC

STATIC, FSC, GSS,
FAC, AWF,
AWF-B,-C,-D,-E, AF

STATIC, SS, GSS,
GAC, TSS, STATIC
STEAL, mFAC2,
AWF-B,-C,-D,-E

STATIC, SS, FSC,
mFSC, GSS, TSS,
FAC2, WF, AWF,
AWF-B,-C,-D,-E, AF

Automated selection
methods

QLearn,
SARSALearn

QLearn,
SARSALearn,
E-SARSA, QVLearn,
DoubleQLearn

RandomSelection,
ExhaustiveSelection,
BinarySelection,
ExpertSelection,
QLearn,
SARSALearn,
DoubleQLearn,
E-SARSA, QVLearn,
ChunkLearn

QLearn,
SARSALearn,
ChunkParameter-
Selector,
StealRatioSelector

Benchmarking
application

QTM SimGrid-SMPI Mandelbrot,
SPHYNX Evrard
Collapse

PISOLVER,
Mandelbrot,
SPHYNX Evrard
Collapse

Number of workers P P ∈ {2, 4, 8, 12, 16,
20, 24}

P ∈ {210, 211, 212} P = 20 SPHYNX: P = 40
else P = 200

Observations,
Limitations

QLearn and SARSA
achieved similar
results, independent
of α and γ; One
benchmarking
application might be
insufficient

Experimenting using
one application - a
simulation; Flexibility
metric is mostly an
unsuitable reward;
QVLearn is
marginally better
than others; the
overhead of using RL
selection: <0.01%

RL-based selection
outperforms manual
selection, but not
ExpertSelection;
agent type is less
important than other
factors e.g. policy,
reward

For a centralised-data
context, analyse
RL-based DLS
selection and chunk
parameter selection;
compare results with
RL-tuned RWS within
distributed data

Among the reviewed literature, we have identified three that are closely related to our work.

Table 3.1 puts into perspective the main features of each text. The red coloured algorithms

are not compatible with the LB4MPI library, while the teal coloured ones have been im-

plemented in LB4MPI library, but not in LB4OMP. In our work, when completing the DLS

portfolio, we can only select the techniques compatible with a certain application and context

(e.g. for RL-based selection, we would not consider WF, as its parameters are tuned over the

whole run). Also, even if implementations of all RL algorithms have been successfully ported

to LB4MPI, experiments will be conducted mainly with QLearn and SARSALearn. These

two agent types are widely encountered in the literature, and studies show that variants

exceedingly rarely outperform the originals. Rather, the variants were designed to boost

the scalability and not improve the execution times through a more-qualitative action se-

lection. We would rather focus our energy on finding the right combination ⟨agent-type,
policy-type, reward-type⟩ that performs well for a particular application’s context.

Notes on the implementation are provided in the next chapter.

4
Implementation

This section contains notes on implementing the Reinforced Learning tool as an extension

to the LB4MPI library.

4.1 The LB4MPI Library
As described in Section 2.1.2, the LB4MPI [1] library is a Dynamic Loop Scheduling (DLS)

tool that uses MPI to achieve workload balancing via process-level communication and syn-

chronization. Due to the manual setup required by WF, FSC, and SimAS, these scheduling

techniques have been removed from the DLS portfolio. We further consider STATIC, SS,

mFSC, GSS, TSS, FAC2, AWF, AWF-B, AWF-C, AWF-D, AWF-E, and AF.

Algorithm 3: Calling the C version of the LB4MPI library (application perspective)

1 #include <mpi.h>
2 #include ”LB4MPI.h”
3 #include ”reinforcement-learning/c connector.h”
4 MPI Init(&argc, &argv);
5 MPI Comm size(MPI COMM WORLD, &nprocs);
6 MPI Comm rank(MPI COMM WORLD, &myid);
7 foreach timestep do
8 distributedWorkLoad = . . .// Distribute the data to all MPI ranks
9 infoDLS DLS info;

10 . . .// Setup parameters for DLS Parameters Setup and DLS info
11 DLS info.looptitle ← ”loop title”;
12 DLS info.workload ← work load;
13 DLS Parameters Setup(MPI COMM WORLD, &DLS info, nprocs, . . .);
14 DLS DataSetup(&DLS info, distributedWorkLoad, . . .);
15 DLS StartLoop(&DLS info, 0, work load, DLS method);
16 while !DLS Terminated(&DLS info) do
17 DLS StartChunk(&DLS info, &start, &chunk size);
18 end = start + chunk size;
19 if start < end then
20 Perform application-related computations
21 end
22 DLS EndChunk(&DLS info);

23 end

24 end
25 . . .// Display results & report performance
26 MPI Finalize();

Implementation 17

Algorithm 3 contains information on how the C version of LB4MPI is accessed from an ap-

plication perspective. The teal code highlights code to be added for the RL features in both

the replicated and distributed application versions. The blue code indicates that data is

distributed. Alongside the legacy parameters (e.g. h overhead, sigma, Xeon speed . . .), two

extra parameters must be provided to use the RL features. As the new software is compatible

with multiple synchronous loops, the looptitle has to be passed to the DLS info structure.

Multiple instances of infoDLS need to be created to access the multi-loop feature; the above

code exemplifies a single-loop program. Furthermore, to calculate the size of the chunk

parameter portfolio, DLS info.workload needs to be initialised with the task’s size prior to

executing DLS Parameters Setup. As a prerequisite, the user should also export the environ-

ment variable for the desired RL agent type, e.g. export MPI_RL_OPTION=QLearner,

as the RL component is ignored by default.

Figure 4.1 illustrate how the C (or Fortran) LB4MPI library can access the RL feature via

accessing the C-to-C++ (or f90-to-C++) interface. Communication is facilitated through

three functions: DLS Parameters Setup, DLS StartLoop, and DLS EndLoop. It can also be

observed that the RL agent does not directly influence the application computations but

rather helps pick the right DLS technique to balance the workload. The RL agent analyses

the performance metrics for different DLS techniques and decides which DLS will most likely

achieve higher performance during the next timestep.

Figure 4.1: Communication between LB4MPI and the RL agent when automatically
determining the most promising DLS technique

An initial version of the RL extension was developed in 2022 by Kury [7] during their

Master’s thesis. Initially, this tool is built as an extension to the LB4OMP/Auto4OMP library,

which aims to accumulate a portfolio of thread-level scheduling algorithms. Kury claims the

extension is lightweight, encapsulated, extensible, and portable, which allows easier integration

with other tools, such as LB4MPI. Our Master’s thesis is part of a strategy to achieve multi-

level automated DLS algorithm selection at both process and thread levels. Naturally,

our software solution updates Kury’s implementation instead of building an entirely new

program. Based on this decision, a future project unifying LB4OMP and LB4MPI with RL

capabilities would be considerably easier to be developed.

Implementation 18

As LB4OMP is entirely written in C++, Kury’s extension can be straightforwardly integrated

with C++ libraries. However, linking the C LB4MPI library and the C++ RL Agent

extension has proven challenging since C is not directly compatible with C++ objects, e.g.

AgentProvider. As an alternative to either rewriting the entire LB4MPI library in C++

or rewriting the RL component in C, a C-to-C++ interface has been developed by consulting

Oracle resources publicly available online.

Such that a broader selection of scientific applications can use LB4MPI with RL features,

integration between Fortran applications and the C++ RL agent software is desired. 16%

of this Master’s thesis has been invested into developing a solution. The first approach is to

access the C LB4MPI library from the Fortran main application via an f90-to-C interface,

which in turn has to access the RL agent via the C-to-C++ interface. However, due to

considerable differences between Fortran and C (e.g. MPI COMM WORLD is represented

as an integer in Fortran but struct-like in C), this task has proven not feasible. Hence, the

Fortran version of LB4MPI has been updated to call the RL agent code via an f90-to-C++

interface. From a technical perspective, this approach is not as challenging from a technical

perspective, as the C++ code only returns the subsequent DLS technique as an integer.

The performance data is recorded by the library, and it is reported through LoopData.

The LoopData structure and other features of the RL agent extension are explained in the

following section.

4.2 The Reinforcement Learning Extension
This section will discuss the components of the RL extension while highlighting the differ-

ences between the initial and the current software versions. For a better understanding, the

reader is redirected to the Implementation notes of Kury’s Master’s thesis [7].

The main task of the RL agent is to analyse data regarding various dynamically gathered

measurements for a portfolio of DLS techniques. Based on analysing multiple timesteps,

the agent is able to make an informed decision about what DLS technique is most likely to

achieve the highest performance during the next timestep. All the communication between

the LB4MPI library and the RL component happens through a single MPI rank, the foreman.

When reporting the performance of the latest timestep, the foreman consults all ranks and

computes the reported quantity, e.g. load imbalance percent or looptime c.o.v.

The performance data is gathered by functions DLS_StartLoop() and DLS_EndLoop()

of the LB4MPI library. Afterwards, it is reported to the RL agent via the LoopData struc-

ture. One instance of LoopData holds information about a single loop. Performance updat-

ing of the latest timestep can be done as follows: getLoopData(info->looptitle)->

cTime = time. Alongside the total timesteps, the number of MPI ranks, the execution

time, and the load imbalance for the latest timestep, which can also be found in the previous

version of the software, new statistical metrics are reported: cStdDev, cSkew, cKurt, and

cCOV (detailed in Section 2.1.5). The LoopData structure also keeps evidence of the overall

top metrics encountered during runtime through best- variables, e.g. bestTime.

Implementation 19

As a feature, consulting the RL agent can cease after a certain number of timesteps. For

example, instead of spending the full 1’500 timesteps searching for the DLS technique,

synchronization and communication costs can be discarded by only searching during the first

500 timesteps: a user can manually set the timeStepsLimit, and the autoSearch flag is

switched to false if this limit is crossed. This option is only recommended for environments

where conditions remain constant throughout the whole execution.

Figure 4.2: Components of the RL Agent

When the new agent is initialised, all the environment variables (env var) are read, and the

agent’s parameters are set accordingly, as opposed to using the default value when an env

var is missing. Figure 4.2 illustrates the main components used to configure the RL agent.

Agent Types
The main agent types have been thoroughly described in section 2.2. The value can be user-

provided through the LB4MPI_RL_AGENT_STATS environment variable via the leading

integer code as it follows: 8 - QLearner, 9 - DoubleQLearner, 10 - QVLearner, 11 -

SARSALearner, 12 - ExpectedSARSALearner. The software also supports two meta

agents, as follows: 15 - ChunkParameterSelector, and 16 - StealRatioSelector.

While the integer code for each agent can be misleading in the context of LB4MPI, this is

a direct result of how LB4OMP represents different selection strategies (e.g. 1 - exhaustive

search, 2 - binary search, 4 - expert systems, and values > 6 for RL Agents). The legacy

identifiers are preserved so that a multi-level scheduling application using both LB4OMP and

LB4MPI with RL would be straightforward to implement. To reduce the ambiguity, the user

can now specify the more-intuitive full name of the RL Agent via a string.

It must be noted that a bug has been found and corrected in the implementation of the

SARSALearn agent: while equation 2.7 states that the quantity Q(S
′
, A

′
) should be cal-

culated, the previous version of the software used the last performed action A instead of

the next action A
′
. This way, the agent would be an off-policy one, hardly different from

QLearn. The correct action is now retrieved through the in-use policy. When policies are

based on randomness, A
′
is not guaranteed to be selected twice in a row.

Implementation 20

Kury used a special kind of agent to select the optimal chunk parameter for the dynamic

schedule. In short, this technique implies building an array of potential chunk values and,

through monitoring the performance of each, finding the optimal chunk size. The number

of chunk parameters in the array is calculated using equation 4.1, with N corresponding to

the total workload size and P representing the number of workers.

no chunks = ⌊log2
(N
P

)
⌋ − 1 (4.1)

Equation 4.2 shows how each chunk size in the array is computed.

chunkArray[i− 1] =
N

2i ∗ P
, i ∈ [1, . . . , no chunks] (4.2)

This meta agent requires creating a secondary agent, e.g. QLearn, whose type is specified

through the env var LB4MPI_RL_SELECTOR_TYPE. Kury’s name for this kind of agent

is the ChunkLearner. While the problem solved is rather an algorithm selection with

configuration parameter selection, a better fitting name is ChunkParameterSelector.

While Kury’s version would only work with the dynamic schedule (equivalent to LB4MPI’s

SS), a modified version of this agent can be used to set the lower bound chunk for any DLS

techniques (e.g. GSS) at run time instead of setting the chunk parameter directly.

Furthermore, we propose the StealRatioSelector as a novel strategy that uses RL

to select the optimal StealRatio ∈ [0, 100]. This kind of agent is only compatible with

a distributed data setup that allows RWS. Similarly to the ChunkParameterSelector, a

secondary agent specified through the env var LB4MPI_RL_SELECTOR_TYPE needs to be

instantiated. Dissimilarly, the values in this agent’s portfolio are independent of the sizes

of the problem N and P . Rather, the user can provide the size S of the portfolio through

the env var LB4MPI_RL_SR_PORTFOLIO_SIZE (default: 10), and the space [0, 100] will be

divided into S×tileSize parts. Equation 4.3 displays how the StealRatio array is computed.

tileSize =
100

S

stealRatioArray[i− 1] = i ∗ tileSize, i ∈ [1, S]

(4.3)

Policy Types
To determine the next action, the RL agent can use three different strategies (provided via

the LB4MPI_RL_POLICY env var) and a customizable one:

• Explore First (explore-first) - First timesteps are used to explore all possible

combinations of states and actions exactly once. In this context, a state is the active

DLS, while an action changes the current DLS with a new one. DLS MethodCount2

timesteps are needed for the exploration phase. One could argue that exploration

should take DLS MethodCount timesteps, but the order in which the DLS techniques

are tried is important (e.g. if SS has performed badly, thus setting the performance

Implementation 21

bound to a bad value, it is likely that the DLS coming after SS would get rewarded

better than in a hypothetical case where it was chosen prior to it, and this bias should

be avoided). With this software version, it is guaranteed that all combinations are

tried exactly once. After exploring, the agent exploits the knowledge to determine

which DLS technique is likely to achieve the highest performance.

• Epsilon Greedy (epsilon-greedy) - Exploration and exploitation phases are not

disjointed, and each can happen anytime. A float is randomly drawn, and the agent

will explore a new state-action pair with prob = 1 − ϵ or exploit the knowledge with

prob = ϵ. The initial ϵ ∈ (0, 1) is user-specified through the environment variable

LB4MPI_RL_EPSILON, and it decays over time based on LB4MPI_RL_EPS_DECAY.

• Softmax (softmax) - This is not based on either exploration or exploitation. Rather,

given a state, each possible action is attributed a soft probability of it being selected,

which is proportional to the action’s Q-value. The temperature τ ∈ (0,+∞) is user-

specified through the environment variable LB4MPI_RL_TAU, and a higher value of τ

implies a higher probability of selecting an action with a higher Q-value. The long-run

performance increases by alternatively picking all the highly-rewarded actions.

• Customizable (custom) - The policy is useful when experienced users run custom

experiments. For instance, if an ordered list of DLS techniques is provided, one can

replay the selection to find the runtime standard deviation associated with the library

(see Table 5.3). This policy works by hijacking other existing policies.

Reward Types
The RL agent can use reward functions to learn how a particular method has performed

during the latest timestep. This incentive measure compares the current reward signal with

other captured rewards; hence, this quantity needs to be translated from an absolute value

to a relative scale. Aiming to gain high rewards, the agent is motivated to pick the most

promising DLS techniques when not exploring.

Algorithm 4: Setting the reward based on input signal x

1 double x ← stats.reward signal;
// Read (r+, r0, r−) from env var LB4MPI RL REWARD NUM

2 if x ≤ 1.05 × lower bound then
// Good case

3 if (x < lower bound): set lower bound(x);
4 return r+;

5 end
6 else if x ≥ 0.95 × higher bound then

// Bad case
7 if (x > higher bound): set higher bound(x);
8 return r−;

9 end
// Neutral case 1.05 × lower bound < x < 0.95 × higher bound

10 return r0;

Algorithm 4 shows how an input reward signal x is transformed into the rewarded quantity.

In our updated version of the software, the agent would be rewarded r+/r− if it is within

Implementation 22

5% from the bound, as opposed to strict comparison with the limits. This strategy has

proven to increase the quality of DLS selection by selecting the highest-performing DLS and

increasing the reward of other highly-performing techniques.

The reward type can be user-specified through the LB4MPI_RL_REWARD environment vari-

able. Two categories of rewards can be identified based on the nature of the reward signal.

The following rewards are based on the loop execution time of the slowest process, T loop
par :

• Looptime (looptime) - Award with r+, r0, or r− the looptime performance x.

• Looptime Average (looptime-average) - Keep track of the averaged looptime

performance for ALL previous timesteps, and reward the looptime of the latest DLS

with r+ or r−, based on its performance being situated below or above this quantity.

• Looptime Rolling Average (looptime-rolling-average) - Compare the

input signal x with the averaged looptime of the last ROLLING_AVG_WINDOW (int,

env var) timesteps, and reward a good performance with r+, or a bad one with r−.

• Looptime Inverse (looptime-inverse) - Reward the current DLS technique

with R(x) = 1
x × c, where c is the INVERSE_REWARD_MULT (used to combat small

looptimes). In the latest version of the software, the user can change the environment

variable LB4MPI_RL_INV_MULT from its default value of 10.

• Robustness (robustness) - Quantify the ability of a DLS technique to resist vari-

ations in the loop iterations execution time [33]. The reward is calculated using the

formula τ×T FASTEST
par −x, where τ is the tolerance factor (which can be user-provided

via the env var LB4MPI_RL_TAU), and T FASTEST
par is the fastest loop time recorded.

The following reward types use the imbalance of the parallel execution time as the reward

signal, based on load balancing metrics introduced in Subsection 2.1.5.

• Percent Loadimbalance (loadimbalance) - Award with r+, r0, or r− the load

imbalance percent obtained by the current DLS. A load imbalance of close to 0 implies

an even workload distribution among all processes and it is awarded r+.

The above reward does not provide insights on correcting any imbalance, as statistical

data is ignored. The following reward types are based on statistical moments and were

added with the newest version of the software. The load imbalance in the original def-

initions from subsection 2.1.5 has been replaced for practical reasons with the parallel

execution time of each process.

• Standard Deviation (stddev) - metric detailed in Equation 2.3.

• Coefficient of Varriance (cov) - metric detailed in Equation 2.2.

• Skewness (skewness) - metric detailed in Equation 2.4.

• Kurtosis (kurtosis) - metric detailed in Equation 2.5.

Implementation 23

Multiple strategies for setting reward values exist. The triple of doubles {r+, r0, r−} can be

user provided via the environment variable LB4MPI_RL_REWARD. The default reward is the

Negative reward [0.0, -2.0, -4.0]. The Neutral reward [+2.0, 0.0, -2.0] offsets the Negative

reward to avoid the local extrema situation. A Positive reward can also be used, such as

[+4.0, +2.0, 0.0]. Throughout this thesis, we will slightly modify the Negative reward to

[0.01, -2.0, -4.0], so when a DLS achieves high performance, its reward would not be 0, to

not be confused with the initial value in the agent’s Q-table, zeroed.

The Initialiser Type can be user set through the LB4MPI_RL_INIT environment variable,

and it specifies how to initialise the Q-table of a new agent. The Zero Initialiser

(zero) fills the entire Q-table with 0s. The Random Initialiser (random) would fill

the Q-table with random values bounded by the bad reward r− and the good reward r+.

Lastly, the Optimistic Initialiser (optimistic) would fill the Q-table with values

higher than realistically obtainable. Based on the experimental results derived by Kury [7],

only the Zero Initialiser will be further considered.

The Decay Type is provided by the user through the LB4MPI_RL_DECAY env var, and it

commands how the decay of the learning rate α and the exploration rate ϵ vary from timestep

to timestep. The decay can be of type step, where after each timestep LB4MPI_RL_ALPHA

is linearly reduced based on LB4MPI_RL_ALPHA_DECAY until the minimum is reached,

ALPHA_MIN, and LB4MPI_RL_EPSILON is linearly reduced with LB4MPI_RL_EPS_DECAY

down to EPSILON_MIN. Or it can be exponential, where the decay is also based on these

parameters but follows an exponential behaviour. Throughout this thesis, we will use the

exponential decay, which is more appropriate to our learning strategy.

The RL extension can enter a debugging mode by setting the RL DEBUG parameter from

LB4MPI/reinforcement-learning/agents/kmp agent.h to 1 or 2. Useful messages

regarding the current state of the software would be printed to stdout.

Out of all the customizable components of an RL agent, the most impactful items are con-

tained in the triple ⟨agent-type, policy-type, reward-type⟩. By altering these, the

widest range of results can be achieved. We will experiment with changing these values and

evaluate how component types affect each other. When not otherwise stated, all RL agent’s

parameters are unchanged from their default value. The default values are aggregated in

the next section, in Table 4.1.

4.3 Environment Variables
All environment variables described throughout this chapter are centralised in Table 4.1.

This table contains information on the environment variable’s name in LB4MPI and, below

it, the LB4OMP counterpart. The table also provides the variable’s name internally used by

the software, the default value, its type, description, and the range for the values.

Implementation 24

Table 4.1: Supported environment variables for LB4MPI / LB4OMP with RL features

Environment Variable Internally used Variable Default value Description and Possible Values

LB4MPI RL GAMMA

KMP RL GAMMA
GAMMA 0.95 Agent’s Discount factor; double γ ∈ [0, 1]

LB4MPI RL ALPHA

KMP RL ALPHA
ALPHA 0.85 Agent’s learning rate; double α ∈ [0, 1]

LB4MPI RL ALPHA DECAY

KMP RL ALPHA DECAY
ALPHA DECAY FACTOR 0.01 Learning rate decay; double ∈ [0, 1]

LB4MPI RL ALPHA MIN

KMP RL ALPHA MIN
ALPHA MIN 0.10 Minimum learning rate; double ∈ [0, 1]

LB4MPI RL EPSILON

KMP RL EPSILON
EPSILON 0.90

Exploration rate for the policy

epsilon-greedy; double ϵ ∈ [0, 1]

LB4MPI RL EPS DECAY

KMP RL EPS DECAY
EPSILON DECAY FACTOR 0.01 Exploration rate decay; double ∈ [0, 1]

LB4MPI RL EPS MIN

KMP RL EPS MIN
EPSILON MIN 0.10 Minimum exploration rate; double ∈ [0, 1]

LB4MPI RL TAU

KMP RL TAU
TAU 1.50

Temperature of the softmax policy AND

robustness reward; double τ ∈ [0,+∞]

LB4MPI RL INV MULT

KMP RL INV MULT
INVERSE REWARD MULT 10

Constant multiplier for the reward

looptime-inverse; int ∈ [0,+∞]

LB4MPI RL AVG WINDOW

KMP RL AVG WINDOW
ROLLING AVG WINDOW 10

Window size int ∈ [0,+∞] for the reward

looptime-rolling-average

LB4MPI RL SR

PORTFOLIO SIZE
in LB4MPI: srArrayDim 10

Dimension of the

StealRatio portfolio ∈ [2, 100]

MPI RL OPTION in LB4MPI: mpi rl option 0

The type of the RL Agent

String OR int values: QLearner (8),

DoubleQLearner (9),

SARSALearner (10),

ExpectedSARSALearner (11),

QVLearner (12)

ChunkParameterSelector (15),

StealRatioSelector (16)

LB4MPI RL SELECTOR TYPE

KMP RL SELECTOR TYPE
SELECTOR TYPE 8

Selector agent type for agents 15 and 16

Agent type as integer ∈ [8, 12]

LB4MPI RL POLICY

KMP RL POLICY
POLICY TYPE explore-first

The type of Policy

All accepted values: explore-first,

epsilon-greedy, softmax

LB4MPI RL REWARD

KMP RL REWARD
REWARD TYPE looptime

The type of Reward

All accepted values: looptime,

looptime-average,

looptime-rolling-average,

looptime-inverse, loadimbalance,

robustness, stddev, skewness,

kurtosis, cov

LB4MPI RL INIT

KMP RL INIT
INIT TYPE zero

The type of Initialization

All accepted values: zero,

random, optimistic

LB4MPI RL DECAY

KMP RL DECAY
DECAY TYPE exponential

The type of Decay

All accepted values: exponential, step

LB4MPI RL AGENT STATS

KMP RL AGENT STATS
AGENT STATS no output

Agent statistics output filename

String values: the filename, e.g. agent

LB4MPI RL REWARD NUM

KMP RL REWARD
REWARD STRING 0.0,-2.0,-4.0

Good/neutral/bad rewards

Triple of comma-separated doubles

- RL DEBUG 0
Inside the kmp agent.h file, modify it to 1

or 2 to output useful debugging information

The following section offers a list of all the modifications suffered by the LB4MPI library or

by the RL extension.

Implementation 25

4.4 List of Changes
The LB4MPI library has been modified as follows:

• Both the C and f90 library versions can access the automated RL selection features.

Our solution aims to be compatible with previous applications that use LB4MPI.

• The library supports multiple synchronous loops. Various performance metrics are

dynamically recorded and stored such that in-depth analysis can be undergone.

The original version of the RL Agent software has been modified as follows:

• To facilitate compatibility with LB4MPI, the env var MPI_RL_OPTION provides the

agent type, similarly to checking schedule(runtime) in an OpenMP environment.

• To allow compatibility with both the C and f90 versions of LB4MPI, the C++ RL

extension should firstly be compiled together with the C++-to-C or the C++-to-f90

interface in .so objects, and just then linked with the main library. How the library

is compiled differs from the initial approach (see section 4.5 for details).

• Moved the header file kmp_loopdata.h inside the reinforcement learning

folder, from the library root folder.

• The error reporting system shows more explicit instructions when the user provides

incorrect data through env vars. Moreover, if env var LB4MPI_RL_AGENT_STATS is

not provided, crashing is now avoided by not outputting the statistical data.

• To use all available knowledge while exploiting, the argmax function now compares

the averaged Q-table reward for all actions independently of the current state.

• We have updated the following features: the explore-first policy, the SARSA

agent type, the Looptime-Inverse reward, and the step decay type.

• Added statistical reward types: stddev, c.o.v., skewness, and kurtosis.

• The functionality of the ChunkParameterLearner meta agent has been updated

to set the minChunkSize for any DLS technique. Previously, it could only select the

chunk size parameter for dynamic, which is the OpenMP counterpart of SS.

• The StealRatioSelectormeta agent has been developed to perform an automated

parameter selection to find the optimal StealRatio for a distributed-data setup

where Random Work Stealing is allowed.

Information on how to compile the software is provided in the next section.

Implementation 26

4.5 Compiling the Library
The instructions to link an application and the LB4MPI with RL library are explained in

Algorithm 3. Important note: to maintain compatibility with legacy software, LB4MPI

does not use the RL features by default, and MPI_RL_OPTION is the internal switch. Hence,

the user must specify the agent type, e.g. export MPI_RL_OPTION=QLearner, before

customising other optional RL parameters.

The script in Listing 4.1 shows how to compile the RL component and the C++-to-C

connector in two .so objects, namely lib_rl.so and lib_connector.so. The Intel

compiler version 2022a on the miniHPC-Broadwell cluster is used for compilation. The

script is run from the LB4MPI/reinforcement-learning folder.

#!/bin /bash

module load i n t e l /2022a

RL f i l e s=$ (f i nd . −type f −name ”∗ . cpp ”)

mpiicpc − l s t d c++ − f p i c −shared $RL f i l e s −o l i b r l . so

mpiicpc − l s t d c++ − f p i c −shared c connec to r . cpp −L . l i b r l . so

−o l i b c onn e c t o r . so

Listing 4.1: Compiling the RL component and the C-to-C++ connector in .so objects

Paths to both .so objects should be provided when compiling the desired application along-

side the LB4MPI.c library. Listing 4.2 displays how to compile a C-based application,

Mandelbrot (note: in this example, Mandelbrot has the same parent folder as LB4MPI).

Moreover, as the linker is required to load the compiled LB4MPI library, the library path

should be added to the LD_LIBRARY_PATH environment variable. Below, the pwd indicates

that the compiled library can be found in the current folder.

#!/bin /bash

module load i n t e l /2022a

export LD LIBRARY PATH=$ (pwd) :$LD LIBRARY PATH

mpiicpc −O3 − l s t d c++ −std=c++11 mande l three l oops . c . . / LB4MPI/LB4MPI . c

−L . . . / LB4MPI/ re in forcement−l e a r n i ng / l i b r l . so

. . / LB4MPI/ re in forcement−l e a r n i ng / l i b c onn e c t o r . so −o mandel

Listing 4.2: Compiling Mandelbrot

To compile the RL Agent’s C++ code for a Fortran application (e.g. SPHYNX Evrard

Collapse), the script in Listing 4.1 should be slightly modified to replace c_connector.cpp

with fortran_connector.cpp, and lib_connector.so should be optionally renamed

into lib_fortran_connector.so. Then, the DLS.f90 library has to be linked with

the two .so objects, and form an object DLS.o, which is used by the main application.

The next section provides summarised information on how to use the library.

Implementation 27

4.6 Usage - Summary
Below is a checklist to follow when using the LB4MPI with RL features.

• Copy to the source folder for LB4MPI the reinforcement-learning subfolder.

• On the application’s side, modifications are required to transform the sequential pro-

gram into a parallel one. The pseudocode in section 4.1 details the process.

• Compile the library by following the steps from section 4.5, preferably using an In-

tel compiler, through using module load intel/2022a. Then add the compiled

library to the path using export LD_LIBRARY_PATH=LB4MPI_path.

• Export the desired environment variables by first consulting the table in section 4.1.

Most importantly, set the RL type e.g. export LB4MPI_RL_OPTION=QLearner.

• Set the slurm sbatch configuration to use at least 2 ranks. Then use srun to run

the application, eventually providing the args values.

Otherwise, the compilation is also possible through executing the c compile.sh or the

fortran compile.sh scripts found in the RL folder.

In Figure 4.3, a typical application’s workflow is shown. Generally, this workflow is also

valid for Fortran applications.

Figure 4.3: Application’s workflow when using the C-based LB4MPI with RL features

The full potential of this software is explored through experiments in the following chapter.

5
Experimental Results

In this chapter, we evaluate the performance of the LB4MPI library with automated DLS

selection using a Reinforcement Learning agent. A series of factorial experiments are run

based on three different applications: PISOLVER, Mandelbrot and SPHYNX Evrard. A

discussion based on aggregating all the experimental results is also given.

5.1 The Computing System
All the experiments were run on the high-performance computing cluster located at the

University of Basel, miniHPC [13]. This computing system helps to create a controllable

research environment, and it serves mainly educational purposes. MiniHPC contains four

types of nodes: Intel Xeon E5-2640 v4 (Broadwell, 22 nodes), Intel Xeon Phi KNL 7210 (4

nodes), Intel Xeon Gold 6258 (1 node), and AMD EPYC 7742 (1 node), which are intercon-

nected through an Intel Omni-Path 100 Gbit/s network. The experiments are performed on

the miniHPC-Broadwell segment, using 10 nodes of type Intel Xeon E5-2640 v4.

All the applications’ code and the LB4MPI library with RL features have been compiled on

miniHPC-Broadwell, using the Intel Compiler version 2022a.

5.2 Replicated-data Experiments
Table 5.1 displays the design of experiments for the replicated data component. Each

experiment consists in running a parallel application with diverse scheduling techniques

active one at a time. The sum of performances for each timestep is used to determine

the quality of the RL selector. These medium-to-large-scale experiments use 200 PEs for

PISOLVER/Mandelbrot and 4 PEs with 10 threads each for SPHYNX Evrard Collapse.

The 1’835 experiments took approximately 750 real hours to run.

The used applications span three different programming languages: PISOLVER is written

in C, Mandelbrot in C++ and SPHYNX Evrard Collapse in Fortran90. Also, these parallel

applications cover different scientific domains: PISOLVER [10] and Mandelbrot [11] cover

mathematics, while SPHYNX Evrard Collapse [12] is an astrophysics simulation.

Experimental Results 29

Table 5.1: Design of 1’835 factorial experiments for performance evaluation of LB4MPI with RL features
in replicated-data applications

Factors Values Properties

Applications

Process-level

parallelism

PISOLVER with 7 workload imbalance levels:

+ 0% | 5% | 10% | 15% | 20% | 25% | 30%
C++ | N = 500’000 | T = 1’500 | Total loops = 1

Process-level

parallelism
Mandelbrot

C | N = 1’048’576 | T = 1’500 | Total loops = 3 (L1, L2, L3)

L1: constant, L2: increasing, L3: decreasing workload imbalance

Process-level+

Thread-level

parallelism

SPHYNX Evrard Collapse
f90 | N = 1’000’000 | T = 250 | Total loops = 37

Major workload imbalance source: the gravitation calculation loop

Scheduling Techniques LB4MPI

STATIC Straightforward parallelization

SS, mFSC, GSS, TSS, FAC2 Dynamic and non-adaptive self-scheduling techniques

AWF, AWF-B, AWF-C, AWF-D, AWF-E, AF Dynamic and adaptive self-scheduling techniques

RL Agent Type LB4MPI
QLearner (QLearn)

The type of the Reinforcement Learning Agent
SARSALearner (SARSA)

RL Selection Policies LB4MPI

Explore-First (expl-1st)

Select the RL agent’s next actionEpsilon-Greedy (eps-greedy)

Softmax (softmax)

RL Reward Metrics LB4MPI

Loop execution time (LT)

Reward the RL agent’s actions

Reward values (r+, r0, r−): (0.01, -2.0, -4.0)

Loop execution time: average (LT-avg)

Percent imbalance of loop execution times (LIB)

c.o.v. of loop execution times (cov)

RL Scheduling

Technique Selector
LB4MPI RL-based DLS selection

PISOLVER: {STATIC, SS, mFSC, GSS, TSS, FAC2, AWF,

AWF-B, AWF-C, AWF-D, AWF-E, AF}
Mandelbrot: {STATIC, SS, mFSC, GSS, TSS, FAC2, AF}
SPHYNX: {STATIC, SS, mFSC, GSS, FAC2, AF}

RL Chunk

Parameter Selector
LB4MPI

SS + ChunkParameterSelection

secondary agent type: QLearn

PISOLVER: { 2, 4, 9, 19, 39, 78, 156, 312, 625, 1250}
Mandelbrot: {2, 5, 10, 20, 40, 81, 163, 327, 655, 1310, 2621}
SPHYNX: {3, 7, 15, 30, 61, 122, 244, 488, 976, 1953,

3906, 7812, 15625, 31250, 62500, 125000}

Size of the Experiments

PISOLVER

≈ 10 minutes per experiment run

Total: 1’470 experiments

DLS: 12 (no. DLS) × 7 (levels imbalance) × 5 (rep.) = 420 runs

RL DLS configurations: 2 (agents) × 3 (policies) × 4 (rewards) = 24

RL DLS selection: 24 (RL configurations) × 7 × 5) = 840 runs

RL Chunk sel. configurations: 3 (policies) × 2 (rewards) = 6

RL Chunk selection: 6 (RL configurations) × 7 × 5 = 210 runs

Mandelbrot

≈ 20 minutes per experiment run

Total: 185 experiments

Plain DLS: 7 (no. DLS) × 5 (repetitions) = 35 runs

RL DLS selection: 24 (RL configurations) × 5 (repetitions) = 120 runs

RL Chunk selection: 6 (configurations) × 5 (rep.) = 30 runs

SPHYNX Evrard Collapse

≈ 147 minutes per experiment run

Total: 180 runs

30 (DLS) + 120 (RL + DLS) + 30 (RL + chunk sel.) = 180 runs

Computing nodes miniHPC-Broadwell

Intel Xeon E5-2640 v4 (Broadwell) nodes, no hyperthreading

PISOLVER/Mandelbrot: P = 200; 10 nodes, 20 cores each;

SPHYNX Evrard: P=40; 2 nodes each with 2 cores, 10 threads each

Metrics

Tpar Parallel execution time per application execution

T loop
par Parallel loop execution time

Percent imbalance [27] of loop execution times Percent imbalance = (T loop
max/T

loop
mean − 1)× 100%

c.o.v. [34] of loop execution times
c.o.v. = σ/µ, with σ - standard deviation, and

µ - mean loop execution time of all the workers

To ensure the correctness of results, each experiment has been run five times, with the

execution achieving the median performance being representative of the configuration.

Kury [7] shows that out of the five different agent types tested (QLearner, DoubleQLearner,

SARSALearner, ExpectedSARSALearner, QVLearner), no agent type would outperform

the others. Since QLearner and SARSALearner are popular throughout the literature

reviewed [5, 7, 16], we conduct our experiments using only these two agent types. Ad-

ditionally, Kury shows that the policy type employed is one of the most important fac-

tors. Hence we will experiment with all the three policies available: explore-first,

epsilon-greedy, softmax. Another impactful component is shown to be the reward

type, for which we will experiment with four types: two performance per loop rewards,

looptime, looptime-average, the load-imbalance percent, and the newly im-

plemented statistical-based reward, the Sloop execution time c.o.v. Therefore, we conduct

our DLS selection experiments using 24 agent configurations (2 agent types × 3 policy types

× 4 reward types), where one configuration is of the form agent-policy-reward.

Experimental Results 30

If it is not otherwise stated, all the experiments use the default parameters presented in

Table 4.1. One difference is that the triple of rewards (r+, r0, r−) is set to (0.01, -2.0, -4.0)

instead of using the default negative reward. This change would help avoid a corner case

where the agent would not distinguish between a high-performing action rewarded with 0

and the initial Q-table value of 0 set by the zero initialiser type.

The Oracle (also called Ground-Truth) measures a theoretical performance that is only

achievable with a selection of DLS techniques. It can be used to facilitate the comparison

between real DLS selections. To calculate the Oracle, the application runs five times for

each scheduling technique in the portfolio. For each timestep, find the DLS technique that

achieves the highest performance when comparing the median execution time of the five

runs, and group these together by summing the looptimes.

In the following sections, we evaluate each RL agent’s configuration based on the metrics

presented in Table 5.1. The Oracle described above is used for an unbiased comparison.

5.2.1 PISOLVER
This C++ time-stepping application simulates a scalable mathematical problem. The initial

codebase has been developed by Afzal et al. [10] and modified by HPC Group researchers at

Basel Universität. As the name PISOLVER suggests, it calculates the value of π using the

mid-point rule to approximate
∫ 1

0
4

1+x2 dx repeatedly over T=1’500 timesteps. The size of

π is computation-bounded by N=500’000 iterations. When allocating the workload among

workers, a supernormal distribution with a user-provided mean=680’000 and programmable

workload imbalance is generated. To calculate the workload imbalance, the application

uses a user-provided percentage value and internally calculates the standard deviation. For

example, for a mean of 680’000 and 10% imbalance, the standard deviation is 68’000; each

worker has to resolve between 612’000 and 748’000 iterations. Therefore, our experiments

compare the performance of several RL Agent configurations based on multiple levels of

workload imbalance of {0%, 5%, 10%, 15%, 20%, 25%, 30%}. The STREAM Triad kernel is

not used for this set of experiments; hence the application is compute-bounded and not

memory-bounded. A replicated-data approach is used, where the workload is split in a

centralised manner, and each process has the same copy of the work array.

This set of experiments verifies how different RL agent configurations react to various levels

of load imbalance and how the quality of automated DLS selection is affected. The full

results for each level of workload imbalance can be found in the Appendix.

Figure 5.1 summarises the results for the replicated-data PISOLVER set of experiments.

The percentage above the bars represents how much performance is lost through using a

specific configuration versus Oracle’s theoretical best performance. The colours in each

bar represent the amount of time a DLS is active for a certain configuration; the detailed

per-timestep DLS selection is found in Figure 5.3. Moreover, the last six orange bars in

each plot represent the experiments where RL is used to determine the optimal chunk for

SS; the timestep selection of this parameter is shown in Figure 5.2. The green dotted

line represents the average performance for randomly selecting a DLS, the blue dotted line

indicates the average performance achieved through automated RL DLS selection, and the

Experimental Results 31

Figure 5.1: Results summary for PISOLVER

grey dotted line shows the average performance for the RL chunk parameter selector. For a

level of workload imbalance of over 15%, the RL DLS selector with a random configuration

outperforms randomly picking the DLS technique by up to 13%. Under this threshold, the

RL DLS selector would be outperformed by around 3%. However, the RL chunk parameter

selector would outperform both for all workload imbalance levels by a large margin. This

agent achieves under 10% performance degradation versus Oracle in all cases. Generally, all

agents that use the looptime or looptime-average rewards would achieve satisfactory

results. Also, the loadimbalance and cov rewards would generally help achieve worse

results than the agent’s average execution time. No clear distinction between the QLearn

and SARSA agent types is noticed, but we will further study it when discussing Figure 5.4.

Experimental Results 32

Figure 5.2: Chunk parameter selection per timestep for PISOLVER (15 %)

In Figure 5.2, the shade of each bar represents the value for the chunk parameter that has

been selected for a certain timestep, while the height is its looptime, T loop
par . While this

figure refers to PISOLVER with a 15 % workload imbalance, plots for all setups are in the

Appendix. A chunk size between 19 and 156 yields the lowest T loop
par , and the first 2 agents

achieved quality results, while the other agents seem rather undecided.

Figure 5.3: DLS selection per timestep for PISOLVER, 15 % workload imbalance

Experimental Results 33

Similarly, in Figure 5.3, the bar’s colour represents the DLS technique, while its height

is the looptime, T loop
par . This type of plot accompanies the previously seen plot 5.1, as

each bar is expanded into a per-timestep selection description. Given that we only vary

three configuration components, each agent seems to select the DLS in its own unique way.

However, some patterns can be observed. An agent using the explore-first policy

seems to change the DLS technique less often during the exploitation phase. Moreover,

this technique excels in picking the DLS technique, which maximises his rewards - for the

loadimbalance reward, the orange bar representing SS is selected in 90% of cases. SS

with a chunk size of 1 is known always to achieve the highest possible load balancing,

sacrificing the performance quality (which is rather obvious in the figure). Moreover, the

highest-achieving configuration resembles Oracle’s selection the closest; we will study if this

is a coincidence or if the similarity level can quantify the selection’s quality.

Figure 5.4: RL DLS selector configuration components comparison for PISOLVER

Figure 5.4 facilitates the in-depth analysis of each configuration component that an RL agent

can equip: the agent type, the policy type, and the reward type. Each subplot displays data

acquired for a level of application-induced workload imbalance. The green bar represents the

performance of selecting a DLS technique randomly, with no prior knowledge. Also, the red

Experimental Results 34

bar is Oracle, which represents the theoretical best performance achievable. The bottom-

right plot is special since all data points in the previous subplots are aggregated in one

figure. The olive-coloured lines above the bars show the standard deviation. When deciding

upon which agent type to use, the QLearn and SARSA agents always have bars of the

same height. Moreover, the performance data points in the aggregated plot are spread very

similarly. Hence, no clear advantage is noticeable in picking one agent type over another.

When analysing the results for the explore-first policy, such an agent is considered

the lowest achiever in all workload imbalance cases. Nevertheless, the results aggregation

subplot depicts a different story, as there are basically two groups of data points: the group

situated at the bottom of the boxplot use an looptime-based reward, while the one above

is based on an execution time imbalance metric. We will further study the very interesting

explore-first policy type throughout the Mandelbrot and SPHYNX Evrard Collapse

experiments. When analysing the softmax policy, a small level of standard deviation is

characteristic; it can be noticed in the aggregated plot that the data points seem more

condensed than for the epsilon-greedy policy. From this experiment set alone, we

cannot clearly state which of the two policy types is more promising, and further analysis

is required. By studying the yellow portion corresponding to the reward type comparison,

two groups are obvious. The looptime and looptime-average reward-based agent is

almost guaranteed to achieve better results than a loadimbalance or cov rewarded agent,

purely because the performance degrading SS technique would be selected less often.

Generally speaking, the agent reacts to changes in the application’s workload imbalance by

selecting a more appropriate DLS technique. Not fixing the DLS technique for the whole

application’s execution is itself a performance-boosting strategy. However, for PISOLVER,

the imbalance level is constant throughout the whole run; the Mandelbrot experiment set is

designed to study the RL agent’s reaction to unpredictable environmental changes.

5.2.2 Mandelbrot
This real-world, time-stepping, C-written application comes from the mathematical scientific

domain, and it is highly computationally demanding, with a high amount of load imbalance

being created. The Mandelbrot set [11] is computed repeatedly. The original Mandelbrot set

contains the complex numbers z for which fc(z) = z2 + c, while the version in use modifies

the condition to fc(z) = z4+c, to increase the number of computations per task. The image

has 1024 × 1024 = 1’048’576 pixels that can be computed in parallel; hence 220 parallel loop

iterations are needed to build the Mandelbrot image. For each pixel, the maximum number

of iterations is 10’000. This set is computed three times during each of the 1500 timesteps.

The three loops running in synchronicity are loop L1 with constant load imbalance over

time, loop L2 with increasing load imbalance, and loop L3 with decreasing load imbalance.

For this compute-bound experiment, the data is replicated to all the MPI ranks, and the

workload is divided following a centralised-data assignment approach.

This set of experiments implies working with synchronous loops. The setup has required

significant code modifications, such that each loop has its own RL agent and its own DLS

technique active, with a unique set of performance data for each agent.

Experimental Results 35

ATTENTION: The AWF and variants scheduling techniques exhibit unpredictable be-

haviour when scheduling the workload of Mandelbrot (random looptime spikes of up to

10× happen), leading to unforeseeable deadlocks. This problem is linked to how the AWF

techniques work, as information about previous loops is used to determine the next chunk

size. As no problem was encountered in PISOLVER, we can link this situation to running

multiple loops synchronously and not isolating the internally-used variables correctly. We,

therefore, remove these techniques for this set of experiments, downsizing the RL agent’s

portfolio to 7 scheduling techniques: STATIC, SS, mFSC, GSS, TSS, FAC2, and AF.

Figure 5.5: Results summary for Mandelbrot

Experimental Results 36

The top subplot in Figure 5.5 depicts the results for Loop 0, which ensures a constant

level of workload imbalance throughout the whole execution. The highest performance is

achieved using FAC2, which entirely shapes the Oracle. The highest achieving RL DLS

selector, SARSA, explore-first, looptime, preponderantly selects FAC2, reproducing

the Oracle’s selection in 96% of steps, according to Figure 5.8. Moreover, RL agents selecting

mainly SS with a chunk size of 1 perform poorly. Just like the DLS selector, the highest

achieving RL chunk selector is also based on the explore-first policy and the looptime

reward. Likewise, poorly-performing agents use the loadimbalance as the reward.

The second subplot in Figure 5.5 shows the results for Loop 1, where the level of workload

imbalance increases over time. The SS,1 DLS technique degrades the Oracle 23 times. As

a result, RL agents selecting this DLS often would also suffer from poor performance.

The results for Loop 2, with a decreasing level of workload imbalance, are shown in the

third subplot in Figure 5.5. Overall, the results for each configuration for Loop 2 match the

overall execution time results for Loop 1. Therefore, the order in which the load imbalance

is inflicted is not as important as the fact that this level is not constant.

Figure 5.5 offers an ensemble look towards the three synchronous loops. It can be observed

that the bar for SS is divided into three equal parts, meaning that it is guaranteed this

technique would achieve identical performance results independently of the workload imbal-

ance percentage. On average, picking a random RL DLS selector would yield a performance

of 54% over the Oracle. Dissimilarly to PISOLVER’s case, an RL DLS selector would per-

form 2.2% better than the RL chunk selector, which achieves 57% performance compared

to the theoretical best. Due to SS and AF performing rather poorly, manually picking a

DLS without expert knowledge is not indicated, as the average performance is 77% over

Oracle. Once again, the RL agents achieving the highest performance use the looptime

or looptime-average rewards. In contrast, the explore-first policy is equipped by

agents achieving both top-quality and low-grade results.

Figure 5.6: Chunk parameter selection per timestep for Mandelbrot

Experimental Results 37

Figure 5.6 indicates the RL agent’s SS’ chunk selection during all three synchronous loops.

The three loops are visually separated through coloured dashes on top of each bar segment. It

is noticeable that high (red) values for the chunk size, e.g. 2621, would be the optimal choice

for Loop 0, as the loop balancing is achieved regardless of dense or sparse communication.

For loops 1 or 2, the optimal chunk size has a pink shade, as balancing the workload requires

smaller chunk sizes and more process-wise synchronization. This value is not constant, as

the imbalance level keeps adjusting. Only two RL agents achieved satisfactory results, the

explore-first and epsilon-greedy agents based on the looptime reward. The

other agents seem rather undecided, selecting each action around 9% of the time - this

behaviour might be corrected by context-aware tuning the learning parameters, α and γ.

Figure 5.7: DLS selection per timestep for Mandelbrot

Figure 5.7 displays the DLS selection per timestep for the three synchronous loops of Man-

delbrot, each loop being depicted one on top of the other. The total timestep performance

is reported through the Y-axis, while the X-axis shows the timestep, and the colour of the

bar hints at which DLS technique is selected. It should be mentioned that each loop is

assigned a newly-instanced RL agent, each configured as in the subplot’s title. The top

four highest achieving agents are, as also seen in Figure 5.5, the explore-first agents

using the looptime or looptime-average rewards. The lowest-achieving agents use,

again, the loadimbalance or cov rewards. These agents seem rather undecided on what

DLS to select, as the legend of each subplot shows similar selection rates of around 14%.

This behaviour was also encountered during Kury [7]’s Master’s thesis. A context-aware

hyper-parameter tuning of RL variables τ , α, ϵ, and γ might benefit the future work.

Experimental Results 38

Figure 5.8: Similarity of DLS selection compared with Oracle’s for Mandelbrot

Figure 5.8 displays the percentage of similarity when comparing the selection sequence of

a specific RL DLS selector and the Oracle for each loop. Through analysing the highest

performing configuration in 5.7, SARSA,explore-first,looptime-average’s selec-

tion diverges from the Oracle’s selection in 2 of 3 loop cases, scoring 33% overall similarity.

At the same time, the second highest achiever, SARSA,explore-first,looptime, is

similar to the Oracle in 72% of timesteps. On the first hand, these cases underline the idea

that the Oracle remains a theoretical selection, being rather unobtainable in reality without

expert knowledge. On the second hand, it is not necessary that a selection replicates the

Oracle’s to be considered of quality - this is due to multiple DLS techniques achieving similar

execution times. Still, the lowest achieving configuration, SARSA,explore-first,cov,

is the most dissimilar to Oracle’s selection, with only 5% similarity. Up to a point, a corre-

lation between the selection similarity to the Oracle and its quality might exist.

Figure 5.9: RL DLS selector configuration components comparison for Mandelbrot

Figure 5.9 aggregates data for the RL agent’s main configuration components - the agent,

policy, and reward types. Each bar represents the averaged performance per application

run of all agents employing a specific component type. The olive-coloured bars show the

performance’s standard deviation. From the first two bars representing the agent type

comparison, both QLearn and SARSALearn are shown to achieve very similar results,

Experimental Results 39

approaching the blue dotted line signalling the RL agent’s average performance. This result

is also prevalent in the literature [5, 7, 16]. Moving to the policy type analysis, it is noticeable

that the epsilon-greedy policy has achieved results close to the overall RL agent’s

average performance line. Furthermore, the standard deviation of explore-first is the

highest among all the configuration types, which signals that its quality largely depends

on the reward type employed. Two reward groups are formed: the looptime-based and the

imbalance-based. An agent equipping any looptime reward is guaranteed to achieve a

better performance since the std lines of the two groups do not overlap. Furthermore, it

can be stated that a randomly configured DLS selector RL agent would be, on average, 200

seconds faster than when randomly picking and fixing the DLS.

Overall, the Mandelbrot set of experiments shows that the RL agent reacts correctly to

workload imbalance changes by selecting a more appropriate technique. However, when this

level fluctuates excessively, the agents would be destabilised and seemingly undecided, with

most DLS techniques being chosen for an equal amount of timesteps. Through the next set

of experiments, using the Fortran-based SPHYNX Evrard Collapse scientific application,

we further test the agent’s response to dynamic changes in the workload imbalance level.

Furthermore, we facilitate multi-level scheduling at both process and thread levels.

5.2.3 SPHYNX Evrard Collapse
This Fortran F90 scientific application from the astrophysics domain simulates an Evrard

collapse [12]. The version in use starts from timestep 1 and ends after T=250 timesteps, and

the number of particles (thus iterations per timestep) is N=1’000’000. While 37 synchronous

loops are running during each timestep, the gravity loop is observed to be the main source

of load imbalance. Throughout this experiment set, we ignore the existence of synchronous

loops and treat the application’s execution as a whole. Initially, the level of workload

imbalance is non-existent, as the interactions among the particles are rarer. Nevertheless,

it raises gradually. This experiment set explores the two-level workload scheduling at both

the process level using LB4MPI and at the thread level by using OpenMP.

ATTENTION: A bug has been detected where parameters used in the update subroutine

are sometimes valued as NAN. This behaviour occurs for most hardware setups, e.g. for 10

nodes and 20 MPI ranks per node, the program would crash irreversibly at step 48. This

behaviour is encountered independently of the LB4MPI library with RL being used or not.

The bug persists when the code is compiled using either intel or GNU. When re-running

a version of the software known to be working in 2019, the NAN error persists. A possible

cause might be the incompatibilities between the application and the current configuration

of the underlying HPC system. As an effect, we are only able to run the application up to

250 timesteps, by using the setup described below.

When setting the experimental setup, we follow the guidance of Mohammed et al. [35], such

that each node executes two MPI ranks, one per socket, with 10 OpenMP threads within

each MPI rank. In total, for each experiment, we use two nodes of the miniHPC. As our

aim is to study the node-level scheduling quality, we set OMP SCHEDULE="static". Once

again, in this compute-bound experiment, the data is replicated to each MPI rank.

Experimental Results 40

Based on the literature reviewed, an RL agent would optimally explore the action space 10%

to 20% of the time [28]. Due to running the application for only 250 steps, the portfolio

of DLS techniques has to be downsized to the most representative six DLS techniques:

STATIC, SS, mFSC, GSS, FAC2, and AF. The main implication is that the exploration

phase of the RL DLS selector agent would take only 36 steps, as opposed to the 144 steps

required when using the 12-DLS portfolio. Hence, this kind of agent would explore the

action space for 15% of the time and not for the unreasonable 57% of the time.

Figure 5.10: Results summary for SPHYNX Evrard Collapse

In Figure 5.10, it can be observed that the DLS techniques mFSC, GSS and FAC2 would

achieve the highest performance, within 2% of one another. These techniques are also

selected throughout the Oracle. On the other hand, SS with a chunk size of 1 achieves the

worst execution time, losing 400% performance compared to the Oracle, followed by AF,

with 300% performance degradation. As for the RL agent’s DLS selection, results similar to

the previous two applications are observed. In all cases, a looptime (-average) reward

achieved results of higher quality. The explore-first is equipped by both the highest-

achievers and the lowest-achievers groups. Similarly, the agent being of type QLearn or

SARSA does not seem to influence the outcome as much as the policy type and especially

the reward type do. On average, an RL DLS selector would yield results 40% closer to

the theoretical best than randomly selecting the DLS. For this application, the randomly-

configured RL chunk parameter selector would outperform the RL DLS selector. In this

case, the agent’s configuration seems less important than in the DLS selection case, and

good performance is achieved in all cases. Perhaps this effect is caused by having a smaller

number of MPI ranks to synchronise, thus carrying smaller inter-process communication

costs when compared to the overall execution times.

In Figure 5.11, the automated selection of the chunk parameters for the SS scheduling

technique is illustrated. Due to the large number of iterations of 1 million and the small

number of MPI ranks of 4, each process would have to handle 250’000 iterations per timestep.

Based on the equation 4.1, the size of the chunks portfolio is 16, which implies an exploration

phase for the explore-first agent of 256 timesteps, which exceeds the 250 steps of the

application. Under the assumption that the value of the chunk parameter for one step does

not influence the performance of a future step like DLS techniques do, we only explore each

action once instead of 16 times, thus reducing the size of the exploration phase. It can be

Experimental Results 41

observed that chunks with a size under 488 are associated with poorer performance. The

sweet spot for the chunk size is between 976 and 7’812, which are depicted using a pink

shade. Due to varying workload imbalances, the RL agents exhibit problems in maintaining

the selected parameter for more than 66 timesteps. The performance is rather influenced

by the number of times small chunk sizes are tried.

Figure 5.11: Chunk parameter selection per timestep for SPHYNX Evrard Collapse

Figure 5.12: DLS selection per timestep for SPHYNX Evrard Collapse

Experimental Results 42

As illustrated in Figure 5.12, a quality, top-performing selection is one where the SS, AF

and even STATIC DLS techniques are selected for fewer timesteps. It can be noticed that

a short exploration phase is beneficial for all applications employing the looptime reward

together with the explore-first policy, as the low-performing techniques are now rarely

encountered during the exploitation phase. This raises the question - Would exploring each

action exactly once, such as in the above chunk parameter selection, result in a selection

quality boost? Our belief is that the data gathered would not be sufficient to exclude lower-

achiever techniques without also eliminating true negatives. The level of non-decidability

would also be raised, just as observed in Figure 5.11. Instead, a quality improvement in

the automated selection is observed when downsizing the DLS portfolio from 12 to 6 DLS

techniques. It is also worth mentioning that the optimal DLS selection problem is harder

for the SPHYNX Evrard Collapse setup, as the amount of load imbalance is not linear for

the whole execution. Therefore, the performance of a DLS can improve or deteriorate over

time. For example, FAC2 is chosen by the Oracle more often after timestep 225.

Figure 5.13: Similarity of RL DLS selection versus Oracle’s for SPHYNX Evrard

Through analysing the results in figures 5.13 and 5.12, a correlation between the quality

of the DLS selection and its similarity to Oracle’s can be observed. However, there are

exceptions. For example, the QLearn,explore-first,looptime configuration would

only resemble the Oracle in 19% of cases, the 14th highest, would achieve the 4th highest

performance. This observation situates comparing the selection similarity with Oracle’s as

insufficient in determining its quality by itself, while for most cases, it is a good indicator.

In Figure 5.14, performance results for different configuration components of the RL DLS

selector are illustrated. Each bar represents the average performance of all agents employing

this type. The olive-coloured bars show the performance’s standard deviation. These mea-

surements are in line with the results of PISOLVER and Mandelbrot. The agent type does

not influence the selection quality in the long run. Agents operating in a epsilon-greedy

manner achieve a performance level closer to the Oracle and under the all-average line, dis-

similar to Mandelbrot’s case. Judging by the standard deviation of explore-first, this

policy helps achieve results closer to the two extreme points - the lowest and highest execu-

Experimental Results 43

Figure 5.14: RL DLS selector configuration components comparison for SPHYNX Evrard

tion times. Meanwhile, the values for the softmax policy vary less, but an agent using this

policy would yield results worse than the RL agent’s mean performance. As for the reward

types, selection based on loadimbalance or cov is considerably worse than the agent’s

mean performance. On average, choosing a randomly-configured RL-based automated DLS

selector is better than choosing a random DLS manually.

Therefore, studying the SPHYNX Evrard Collapse application has revealed the potential

benefits of shrinking the size of the DLS portfolio, as opposed to reducing the exploration

phase to one timestep per action. Within this experiment set, we focused on the process-

level scheduling technique selection by fixing the thread-level technique to STATIC. We

believe that extending Mohammed et al. [35]’s study from a manual algorithm selection to

an automated one would be beneficial for advancing state of the art.

The results achieved throughout studying the replicated data setup are consistent. We now

shift the focus to distributed data and how RL can help improve the workload imbalance.

5.3 Distributed-data Experiments
For reasons that include the scalability of modern HPC systems, running an application

using a distributed-data approach is viable. Among the benefits, the memory needed for each

process is significantly lowered. Moreover, in a centralised data allocation approach, one rank

responsible for dividing the workload among all workers could easily become overwhelmed

with the task and become a performance-wise bottleneck.

At the application’s start, in the distributed setup that we study, the work array is divided

statically and workers would receive equal fragments of it. As we have previously discovered,

a static workload distribution would introduce an unknown level of workload imbalance. This

might be caused by some iterations being more demanding or the impact of uncontrollable

external system factors on the workers’ performance. One way to overcome this problem is

through Random Work Stealing (RWS). This load balancing method has been implemented

in LB4MPI by Wetten [9]’s work. RWS implies one rank acting as a coordinator, which is

queried by workers with no iterations left to finish, called the thief. A potential victim is

picked randomly such that it has not been a thief before, to avoid ping-pong style stealing,

Experimental Results 44

and it is not the coordinator, to avoid potential deadlocks. The victim either sends some

iterations based on the StealRatio parameter or a rejection message, if no iterations are

left. The steal ratio ∈ [1, 100] sets the percentage of remaining iterations to be stolen.

Table 5.2: Design of 210 factorial experiments for evaluating the StealRatio selection 33 using RL features
in a distributed-data setup

Factors Values Properties

Applications
Process-level

parallelism

PISOLVER in both replicated and distributed

data versions with 7 workload imbalance levels:

+ 0% | 5% | 10% | 15% | 20% | 25% | 30%
C++ | N = 500’000 | T = 1’500 | Total loops = 1

Scheduling Techniques LB4MPI STATIC (for replicated data) Straightforward parallelization

RL Agent Type LB4MPI StealRatioSelector (SRS), QLearn-based
The meta type of the Reinforcement Learning Agent

StealRatioSelector internally uses a QLearn agent

RL Selection Policies LB4MPI

Explore-First (expl-1st)

Select the RL agent’s next actionEpsilon-Greedy (eps-greedy)

Softmax (softmax)

RL Reward Metrics LB4MPI
Loop execution time (LT) Reward the RL agent’s actions

Reward values (r+, r0, r−): (0.01, -2.0, -4.0)Percent imbalance of loop execution times (LIB)

RL-based StealRatio

Parameter Selection
LB4MPI

RWS RL-based StealRatio selection

(for statically distributed data)

Randomised work stealing with RL StealRatio selection

for distributed data applications; StealRatio portfolio sized 10:

PISOLVER: {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

Size of the Experiments
PISOLVER

≈ 10 minutes per experiment run

Total: 210 experiments

Agent configurations: 3 (policy types) × 2 (reward types) = 6

RL StealRatio parameter selection: 6 (RL configurations) ×
7 (levels workload imbalance)× 5 (repetitions) = 210 runs

Computing nodes miniHPC-Broadwell
Intel Xeon E5-2640 v4 (Broadwell) nodes, no hyperthreading

P = 200; 10 nodes, 20 cores each

Metrics

Tpar Parallel execution time per application execution

T loop
par Parallel loop execution time

c.o.v. [34] of loop execution times
c.o.v. = σ/µ, with σ - standard deviation, and

µ - mean loop execution time of all the workers

Nsteals Number of successful steal attempts

For this set of experiments, we study the potential benefits of using the RL features to

automatically select the StealRatio parameter. Results for the replicated-data experiments

are reused from section 5.2. Again, we repeat each experiment 5 times and consider the

execution achieving the median performance as representative.

By analysing the replicated-data experiments, the QLearn and SARSA RL agents achieve

very similar results. Hence, we equip our StealRatioSelector (SRS) meta agent with

only the QLearn secondary agent type. Moreover, when analysing the results for the re-

ward types, 2 groups were noticed: the pure looptime-based (LT and LT-avg) and the

workers’ execution time imbalance-based (LIB and cov). We further use 2 reward types:

looptime LT and loadimbalance LIB. We further consider all three policy types, as

explore-first, epsilon-greedy, and softmax can outperform each other given the

right context. Therefore, we study 6 RL configurations of type policy, reward.

5.3.1 PISOLVER (Distributed Version)
The PISOLVER application based on data replication has been modified into a distributed

version. Following a static work distribution, only relevant data is copied to each processor’s

internal memory. The memory saved through not replicating unnecessary data is noteworthy.

As the number of MPI ranks is 200, each rank’s work array is downsized 200 times, from

500’000 long data-type entries to 2’500 and from 4 MB to 20 KB per worker. In total, for

all MPI ranks, the initial memory allocated is reduced by 99.5%, from 800 MB to 4 MP.

However, to facilitate RWS, additional memory is needed.

Experimental Results 45

Figure 5.15: Results summary for the distributed version of PISOLVER

Each row in Figure 5.15 displays the results for a certain level of workload imbalance. Sub-

plot column 1 depicts the parallel execution times for each configuration on the x-axis. In

essence, we compare the results of the RL agent’s StealRatio parameter selection in a dis-

tributed RWS context when compared to the static workload scheduling in the replicated

version of PISOLVER. We explore the benefits of balancing the workload using random

work stealing. In column 2, the steal attempts are shown, with the yellow portion rep-

resenting the successful steals. Column 3 illustrates the c.o.v. of the processes’ parallel

execution times. For a workload imbalance of 0%, the replicated-static division achieves

slightly better results. This roots in many time-consuming overhead-inducing work-stealing

operations completed, all without gaining a performance improvement. When the imbal-

Experimental Results 46

ance level becomes significant, the tradeoff between the stealing overhead and performance

improvement becomes obviously beneficial. At the peak of 30% workload imbalance, the

performance improvement is 21.2%. Also, it is interesting to note that in the 3rd column,

the parallel execution time c.o.v. of the first bar raises proportionally to the workload im-

balance, while it remains at a low level for the RWS case, which denotes that all RL agents

selections achieved high-quality load balancing. Naturally, the number of steal attempts

and the success rates are proportional to the level of imbalance. Overall, the RL agent’s

configuration seems irrelevant, as the execution times for all the configurations being verified

remain relatively constant.

Figure 5.16: StealRatio selection per timestep for distributed PISOLVER

Figure 5.16 displays the selected StealRatio parameter per timestep for all the RL config-

urations. Each row contains information regarding a certain level of workload imbalance

introduced at the application’s level. Each column refers to an RL agent configured in a

certain way. The bar shaded from blue to red depicts the parallel loop execution time for

a certain StealRatio. The portfolio size is user provided as 10, and the colour-StealRatio

value mapping is shown in the top-right corner. When compared to the DLS or chunk pa-

Experimental Results 47

rameter selection per timestep from the previous experiments, one detail becomes obvious.

The looptimes for all timesteps and for all StealRatio values achieve indistinguishable per-

formance levels. This observation reveals some interesting facts about the selection process

itself. During the exploration phase, the explore-first,looptime agent in column 1

tends to select one item from its portfolio and stick with it, as shifting happens infrequently.

Meanwhile, the epsilon-greedy,looptime’s subplots from column 2 are shown more

colourful, as shifting is often considered, but falling back to the highest-rewarded parameter

prevails. However, other agents seem relatively undecidable, and the selection looks rather

randomised, as each technique is picked in 10% of cases. Eventually, these agents might con-

verge on a decision when running the application beyond the 1500 timesteps. Alternatively,

the internally-used parameters α, γ, ϵ and τ need to be tuned in a context-aware manner.

Consequently, the experiments above show that the value of the StealRatio is rather irrel-

evant performance-wise, and simply using RWS provides a performance boost. Wetten [9]

has reached a similar conclusion in his thesis by manually fixing the StealRatio’s value to 1,

25, 35 or 45. Additionally, we show that an RL-based selection of this parameter holds no

real value if no differentiation criteria can be derived. Rather, one can argue that using an

RL-based selection in this context would negatively impact the performance since the over-

head of using the RL agent is non-zero. We calculate this overhead in section 5.4; according

to Boulmier et al. [33], it would account for 0.01% of the application’s execution time.

Based on the observation that the software would achieve similar loop times independently

of StealRatio’s value, it is expected that the total execution times would remain constant

within the same level of workload imbalance. However, it is not the case, and in Figure

5.15, the maximum ∆Tpar in the first subplots column approaches 1 second. This might be

caused by external system perturbations, which we analyse in the next section.

5.4 Replaying the DLS Selection
Through this experiment, we measure the impact that external factors have on the perfor-

mance of an application. In order to replay an experiment, the selection of scheduling tech-

niques is recorded and rewinded during a later execution. When replaying the RL agent’s

selection, through using the custom policy, the current outputted technique is hijacked,

while the agent would follow the same states. This methodology introduces no overhead.

Based on the measurements available in Table 5.3, it can be observed that none of the config-

urations would produce the same results if the selection is replayed. There always exists an

unpredictable component caused by uncontrollable system factors that ultimately affect the

application’s execution time. The Oracle can be seen as an unachievable performance due

to the fact that this theoretical selection is based on measured performance. The variations

in the table show that saving the learned path for later executions is not a viable approach,

and there are no guarantees that the same performance would ever be reproducible.

Experimental Results 48

Table 5.3: Differences in total application execution time when the sequence of DLS
techniques achieved through automated or manual selection is replayed six times. For

PISOLVER, the percentage in parenthesis refers to the workload imbalance.

Application Configuration Mean
Standard

Deviation

Percentage of

Variation

Max-Min

Difference

PISOLVER (0%) SARSALearner explore-first looptime-average 501.348 s 0.520 s 0.104 % 1.473 s

PISOLVER (5%) QLearner softmax looptime 510.809 s 0.444 s 0.087 % 1.223 s

PISOLVER (10%) QLearner epsilon-greedy cov 583.601 s 1.275 s 0.219 % 3.867 s

PISOLVER (15%) SARSALearner softmax loadimbalance 567.019 s 0.951 s 0.168 % 2.776 s

PISOLVER (20%) SARSALearner epsilon-greedy loadimbalance 639.639 s 1.887 s 0.295 % 4.865 s

PISOLVER (30%) QLearner explore-first looptime 526.342 s 0.554 s 0.105 % 1.300 s

Mandelbrot SARSALearner explore-first looptime-average 848.753 s 0.327 s 0.039 % 0.908 s

Mandelbrot QLearner softmax cov 1402.620 s 4.107 s 0.293 % 11.500 s

Mandelbrot SARSALearner epsilon-greedy loadimbalance 1448.702 s 3.100 s 0.214 % 8.466 s

PISOLVER (30%) SS 818.071 s 11.993 s 1.466 % 36.534 s

PISOLVER (15%) ORACLE 500.011 s 0.177 s 0.035 % 0.501 s

PISOLVER (30%) ORACLE 505.693 s 0.454 s 0.090 % 1.255 s

Mandelbrot ORACLE 774.900 s 0.150 s 0.019 % 0.358 s

Nevertheless, the RL agents based on the looptime and looptime-average reward

achieve a promising standard deviation of under 0.56 seconds, similar in size to the Oracle.

This might be seen as proof that the RL-based selection would not affect the stability

of the system any more than the manual selection, and the impact of external factors is

now evident and detrimental. On the other hand, larger differences are registered when

the RL agent uses an execution time imbalance-based reward, loadimbalance or cov.

The explanation is that the SS scheduling technique is picked more often. This technique

implies large communication costs to achieve the highest possible workload balancing, and

inter-process communication is an unmistakable root for execution time variance.

Therefore, uncontrollable system-level perturbations are demonstrated to exist. If replaying

the selection sequence is shown to yield different results, repeating one experiment is even

more unpredictable. A direct consequence is that the same RL agent is not guaranteed to

have an identical DLS selection sequence in distinct runs, as there is no clear hierarchy in the

performance times for the DLS techniques. To minimise the impact of external randomness,

our experiments were repeated 5 times, with the median run being representative.

5.5 RL Component Overhead
In this section, we measure the impact of the RL component on the application’s perfor-

mance. The main factors that influence the RL component’s overhead are the selection port-

folio’s dimensions, which are more important than its components (DLS, chunk or StealRatio

parameters), and the agent’s configuration (e.g. the active policy). Since MPI functions like

MPI Bcast and MPI Reduce are needed to propagate the current state or to analyse workers’

performance, they also impact the overhead of the RL component. Nonetheless, the total

time needed for using the RL component is independent of the nature of the application,

and the impact of the experiment size (e.g. number of MPI ranks) is minimal.

As shown in Figure 4.1 from a previous chapter, the LB4MPI library interacts with the RL

component during parameters setup, at the start of the loop, when determining the active

technique, and at the end of the loop, when analysing the workers’ performance.

Experimental Results 49

The results displayed in Table 5.4 are based on all experimental data gathered throughout

this thesis. The mean parallel execution time T par for the four applications aggregates data

for the selection of the DLS algorithm, chunk parameter or StealRatio, where applicable.

The times are as follows: PISOLVER distributed version - 586.03 s, PISOLVER replicated

version - 577.82 s, Mandelbrot - 1203.48 s, SPHYNX Evrard Collapse - 8857.56 s.

Table 5.4: Measuring the overhead introduced through using the RL component

T par of the

RL component

Std Dev Tpar of the

RL component

overhead %

PISOLVER dist.

overhead %

PISOLVER repl.

overhead %

Mandelbrot repl.

overhead %

SPHYNX repl.

Setup 0.00114 s 0.00014 s 0.00019 % 0.00020 % 0.00009 % 0.00001 %

StartLoop 0.06729 s 0.00778 s 0.01148 % 0.01165 % 0.00559 % 0.00076 %

EndLoop 0.06060 s 0.00260 s 0.01034 % 0.01049 % 0.00504 % 0.00068 %

Total 0.12903 s 0.00948 s 0.02202 % 0.02233 % 0.01072 % 0.00146 %

From Table 5.4, it can be noticed that the RL component’s times fluctuate the most during

the start of the loop. This is due to the fact that some RL configurations are more resource-

demanding than others. For example, an agent using the explore-first policy would cost more

performance-wise than one using epsilon-greedy due to how these configuration components

work internally. The blocking MPI functions MPI Bcast and MPI Reduce are important

sources of performance degradation, and asynchronous operations such as MPI IBcast would

likely improve the performance in a future software version. While the absolute cost of using

the RL component remains relatively unchanging, the size of the experiment affects the

overhead inflicted by using RL. As seen in the table, the RL component accounts for 0.001%

to 0.022% of the total execution times ranging between 8857 seconds and 577 seconds. These

results are comparable with the outcome of Boulmier et al. [33], where an overhead of under

0.01% is noticed for the application’s execution time of 3’000’000 seconds (assuming the RL

component’s performance is calculated using data depicted in their figure 5).

Given the above measurements of the overhead, we will now study the potential gain in the

performance of using the automated selection feature.

5.6 Potential Performance Gained
In this section, we measure the performance gained by using the automated RL DLS selection

feature compared to randomly fixing the DLS technique with no prior knowledge.

In Table 5.5, the times in column 2 portray the mean parallel execution time of running

an application where the DLS technique has been fixed manually to a random technique in

the portfolio. Further, columns 3 and 4 display data based on a randomly-configured RL

agent that automatically selects the DLS technique. It can be observed that the gain is

negative for PISOLVER with under 15% workload imbalance. In the remaining cases, the

performance is improved by up to 17.30%. Columns 5 and 6 show the mean execution time

for an automated RL chunk parameter selector, and it is further compared with the baseline

in column 1. The performance gained is between 2.63% and 41.28%. In most cases, the RL

chunk parameter selection yields better results than the RL DLS selector, but it is not the

case for Mandelbrot. Overall, the performance has been improved in 14 out of 18 cases.

Experimental Results 50

Table 5.5: Potential performance gained through using the RL-based selection feature. For
PISOLVER, the percentage in parenthesis refers to the workload imbalance.

Manual Random

DLS selection

Automated RL

DLS selector

Automated RL SS chunk

parameter selector

Baseline T par Gain (%) T par Gain (%)

PISOLVER (0%) 543.30 s 558.19 s -2.74 % 522.58 s 3.81 %

PISOLVER (5%) 547.22 s 565.62 s -3.36 % 532.86 s 2.63 %

PISOLVER (10%) 555.20 s 567.78 s -2.27 % 539.17 s 2.89 %

PISOLVER (15%) 570.05 s 575.33 s -0.93 % 539.82 s 5.30 %

PISOLVER (20%) 586.91 s 584.31 s 0.44 % 545.09 s 7.13 %

PISOLVER (25%) 626.33 s 606.56 s 3.16 % 553.36 s 11.65 %

PISOLVER (30%) 719.15 s 652.04 s 9.33 % 558.15 s 22.39 %

Mandelbrot 1375.08 s 1198.85 s 12.82 % 1216.71 s 11.52 %

SPHYNX Evrard 11320.81 s 9362.00 s 17.30 % 6647.60 s 41.28 %

Therefore, an informed decision of using or not the RL features must consider the following:

• The parallel execution time per loop should be large enough so that the overhead of

the RL component becomes insignificant.

• The level of load imbalance at the application’s level should be above a certain thresh-

old; otherwise, the possible performance gains might be overcome by the RL agent’s

exploration costs. Nonetheless, most real-world scientific applications would introduce

a significant level of load imbalance above zero.

Nevertheless, through this experiment, we assume a random configuration of the RL agent.

We will perform an ANOVA analysis throughout the following section.

5.7 Analysis of Variance
In this section, we perform an Analysis of Variance (ANOVA) to find which RL agent’s com-

ponent category is more significant for the application’s parallel execution time. This type

of analysis was proposed in 1989 by Snedecor and William [36]. This tutorial available online

has proven useful when learning about how to perform this kind of analysis. Furthermore,

for the Python implementation, we consulted this online tutorial and used automated tools

from the bioinfokit, statsmodels and scipy Python libraries for statistical measures.

In essence, the one-level ANOVA compares the means of multiple groups of data. In our case,

a level is the RL component type (agent/policy/reward), while a group contains specific

RL algorithms. The group mean is calculated using the variance-based F-test. The F-

test quantifies how much items in a group vary through a comparison of the resulting F

statistic and the significance threshold of 0.05. The F statistic takes into consideration both

the between-group variance SSB and the within-group variance SSW. Large values for this

metric imply a large variance, while a small value means that items inside the group are

highly-similar.

Experimental Results 51

We show in Figure 5.17 an aggregation of all the performance data recorded for the replicated

data experiments set as a way to visualise the statements we soon make. By gathering all

the items in a column, we define the one-level, while groups are represented by specific com-

ponent types represented through boxplot objects. Each row displays information regarding

one benchmarking application. The red dots inside each boxplot represent the performance

recorded for a particular experiment where a certain configuration type is equipped.

Figure 5.17: Parallel execution times for all replicated-data experiments grouped by the
RL configuration type

In Table 5.6, we display the sum of squares, which measures the deviation from the mean,

and the F statistic for an RL configuration type. For the agent type, we observe that the

F statistic is under the threshold of 0.05, hence using any of QLearn or SARSALearn

achieved no advantage in the 1’835 replicated-data factorial experiments we ran. As for the

policy type, the F statistic is slightly above the significance threshold, and this component

type is proven somewhat important. However, as graphically displayed in Figure 5.17, the

configuration type that achieves performance results varying the most is the reward type.

Table 5.6: One-factor ANOVA F-statistic

Source Sum of squares F-statistic
Agent Types 15499 0.001921
Policy Types 1170257 0.072251
Reward Types 15071660 0.622446

ANOVA shows how significant the difference is in general among the groups but does not

provide any data on particular components. With the results displayed in Table 5.6, we dive

deeper into statistically measuring the impact of each item of a group. By using Tukey’s

Honestly Significantly Differenced (HSD) [37] test, we perform multiple pairwise comparisons

Experimental Results 52

of the components and search for possible similarities. A lower Diff is associated with two

components being similar. The Lower and Upper refer to the lowest and largest differences

recorded between any two experimental results. The q-value measures the possibility that

this discovery is a false-positive, and a lower value is considered better. Also, the p-value

measures how likely this value of Diff would occur, starting from an initial hypothesis that

the items in a pair items are not different. A p-value closer to 1 is better.

Table 5.7: Tukey’s Honestly Significantly Differenced analysis

group1 group2 Diff (s) Lower (s) Upper (s) q-value p-value

QLearner SARSALearner 16.94 -744.87 778.75 0.06 0.90

explore-first epsilon-greedy 13.39 -1106.13 1132.92 0.04 0.90

explore-first softmax 149.01 -970.51 1268.54 0.44 0.90

epsilon-greedy softmax 162.41 -957.11 1281.93 0.48 0.90

looptime-average looptime 11.60 -1404.29 1427.49 0.03 0.90

looptime-average loadimbalance 568.24 -847.65 1984.13 1.47 0.70

looptime-average cov 466.87 -949.02 1882.76 1.21 0.81

looptime loadimbalance 579.84 -836.05 1995.73 1.5 0.69

looptime cov 478.47 -937.42 1894.36 1.24 0.79

loadimbalance cov 101.37 -1314.52 1517.26 0.26 0.90

In Table 5.7, we display a three-level comparison for the levels RL agent type, RL policy type

and RL reward type. The most similar pair contains looptime and looptime-average

rewards. Amongst the Agent type level, QLearn and SARSA are somewhat similar. The

most unexpected result shows that the explore-first and epsilon-greedy policies

are highly similar, hinting that when the exploration happens is less important than if

it happens. As expected, the highest differences are among the execution time-based reward

metrics and the imbalance-based metrics.

The true potential of a carefully customised RL agent is explored in the next section. The

discussion will touch on all topics analysed in this chapter.

5.8 Discussion
In this section, we summarise the findings of all the above-described experiments.

We focus first on the replicated-data experimental results. We tested our software using 3

time-stepping applications. PISOLVER maintains a constant level of workload imbalance

throughout the entire application’s run, and this level can be user-specified. In Mandelbrot,

the selection has been tested within three loops, with constant/increasing/decreasing load

imbalance. Finally, SPHYNX Evrard Collapse is closest to how a real-life application would

behave, and the timestep-to-timestep level of load imbalance is hard to predict.

All benchmarking results are condensed in Figure 5.18. The columns represent selection

strategies, while the rows represent different application setups. Hence, their intersec-

tion represents the parallel execution time for one selection strategy, and the percentage

above is the performance lost from the theoretical best, Oracle. A smaller performance

loss percentage is, of course, better. The performance lost over Oracle by the RL DLS se-

lector agent is between 0.82% for the SARSALearner,explore-first,looptime agent,

Experimental Results 53

Figure 5.18: Results of benchmarking automated selection strategies using time-stepping
applications. Formula to calculate the decline in performance compared with the Oracle:

x% = (Tpar - TOracle
par) / TOracle

par × 100, where Tpar is the parallel execution time

and 144.79%, for QLearner,explore-first,loadimbalance. Similarly, for the RL

chunk selector, the top performance is within 0.69% from Oracle, and it is achieved by

ChunkParameterSelector+QLearn,explore-first,looptime. The poorest result

is 75.85% performance degradation, and it is achieved by ChunkParameterSelector

+QLearn,explore-first,loadimbalance. Nevertheless, for each application, at least

an automated selector exists such that it would outperform the randomised manual DLS se-

lection. Generally, the RL agent’s configuration component that affects performance most is

the reward type. Agents using the looptime or looptime-average reward achieve lower

execution times than those equipped with loadimbalance or cov. The second most im-

portant configuration component is the policy type. Agents employing an explore-first

policy would often achieve the highest rewards - having a reward function focusing on achiev-

ing high performance is significant. As for the agent’s type, as most literature studies men-

tion [5, 7, 16], using QLearn or SARSALearn would yield no long-term advantage. These

intuition-based results are statistically proven through the ANOVA analysis we performed.

Moving from the replicated data to a distributed data setup would be beneficial in terms

of scalability and memory consumption. However, for RWS, using the RL agent to set the

StealRatio is excessive. The RL agent’s overhead would deteriorate the performance; hence

using any fixed value is preferred in our experimental setup.

Further, we demonstrated that using RL would not bring instability in the application’s

total execution time any more than external system perturbations would do. We measured

the overhead of using the RL-based selection to be between 0.001% and 0.022% of the ap-

plication’s total parallel execution time. This overhead percentage is inversely proportional

to the loop execution time, as using the RL feature requires a seemingly constant amount

of time. Also, the performance gain through using a randomly configured RL agent for

automated DLS selection is between -3.36% and 41.28%, when compared to manual random

DLS selection. For applications with a notable level or workload imbalance, using the RL

features to automatically select the optimal DLS or the chunk size parameter is advised.

The next chapter will conclude this thesis and will overview the potential future steps.

6
Conclusions and Future Work

This work extends the LB4MPI library with automated scheduling algorithm selection ca-

pabilities. Our software uses a C++-based Reinforcement Learning solution to build an

autonomic computing instrument able to improve the performance of time-stepping appli-

cations. While the main functionality includes automatically selecting the most promising

DLS, the software is also able to select various parameters for diverse load-balancing strate-

gies. Through using the ChunkParameterSelector RL agent, the chunk size parameter

for the SS technique can be automatically selected. The chunk parameter selection can also

be coupled with other DLS techniques in order to set the minimum chunk size. As a novelty,

we propose the StealRatioSelector RL agent, which would select the most promising

value for the StealRatio in an RWS distributed-data context. The RL component is highly

customizable, and the user can choose between 7 agent types, 3 action selection policies (or

enter the expert-custom mode), 10 reward metrics, and can tune the hyper-parameters.

To establish the quality of the RL-based selection, we used 3 time-stepping scientific appli-

cations. For PISOLVER, we studied both the replicated-data and distributed-data versions.

For Mandelbrot, three loops (constant, increasing, and decreasing workload imbalance) run

synchronously. Through the third application, SPHYNX Evrard Collapse, we study the

potential of multi-level scheduling at both process and thread levels. The performance de-

terioration from the theoretical best selection, the Oracle, is used as the main comparison

metric. This quantity can vary from 0.69% for top-quality selections to the undesirable

144.79%. Meanwhile, manually fixing the DLS to a random value yields results in the range

of 9.43% to 120.27% performance degradation when compared to the Oracle, depending on

what benchmarking application is being used and the level of workload imbalance.

The reward’s nature would affect the selection quality the most. An RL agent using

looptime and looptime-average rewards outperform the load imbalance or cov

rewarded selections in almost all cases. Our improved explore-first policy helps achieve

the highest rewards, but having a performance-oriented reward type is very important. Re-

gardless of using a QLearn or SARSALearn agent, no long-term advantage is created. Our

findings are in line with the general consensus encountered through reviewing the literature.

The intuition-based results have been statistically proven through an ANOVA examination.

Conclusions and Future Work 55

As distributed-data solutions are considerably more scalable than replicated-data ones, as

the memory usage at the node level would be drastically reduced, we apply RL to select

the StealRatio in a distributed-data RWS load-balancing strategy. However, regardless

of the amount of work that is set to be stolen, the looptimes are identical. Nevertheless, the

overhead introduced by the RL component would negatively impact the overall performance.

Through replaying the selection process, we demonstrated that external system-level pertur-

bations would affect the execution times for all DLS techniques. Moreover, we have shown

that the RL component would not add additional variance to the application’s performance.

Also, the cost of using the RL-based selection is rather constant in the context of a loop.

The overhead represents between 0.001% and 0.022% of the application’s execution time.

The performance gain of automating the selection process is between -3.36% and 41.28%

when comparing a randomly-configured RL agent and the manual fixing of a random DLS.

Through this work, the all-automated selection of the cross-node load balancing algorithm

is now possible. Since both the LB4OMP and LB4MPI libraries are now able to access

the RL features, one logical future step is to study the multi-level automated workload

scheduling technique selection for hybrid MPI + OpenMP applications. Furthermore, at the

moment, the configuration and parameter tuning of the RL agent is manually done. Perhaps

training a Machine Learning model specifically for hyper-parameter tuning of the RL agent

can improve its performance. Additionally, building the DeepQ-Learning agent to learn the

state-action space without using the memory-inefficient tabular structures would be desired.

Also, variants of the QLearn and SARSALearn that promise to improve scalability (e.g.

DoubleQLearn, QVLearn, E-SARSA) need to be experimented with using computation-

intensive applications. Moreover, a neural network able to combine the signals of the 10

existing reward functions would most likely lead to a better-informed selection. Finally, a

distributed data setup is shown to decrease the node-level memory needs, hence improving

the scalability of HPC systems. Perhaps RL-based selection using meta agents can be applied

in parameter selection for other scheduling strategies, such as locality-aware work-stealing.

Based on all of the above remarks, we achieved the Master’s thesis goal of performing an

Automated Selection of Scheduling Algorithms using Reinforcement Learning in LB4MPI.

Bibliography

[1] A. Mohammed, A. Eleliemy, F. M. Ciorba, F. Kasielke, and I. Banicescu. An approach for realistically simu-

lating the performance of scientific applications on high performance computing systems. Future Generation

Computer Systems, 111:617–633, 2019.

[2] F. M. Ciorba, C. Iwainsky, and P. Buder. OpenMP Loop Scheduling Revisited: Making a Case for more

Schedules. In International Workshop on OpenMP, pages 21–36. Springer, 2018.

[3] J. H. Müller Korndörfer, A. Mohammed, A. Eleliemy, and F. M. Ciorba. LB4OMP: A Dynamic Load Balancing

Library for Multithreaded Applications. IEEE Transactions on Parallel and Distributed Systems, 33(4):830–

841, 2022.

[4] S. Dhandayuthapani. Automatic selection of dynamic loop scheduling algorithms for load balancing using

reinforcement learning. Master’s thesis, Mississippi State University, 2004.

[5] I. Banicescu, F. M. Ciorba, and S. Srivastava. Performance optimization of scientific applications using an

autonomic computing approach. Scalable Computing: Theory and Practice, pages 437–466, 2012.

[6] N. Sukhija, B. Malone, S. Srivastava, I. Banicescu, and F. M. Ciorba. Portfolio-based Selection of Robust

Dynamic Loop Scheduling Algorithms Using Machine Learning. In 2014 IEEE International Parallel &

Distributed Processing Symposium Workshops, pages 1638–1647. IEEE, 2014.

[7] L. Kury. Automated Selection of Scheduling Algorithms for Parallel Scientific Applications using Reinforce-

ment Learning with OpenMP. Master’s thesis, Universität Basel, 2022.

[8] A. Mohammed, J. H. Müller Korndörfer, A. Eleliemy, and F. M. Ciorba. Automated Scheduling Algorithm

Selection and Chunk Parameter Calculation in OpenMP. IEEE Transactions on Parallel and Distributed

Systems, 33(12):4383–4394, 2022.

[9] G. A. Wetten. Dynamic Scheduling in HPC using a Distributed Data Approach. Master’s thesis, Universität

Basel, 2022.

[10] A. Afzal, G. Hager, S. Markidis, and G. Wellein. Making Applications Faster by Asynchronous Execution:

Slowing Down Processes or Relaxing MPI Collectives. arXiv preprint arXiv:2302.12164, 2023.

[11] B. B. Mandelbrot. Fractal aspects of the iteration of z→ λz (1-z) for complex λ and z. Annals of the New

York Academy of Sciences, 357(1):249–259, 1980.

[12] R. M Cabezón, D. Garcia-Senz, and J. Figueira. SPHYNX: an accurate density-based SPH method for

astrophysical applications. Astronomy & Astrophysics, 606:A78, 2017.

[13] HPC Group at Basel Universität. miniHPC: SMALL BUT MODERN HPC. https://hpc.dmi.unibas.ch/en/

research/minihpc/, 2016. Accessed: May 1, 2023.

[14] L. Clarke, I. Glendinning, and R. Hempel. The MPI message passing interface standard. In Programming

Environments for Massively Parallel Distributed Systems: Working Conference of the IFIP WG 10.3,

April 25–29, 1994, pages 213–218. Springer, 1994.

[15] R. Cariño and I. Banicescu. A tool for a two-level dynamic load balancing strategy in scientific applications.

Scalable Computing: Practice and Experience, 8(3), 2007.

[16] M. Rashid, I. Banicescu, and R. Cariño. Investigating a dynamic loop scheduling with reinforcement learning

approach to load balancing in scientific applications. In 2008 International Symposium on Parallel and

Distributed Computing, pages 123–130. IEEE, 2008.

[17] P. Tang and P. Yew. Processor self-scheduling for multiple-nested parallel loops. Technical report, Illinois

Univ., Urbana (USA). Center for Supercomputing Research and Development, 1986.

Bibliography 57

[18] I. Banicescu, V. Velusamy, and J. Devaprasad. On the scalability of dynamic scheduling scientific applications

with adaptive weighted factoring. Cluster Computing, 6(3):215–226, 2003.

[19] C. P. Kruskal and A. Weiss. Allocating independent subtasks on parallel processors. IEEE Transactions on

Software engineering, 100:1001–1016, 1985.

[20] R. Cariño and I. Banicescu. Dynamic load balancing with adaptive factoring methods in scientific applications.

The Journal of Supercomputing, 44(1):41–63, 2008.

[21] I. Banicescu, F. M. Ciorba, and S. Srivastava. Performance optimization of scientific applications using an

autonomic computing approach. Scalable Computing: Theory and Practice, pages 437–466, 2012.

[22] C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical scheduling scheme for parallel

supercomputers. IEEE Transactions on Computers, 100(12):1425–1439, 1987.

[23] T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: A practical scheduling scheme for parallel compilers.

IEEE Transactions on parallel and distributed systems, 4(1):87–98, 1993.

[24] S. Hummel, E. Schonberg, and L. Flynn. Factoring: A method for scheduling parallel loops. Communications

of the ACM, 35(8):90–101, 1992.

[25] I. Banicescu and Z. Liu. A dynamic scheduling method tuned to the rate ofweight changes. In High Perfor-

mance Computing Symposium, pages 122–129, 2000.

[26] S. Hummel, J. Schmidt, R. Uma, and J. Wein. Load-sharing in heterogeneous systems via weighted factoring.

In Proceedings of the eighth annual ACM symposium on Parallel algorithms and architectures, pages 318–

328, 1996.

[27] O. Pearce, T. Gamblin, B. R. De Supinski, M. Schulz, and N. M. Amato. Quantifying the effectiveness of load

balance algorithms. In Proceedings of the 26th ACM international conference on Supercomputing, pages

185–194, 2012.

[28] R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT press, 1992.

[29] H. Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,

Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc., 2010.

[30] M. A. Wiering and D. Leone. QV (lambda)-learning: A new on-policy reinforcement learning algorithm. In

Proceedings of the 7th European workshop on reinforcement learning, pages 17–18, 2005.

[31] J. Fan, Z. Wang, Y. Xie, and Z. Yang. A Theoretical Analysis of Deep Q-Learning. In Proceedings of the

2nd Conference on Learning for Dynamics and Control, volume 120 of Proceedings of Machine Learning

Research, pages 486–489. PMLR, 10–11 Jun 2020.

[32] H. Van Seijen, H. Van Hasselt, S. Whiteson, and M. Wiering. A theoretical and empirical analysis of expected

sarsa. In 2009 IEEE symposium on adaptive dynamic programming and reinforcement learning, pages

177–184. IEEE, 2009.

[33] A. Boulmier, I. Banicescu, F. M. Ciorba, and N. Abdennadher. An Autonomic Approach for the Selection

of Robust Dynamic Loop Scheduling Techniques. In 2017 16th International Symposium on Parallel and

Distributed Computing (ISPDC), pages 9–17. IEEE, 2017. doi: 10.1109/ISPDC.2017.9.

[34] S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoring: A method for scheduling parallel loops. Commu-

nications of the ACM, 35(8):90–101, 1992.

[35] A. Mohammed, A. Cavelan, F. M. Ciorba, R. M. Cabezón, and I. Banicescu. Two-level Dynamic Load

Balancing for High Performance Scientific Applications. In Proceedings of the 2020 SIAM Conference on

Parallel Processing for Scientific Computing, pages 69–80. SIAM, 2020.

[36] G. W.C. Snedecor and G William. Statistical Methods. Iowa State University Press, Eighth Edition, pages

84–86, 1989.

[37] H. Abdi and L. J. Williams. Tukey’s honestly significant difference (HSD) test. Encyclopedia of research

design, 3(1):1–5, 2010.

A
Appendix

The appendix brings completeness to the topics discussed in the main body of the thesis. The following figures are

grouped so that the reader can have an ensemble view of each replicated PISOLVER experiment, with a level of

workload imbalance between 0% and 30%.

Appendix: Results for PISOLVER repl. with 0% workload imbalance b

Figure A.1: Performance summary for PISOLVER 0% workload imbalance

Figure A.2: DLS selection per timestep for PISOLVER with 0% workload imbalance

Appendix: Results for PISOLVER repl. with 5% workload imbalance c

Figure A.3: Performance summary for PISOLVER 5% workload imbalance

Figure A.4: DLS selection per timestep for PISOLVER with 5% workload imbalance

Appendix: Results for PISOLVER repl. with 10% workload imbalance d

Figure A.5: Performance summary for PISOLVER 10% workload imbalance

Figure A.6: DLS selection per timestep for PISOLVER with 10% workload imbalance

Appendix: Results for PISOLVER repl. with 15% workload imbalance e

Figure A.7: Performance summary for PISOLVER 15% workload imbalance

Figure A.8: DLS selection per timestep for PISOLVER with 15% workload imbalance

Appendix: Results for PISOLVER repl. with 20% workload imbalance f

Figure A.9: Performance summary for PISOLVER 20% workload imbalance

Figure A.10: DLS selection per timestep for PISOLVER with 20% workload imbalance

Appendix: Results for PISOLVER repl. with 25% workload imbalance g

Figure A.11: Performance summary for PISOLVER 25% workload imbalance

Figure A.12: DLS selection per timestep for PISOLVER with 25% workload imbalance

Appendix: Results for PISOLVER repl. with 30% workload imbalance h

Figure A.13: Performance summary for PISOLVER 30% workload imbalance

Figure A.14: DLS selection per timestep for PISOLVER with 30% workload imbalance

Appendix: PISOLVER RL chunk selection results i

Figure A.15: RL chunk size selection for PISOLVER

