\/
AN

X< University
]

ANIX
>_<
/] of Basel

\/
zAN
N\

Automated Selection of Scheduling
Algorithms using Reinforcement
Learning in LB4MPI

Master Thesis

Faculty of Science of the University of Basel
Department of Mathematics and Computer Science

HPC Group
hpc.dmi.unibas.ch

Advisor: Prof. Dr. Florina M. Ciorba

Supervisor: Jonas H. M. Korndorfer

Andrei Birgovan
andrei.birgovan@stud.unibas.ch
21-063-425

120 of June 2023

Acknowledgments

I want to express my sincere gratitude to Prof. Dr. Florina M. Ciorba for allowing me
to complete my Machine Intelligence Master’s thesis in the HPC group. Her constructive
feedback and valuable suggestions helped me stay motivated in chasing high-quality results.
Also, many thanks towards Jonas H. M. Korndorfer for being a great advisor. He was always
there to support me, and every interaction felt beyond beneficial. Special thanks go towards
each member of the HPC group for making my Master’s thesis an enjoyable experience.
I am beyond grateful to my beloved family and friends for their continuous support and

endless love.

Abstract

To meet the computational demands of scientific applications, high-performing computing
systems chase the exascale by incorporating an ever-increasing number of computing nodes.
One major source of overhead that results in sub-optimal usage of robust HPC systems
is the load imbalance. To combat this phenomenon, numerous dynamic loop scheduling
algorithms have been proposed. Deciding upon which loop scheduling technique to use is an
NP-hard problem. The manual selection for a specific application, loop, and system context
is error-prone and time-costly, due to the need for extensive experimentation. An automated

selection is required, where the scheduling technique is selected dynamically.

In this thesis, we extend the LB4MPTI library with reinforcement learning features for an
automated selection of the most promising technique out of a portfolio of scheduling algo-
rithms. The library features seven agent types (five main agents and two meta agents),
four action selection policies (three main policies and a customizable one), and ten reward
metrics. The two meta-agents have been developed to swerve away from the scheduling tech-
nique selection problem. The ChunkParameterSelector would select the most promis-
ing chunk parameter size for SS, while the newly-proposed StealRatioSelector, which

is compatible with a distributed-data setup, would select the fraction of work to be stolen.

The implementation is validated and benchmarked using three scientific applications: PI-
SOLVER (available in both replicate-data and distributed-data versions), Mandelbrot, and
SPHYNX Evrard Collapse. The RL-based automated DLS algorithm or parameter selec-
tion results are compared against the theoretical highest-achieving selection, the Oracle.
The agents using 1ooptime-based reward metrics are shown to achieve higher performance
than the load-imbalance rewarded ones. No long-term advantage is noticed regardless
of using QLearn or SARSALearn. In some cases, the RL agent’s selection achieves only a
0.69% performance loss over the Oracle. However, manually fixing the scheduling algorithm
to a random value yields a performance decline of 9.43% to 120.27%. The overhead of using
the RL features is between 0.001% and 0.022% of the application’s execution time. An
ANOVA examination is undergone to find the RL agent’s configuration item that causes the

most variance, and this is the reward-type.

Table of Contents

Acknowledgments ii
Abstract iii
List of Figures vi
List of Tables vii
List of Abbreviations viii
1 Introduction 1
2 Background 3
2.1 Workload Scheduling L 3
2.1.1 The Message Passing Interface 3

2.1.2 The LB4MPI Library 4

2.1.3 Scheduling Algorithms 4

2.1.4 Work Stealing in Distributed Data Setups 6

2.1.5 Performance Metrics 6

2.2 Reinforcement Learning L 0 o 8
2.2.1 Typesof Policies 9

2.2.2 Types of Reinforcement Learning Agents 9

3 Related Work 13
4 Implementation 16
4.1 The LB4AMPI Library 16
4.2 The Reinforcement Learning Extension. 18
4.3 Environment Variables oL L oo 23
4.4 Listof Changes 25
4.5 Compiling the Library L o L 26

4.6 Usage - SUMMATY c v v vt vt e et e e e e 27

Table of Contents v
5 Experimental Results 28
5.1 The Computing System 28
5.2 Replicated-data Experiments oL, 28
5.2.1 PISOLVER 30

5.2.2 Mandelbrot 34

5.2.3 SPHYNX Evrard Collapse 39

5.3 Distributed-data Experiments o oL, 43
5.3.1 PISOLVER (Distributed Version) 44

5.4 Replaying the DLS Selection 47
5.5 RL Component Overhead 48
5.6 Potential Performance Gained L oL 49
5.7 Analysis of Variance L 50
5.8 Discussion Lo e e 52

6 Conclusions and Future Work 54
Bibliography 56
Appendix A Appendix a

1.1

2.1

4.1

4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

5.18

Al
A2
A3
A4

List of Figures

Motivation oL e 2
Components of an Agent-Environment RL system. 8

Communication between LB4MPI and the RL agent when automatically deter-

mining the most promising DLS technique 17
Components of the RL Agento 19
Application’s workflow when using the C-based LBAMPI with RL features 27
Results summary for PISOLVER, 31
Chunk parameter selection per timestep for PISOLVER (15 %) 32
DLS selection per timestep for PISOLVER, 15 % workload imbalance 32
RL DLS selector configuration components comparison for PISOLVER 33
Results summary for Mandelbrot 0oL 35
Chunk parameter selection per timestep for Mandelbrot 36
DLS selection per timestep for Mandelbrot 37
Similarity of DLS selection compared with Oracle’s for Mandelbrot 38
RL DLS selector configuration components comparison for Mandelbrot 38
Results summary for SPHYNX Evrard Collapse 40
Chunk parameter selection per timestep for SPHYNX Evrard Collapse 41
DLS selection per timestep for SPHYNX Evrard Collapse 41
Similarity of RL DLS selection versus Oracle’s for SPHYNX Evrard 42
RL DLS selector configuration components comparison for SPHYNX Evrard . . 43
Results summary for the distributed version of PISOLVER 45
StealRatio selection per timestep for distributed PISOLVER 46

Parallel execution times for all replicated-data experiments grouped by the RL
configuration type 51
Results of benchmarking automated selection strategies using time-stepping ap-
plications. Formula to calculate the decline in performance compared with the
Oracle: x% = (Tpar - TR0 / Tlg:f“le x 100, where T, is the parallel execu-

par
tion time L 53
Performance summary for PISOLVER 0% workload imbalance b
DLS selection per timestep for PISOLVER with 0% workload imbalance b
Performance summary for PISOLVER 5% workload imbalance c

DLS selection per timestep for PISOLVER with 5% workload imbalance C

A.5 Performance summary for PISOLVER 10% workload imbalance
A.6 DLS selection per timestep for PISOLVER with 10% workload imbalance
A.7 Performance summary for PISOLVER 15% workload imbalance
A.8 DLS selection per timestep for PISOLVER with 15% workload imbalance
A.9 Performance summary for PISOLVER 20% workload imbalance
A.10 DLS selection per timestep for PISOLVER with 20% workload imbalance
A.11 Performance summary for PISOLVER 25% workload imbalance
A.12 DLS selection per timestep for PISOLVER with 25% workload imbalance
A.13 Performance summary for PISOLVER 30% workload imbalance
A.14 DLS selection per timestep for PISOLVER with 30% workload imbalance
A.15 RL chunk size selection for PISOLVER

List of Tables

2.1 Dynamic Load Scheduling techniques included in LB4MPT [1].
3.1 Main characteristics of closely-related works.
4.1 Supported environment variables for LB4MPI / LB4OMP with RL features

5.1 Design of 1’835 factorial experiments for performance evaluation of LBAMPI with
RL features in replicated-data applications
5.2 Design of 210 factorial experiments for evaluating the StealRatio selection 33
using RL features in a distributed-data setup
5.3 Differences in total application execution time when the sequence of DLS tech-
niques achieved through automated or manual selection is replayed six times.
For PISOLVER, the percentage in parenthesis refers to the workload imbalance.
5.4 Measuring the overhead introduced through using the RL component
5.5 Potential performance gained through using the RL-based selection feature. For
PISOLVER, the percentage in parenthesis refers to the workload imbalance. . . .
5.6 Omne-factor ANOVA F-statistic
5.7 Tukey’s Honestly Significantly Differenced analysis

Lg

Tl
Thar
ANOVA
c.o.v.
DLS

env var
eps-greedy
expl-1st
HPC
LIB

LT
LT-avg
MPI

PE

RL
RWS
SRS

List of Abbreviations

The learning rate

Probability of exploiting the knowledge
The discount rate

Temperature parameter for softmax
The loop with ID 0

Parallel loop execution time

Parallel execution time (per whole application execution)
ANalysis Of VAriance

Coefficient of Variance

Dynamic Loop Scheduling
Environment Variable

The epsilon—-greedy policy type
The explore-first policy type
High Performing Computing

Load Imbalance

The looptime reward type

The looptime-average reward type
Message Passing Interface

Processing Element

Reinforcement Learning

Random Work Stealing

The StealRatioSelector meta agent

Introduction

The steady growth of computational demands in scientific applications indicates a need
for more powerful high-performance computing (HPC) systems, chasing the exascale. The
boost in performance is generally achieved through increasing the number of computing
nodes. To exploit the full potential of a robust HPC system with multiple levels of hardware
parallelism, parallelism in software needs to be exposed and expressed. Alongside the need
for synchronisation, management of parallelism, and communication costs, load imbalance

has been identified as a major overhead source leading to a decline in performance [2].

Load imbalance consists of idle processors, with work ready to be done that no processor has
started yet. It leads to disparate advancement among the processing units. Load imbalance

emerges from numerous application, algorithm, and system characteristics [3].

To mitigate the effects of load imbalance, scheduling aims to balance the workload in the pro-
cessor’s space and time. Dynamic loop scheduling (DLS) techniques efficiently improve load
balancing. Software libraries such as LB4OMP [3], LaPeSD 1ibGOMP [2], and LB4MPT [1]
provide unified implementations of DLS algorithms, at thread or process levels. As there
is no one-fits-all solution [2], the problem to be solved is an algorithm selection one. Man-
ual selection of the DLS algorithm is proven to be inefficient, time-consuming, costly, and

human error-prone; hence, an automated DLS selection is required.

Recent works by Dhandayuthapani [4], Banicescu et al. [5], Sukhija et al. [6], Korndorfer
et al. [3], and Kury [7] use Machine Learning techniques for automated DLS selection dur-
ing execution time. Automated selectors have been successfully developed for thread level,
shared memory setups [7, 8]. Solving this problem for the more scalable distributed memory
configuration at the process level is an understudied topic. Based on previous work, Expert
Systems and Reinforcement Learning (RL) automated selection methods are worthwhile.
However, opting for the RL solution is shown to be more flexible when the DLS portfolio
needs to be changed. In addition to QLearn and SARSA RL agents being vastly encountered
in literature, these are not outperformed by variations such as DoubleQLearn, QVLearn, or
ExpectedSARSA [5, 7]. Rather, an agent’s performance is shown to be influenced by other

factors, such as the policy choice and reward metric used. Furthermore, Kury [7] demon-

Introduction 2

strated the potential of an automated chunk parameter selection, the ChunkLearner, as
an alternative to DLS selection. We will also explore this hypothesis by experimenting with

this meta RL agent, renamed into the ChunkParameterSelector.

On another topic, when following a centralised-data approach and using workload schedul-
ing, the scalability is compromised. To address these problems, the L.B4MPI library also
supports applications where the data is distributed instead of replicated. Within Wetten’s
Master’s thesis [9], the LB4AMPI library has been modified to support random work-stealing
(RWS) for distributed-data contexts. We will explore an RL-based automated selection of
the StealRatio through the StealRatioSelector meta RL agent.

LaPeSD
LB4OMP @

Hardware units

exploit efficiently (:LB4MP|’)

manual selection

l

Manual DLS
Software Parallelism algorithm
selection
STATIC, SS, .
! mFSC, GSS, Reinforcement
€XPOSe & express -------------- TSS, FAC, Leaming

1 AWF, AWF-B,

AWEF-C, AWF-D,
AWF-E, AF

Expert Systems

automated selection

scientific
applications

R R portfolio of workload scheduling _—
with h Igh algorithms used within automated selection

N replicated data setups
computational
demands

Figure 1.1: Motivation

Figure 1.1 illustrates the motivation behind this Master’s thesis. The goal is to extend the
LB4MPT library with RL capabilities to solve the automated DLS algorithm selection prob-
lem. Pursuing a similar methodology, we experiment with automatically selecting the chunk
size parameter using a modified version of the Self Scheduling (SS) technique. Moreover,
we analyse the performance of various RL agent configurations through benchmarking using
three applications, PISOLVER [10], Mandelbrot [11], and SPHYNX Evrard Collapse [12],
on the miniHPC cluster [13]. Followingly, the focus shifts from a replicated data setup to
a distributed data one, and we use RL agents to select the most promising Steal Ratio

dynamically. This selection is benchmarked using a distributed-data version of PISOLVER.

This Master’s thesis is structured as follows. Chapter 2 offers the background information
further needed. Chapter 3 summarises the literature findings that lead to this topic’s exis-
tence. In chapter 4, the implementation choices are overviewed, while in chapter 5, a series of
experiments are discussed. While chapter 6 offers the conclusions and future work prospects,
the Appendix A brings completeness to the main body of the thesis. The Appendix mainly

contains auxiliary figures and plots regarding some of the experiments.

Background

In this chapter, important notions such as workload scheduling algorithms and performance
metrics are explained. Then, the focus shifts to Reinforcement Learning and the model-free

learning components, such as SARSA, QLearn, and their variants.

2.1 Workload Scheduling

In the context of splitting the work among processes (as opposed to workload division at the
thread level), the communication is achieved via the Message Passing Interface (MPI), as
explained in subsection 2.1.1. To improve workload balancing, several approaches to dividing
the workload among the Processing Elements (PEs) exist. The centralised data method
implies a global centralised task queue and a master process handing new work to available
PEs. Additionally, multiple algorithms able to perform this division exist, as explained in
subsection 2.1.3. As the full data should be replicated to each process’s internal memory,
this approach is a bottleneck in memory-bounded contexts. The alternative is following
a distributed data approach, as explained in subsection 2.1.4, where the work is equally
divided among the PEs before the application starts. To dynamically balance the load,
processes are now able to steal chunks of work from peers. The quality of the scheduling

methods can be verified using multiple metrics, as explained in subsection 2.1.5.

2.1.1 The Message Passing Interface

Parallel programs make use of application programming interfaces to ensure communication
among the processing units to achieve both data sharing and consistency in parallel regions.
The Message Passing Interface (MPI) [14] is the most used standard in distributed memory
contexts, where each parallel process only has access to its own local memory, and data-
sharing is achieved through message passing. The messages can either be of the point-to-
point type, such as MPI_Send or MPI_Recv, or collective communication, such as MPI_Bcast.
By using MPI, scalability beyond the shared memory of geographically close components
can be achieved. This standard is compatible with C, C+4, and Fortran applications.

Background 4

2.1.2 The LB4MPI Library
LB4MPI [1] is a library that contains a collection of Dynamic Loop Scheduling (DLS) algo-

rithms. By allowing processes to communicate using MPI, this library supports the execution

of scientific applications on High-Performance Computing (HPC) systems.

Available in both C and Fortran programming languages, this library is an extension of
the DLB_tool, developed in 2007 by Carino and Banicescu [15]. Mohammed et al. [1] built
DLS4LB on top of DLB_tool, which in turn has been renamed as LB4MPI. The tool is used
for parallelising and balancing the workload of scientific applications with simple parallel
loops (1D loops) or nested parallel loops (2D loops) via efficiently distributing the workload
among available resources. Based on a master-worker model, chunks of iterations (calculated
based on the active DLS technique) are assigned by the master to workers whenever they
become available. When not serving requests, the master also acts as a worker [1]. Alongside
the centralised data approach, where each process replicates the whole work queue in its

own memory space, the library also offers support for the distributed data method [9].

The LB4MPT library offers support for 14 different workload scheduling techniques: STATIC,
SS, FSC, mFSC, GSS, TSS, FAC2, WF, AWF, AWF-B, AWF-C, AWF-D, AWF-E, and AF.
These algorithms will be detailed in the following subsection.

2.1.3 Scheduling Algorithms

The techniques described in this section are suitable for a replicated data setup, with all
processes able to access the full workload queue. In the context of HPC, scheduling is
the process of organising the parallel computing elements and the corresponding data in
the processor’s space and time. Through scheduling, the system’s performance boosting is
obtained by optimising the resource allocation. This assignment of tasks is non-trivial, as
the granularity of jobs differs, and the systems are often heterogeneous. Load balancing is
achieved when the total workload is properly distributed among all the processing units,

with the time corresponding to a process staying in an idle state being minimal.

Loops with little to no dependencies amongst iterations are major sources of parallelism [16].
Loop scheduling can either be static, where the tasks are divided and assigned to PEs
before application execution, or dynamic (DLS), where the tasks are divided and scheduled
during runtime [1]. Moreover, the DLS techniques can be further divided into non-adaptive
and adaptive, based on the moment when information affecting the scheduling decision is

gathered. In table 2.1, the two categories of DLS algorithms are expanded.

The static scheduling technique implies dividing the workload into a number of equally-
sized chunks that correspond to the total number of PEs. As this division happens before
executing the parallel code, the scheduling overhead is kept at a minimal value. Nonethe-
less, due to iterations requiring a non-equal amount of time to be completed (especially in

irregular loops), workload imbalance often occurs.

Background 5

Table 2.1: Dynamic Load Scheduling techniques included in LB4MPI [1].

Non-adaptive Adaptive
Self Scheduling (SS) [17] Adaptive Weighted Factoring (AWF) [18]
Fixed Size Chunking (FSC) [19] AWF Batch (AWF-B) [20]
Modified Fixed Size Chunking (mFSC) [21] AWF Chunk (AWF-C) [20]
Guided Self-Scheduling (GSS) [22] AWF Batch + overhead (AWF-D) [20]
Trapezoid Self-Scheduling (TSS) [23] AWF Chunk + overhead (AWF-E) [20]
Factoring2 (FAC2) [24] Adaptive Factoring (AF) [25]
Weighted Factoring (WF) [26]

Non-adaptive Scheduling Techniques
In this case, the scheduling decisions (e.g. determining the chunk size) depend on information

gathered prior to the execution of the applications.

In Self Scheduling (SS) [17], when a PE becomes idle and requests work, it receives a chunk
of size 1. Perfect load balancing is achieved, but the performance is degraded by the overhead

produced by many individual requests, each with high communication costs.

In Fixed Size Chunking (FSC) [19], the optimal chunk size for SS is calculated based on the
mean, standard deviation, and the overhead in the loop execution times, metrics received

as input. The mFSC [21] relaxes the need to know these metrics a priori.

In Guided Self-Scheduling (GSS) [22], chunks of larger size are allocated at the beginning,
with the chunk size decreasing based on the number of remaining iterations. Similarly, in
Trapezoid Self-Scheduling (TSS) [23], the chunk sizes also decrease, but linearly.

In Factoring (FAC), the chunk size is calculated by using a probabilistic model based on the
mean and standard deviation of execution times received as input. The modified version
FAC2 [24] is a more practical version. Half of the remaining iterations form a batch, and

the chunk size is calculated by splitting the batch in a round-robin fashion.

In Weighted Factoring (WF) [26], speed-based weights are associated with each PE before

the application’s execution. The chunk sizes are calculated using FAC' and scaled properly.

Adaptive Scheduling Techniques
The latest information regarding the system or the application is collected while the program

is executed, and these are exploited for deciding the next chunk sizes.

Adaptive Weighted Factoring (AWF) [18] is based on WF, but the weight of each PE
is flexible. No prior knowledge about the workloads is needed, as information regarding
previous loops is considered. AWF Batch (AWF-B) [20] updates the weights not after
each time step but after every batch of a scheduled loop. Similarly, in AWF Batch with
scheduling overhead AWF-D [20], updates happen after each batch, and the scheduling
overhead is considered. In AWF Chunk (AWF-C) [20], the weights are updated after each
chunk, resulting in better load balancing, but increased overhead. In AWF-E [20], updates

happen after the execution of every chunk, and the scheduling overhead is also considered.

Background 6

Adaptive Factoring (AF) [25] behaves similarly to FAC, with the major difference that the

mean and standard deviation of loop execution times are collected dynamically.

2.1.4 Work Stealing in Distributed Data Setups
In a distributed data setup, the total workload is divided among the PEs following a static

division. In this way, each process would only hold in its memory the data it has to handle.
This approach is particularly suitable when the application is memory-bounding or when
the scalability of the system is desired. Regardless, the static division of work would likely
introduce a level of load imbalance, as the iterations are not guaranteed to require the same

level of effort. This effect can be reduced through work stealing.

In the work-shared policies exemplified in section 2.1.3, the idle PEs receive work from
a master process, which might become a bottleneck. Nonetheless, in the work-stealing
approach, idle PEs (the thieves) are responsible to find work themselves by querying busy
PEs (the victims) and stealing their workload. In this way, the overhead of the victim
is reduced. Yet, the cost of transferring the data among the processes is not negligible.
There are multiple strategies for selecting the victim, such as probing potential victims,
characterised by a tradeoff between larger searching overheads and having a lower number of
tasks to move. Currently, the LB4MPI library only supports Random Work Stealing (RWS),
where the victim is randomly selected from busy processes. In LB4MPI, the amount of work

to be stolen is fixed from 0% to 100% through the StealRatio environment variable [9].

The efficiency of the scheduling strategies aforementioned in this section highly depends on
the state of the environment, which is rather unpredictable and ever-changing. For example,
by manually fixing the most promising scheduling algorithm for the whole application run,
there is no guarantee this algorithm would remain the highest-performing choice during
the whole execution of the application. In the following subsection, we introduce a series
of metrics to be used in determining the performance of a DLS technique, which allow an

objective comparison of different approaches.

2.1.5 Performance Metrics
Among the metrics characterising the timestep performance of a loop scheduling algorithm,
Time Measuring and Load Balancing are widely encountered throughout the literature.

Below are the definitions of such metrics that we will use further throughout this thesis.

Time Measuring Metrics
° 7;)15;’1’ (performance per loop) measures the execution time that the slowest process
requires to finish its share of work during a single loop. Practically, the term looptime
refers to the performance per loop for the slowest process. Likewise, the quantity Tpar,
is the time needed to perform all the work during the whole application run and for

all the loops, and it is approximated to the sum of all 7;137?”.

Background 7

Load Balancing Metrics

The percent load imbalance [27] is calculated using Equation 2.1, where Ly, is the
maximum load of any process, and L is the mean load of all processes. Practically,
the loop’s parallel execution time can be used to quantify the load; hence, L can
be viewed as ’7;1370.” . This metric measures the performance that could be reclaimed

through balancing the load. Any statistical property of the distribution is discarded.

Lmam
percent load imbalance = (T —1) x 100% (2.1)

The Coefficient of Variance (c.o0.v.) [24] from Equation 2.2 characterise the amount of
variance in distributing the workload. The Standard deviation o is needed to calculate

the c.o.v. (in Equation 2.3, L; is the load of the i*" process out of n processes).

A positive skewness [27] (Equation 2.4) means that a small number of processes have
a load higher than average, while a negative skewness implies having a lower workload

on some processes. If the skewness is 0, the workload is normally distributed.

skewness = =0 (2.4)

The kurtosis [27] (Equation 2.5) characterises the size and frequency of deviations

when distributing the workload. The workload is normally distributed if kurtosis is 0.

(L — L)*
0 —— -3 (2.5)
(Li — L)?)

-

1
n

kurtosis = :

3=

=0

However, no performance metric can provide a complete picture by itself. Hence, a mixture

of both time-measuring and load-balancing metrics will be used throughout this thesis.

Based on the assumption that the overall state of the application is not constant, a dynamic

selection of the scheduling algorithm is required. This selection should take into consid-

eration different performance metrics that are dynamically captured. An intelligent agent

could be trained to learn the environment and make informed decisions in order to au-

tomatically select the most promising DLS. In the following section, several Reinforcement

Learning methods and tools are introduced, which are later applied to resolve the automated

scheduling algorithm selection problem.

Background 8

2.2 Reinforcement Learning
Machine Learning (ML) is part of the wider field called Artificial Intelligence. The ML
agents are trained in decision-making and aim to determine future outcomes based on input

events. The vast domain of ML has three main branches, as follows [28]:

e Supervised Learning implies that the model learns from a labelled dataset under
guidance. It helps to solve problems such as Classification, Regression or Estimation,

by using Neural Networks, Bayesian Networks or Support Vector Machines.

e Unsupervised Learning hints that the model is trained on unlabeled data and fea-
tures extracted. Clustering or Prediction problems help in e.g. Big Data Visualisation

and are solved using algorithms such as K-means or Gaussian Mizture Models.

¢ Reinforcement Learning suggests that an agent learns the best actions in a trial-
and-error fashion. The problem solved is of Decision-making type, and most represen-
tative algorithms are Temporal-Difference Learning (e.g. QLearn and SARSALearn)

or Markov decision process, which in turn can be model-based or model-free.

In this Master’s thesis, we focus on the RL part. This branch of ML focuses on a goal-
oriented approach to learning problems that involve dealing with complex and unpredictable
environments. An agent learns how an environment changes through trial and error - after
performing an action, it is instantly presented with a reward and a new state, and it aims
to receive higher rewards. The RL agent performs an action and receives feedback on it,
the agent being guided in finding the correct solution, partially similar to what happens
in unsupervised learning. However, the agent is not guided on what is the most promising

action to perform next, behaviour specific to supervised learning.

Figure 2.1 illustrates the Agent-Environment interaction in an RL system at a random point
in time. Given a state S, the agent performs action A. Based on the impact A has on the

environment, the pair (S, A) is attributed a numerical value, the reward R.

g

ate 5 Reward R Action A

Environment |«

Figure 2.1: Components of an Agent-Environment RL system.

The reward R is a scalar value describing the extent to which the new state .S " is desirable.
Based on a reward function, the agent’s utility is defined, and the agent must learn what
action A" to perform next to maximize the expected rewards. Essentially, the current
outcome is compared with all past actions. After measuring the performance of an action,
the absolute value obtained is scaled into a relative one. For example, on the scale [—1,1],
the action with the highest performance encountered so far is rewarded with 1, while a bad
action is rewarded with —1. A performance situated between the two extremes would get a
reward value closer to 0. When resolving the automated DLS algorithm selection problem,

the agent can consider any performance metric from section 2.1.5 to be rewarded.

Background 9

2.2.1 Types of Policies

An action selection policy is a mapping between states and actions. Policies determine what
action A should be performed in the current state S to get the agent to the next state s’
The aim is to equip the RL agent with an action selection policy such that, in the long run,

it converges to finding the optimal actions given a sequence of states.

One key characteristic of RL is that the system is assessed continuously with the learning
process. There is a trade-off between exploration, where the agent performs new actions,
and ezxploitation, through which the already experienced best action should be performed.

Based on when the exploration phase happens, the following are possible policies.

e Explore-First policy implies that the first timesteps are used to

were all pairs <5, A= explored?

explore all state-action pairs (S, A). Hence, the exploration phase !

would take no_states x no_actions steps. After exploring, the agent o

exploits the gained knowledge for all the remaining period. et O s

¢ Epsilon-Greedy policy indicates the exploration and exploitation
phases are not disjointed anymore, and each can happen anytime. '
Based on the value of the randomly drawn float € € [0, 1], the agent .
will explore a new action with a probability of 1 — € or exploit the - !

already-gained knowledge with a probability of e.

Take a

random action

An off-policy learning strategy assumes that the policy is not relevant when deciding if a
new action is good or bad. Oppositely, an on-policy assumes that experience comes from
the agent, aiming to improve the agent’s policy in real-time (an agent plays a game, and it

improves based on the gained experience, and then plays the game again).

2.2.2 Types of Reinforcement Learning Agents

When learning, two main groups of strategies can be observed - model free and model based.

In a model-based learning (e.g. Dyna, Prioritized Sweeping, RTDP) approach, the model is
used together with its corresponding utility function, which computes the expected reward

when performing a certain action. Based on the utility function, a policy can be derived.

In a model-free learning (e.g. Monte Carlo Control, Temporal-Difference) approach, a model

is not needed. Instead, an action-value function Q is used to derive a policy.

The model-based learning model is only appropriate when the environment allows finding a
model. During DLS technique selection, the environment is heavily influenced by random

factors, and determining a model is not feasible. Hence, a model-free approach is used.

Temporal-Difference (TD) is an implementation of model-free learning. Iteratively, the
approximated value of the optimal action is updated after each cycle (one time-step) based
on the new estimates. The next action to be performed is determined using a policy. Next,

two important TD algorithms (QLearn and SARSALearn) are overviewed and compared.

1
2

9
10
11

Background 10

QLearn

This model-free RL algorithm provides an off-policy TD control method. It is used to learn
the action-value @ function, which provides the expected reward of performing an action in
any given state. The @) function approximates the optimal value function * independently
of the policy being followed. The policy continues to have an impact on the sequence in
which state-action pairs are visited and changed [28]. Correct convergence to the optimal
solution occurs if all state-action pairs are continuously updated. An RL agent is tuned
using the following two parameters that decide how new information is absorbed. These

parameters are important when updating the Q-value in equation 2.6.

e The discount rate v € [0, 1] balances the value of immediate and long-term rewards.
Basically, if ¥ = 1 the whole execution, the agent would value the action far in the
future just as much as the current rewarded action, and for v = 0, only the current
reward would matter. As the value of « would impact the duration and quality of
the learning process, its value should start at a high value and decrease over time,

approaching a value closer to 0.

e a € [0,1] is the learning rate, and it dictates how much the agent values new
observations over old knowledge. From a global perspective, a should start at a large
value since, at first, all new information would bring the agent closer to discovering
the optimal policy. It should decay over time, assuming every piece of new knowledge

already gained places the agent in a state closer to the optimal one.

How the QLearn agent handles new information during any time step is defined by the
Q-value update rule in equation 2.6 [28]. At this point, the agent is in state S and has
performed action A. When updating the action-value function Q, it considers the old Q-
value, Q(S, A), the reward R gained for action A, and the potential Q-value of performing

the next action with a maximal Q-value, a, while in state S’ (the agent’s new state).

QS A) = Q(S, 4) + a[R + ymaxQ(S', a) — Q(S, 4)]. (2.6)

The QLearn pseudocode is displayed within Algorithm 1 [28].

Algorithm 1: Pseudocode for QLearn

Input: S - set of states; A - set of actions;
Output: @ - value function;
Initialise Q(S, A), VS € S, A € A(S) arbitrary and Q(terminal-state, -) = 0;
repeat
Initialise S;
repeat
Choose A from S according to the policy derived from Q);

Take action A and observe R (reward), s (new state);
Q(S, 4) ¢ Q(8,4) + a[R + ymazaQ(S',a) — Q(S, A));
S+ S

until s s terminal;

until there are no time-steps left;
return Q;

1
2
3

[L

10
11
12
13

Background 11

SARSALearn

SARSA is a model-free RL algorithm providing an on-policy TD control method. In the
SARSA context, the learning starts with being in the state S and performing an action A.
Based on the reward R, the agent enters the state S and picks a new action, A’ - the
name of the algorithm is based on this quintuple, (S, A, R, S, A/). SARSA is used to learn
the action-value function by estimating Q(S, A). For a non-terminal state S, the update in

equation 2.7 [28] takes place, while for a terminal state, Q(S, A') is defined as zero.
Q(S, 4) = Q(5, 4) + a[R+1Q(S', A') — Q(S, A)]. (27)

The pseudocode for SARSA can be found in Algorithm 2 [28].

Algorithm 2: Pseudocode for SARSA Learning

Input: S - set of states; A - set of actions;
Output: @ - value function;
Initialise Q(S, A), VS € S, A € A(S) arbitrary and Q(terminal-state, -) = 0;
repeat
Initialise S;
Select A from S according to the policy derived from Q;
repeat
Take action A and observe R (reward) and s (new state);

Choose action A" from S’ according to the policy (e.g. explore-first/e-greedy);
S+ S
A+ A

until s s terminal;

until there are no time-steps left;
return Q;

QLearn versus SARSA

e These TD algorithms store the current state’s reward and the most promising action

for future use, and they converge provided the environment is finite.

e QLearn is an off-policy algorithm, while SARSA is on-policy. With a greedy policy,

both algorithms would reach the same outcomes; using other policies yields differences.

e While QLearn should converge to an optimal policy @*, SARSA only provides an
approximation of Q*. QLearn is more aggressive, while SARSA is more conservative.
Sutton and Barto [28] demonstrate such behaviour through the Cliff Walking exper-
iment: given a task of moving from Start to Goal and avoiding falling off a cliff, the
QLearn agent prefers taking the shortest path, ignoring the risk of falling, while the
SARSA agent will take a longer but safer path, minimising the risks. Moreover, the

QLearn agent receives a smaller mean reward when compared with the SARSA agent.

e The QLearn agent is more useful in fast-paced environments where mistakes are not

costly. However, with expensive errors, SARSA is the preferable choice.

With larger state spaces, QLearn and SARSA do not scale well due to the memory-inefficient
Q-tables. Variants of the two algorithms have been explored, aiming to resolve the scalability

problem. Further, we look at the most promising alternative versions.

Background 12

DoubleQLearn

It has been observed that the standard QL.earn uses the same values twice, to both select
and evaluate an action. This increases the likelihood of selecting exaggerated values, leading
to overoptimistic value assessments. DoubleQLearn detaches the selection process from
the evaluation. To do so, two value functions Q4 and QP are needed. For each update,
one function is randomly picked to determine the policy, while the other function is used in

determining its value. Update rules are found in Equations 2.8 and 2.9 [29].

QA(S,4) = QM(S,4) + a8, A) (R + QP (S argmax,@*(S', 4)) - QA(S, 4)) (28)

QP(S,4) = QB (S, 4) + a(S, A) (R+1QA(S argmax,Q7 (5, 4) - Q7(S,4)) (2.9)

QVLearn

In this variant of QLearn, both the Q and V functions are kept track of. While the V'
function is trained using normal TD methods, the @-values are learnt from the V-values
using the one-step QLearn algorithm (Algorithm 1). As the V-function does not consider
actions and it is updated more often, it might converge faster than the Q) function. Equation
2.10 is followed when updating the V-function, n; is 1 if the state S occurred, and 0 otherwise,
while Equation 2.11 explains how the Q-values are updated [30].

V(S) = V(S) + adre:(S) with eligibility trace

, (2.10)
et (S) = yer—1(S) + n:(S) and §; = R+~V (S) — V(S)

Q(S,A) = Q(S. A) + a(R+V(S) — Q(S, A)) (2.11)

DeepQLearn

DeepQLearn improves QLearn by switching from a (not scalable) Q-table that expected
reward values into using a Neural Network that approximates the Q-value for an action
given a state. During the training process, the same iterative process is undergone, but

instead of updating the values, the Neural Nets weights are tuned [31].

Expected-SARSA

Under the observation that the SARSA’s convergence requires every state to be visited
infinitely often, sufficient exploration is provided. ExpectedSARSA is more flexible than the
classic SARSA, as it can either be off-policy based (if a greedy expected return is employed,
it gets transformed into QLearn) or on-policy (the expected return is computed for all
actions). The action-value function differs from the classic SARSA algorithm, and it follows

the rule in equation 2.12 [32].
Q(8,4) = Q(S, A) + a(R+7 Y m(alSHQ(S" a) - Q(S, 4)) (2.12)

In a workload scheduling context, these techniques can be used for automatic algorithm
selection. A selection of literature-reviewed texts, including the topic of how RL can improve

automated DLS selection, is overviewed in the subsequent chapter.

Related Work

This chapter presents the literature context of this work. The related work is overviewed

and critically analysed while underlining potential improvements.

Ciorba et al. [2] show that no scheduling technique is guaranteed to improve every paral-
lel application’s performance in all circumstances. This result has been achieved using the
OpenMP-based library LaPeSD-11ibGOMP via benchmarking using different applications.
Based on the observation that certain scheduling techniques outperform others in differ-
ent scenarios, the automated scheduling algorithm selector we propose should be able to

alternate between multiple scheduling techniques in the portfolio when the context changes.

The premise of Korndorfer et al. [3] is that the scheduling options in OpenMP are insufficient
to address the load imbalance that arises during the execution of the multithreaded appli-
cation, and LB4OMP is proposed. For numerous application-system pairs, the scheduling
techniques in LB40OMP outperform the scheduling options in OpenMP. However, the manual
algorithm selection requirement has proven to be time-consuming and demanding, and the

selected algorithm is likely to underachieve in the future, demanding its change.

Mohammed et al. [8] proposed Auto40OMP as a novel automated load balancing tool for
OpenMP applications. It aims to resolve the manual DLS selection problem of LB40OMP [3].
Expert systems are used to determine the chunk parameter and the most promising schedul-
ing selection algorithm automatically during runtime. An 11% boost in performance, when
compared to LLVM’s schedule(auto), has been achieved by minimising the load imbalance at
the thread level. The drawback of expert systems is that with the addition or deletion of

any scheduling technique, the algorithm selection rules also need to change.

The work of Kury [7] is the closest related work to this thesis. RL techniques are used to
select the optimal scheduling algorithm, aiming to reduce the effect of load imbalance on
the performance of computationally-intensive applications. LB40OMP with RL can alternate
multiple scheduling techniques during run-time. The software implements three action se-
lection policies - Explore First, Epsilon Greedy, and Softmax, six reward methods based on
the execution time of all threads and five learning agent types, among which QLearn and
SARSALearn. Furthermore, a novel learning method is proposed, Chunk-Learning, which

searches for the optimal chunk size to be used together with the dynamic schedule. The

Related Work 14

evaluation methodology consists of benchmarking using Mandelbrot and SPHYNX Evrard
Collapse. Results show that while QLearn, SARSALearn, or other variations achieve sim-
ilar outcomes, the agent’s nature is not as important as the policy used or the reward
metric. Altogether, the results of using RL rarely outperform the expert systems proposed
in Auto40MP. We will extend the process-level LB4MPT load balancing library with Kury’s
software. As the amount of application load imbalance seems to influence the selection
quality, we will study how different RL selection methods react to various levels of load

imbalance. Furthermore, we plan to upscale the benchmarking setup.

Pearce et al. [27] shows the percent imbalance does not reveal how quickly a balancing
algorithm can correct the imbalance. They proposed using statistical measures such as
standard-deviation o, skewness, and kurtosis. We will test if these measures can improve
the RL agent’s DLS selection quality by modifying its reward function. By combining infor-
mation from Pearce et al. [27] and Hummel et al. [24], we conduct large-scale experiments

with a reward function based on the processes’ parallel execution time c.0.v. = o/p.

Rashid et al. [16] use RL for automated DLS algorithm selection. The authors have consid-
ered the QLearn and SARSA methods and have investigated the optimal values for a/~; just
as Kury did, they concluded that QL.earn and SARSA achieve similar results. A potential
problem leading to this finding could be not allocating sufficient time for the exploration
phase. To overcome this issue, we increase the number of time steps to 1’500 while spending
around 10% of time exploring. As they only evaluated the performance using one applica-
tion, QTM, one possibility is that the two RL agents are not the best fit for this particular

setup. We plan to test our implementation on at least three scientific applications.

Banicescu et al. [5] studies how process-level DLS-with-RL online selection improves the
load balancing in the time-stepping application QTM. For any number of processors, the
automated DLS selection statistically outperforms the DLS-only approach. While QLearn
and SARSA RL agents would differ from one another through their DLS selections, statisti-
cally, there is shown to be no advantage in picking one over another. It is also shown that

for a fixed number of processes, the RL agent is insensitive to variations of v and ~.

Boulmier et al. [33] study RIL-based automated DLS selection. They propose a new ro-
bustness metric as the reward function, the flexibility, that measures how DLS techniques
resist facing execution time perturbations, but this is not always suitable. Experiments are
run on the SimGrid framework, which is a simulation of a large-scale computing system.
The QVLearn agent is shown to perform marginally better than other agents under extreme

conditions, and the RL component accounts for less than 0.01% of the application execution.

Wetten [9] extended the LB4MP1I library with distributed-data load balancing capabilities.
Random Work Stealing is implemented as a way for processes that have finished their work-
load to help busy processes finish the work faster. The percentage of work to be stolen is
fixed through the StealRatio, and their experiments show the value of StealRatio does not
impact the application’s performance. The authors only conducted experiments on a rela-
tively small scale, with one application, Dist-D. We will verify this hypothesis by upscaling
the experiments through benchmarking using a distributed version of PISOLVER and 200

Related Work 15

processes. In our thesis, we conduct an RL-based selection of the StealRatio parameter
through a novel approach, the StealRatioSelector, which behaves similarly to Kury [7]’s

chunk parameter selector RL agent, but using a portfolio of StealRatios.

Table 3.1: Main characteristics of closely-related works.

Banicescu, Ciorba, | Boulmier, Luc Kury, 2022 [7] This work
Srivastava, 2012 [5] | Banicescu, Ciorba,
Abdennadher,
2017 [33]
Library MP I-based MP I-based OpenMP based, MP I-based,
LB4OMP (3] LB4MPT [1]

Scheduling techniques

STATIC, AWF-B,
AWF-C, AF, FAC2,

STATIC, FSC, GSS,
FAC, AWF,

STATIC, SS, GSS,
GAC, TSS, STATIC

STATIC, SS, FSC,
mFSC, GSS, TSS,

GSS, mFSC AWF-B,-C-D,-E, AF | STEAL, mFAC2, FAC2, WF, AWF,
AWF-B,-C-D,-E AWF-B,-C-D-E, AF
Automated selection QLearn, QLearn, RandomSelection, QLearn,
methods SARSALearn SARSALearn, ExhaustiveSelection, SARSALearn,
E-SARSA, QVLearn, BinarySelection, ChunkParameter—
DoubleQLearn ExpertSelection, Selector,
QLearn, StealRatioSelector
SARSALearn,
DoubleQLearn,
E-SARSA, QVLearn,
ChunkLearn
Benchmarking QTM SimGrid-SMPI Mandelbrot, PISOLVER,
application SPHYNX Evrard Mandelbrot,
Collapse SPHYNX Evrard
Collapse
Number of workers P P e {2,4,8,12,16, P e {210 211 212} P =20 SPHYNX: P =40
20,24} else P = 200

Observations,
Limitations

QLearn and SARSA
achieved similar
results, independent
of @ and ~; One
benchmarking
application might be
insufficient

Experimenting using
one application - a
simulation; Flexibility
metric is mostly an
unsuitable reward;
QVLearn is
marginally better
than others; the
overhead of using RL
selection: <0.01%

RL-based selection
outperforms manual
selection, but not
ExpertSelection;
agent type is less
important than other
factors e.g. policy,
reward

For a centralised-data
context, analyse
RL-based DLS
selection and chunk
parameter selection;
compare results with
RL-tuned RWS within
distributed data

Among the reviewed literature, we have identified three that are closely related to our work.
Table 3.1 puts into perspective the main features of each text. The red coloured algorithms
are not compatible with the LB4MPTI library, while the teal coloured ones have been im-
plemented in LB4MPTI library, but not in LB4OMP. In our work, when completing the DLS
portfolio, we can only select the techniques compatible with a certain application and context
(e.g. for RL-based selection, we would not consider WF, as its parameters are tuned over the
whole run). Also, even if implementations of all RL algorithms have been successfully ported
to LB4MPI, experiments will be conducted mainly with QLearn and SARSALearn. These
two agent types are widely encountered in the literature, and studies show that variants
exceedingly rarely outperform the originals. Rather, the variants were designed to boost
the scalability and not improve the execution times through a more-qualitative action se-
lection. We would rather focus our energy on finding the right combination (agent-type,

policy-type, reward-type) that performs well for a particular application’s context.

Notes on the implementation are provided in the next chapter.

1
2
3

© 0 N O oA

N NN N NN N R HE R R E R e e
O R W N R O ©® N WA WN RO

Implementation

This section contains notes on implementing the Reinforced Learning tool as an extension
to the LB4AMPTI library.

4.1 The LB4MPI Library

As described in Section 2.1.2, the ZB4MPI [1] library is a Dynamic Loop Scheduling (DLS)
tool that uses MPTI to achieve workload balancing via process-level communication and syn-
chronization. Due to the manual setup required by WF, FSC, and SimAS, these scheduling
techniques have been removed from the DLS portfolio. We further consider STATIC, SS,
mFSC, GSS, TSS, FAC2, AWF, AWF-B, AWF-C, AWF-D, AWF-E, and AF.

Algorithm 3: Calling the C version of the LB4MPTI library (application perspective)

#include <mpi.h>
#include "LB4MPI.h”

#include "reinforcement-learning/c_connector.h”

MPI Init(&argce, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_.COMM_WORLD, &myid);
foreach timestep do
distributedWorkLoad = ... // Distribute the data to all MPI ranks
infoDLS DLS_info;
...// Setup parameters for DLS_Parameters_Setup and DLS_info
DLS_info.looptitle <— "loop_title”;
DLS_info.workload <+ work_load;
DLS_Parameters_Setup(MPI.COMM_WORLD, &DLS_info, nprocs, ...);
DLS_DataSetup(&DLS_info, distributedWorkLoad, ...);
DLS_StartLoop(&DLS_info, 0, work_load, DLS_method);
while /DLS_Terminated(& DLS_info) do
DLS_StartChunk(&DLS _info, &start, &chunk size);
end = start + chunk_size;
if start < end then
‘ Perform application-related computations
end
DLS_EndChunk(&DLS_info);
end
end
...// Display results & report performance
MPI _Finalize();

Implementation 17

Algorithm 3 contains information on how the C version of LB4MPT is accessed from an ap-
plication perspective. The teal code highlights code to be added for the RL features in both
the replicated and distributed application versions. The blue code indicates that data is
distributed. Alongside the legacy parameters (e.g. h_overhead, sigma, Xeon_speed ...), two
extra parameters must be provided to use the RL features. As the new software is compatible
with multiple synchronous loops, the looptitle has to be passed to the DLS_info structure.
Multiple instances of infoDLS need to be created to access the multi-loop feature; the above
code exemplifies a single-loop program. Furthermore, to calculate the size of the chunk
parameter portfolio, DLS_info.workload needs to be initialised with the task’s size prior to
executing DLS_Parameters_Setup. As a prerequisite, the user should also export the environ-
ment variable for the desired RL agent type, e.g. export MPI_RI_OPTION=QLearner,
as the RL component is ignored by default.

Figure 4.1 illustrate how the C (or Fortran) LB4AMPI library can access the RL feature via
accessing the C-to-C++ (or f90-to-C++) interface. Communication is facilitated through
three functions: DLS_Parameters_Setup, DLS_StartLoop, and DLS_EndLoop. It can also be
observed that the RL agent does not directly influence the application computations but
rather helps pick the right DLS technique to balance the workload. The RL agent analyses
the performance metrics for different DLS techniques and decides which DLS will most likely

achieve higher performance during the next timestep.

setup

Nl setup parameters
J L, . Legend:
) C-to-C++or | ls| Reinforcement)
I LB4MPI (C/F90): E90-t0-CH++ Learning Agent Application code
Initialize library ~ | DLS_Parameters_Setup interface (C++) LB4MPI code
M\ /\41 fistos:o [| [;] Interiace code
Start) askfornewls N askfornextpLs [() Riagent code
timestep .
o b C-to-C++ or J » Reinforcement
Main SetDLS LB;:‘QP;I(?ZFQO)- F90-to-C++ Learning Agent
el el _StartLoop f
application interface (C++)
41 next DLS r\i/\ﬁ next DLS

Perform -)
application LB4MPI (C/F90):
computations DLS_StartChunk
L DLS_EndChunk
DLS_Terminated

Communicate Communicate

timestep
performance

timestep .
performance L Reinforcement
Learning Agent

C-to-C++ or
F90-to-C++
interface

End timestep

LBAMPI (C/F90):

DLS_EndLoop (C++)

Figure 4.1: Communication between LBAMPI and the RL agent when automatically
determining the most promising DLS technique

An initial version of the RL extension was developed in 2022 by Kury [7] during their
Master’s thesis. Initially, this tool is built as an extension to the LB4OMP /Aut 040MP library,
which aims to accumulate a portfolio of thread-level scheduling algorithms. Kury claims the
extension is lightweight, encapsulated, extensible, and portable, which allows easier integration
with other tools, such as LB4MPI. Our Master’s thesis is part of a strategy to achieve multi-
level automated DLS algorithm selection at both process and thread levels. Naturally,
our software solution updates Kury’s implementation instead of building an entirely new
program. Based on this decision, a future project unifying LB40OMP and LB4MPI with RL

capabilities would be considerably easier to be developed.

Implementation 18

As LB4OMP is entirely written in C++4, Kury’s extension can be straightforwardly integrated
with C++ libraries. However, linking the C LB4MPI library and the C++ RL Agent
extension has proven challenging since C is not directly compatible with C++ objects, e.g.
AgentProvider. As an alternative to either rewriting the entire LB4MP1I library in C++
or rewriting the RL component in C, a C-to-C++ interface has been developed by consulting

Oracle resources publicly available online.

Such that a broader selection of scientific applications can use LB4MPI with RL features,
integration between Fortran applications and the C++ RL agent software is desired. 16%
of this Master’s thesis has been invested into developing a solution. The first approach is to
access the C LB4MPI library from the Fortran main application via an f90-to-C interface,
which in turn has to access the RL agent via the C-to-C++ interface. However, due to
considerable differences between Fortran and C (e.g. MPI.COMM_WORLD is represented
as an integer in Fortran but struct-like in C), this task has proven not feasible. Hence, the
Fortran version of LB4MPTI has been updated to call the RL agent code via an f90-to-C++
interface. From a technical perspective, this approach is not as challenging from a technical
perspective, as the C++ code only returns the subsequent DLS technique as an integer.

The performance data is recorded by the library, and it is reported through LoopData.

The LoopData structure and other features of the RL agent extension are explained in the

following section.

4.2 The Reinforcement Learning Extension
This section will discuss the components of the RL extension while highlighting the differ-
ences between the initial and the current software versions. For a better understanding, the

reader is redirected to the Implementation notes of Kury’s Master’s thesis [7].

The main task of the RL agent is to analyse data regarding various dynamically gathered
measurements for a portfolio of DLS techniques. Based on analysing multiple timesteps,
the agent is able to make an informed decision about what DLS technique is most likely to
achieve the highest performance during the next timestep. All the communication between
the LB4MPT library and the RL component happens through a single MPI rank, the foreman.
When reporting the performance of the latest timestep, the foreman consults all ranks and

computes the reported quantity, e.g. load imbalance percent or looptime c.o.v.

The performance data is gathered by functions DL.S_StartLoop () and DLS_EndLoop ()
of the LB4MPT library. Afterwards, it is reported to the RL agent via the LoopData struc-
ture. One instance of LoopData holds information about a single loop. Performance updat-
ing of the latest timestep can be done as follows: getLoopData (info->locoptitle)—>
cTime = time. Alongside the total timesteps, the number of MPI ranks, the execution
time, and the load imbalance for the latest timestep, which can also be found in the previous
version of the software, new statistical metrics are reported: cStdDev, cSkew, cKurt, and
cCoV (detailed in Section 2.1.5). The LoopData structure also keeps evidence of the overall

top metrics encountered during runtime through best—- variables, e.g. bestTime.

Implementation 19

As a feature, consulting the RL agent can cease after a certain number of timesteps. For
example, instead of spending the full 1’500 timesteps searching for the DLS technique,
synchronization and communication costs can be discarded by only searching during the first
500 timesteps: a user can manually set the timeStepsLimit, and the autoSearch flag is
switched to false if this limit is crossed. This option is only recommended for environments

where conditions remain constant throughout the whole execution.

Main C/f90-to-C++ Reinforcement Learning Legend:
application LBAMPI 00 Agent Software C++ () Eisting functionality
D Updated functionality
J— 1 i [:] New additions

Chunk Parameter
Selector
StealRatio | | Agent Type
Selector
@ Explore-First
SARSA-Learn psilon-Greedy)
DoubleQ-Learn Softmax
xpected-SARSA Custom
Looptime
Load Imbalance

Robustness

Policy Type Reward Type

Looptime Standard-
Deviation

Looptime

average

i

i
i+

Skewness

ooptime Rollin
Average

Kurtosis

o
o
<

i
Dyl

Figure 4.2: Components of the RL Agent

When the new agent is initialised, all the environment variables (env var) are read, and the
agent’s parameters are set accordingly, as opposed to using the default value when an env

var is missing. Figure 4.2 illustrates the main components used to configure the RL agent.

Agent Types

The main agent types have been thoroughly described in section 2.2. The value can be user-
provided through the LB4AMPI_RIL_AGENT_STATS environment variable via the leading
integer code as it follows: 8 - QLearner, 9 - DoubleQLearner, 10 - QVLearner, 11 -
SARSALearner, 12 - ExpectedSARSALearner. The software also supports two meta
agents, as follows: 15 - ChunkParameterSelector, and 16 - StealRatioSelector.
While the integer code for each agent can be misleading in the context of LBAMPT, this is
a direct result of how LB40OMP represents different selection strategies (e.g. 1 - exhaustive
search, 2 - binary search, 4 - expert systems, and values > 6 for RL Agents). The legacy
identifiers are preserved so that a multi-level scheduling application using both LB4OMP and
LB4MPI with RL would be straightforward to implement. To reduce the ambiguity, the user

can now specify the more-intuitive full name of the RL Agent via a string.

It must be noted that a bug has been found and corrected in the implementation of the
SARSALearn agent: while equation 2.7 states that the quantity Q(S/,A/) should be cal-
culated, the previous version of the software used the last performed action A instead of
the next action A". This way, the agent would be an off-policy one, hardly different from
QLearn. The correct action is now retrieved through the in-use policy. When policies are

’, . .
based on randomness, A is not guaranteed to be selected twice in a row.

Implementation 20

Kury used a special kind of agent to select the optimal chunk parameter for the dynamic
schedule. In short, this technique implies building an array of potential chunk values and,
through monitoring the performance of each, finding the optimal chunk size. The number
of chunk parameters in the array is calculated using equation 4.1, with N corresponding to
the total workload size and P representing the number of workers.

no-chunks = |log, (E)J -1 (4.1)

Equation 4.2 shows how each chunk size in the array is computed.

N

chunkArrayli — 1] = W,i €

[1,...,no_chunks] (4.2)

This meta agent requires creating a secondary agent, e.g. @Learn, whose type is specified
through the env var LB4AMPI_RI_SELECTOR_TYPE. Kury’s name for this kind of agent
is the ChunkLearner. While the problem solved is rather an algorithm selection with
configuration parameter selection, a better fitting name is ChunkParameterSelector.
While Kury’s version would only work with the dynamic schedule (equivalent to LB4MPI’s
SS), a modified version of this agent can be used to set the lower bound chunk for any DLS

techniques (e.g. GSS) at run time instead of setting the chunk parameter directly.

Furthermore, we propose the StealRatioSelector as a novel strategy that uses RL
to select the optimal StealRatio € [0,100]. This kind of agent is only compatible with
a distributed data setup that allows RWS. Similarly to the ChunkParameterSelector, a
secondary agent specified through the env var LB4MPI_RI_SELECTOR_TYPE needs to be
instantiated. Dissimilarly, the values in this agent’s portfolio are independent of the sizes
of the problem N and P. Rather, the user can provide the size S of the portfolio through
the env var LBAMPI_RL_SR_PORTFOLIO_SIZE (default: 10), and the space [0, 100] will be
divided into S x tileSize parts. Equation 4.3 displays how the StealRatio array is computed.

tileSize = @
S (4.3)

steal RatioArrayli — 1] = i x tileSize,i € [1, 5]

Policy Types
To determine the next action, the RL agent can use three different strategies (provided via
the LBAMPI_RIL_POLICY env var) and a customizable one:

e Explore First (explore-first) - First timesteps are used to explore all possible
combinations of states and actions exactly once. In this context, a state is the active
DLS, while an action changes the current DLS with a new one. DLS_M ethodCount?
timesteps are needed for the exploration phase. One could argue that exploration
should take DLS_MethodCount timesteps, but the order in which the DLS techniques

are tried is important (e.g. if SS has performed badly, thus setting the performance

S I N
o

<

10

Implementation 21

bound to a bad value, it is likely that the DLS coming after S.S would get rewarded
better than in a hypothetical case where it was chosen prior to it, and this bias should
be avoided). With this software version, it is guaranteed that all combinations are
tried exactly once. After exploring, the agent exploits the knowledge to determine

which DLS technique is likely to achieve the highest performance.

Epsilon Greedy (epsilon—greedy) - Ezploration and exploitation phases are not
disjointed, and each can happen anytime. A float is randomly drawn, and the agent
will explore a new state-action pair with prob = 1 — € or exploit the knowledge with
prob = €. The initial ¢ € (0,1) is user-specified through the environment variable
LB4MPI_RL_EPSILON, and it decays over time based on LB4MPI_RIL_EPS_DECAY.

Softmax (softmax) - This is not based on either exploration or exploitation. Rather,
given a state, each possible action is attributed a soft probability of it being selected,
which is proportional to the action’s Q-value. The temperature 7 € (0, +00) is user-
specified through the environment variable LB4MPI_RI_TAU, and a higher value of 7
implies a higher probability of selecting an action with a higher Q-value. The long-run

performance increases by alternatively picking all the highly-rewarded actions.

Customizable (custom) - The policy is useful when experienced users run custom
experiments. For instance, if an ordered list of DLS techniques is provided, one can
replay the selection to find the runtime standard deviation associated with the library

(see Table 5.3). This policy works by hijacking other existing policies.

Reward Types

The RL agent can use reward functions to learn how a particular method has performed

during the latest timestep. This incentive measure compares the current reward signal with

other captured rewards; hence, this quantity needs to be translated from an absolute value

to a relative scale. Aiming to gain high rewards, the agent is motivated to pick the most

promising DLS techniques when not exploring.

Algorithm 4: Setting the reward based on input signal x

double x < stats.reward_signal;
// Read (ry, ro, r—) from env var LB4MPI_RL_REWARD_NUM
if z < 1.05 x lower_bound then

nd

0

end

// Good case
if (x < lower_bound): set_lower_bound(x);
return ry;

Ise if x > 0.95 x higher_bound then
// Bad case
if (x > higher_bound): set_higher_bound(x);
return r_;

// Neutral case 1.05 X lower_bound < x < 0.95 X higher_bound
return 7ro;

Algorithm 4 shows how an input reward signal x is transformed into the rewarded quantity.

In our updated version of the software, the agent would be rewarded r /r_ if it is within

Implementation 22

5% from the bound, as opposed to strict comparison with the limits. This strategy has

proven to increase the quality of DLS selection by selecting the highest-performing DLS and

increasing the reward of other highly-performing techniques.

The reward type can be user-specified through the LB4MPI_RI_REWARD environment vari-

able.

Two categories of rewards can be identified based on the nature of the reward signal.

The following rewards are based on the loop execution time of the slowest process, 7;}3,‘,’” :

Looptime (looptime) - Award with ry, rg, or r_ the looptime performance x.

Looptime Average (looptime-average) - Keep track of the averaged looptime
performance for ALL previous timesteps, and reward the looptime of the latest DLS

with r or r_, based on its performance being situated below or above this quantity.

Looptime Rolling Average (looptime-rolling-average) - Compare the
input signal x with the averaged looptime of the last ROLLING_AVG_WINDOW (int,
env var) timesteps, and reward a good performance with r, or a bad one with r_.

Looptime Inverse (looptime-inverse) - Reward the current DLS technique
with R(z) = 1 x ¢, where ¢ is the INVERSE_REWARD_MULT (used to combat small
looptimes). In the latest version of the software, the user can change the environment
variable LB4MPI_RL_INV_MULT from its default value of 10.

Robustness (robustness) - Quantify the ability of a DLS technique to resist vari-

ations in the loop iterations execution time [33]. The reward is calculated using the

FASTEST
7;7ar

formula 7 x —x, where 7 is the tolerance factor (which can be user-provided

via the env var LB4MPI_RL_TAU), and 7.5 ASTEST g the fastest loop time recorded.

par

The following reward types use the imbalance of the parallel execution time as the reward

signal, based on load balancing metrics introduced in Subsection 2.1.5.

Percent Loadimbalance (loadimbalance) - Award with 4, ro, or r_ the load
imbalance percent obtained by the current DLS. A load imbalance of close to 0 implies

an even workload distribution among all processes and it is awarded r .

The above reward does not provide insights on correcting any imbalance, as statistical
data is ignored. The following reward types are based on statistical moments and were
added with the newest version of the software. The load imbalance in the original def-
initions from subsection 2.1.5 has been replaced for practical reasons with the parallel

execution time of each process.

Standard Deviation (stddev) - metric detailed in Equation 2.3.
Coefficient of Varriance (cov) - metric detailed in Equation 2.2.
Skewness (skewness) - metric detailed in Equation 2.4.

Kurtosis (kurtosis) - metric detailed in Equation 2.5.

Implementation 23

Multiple strategies for setting reward values exist. The triple of doubles {ry, ro, r_} can be
user provided via the environment variable LB4MPI_RI_REWARD. The default reward is the
Negative reward [0.0, -2.0, -4.0]. The Neutral reward [+2.0, 0.0, -2.0] offsets the Negative
reward to avoid the local extrema situation. A Positive reward can also be used, such as
[+4.0, +2.0, 0.0]. Throughout this thesis, we will slightly modify the Negative reward to
[0.01, -2.0, -4.0], so when a DLS achieves high performance, its reward would not be 0, to

not be confused with the initial value in the agent’s Q-table, zeroed.

The Initialiser Type can be user set through the LB4MPTI_RI._INIT environment variable,
and it specifies how to initialise the Q-table of a new agent. The Zero Initialiser
(zero) fills the entire Q-table with 0s. The Random Initialiser (random) would fill
the Q-table with random values bounded by the bad reward r_ and the good reward r,.
Lastly, the Optimistic Initialiser (optimistic) would fill the Q-table with values
higher than realistically obtainable. Based on the experimental results derived by Kury [7],

only the Zero Initialiser will be further considered.

The Decay Type is provided by the user through the LB4AMPI_RIL_DECAY env var, and it
commands how the decay of the learning rate o and the exploration rate € vary from timestep
to timestep. The decay can be of type step, where after each timestep LB4MPI_RL_ALPHA
is linearly reduced based on LB4MPI_RI,_ALPHA_DECAY until the minimum is reached,
ALPHA_MIN, and LB4MPI_RI_EPSILON is linearly reduced with LB4AMPI_RL_EPS_DECAY
down to EPSILON_MIN. Or it can be exponential, where the decay is also based on these
parameters but follows an exponential behaviour. Throughout this thesis, we will use the

exponential decay, which is more appropriate to our learning strategy.

The RL extension can enter a debugging mode by setting the _RL_DEBUG parameter from
LB4MPI/reinforcement-learning/agents/kmp_agent.h to 1 or 2. Useful messages

regarding the current state of the software would be printed to stdout.

Out of all the customizable components of an RL agent, the most impactful items are con-
tained in the triple (agent-type, policy-type, reward-type). By altering these, the
widest range of results can be achieved. We will experiment with changing these values and
evaluate how component types affect each other. When not otherwise stated, all RL agent’s
parameters are unchanged from their default value. The default values are aggregated in

the next section, in Table 4.1.

4.3 Environment Variables

All environment variables described throughout this chapter are centralised in Table 4.1.
This table contains information on the environment variable’s name in LB4MPI and, below
it, the LB4OMP counterpart. The table also provides the variable’s name internally used by

the software, the default value, its type, description, and the range for the values.

Implementation

24

Table 4.1: Supported environment variables for LBAMPI / LB4OMP with RL features

Environment Variable

‘ Internally used Variable

‘ Default value

Description and Possible Values

LB4MPI_RL_.GAMMA

GAMMA 0.95 Agent’s Discount factor; double v € [0,1]
KMP_RL_-.GAMMA
LBAMPI_ RL_ALPHA
ALPHA 0.85 Agent’s learning rate; double a € [0,1]
KMP_RL_ALPHA
LBAMPI_RL_ALPHA DECAY
ALPHA_DECAY_FACTOR 0.01 Learning rate decay; double € [0, 1]
KMP_RL_ALPHA DECAY
LBAMPI_RL_ALPHA_MIN R .
ALPHA_MIN 0.10 Minimum learning rate; double € [0, 1]
KMP_RL_ALPHA_MIN
LB4MPI_RL_EPSILON Explorati te for tk licy
R SILO EPSILON 0.90 xploration rate for the policy
KMP_RL_EPSILON epsilon-greedy; double € € [0,1]
LB4MPI_RL_EPS_DECAY
EPSILON_DECAY _FACTOR | 0.01 Exploration rate decay; double € [0, 1]
KMP RL_EPS_ DECAY
LB4MPI_RL_EPS_MIN
EPSILON_MIN 0.10 Minimum exploration rate; double € [0, 1]
KMP _RL_EPS_MIN
LB4AMPI_RL_TAU TAU 1 5o Temperature of the softmax policy AND
KMP_RL_TAU ’ robustness reward; double 7 € [0, +00]
LB4MPI_RLINV_MULT Constant multiplier for the reward
INVERSE_REWARD_MULT | 10
KMP_RL_INV_MULT looptime-inverse; int € [0, +0o0]
LB4MPI_RL_AVG_WINDOW ROLLING AVG. WINDOW 10 Window size int € [0, 400] for the reward
KMP_RL_AVG_WINDOW looptime-rolling-average
LB4AMPI RL_SR_ Dimensi f the
HLSR in LBAMPI: srArrayDim 10 Hension of The
PORTFOLIO_SIZE StealRatio portfolio € [2,100]
The type of the RL Agent
String OR int values: QLearner (8),
DoubleQLearner (9),
. . . SARSALearner (10),
MPI_RL_.OPTION in LBAMPI: mpi_rl_option 0
ExpectedSARSALearner (11),
QVLearner (12)
ChunkParameterSelector (15),
StealRatioSelector (16)
LB4MPI_RL_SELECTOR_TYPE lec ype f nts 1 1
RL_S CTOR SELECTOR TYPE s Selector agent type for agents 15 and 16

KMP_RL_SELECTOR.-TYPE

Agent type as integer € [8,12]

LB4MPI_RL_POLICY
KMP_RL_POLICY

POLICY_TYPE

explore-first

The type of Policy
All accepted values: explore-first,

epsilon-greedy, softmax

LB4MPI_RL_REWARD

The type of Reward
All accepted values: looptime,

looptime-average,

REWARD_TYPE looptime looptime-rolling-average,
KMP_RL_REWARD
looptime-inverse, loadimbalance,
robustness, stddev, skewness,
kurtosis, cov
The type of Initialization
LB4AMPI_RL_INIT
INIT_TYPE zero All accepted values: zero,
KMP _RLINIT
random, optimistic
LB4AMPI_RL_DECAY The type of De:
DECAY_TYPE exponential ¢ type of Decay
KMP RL_DECAY All accepted values: exponential, step
LB4AMPI_RL_AGENT_STATS AGENT STATS 10 output Agent statistics output filename

KMP_RL_AGENT_STATS

String values: the filename, e.g. agent

LB4AMPI_RL_LREWARD_NUM
KMP_RL_REWARD

REWARD_STRING

0.0,-2.0,-4.0

Good/neutral/bad rewards

Triple of comma-separated doubles

RL.DEBUG

Inside the kmp_agent . h file, modify it to 1

or 2 to output useful debugging information

The following section offers a list of all the modifications suffered by the LB4MPT library or
by the RL extension.

Implementation 25

4.4 List of Changes
The LB4MPT library has been modified as follows:

e Both the C and £90 library versions can access the automated RL selection features.

Our solution aims to be compatible with previous applications that use LB4MPT.

e The library supports multiple synchronous loops. Various performance metrics are

dynamically recorded and stored such that in-depth analysis can be undergone.

The original version of the RL Agent software has been modified as follows:

e To facilitate compatibility with LB4MPI, the env var MPI_RIL_OPTION provides the

agent type, similarly to checking schedule (runtime) in an OpenMP environment.

e To allow compatibility with both the C and £90 versions of LB4MPI, the C++ RL
extension should firstly be compiled together with the C++-to—C or the C++-to-£90
interface in . so objects, and just then linked with the main library. How the library

is compiled differs from the initial approach (see section 4.5 for details).

e Moved the header file kmp_loopdata.h inside the reinforcement learning

folder, from the library root folder.

e The error reporting system shows more explicit instructions when the user provides
incorrect data through env vars. Moreover, if env var LB4MPI_RI_AGENT_STATS is
not provided, crashing is now avoided by not outputting the statistical data.

e To use all available knowledge while exploiting, the argmax function now compares

the averaged Q-table reward for all actions independently of the current state.

e We have updated the following features: the explore-first policy, the SARSA
agent type, the Looptime—-Inverse reward, and the step decay type.

e Added statistical reward types: stddev, c.o.v., skewness, and kurtosis.

e The functionality of the ChunkParameterLearner meta agent has been updated
to set the minChunkSize for any DLS technique. Previously, it could only select the
chunk size parameter for dynamic, which is the OpenMP counterpart of SS.

e The StealRatioSelector meta agent has been developed to perform an automated
parameter selection to find the optimal StealRatio for a distributed-data setup

where Random Work Stealing is allowed.

Information on how to compile the software is provided in the next section.

Implementation 26

4.5 Compiling the Library

The instructions to link an application and the LB4MPI with RL library are explained in
Algorithm 3. Important note: to maintain compatibility with legacy software, LB4MPI
does not use the RL features by default, and MPI_RL_OPTION is the internal switch. Hence,
the user must specify the agent type, e.g. export MPI_RL_OPTION=QLearner, before

customising other optional RL parameters.

The script in Listing 4.1 shows how to compile the RL component and the C++-to-C
connector in two .so objects, namely 1ib_rl.so and 1ib_connector.so. The Intel
compiler version 2022a on the miniHPC-Broadwell cluster is used for compilation. The

script is run from the LB4MPI/reinforcement-learning folder.

#!/bin /bash
module load intel/2022a

RL_files=$(find . —type f —mame "*.cpp”)
mpiicpc —lstdec++ —fpic —shared $RL_files —o lib_rl.so
mpiicpc —lstdc++ —fpic —shared c_connector.cpp —L. lib_rl.so

—o lib_connector.so

Listing 4.1: Compiling the RL component and the C-to-C++ connector in .so objects

Paths to both . so objects should be provided when compiling the desired application along-
side the LB4MPI.c library. Listing 4.2 displays how to compile a C-based application,
Mandelbrot (note: in this example, Mandelbrot has the same parent folder as LB4MPI).
Moreover, as the linker is required to load the compiled LB4MPTI library, the library path
should be added to the LD_LIBRARY_PATH environment variable. Below, the pwd indicates

that the compiled library can be found in the current folder.
#!/bin /bash

module load intel/2022a
export LD LIBRARY PATH=$ (pwd):$LD LIBRARY PATH

mpiicpc —03 —lstdc++ —std=c++11 mandel_three_loops.c ../LB4MPI/LB4MPI.c
—L. ../LB4MPI/reinforcement—learning/lib_rl.so
../LB4MPI/reinforcement —learning /lib_connector.so —o mandel

Listing 4.2: Compiling Mandelbrot

To compile the RL Agent’s C++ code for a Fortran application (e.g. SPHYNX Evrard
Collapse), the script in Listing 4.1 should be slightly modified to replace c_connector. cpp
with fortran_connector.cpp, and 1ib_connector. so should be optionally renamed
into 1ib_fortran_connector.so. Then, the DLS.£90 library has to be linked with

the two .so objects, and form an object DLS. o, which is used by the main application.

The next section provides summarised information on how to use the library.

Implementation 27

4.6 Usage - Summary

Below is a checklist to follow when using the LB4MPI with RL features.

e Copy to the source folder for LBAMPT the reinforcement-learning subfolder.

e On the application’s side, modifications are required to transform the sequential pro-

gram into a parallel one. The pseudocode in section 4.1 details the process.

e Compile the library by following the steps from section 4.5, preferably using an In-
tel compiler, through using module load intel/2022a. Then add the compiled
library to the path using export LD_LIBRARY_PATH=LB4MPI_path.

e Export the desired environment variables by first consulting the table in section 4.1.
Most importantly, set the RL type e.g. export LB4AMPI_RI_OPTION=QLearner.

e Set the slurm sbatch configuration to use at least 2 ranks. Then use srun to run

the application, eventually providing the args values.

Otherwise, the compilation is also possible through executing the c_compile.sh or the

fortran_compile. sh scripts found in the RL folder.

In Figure 4.3, a typical application’s workflow is shown. Generally, this workflow is also

valid for Fortran applications.

Lsing o CC++ interfuce AgenitProuie: = fimesteg
RL? | i * seanch{) ST =07

(3

= retumm rem wen incex O from ihe portfolio

ally upclate the imestes

GG+ intnrace AgemProvider e
Ra— inestel
L ki § |
searchi] e b Yos.

[T np. opdasan Perarm
1 mpRd Na COmMpUationg
BerOmANCS (4R
P
ves
1 | 1 Diagram Key
Ll PR DBLE Eredl Yes DLS_EndChurs Application code
90— R e DLS_Enclloop a—Yes - | DLS Endhunk
i LEAMPI cade
Yeu :
1 C-Co+ imeerface code
END RL apenss code
axee

Figure 4.3: Application’s workflow when using the C-based LB4AMPI with RL features

The full potential of this software is explored through experiments in the following chapter.

Experimental Results

In this chapter, we evaluate the performance of the LB4AMPI library with automated DLS
selection using a Reinforcement Learning agent. A series of factorial experiments are run
based on three different applications: PISOLVER, Mandelbrot and SPHYNX Evrard. A

discussion based on aggregating all the experimental results is also given.

5.1 The Computing System

All the experiments were run on the high-performance computing cluster located at the
University of Basel, miniHPC [13]. This computing system helps to create a controllable
research environment, and it serves mainly educational purposes. MiniHPC contains four
types of nodes: Intel Xeon E5-2640 v4 (Broadwell, 22 nodes), Intel Xeon Phi KNL 7210 (4
nodes), Intel Xeon Gold 6258 (1 node), and AMD EPYC 7742 (1 node), which are intercon-
nected through an Intel Omni-Path 100 Gbit/s network. The experiments are performed on
the miniHPC-Broadwell segment, using 10 nodes of type Intel Xeon E5-2640 v4.

All the applications’ code and the LB4MPI library with RL features have been compiled on
miniHP C-Broadwell, using the Intel Compiler version 2022a.

5.2 Replicated-data Experiments

Table 5.1 displays the design of experiments for the replicated data component. Each
experiment consists in running a parallel application with diverse scheduling techniques
active one at a time. The sum of performances for each timestep is used to determine
the quality of the RL selector. These medium-to-large-scale experiments use 200 PEs for
PISOLVER /Mandelbrot and 4 PEs with 10 threads each for SPHYNX Evrard Collapse.

The 1’835 experiments took approximately 750 real hours to run.

The used applications span three different programming languages: PISOLVER is written
in C, Mandelbrot in C4++ and SPHYNX Evrard Collapse in Fortran90. Also, these parallel
applications cover different scientific domains: PISOLVER [10] and Mandelbrot [11] cover
mathematics, while SPHYNX Evrard Collapse [12] is an astrophysics simulation.

Experimental Results 29

Table 5.1: Design of 1’835 factorial experiments for performance evaluation of LBAMPI with RL features
in replicated-data applications

Factors ‘ Values ‘ Properties
Process-level | PISOLVER with 7 workload imbalance levels: CH+ | N = 500000 | T = 1°500 | Total L 1
N= = otal loops =
parallelism | + 0% | 5% | 10% | 15% | 20% | 25% | 30% 7 B P
Applications Process-level C |N=1048576 | T = 1’500 | Total loops = 3 (L1, L2, L3)

parallelism

Mandelbrot

L1: constant, L2: increasing, L3: decreasing workload imbalance

Process-level+
Thread-level

SPHYNX Evrard Collapse

90 | N = 1°000°000 | T = 250 | Total loops = 37

Major workload imbalance source: the gravitation calculation loop

parallelism
STATIC Straightforward parallelization
Scheduling Techniques LB4MPI | ss, mFsSC, GSS, TSS, FAC2 Dynamic and non-adaptive self-scheduling techniques
AWF, AWF-B, AWF-C, AWF-D, AWF-E, AF Dynamic and adaptive self-scheduling techniques
RL Agent Type LBampy | Qheamer (OLearn) The type of the Reinforcement Learning Agent
SARSALearner (SARSA)
Explore-First (expl-1st)
RL Selection Policies LB4MPI | Epsilon-Greedy (eps-greedy) Select the RL agent’s next action
Softmax (softmax)
Loop execution time (LT)
RIL Reward Motrics LBAMPT | L0p exccution time: average (LT-avo) Reward the RL agent’s actions
Percent imbalance of loop execution times (LIB) | Reward values (74, 7o, 7-): (0.01, -2.0, -4.0)
c.0.v. of loop execution times (cov)
PISOLVER: {STATIC, SS, mFSC, GSS, TSS, FAC2, AWF,
RL Scheduling . AWF-B, AWF-C, AWF-D, AWF-E, AF}
LB4MPI | RL-based DLS selection
Technique Selector Mandelbrot: {STATIC, SS, mFSC, GSS, TSS, FAC2, AF}
SPHYNX: {STATIC, SS, mFSC, GSS, FAC2, AF}
PISOLVER: { 2, 4, 9, 19, 39, 78, 156, 312, 625, 1250}
RL Chunk SS + ChunkParameterSelection Mandelbrot: {2, 5, 10, 20, 40, 81, 163, 327, 655, 1310, 2621}
LB4MPI

Parameter Selector

secondary agent type: QLearn

SPHYNX: {3, 7, 15, 30, 61, 122, 244, 488, 976, 1953,
3906, 7812, 15625, 31250, 62500, 125000}

Size of the Experiments

PISOLVER

~ 10 minutes per experiment run

Total: 1’470 experiments
DLS: 12 (no. DLS) x 7
RL DLS configurations: 2 (agents) x 3 (policies) x 4 (rewards) = 24
RL DLS selection: 24 (RL configurations) x 7 x 5) = 840 runs

RL Chunk sel. configurations: 3 (policies) x 2 (rewards) = 6

(levels imbalance) x 5 (rep.) = 420 runs

RL Chunk selection: 6 (RL configurations) x 7 x 5 = 210 runs

Mandelbrot

~ 20 minutes per experiment run

Total: 185 experiments
Plain DLS: 7 (no. DLS) x 5
RL DLS selection: 24 (RL configurations) x 5

(repetitions) = 35 runs
(repetitions) = 120 ru

RL Chunk selection: 6 (configurations) x 5 (rep.) = 30 runs

ns

SPHYNX Evrard Collapse

~ 147 minutes per experiment run

Total: 180 runs
30 (DLS) + 120 (RL + DLS) + 30 (RL + chunk sel.) = 180 runs

Computing nodes

miniHPC-Broadwell

Intel Xeon E5-2640 v4 (Broadwell) nodes, no hyperthreading
PISOLVER/Mandelbrot: P = 200; 10 nodes, 20 cores each;
SPHYNX Evrard: P=40; 2 nodes each with 2 cores, 10 threads each

Metrics

Tpar Parallel execution time per application execution
Thew Parallel loop execution time

Percent imbalance [27] of loop execution times

Percent imbalance = (T1292/T1220 " 1) x 100%

naz/ L mean

. N . c.0.v. = o/pu, with o - standard deviation, and
c.0.v. [34] of loop execution times

1o - mean loop execution time of all the workers

To ensure the correctness of results, each experiment has been run five times, with the

execution achieving the median performance being representative of the configuration.

Kury [7] shows that out of the five different agent types tested (QLearner, DoubleQLearner,
SARSALearner, ExpectedSARSALearner, QVLearner), no agent type would outperform
the others. Since QLearner and SARSALearner are popular throughout the literature
reviewed [5, 7, 16], we conduct our experiments using only these two agent types. Ad-
ditionally, Kury shows that the policy type employed is one of the most important fac-
tors. Hence we will experiment with all the three policies available: explore-first,
epsilon—greedy, softmax. Another impactful component is shown to be the reward
type, for which we will experiment with four types: two performance per loop rewards,
looptime, looptime—-average, the load-imbalance percent, and the newly im-
plemented statistical-based reward, the Sloop execution time c.o.v. Therefore, we conduct
our DLS selection experiments using 24 agent configurations (2 agent types x 3 policy types

x 4 reward types), where one configuration is of the form agent-policy-reward.

Experimental Results 30

If it is not otherwise stated, all the experiments use the default parameters presented in
Table 4.1. One difference is that the triple of rewards (r, ro, r—) is set to (0.01, -2.0, -4.0)
instead of using the default negative reward. This change would help avoid a corner case
where the agent would not distinguish between a high-performing action rewarded with 0

and the initial Q-table value of 0 set by the zero initialiser type.

The Oracle (also called Ground-Truth) measures a theoretical performance that is only
achievable with a selection of DLS techniques. It can be used to facilitate the comparison
between real DLS selections. To calculate the Oracle, the application runs five times for
each scheduling technique in the portfolio. For each timestep, find the DLS technique that
achieves the highest performance when comparing the median execution time of the five

runs, and group these together by summing the looptimes.

In the following sections, we evaluate each RL agent’s configuration based on the metrics

presented in Table 5.1. The Oracle described above is used for an unbiased comparison.

5.2.1 PISOLVER

This C++ time-stepping application simulates a scalable mathematical problem. The initial
codebase has been developed by Afzal et al. [10] and modified by HPC Group researchers at
Basel Universitat. As the name PISOLVER suggests, it calculates the value of 7 using the
mid-point rule to approximate fol ﬁ dx repeatedly over T=1’500 timesteps. The size of
7 is computation-bounded by N=500'000 iterations. When allocating the workload among
workers, a supernormal distribution with a user-provided mean=680’000 and programmable
workload imbalance is generated. To calculate the workload imbalance, the application
uses a user-provided percentage value and internally calculates the standard deviation. For
example, for a mean of 680’000 and 10% imbalance, the standard deviation is 68’000; each
worker has to resolve between 612’000 and 748’000 iterations. Therefore, our experiments
compare the performance of several RL Agent configurations based on multiple levels of
workload imbalance of {0%, 5%, 10%, 15%, 20%, 25%, 30%}. The STREAM Triad kernel is
not used for this set of experiments; hence the application is compute-bounded and not
memory-bounded. A replicated-data approach is used, where the workload is split in a

centralised manner, and each process has the same copy of the work array.

This set of experiments verifies how different RL agent configurations react to various levels
of load imbalance and how the quality of automated DLS selection is affected. The full

results for each level of workload imbalance can be found in the Appendix.

Figure 5.1 summarises the results for the replicated-data PISOLVER set of experiments.
The percentage above the bars represents how much performance is lost through using a
specific configuration versus Oracle’s theoretical best performance. The colours in each
bar represent the amount of time a DLS is active for a certain configuration; the detailed
per-timestep DLS selection is found in Figure 5.3. Moreover, the last six orange bars in
each plot represent the experiments where RL is used to determine the optimal chunk for
SS; the timestep selection of this parameter is shown in Figure 5.2. The green dotted
line represents the average performance for randomly selecting a DLS, the blue dotted line

indicates the average performance achieved through automated RL DLS selection, and the

]

Parallal exscuion tim (]

3

Prtallel astiscutien tena 5]

o: & G W if B G

Experimental Results 31

- E ¥ E B E B

grey dotted line shows the average performance for the RL chunk parameter selector. For a
level of workload imbalance of over 15%, the RL DLS selector with a random configuration
outperforms randomly picking the DLS technique by up to 13%. Under this threshold, the
RL DLS selector would be outperformed by around 3%. However, the RL chunk parameter
selector would outperform both for all workload imbalance levels by a large margin. This
agent achieves under 10% performance degradation versus Oracle in all cases. Generally, all
agents that use the looptime or looptime-average rewards would achieve satisfactory
results. Also, the loadimbalance and cov rewards would generally help achieve worse
results than the agent’s average execution time. No clear distinction between the QLearn

and SARSA agent types is noticed, but we will further study it when discussing Figure 5.4.

Experimental Results 32

M CveesSurl mER CMOKSUES we OuM S e Camboellh mm CvaneSoe s
O CoenkSied G ChrklbmI3 o ChakSes T S Chwcfio 317 SN Chuskea 1330
4 0iAT g ey T ruskel (373 D61 5D prftmas 7 ke (341,300
- i % : = mm o

o-.-.u [irtpc it mm

e e e e e) T i | LA (18 L

[UM

S5+ ps-greerdy L. chunkcsel 1532 2051 S5+ 0UsRM. Saftmers L8, chearkcs (95 65
mm e e s
:x'..“.‘;‘.,."'.;m SR

HEEINAL 0
wo mo a0 1w 1

DR IRT)E
[] m oW ome um oo 1w

| SR T LR LI (LA
u:‘muoenmmmmam:um.m

Figure 5 2: Chunk parameter selection per timestep for PISOLVER (15 %)

In Figure 5.2, the shade of each bar represents the value for the chunk parameter that has

been selected for a certain timestep, while the height is its looptime, T;Z,Of’. While this

figure refers to PISOLVER with a 15 % workload imbalance, plots for all setups are in the
Appendix. A chunk size between 19 and 156 yields the lowest T!%°P, and the first 2 agents

par b
achieved quality results, while the other agents seem rather undecided.

W STATC e S5 e ESC GSS M TSS W FACI WM AWF W AWFE e AWEC ANED e BWEE AF

OLesines_explare tist_jooptime average (530 7851 (Glesimer_explore fist_ioad mbalice (744 8651 Ouearmer_explore st eov (737.4851 OLeames_epston-gready_jospme (508 245)

QLearmes_softmex feoptine (321
= a2 |
= 2

QLeamer saftmax looptime-average (524 5751

mn i m(
il |

r_oxplare-firs: (507 645)
= v |
s 0 |

0 130 300 40 600 750 900 1050 1300 135 1S90 0 IS0 300 450 600 730 SO0 1050 1200 13501500 0 IS0 00 450 G0 7SO 90D 1050 1200 1350 1500 0 150 M0 450 30 70 900 1050 1001350 1500 0 150 M0 450 610 750 80 103 1200 1350 1500
Timestep Twsestep Timestep Temestep. Tenesiep

Figure 5.3: DLS selection per timestep for PISOLVER, 15 % workload imbalance

Experimental Results 33

Similarly, in Figure 5.3, the bar’s colour represents the DLS technique, while its height
is the looptime, T[,ggp. This type of plot accompanies the previously seen plot 5.1, as
each bar is expanded into a per-timestep selection description. Given that we only vary
three configuration components, each agent seems to select the DLS in its own unique way.
However, some patterns can be observed. An agent using the explore—-first policy
seems to change the DLS technique less often during the exploitation phase. Moreover,
this technique excels in picking the DLS technique, which maximises his rewards - for the
loadimbalance reward, the orange bar representing SS is selected in 90% of cases. SS
with a chunk size of 1 is known always to achieve the highest possible load balancing,
sacrificing the performance quality (which is rather obvious in the figure). Moreover, the
highest-achieving configuration resembles Oracle’s selection the closest; we will study if this

is a coincidence or if the similarity level can quantify the selection’s quality.

S Agenttype B Fobcytype S0 Rewsm bpe BN Random DLS BN Drack

T e petareay 1 penncean LA IR SR g TR 413 AT e 1 mape ey T pternane LS TN st g T 410 e
: “aase = g

I F E

Paalled dsiecuten tiev (6)
#

- 8 8 E B

AL i B sk e bk VAT v
e

g &

i S o]
: e 2 e
e
]
z

m

s _

" Gt e =g e e e e ay

20 worklnad irbalance FE werkioad imBalsacs
L o S s e e T

- .

™ ‘." &l\:)ﬂ
= =E.M” s
Wit == ;
ém
P
&

-

. ;L

a =

i F E

E 3

E

Prrallel aticution ting (6]

= B ¥

Daimer UARSALmTa SEoAn muln ey WETAr GopfTeeerige GCTe baciToawree i medanOls G
Cenfiquration comgonent

Figure 5.4: RL DLS selector configuration components comparison for PISOLVER

Figure 5.4 facilitates the in-depth analysis of each configuration component that an RL agent
can equip: the agent type, the policy type, and the reward type. Each subplot displays data
acquired for a level of application-induced workload imbalance. The green bar represents the

performance of selecting a DLS technique randomly, with no prior knowledge. Also, the red

Experimental Results 34

bar is Oracle, which represents the theoretical best performance achievable. The bottom-
right plot is special since all data points in the previous subplots are aggregated in one
figure. The olive-coloured lines above the bars show the standard deviation. When deciding
upon which agent type to use, the QLearn and SARSA agents always have bars of the
same height. Moreover, the performance data points in the aggregated plot are spread very
similarly. Hence, no clear advantage is noticeable in picking one agent type over another.
When analysing the results for the explore-first policy, such an agent is considered
the lowest achiever in all workload imbalance cases. Nevertheless, the results aggregation
subplot depicts a different story, as there are basically two groups of data points: the group
situated at the bottom of the boxplot use an 1ooptime-based reward, while the one above
is based on an execution time imbalance metric. We will further study the very interesting
explore—-first policy type throughout the Mandelbrot and SPHYNX Evrard Collapse
experiments. When analysing the softmax policy, a small level of standard deviation is
characteristic; it can be noticed in the aggregated plot that the data points seem more
condensed than for the epsilon—-greedy policy. From this experiment set alone, we
cannot clearly state which of the two policy types is more promising, and further analysis
is required. By studying the yellow portion corresponding to the reward type comparison,
two groups are obvious. The looptime and looptime-average reward-based agent is
almost guaranteed to achieve better results than a 1oadimbalance or cov rewarded agent,

purely because the performance degrading SS technique would be selected less often.

Generally speaking, the agent reacts to changes in the application’s workload imbalance by
selecting a more appropriate DLS technique. Not fixing the DLS technique for the whole
application’s execution is itself a performance-boosting strategy. However, for PISOLVER,
the imbalance level is constant throughout the whole run; the Mandelbrot experiment set is

designed to study the RL agent’s reaction to unpredictable environmental changes.

5.2.2 Mandelbrot

This real-world, time-stepping, C-written application comes from the mathematical scientific
domain, and it is highly computationally demanding, with a high amount of load imbalance
being created. The Mandelbrot set [11] is computed repeatedly. The original Mandelbrot set
contains the complex numbers z for which f.(z) = 22 + ¢, while the version in use modifies
the condition to f.(z) = z%+¢, to increase the number of computations per task. The image
has 1024 x 1024 = 1°048°576 pixels that can be computed in parallel; hence 22° parallel loop
iterations are needed to build the Mandelbrot image. For each pixel, the maximum number
of iterations is 10’000. This set is computed three times during each of the 1500 timesteps.
The three loops running in synchronicity are loop L; with constant load imbalance over
time, loop Lo with increasing load imbalance, and loop L3 with decreasing load imbalance.
For this compute-bound experiment, the data is replicated to all the MPI ranks, and the

workload is divided following a centralised-data assignment approach.

This set of experiments implies working with synchronous loops. The setup has required
significant code modifications, such that each loop has its own RL agent and its own DLS

technique active, with a unique set of performance data for each agent.

Experimental Results 35

ATTENTION: The AWF and variants scheduling techniques exhibit unpredictable be-
haviour when scheduling the workload of Mandelbrot (random looptime spikes of up to
10x happen), leading to unforeseeable deadlocks. This problem is linked to how the AWF
techniques work, as information about previous loops is used to determine the next chunk
size. As no problem was encountered in PISOLVER, we can link this situation to running
multiple loops synchronously and not isolating the internally-used variables correctly. We,

therefore, remove these techniques for this set of experiments, downsizing the RL agent’s
portfolio to 7 scheduling techniques: STATIC, SS, mFSC, GSS, TSS, FAC2, and AF.

STATIC. 55 mFSC GS5 mmm TS5 mmm FAC2 AP
oo +150 A gt peibeey o s AL Agert Chirk Sehottor ascrage perkemance HEAIY
B o - Lonust porfomeing 00 MAR e mme: +15031% es B Agemk RELTTLY T
o~ | e e R Agari DA st HL ke
* [schedubng lecheizues Pt PSTATIC. S5, 'miSC 0SS TSN TACE AP 5 ¢ Chune selition
_
A
b o e : ‘
E 3 e 23 £ . i s
7 £ & p 5 m & 5 = T 5 2
L] foooogp -l e L £ 5 B g 4 kS
3 -3 = = g 3 R L ot
g e g i F . l
T — e S i . o | S ek
: - pEREygEs p=s
B =
w
1
L1 g o
2000 1 . +300.02% AL Agant Chunk Selertar svarage portormrence: +127.91%
H | lawess perfarming -~ Mk ware e, +335 i ST o w0
i £ e Apsi S mcis ntsgurn
% shmtrg e - emermwewlwschwwworws 55+ ik et

_am
U
B e
E g 2. - 25 25
: z H £
£ E £ i ! 3
i ‘}: i it 54 i
& L & L LT L
I £ & iz i i
: I 3 Eh ELd &
’ . =
i * ﬁ = = 5 =
w £ EE 2t g & A i H
y ik, Pt 4 g 5 EE ==
i g 0 T o3 Eoaa 0 & mmeea £ 0 & o 3 7
TN T s 3 fpraniaies
5w SN B P L
’ T) 3
e T WL ek G sseage gt SIS
e e B B T T AL T ekt e BT +UMAATN o X AR
LALMR sandard B Agant [45 ssinchon AL
schedabng techeiaues 2 2 % Portfotio. 'STATIC' 55'. ‘rFSC. (GS5. TS FACK. WF1 = = 55+ Chunk ssiection.
o
E
j-] I3 » -
g 3 E 5 £
E B E E¥ Eg
g g 3 £ £ 4
H § 12] £ 52
T i 4 { 5 i
3 - 5 22 =
e 2 |
£ z & ¥ g
£ 3 & . 2
. B EE L g RE 3 e 31 %
- f.0.2. 5.0 8 e — it i3
I e tRER | | [T e e Y
- By | o ko 2
10; Constant nad mbwance @ L1 inceesing load mtstance B |7 Decremsing boad imbiisnce
aamn THELE [—— Py — ous FETFT AL Agent €k Gelcror sewipge periomTance +5T0%
i Lo ety 141 R e e LHLATS - A i e v s T
P crehing i i ST R P TS P, AP s
i5to

Parallel ewscution time (=]

.,m:ie

| B
| .,n:z\

--‘m.!h
._.".\G 1
-
'-‘m.naﬂn
-
"

u

:

i |

"
-

ME M , .E..._
AR A TR B R N
: ZTE;?:§§E§E§§53i‘_i?igéigﬁgéiifgig
ST
"5'?"5§§i§g5515;5f51§:¥5§37E=
IEREEEEEE SENEEEE R T REEE

i ¢ g 2 2 L 1 b s o5 & 4

i1 8 3 8 3

Canfiguration g o@ o8 § §

£ d

Figure 5.5: Results summary for Mandelbrot

Experimental Results 36

The top subplot in Figure 5.5 depicts the results for Loop 0, which ensures a constant
level of workload imbalance throughout the whole execution. The highest performance is
achieved using FAC2, which entirely shapes the Oracle. The highest achieving RL DLS
selector, SARSA, explore—first, looptime, preponderantly selects FAC2, reproducing
the Oracle’s selection in 96% of steps, according to Figure 5.8. Moreover, RL agents selecting
mainly SS with a chunk size of 1 perform poorly. Just like the DLS selector, the highest
achieving RL chunk selector is also based on the explore—-first policy and the looptime

reward. Likewise, poorly-performing agents use the loadimbalance as the reward.

The second subplot in Figure 5.5 shows the results for Loop 1, where the level of workload
imbalance increases over time. The SS, 1 DLS technique degrades the Oracle 23 times. As

a result, RL agents selecting this DLS often would also suffer from poor performance.

The results for Loop 2, with a decreasing level of workload imbalance, are shown in the
third subplot in Figure 5.5. Overall, the results for each configuration for Loop 2 match the
overall execution time results for Loop 1. Therefore, the order in which the load imbalance

is inflicted is not as important as the fact that this level is not constant.

Figure 5.5 offers an ensemble look towards the three synchronous loops. It can be observed
that the bar for SS is divided into three equal parts, meaning that it is guaranteed this
technique would achieve identical performance results independently of the workload imbal-
ance percentage. On average, picking a random RL DLS selector would yield a performance
of 54% over the Oracle. Dissimilarly to PISOLVER'’s case, an RL DLS selector would per-
form 2.2% better than the RL chunk selector, which achieves 57% performance compared
to the theoretical best. Due to SS and AF performing rather poorly, manually picking a
DLS without expert knowledge is not indicated, as the average performance is 77% over
Oracle. Once again, the RL agents achieving the highest performance use the 1ooptime
or looptime-average rewards. In contrast, the explore—first policy is equipped by

agents achieving both top-quality and low-grade results.

B

LE
21
g1
3um

4
o
[
ooz

o] = B0 ME 40 M mD WM lea ww Lm L

..... Trraminp

|
Bl L . . I 'f;l.. !
H el] [H-‘-‘l_‘q].\. b .;“..:T | 'H] .‘H'|_ ‘ il {m ‘.“I 'QI.-.. i
i un o€n Mo Tm e e v fe me & : o
s

Figure 5.6: Chunk parameter selection per timestep for Mandelbrot

Experimental Results 37

Figure 5.6 indicates the RL agent’s SS’ chunk selection during all three synchronous loops.
The three loops are visually separated through coloured dashes on top of each bar segment. It
is noticeable that high (red) values for the chunk size, e.g. 2621, would be the optimal choice
for Loop 0, as the loop balancing is achieved regardless of dense or sparse communication.
For loops 1 or 2, the optimal chunk size has a pink shade, as balancing the workload requires
smaller chunk sizes and more process-wise synchronization. This value is not constant, as
the imbalance level keeps adjusting. Only two RL agents achieved satisfactory results, the
explore-first and epsilon-greedy agents based on the looptime reward. The
other agents seem rather undecided, selecting each action around 9% of the time - this

behaviour might be corrected by context-aware tuning the learning parameters, o and ~.

L0 Catntant iperl bl W L3: e

smamic = e s owm mt -

ot

il

B |

Figure 5.7 displays the DLS selection per timestep for the three synchronous loops of Man-
delbrot, each loop being depicted one on top of the other. The total timestep performance
is reported through the Y-axis, while the X-axis shows the timestep, and the colour of the
bar hints at which DLS technique is selected. It should be mentioned that each loop is
assigned a newly-instanced RL agent, each configured as in the subplot’s title. The top
four highest achieving agents are, as also seen in Figure 5.5, the explore-first agents
using the looptime or looptime—average rewards. The lowest-achieving agents use,
again, the loadimbalance or cov rewards. These agents seem rather undecided on what
DLS to select, as the legend of each subplot shows similar selection rates of around 14%.
This behaviour was also encountered during Kury [7]’s Master’s thesis. A context-aware

hyper-parameter tuning of RL variables 7, a, €, and v might benefit the future work.

Experimental Results 33

- 5 - 3 Loap - g 1 [__NETE]
: 2 nEmimtty ol nps = Hghest mean wmiacty = Lowsat mean similanty

Liwast sirmidariy per loap

3

milaricy %] compored wi Orncie
-3

Figure 5.8: Similarity of DLS selection compared with Oracle’s for Mandelbrot

Figure 5.8 displays the percentage of similarity when comparing the selection sequence of
a specific RL DLS selector and the Oracle for each loop. Through analysing the highest
performing configuration in 5.7, SARSA, explore—-first, looptime-average’s selec-
tion diverges from the Oracle’s selection in 2 of 3 loop cases, scoring 33% overall similarity.
At the same time, the second highest achiever, SARSA, explore-first, looptime, is
similar to the Oracle in 72% of timesteps. On the first hand, these cases underline the idea
that the Oracle remains a theoretical selection, being rather unobtainable in reality without
expert knowledge. On the second hand, it is not necessary that a selection replicates the
Oracle’s to be considered of quality - this is due to multiple DLS techniques achieving similar
execution times. Still, the lowest achieving configuration, SARSA, explore—-first, cov,
is the most dissimilar to Oracle’s selection, with only 5% similarity. Up to a point, a corre-

lation between the selection similarity to the Oracle and its quality might exist.

Agent type Policy b Reward type BB Random DLS BB Cracle
& 11412 gent ty, ¥ type yp
1800 Hahest pertorming - petfarmance sti2 ==+ AL A&Qent GLS sefector average perfomance: 454 65%. Dracie
Lowest pertorming % - pertarmance coTmares b Orarle Frerformance o random LS. =77 3%
1604
1404 L. | : I s3] . ; B SO SN S
+67.5% S

Ry by e, . GRS IS - DEEE—— § L
£ Lk T
i i +28.73% +30.71%
H
S a0 | (RN S | B '
z T74uds "
B
£ 600

A

200

gent Folicy Reward
N cice | | choica thaica
CLearnes SARSALeamEr esplore-frst epailon-gresdy aoftnan loptima-sverage oaptime nadimbalance v random DS Cracle
Configuration

Figure 5.9: RL DLS selector configuration components comparison for Mandelbrot

Figure 5.9 aggregates data for the RL agent’s main configuration components - the agent,
policy, and reward types. KEach bar represents the averaged performance per application
run of all agents employing a specific component type. The olive-coloured bars show the
performance’s standard deviation. From the first two bars representing the agent type

comparison, both QLearn and SARSALearn are shown to achieve very similar results,

Experimental Results 39

approaching the blue dotted line signalling the RL agent’s average performance. This result
is also prevalent in the literature [5, 7, 16]. Moving to the policy type analysis, it is noticeable
that the epsilon—-greedy policy has achieved results close to the overall RL agent’s
average performance line. Furthermore, the standard deviation of explore—first is the
highest among all the configuration types, which signals that its quality largely depends
on the reward type employed. Two reward groups are formed: the looptime-based and the
imbalance-based. An agent equipping any looptime reward is guaranteed to achieve a
better performance since the std lines of the two groups do not overlap. Furthermore, it
can be stated that a randomly configured DLS selector RL agent would be, on average, 200
seconds faster than when randomly picking and fixing the DLS.

Overall, the Mandelbrot set of experiments shows that the RL agent reacts correctly to
workload imbalance changes by selecting a more appropriate technique. However, when this
level fluctuates excessively, the agents would be destabilised and seemingly undecided, with
most DLS techniques being chosen for an equal amount of timesteps. Through the next set
of experiments, using the Fortran-based SPHYNX Evrard Collapse scientific application,
we further test the agent’s response to dynamic changes in the workload imbalance level.

Furthermore, we facilitate multi-level scheduling at both process and thread levels.

5.2.3 SPHYNX Evrard Collapse

This Fortran F90 scientific application from the astrophysics domain simulates an Evrard
collapse [12]. The version in use starts from timestep 1 and ends after T=250 timesteps, and
the number of particles (thus iterations per timestep) is N=1'000’000. While 37 synchronous
loops are running during each timestep, the gravity loop is observed to be the main source
of load imbalance. Throughout this experiment set, we ignore the existence of synchronous
loops and treat the application’s execution as a whole. Initially, the level of workload
imbalance is non-existent, as the interactions among the particles are rarer. Nevertheless,
it raises gradually. This experiment set explores the two-level workload scheduling at both

the process level using LB4MPT and at the thread level by using OpenMP.

ATTENTION: A bug has been detected where parameters used in the update subroutine
are sometimes valued as NAN. This behaviour occurs for most hardware setups, e.g. for 10
nodes and 20 MPI ranks per node, the program would crash irreversibly at step 48. This
behaviour is encountered independently of the LB4MPT library with RL being used or not.
The bug persists when the code is compiled using either intel or GNU. When re-running
a version of the software known to be working in 2019, the NAN error persists. A possible
cause might be the incompatibilities between the application and the current configuration
of the underlying HPC system. As an effect, we are only able to run the application up to
250 timesteps, by using the setup described below.

When setting the experimental setup, we follow the guidance of Mohammed et al. [35], such
that each node executes two MPI ranks, one per socket, with 10 OpenMP threads within
each MPI rank. In total, for each experiment, we use two nodes of the miniHPC. As our
aim is to study the node-level scheduling quality, we set OMP_SCHEDULE="static". Once

again, in this compute-bound experiment, the data is replicated to each MPI rank.

Experimental Results 40

Based on the literature reviewed, an RL agent would optimally explore the action space 10%
to 20% of the time [28]. Due to running the application for only 250 steps, the portfolio
of DLS techniques has to be downsized to the most representative six DLS techniques:
STATIC, SS, mFSC, GSS, FAC2, and AF. The main implication is that the exploration
phase of the RL DLS selector agent would take only 36 steps, as opposed to the 144 steps
required when using the 12-DLS portfolio. Hence, this kind of agent would explore the

action space for 15% of the time and not for the unreasonable 57% of the time.

Figure 5.10: Results summary for SPHYNX Evrard Collapse {

In Figure 5.10, it can be observed that the DLS techniques mFSC, GSS and FAC2 would
achieve the highest performance, within 2% of one another. These techniques are also
selected throughout the Oracle. On the other hand, SS with a chunk size of 1 achieves the
worst execution time, losing 400% performance compared to the Oracle, followed by AF,
with 300% performance degradation. As for the RL agent’s DLS selection, results similar to
the previous two applications are observed. In all cases, a looptime (-average) reward
achieved results of higher quality. The explore—first is equipped by both the highest-
achievers and the lowest-achievers groups. Similarly, the agent being of type QLearn or
SARSA does not seem to influence the outcome as much as the policy type and especially
the reward type do. On average, an RL DLS selector would yield results 40% closer to
the theoretical best than randomly selecting the DLS. For this application, the randomly-
configured RL chunk parameter selector would outperform the RL DLS selector. In this
case, the agent’s configuration seems less important than in the DLS selection case, and
good performance is achieved in all cases. Perhaps this effect is caused by having a smaller
number of MPI ranks to synchronise, thus carrying smaller inter-process communication

costs when compared to the overall execution times.

In Figure 5.11, the automated selection of the chunk parameters for the SS scheduling
technique is illustrated. Due to the large number of iterations of 1 million and the small
number of MPI ranks of 4, each process would have to handle 250’000 iterations per timestep.
Based on the equation 4.1, the size of the chunks portfolio is 16, which implies an exploration
phase for the explore-first agent of 256 timesteps, which exceeds the 250 steps of the
application. Under the assumption that the value of the chunk parameter for one step does
not influence the performance of a future step like DLS techniques do, we only explore each

action once instead of 16 times, thus reducing the size of the exploration phase. It can be

Experimental Results 41

observed that chunks with a size under 488 are associated with poorer performance. The
sweet spot for the chunk size is between 976 and 7’812, which are depicted using a

shade. Due to varying workload imbalances, the RL agents exhibit problems in maintaining
the selected parameter for more than 66 timesteps. The performance is rather influenced

by the number of times small chunk sizes are tried.

1 Hgrest pesteamin AL char selsciar W ChoESoRE WEN Chok S li B ChoskSimGl o Chos e ged Chunk Sor 876 * Churk Sine 3306 WS Chark Sz 13625 B Churk St 625060
1 Lawest pertarsming AL chunik sedectie -kt S m Churk S 3 e Chosh S 120 Chueh Siee 454 Chunb e 1065 p Chuek Sioe AL W Chark Size 11ES e Chusk e 125060

LT, chunkSed (E265, 555 554+ Dlaam,eps-graady, LT.chunkSe| (541 SE+0Learm,saftma LT chunkSal (T040 B4s)

]

-]

3 5

KL A8+ 111280
od BIZRE 1 = 1025 .t 121§
o charn 3 um

it 70 Punh 56D 3+ 20 5 2 g
o AR 0% - 1 W ek LISERN: 4.0 - 1100 Cras 464: Lo - 16 I Cham 1158809 0% = S

g

&

-]

Parallel lpop execution tme (s)
&

-

55+ 0Leam,expiare-1st, U8 churkSel 11032 915 55+ Glaamn,eps-greany.LIE chunkSel | 1328, 285)
fams i chare - chuse .

£

hard 11, R
- crare G35 5 O UGS
-t 135580 144 - 6050

B

S

5

Parafe! op sxeculon lims {s)
&

#

8

=

Ed e 7 OWe 125 156 175 200 225 25D
Timasep

5 = TE OO0 125 150 173 200 225 250
Tenestep

Figure 5.11: Chunk parameter selection per timestep for SPHYNX Evrard Collapse

o TS0 125 50 175 200 225 250
Temesten

T ighunt purkrmeng) Lineest partorming
Gemmer_papéone fioe fsepem (6375331

s e w

Gussemer_spnsion-Griedy eagtima (7314 401

b
1
i
i
§
i
g
§
3
i
i

wsaxnefE

11 0 A 1 T T T T HMJl 'I'I AT T TR ."Il]|II AR ERI T T T

2§
H
i

Bea gl

GLasmat satmas_Geerealares (11342 048] (e sefimaa: cov (103013 308 AL e s) ke st
™ s T o = e e b T = e e e
m = S rmm o v i ey ety e eyt ——
20
"
n
"
a
u

SARSALpa e _papdsim U pim (11393 1650

o oo v ot 0 re oo oo oo oo 000 o ot o

1 Ty = e = T = i T
i - e - e 1 T =i caca e]

yeeysE

AL g s om0 S g o i M

SARSALrwmer_sehmas_Viagtine 14558014 SARSALRsnEY_pakmas bnagtine-average (9700 444 SARSALpmer_Softmas Viaddbatence (11548 bs SARHarmar_pofiTias cou (10674 1541 sk 1

1 == i ki s T e T ey
e T v e = Ui - e s T T
s e R e e e o g nmesare = vt tmee o

QUL SOOI EFREREOCOL O BN ACARRFORALE M0t mil

IR E R A R R R R R R E R E R E R
Traap Tromen Tiewter Trrwem Trowmy

Figure 5.12: DLS selection per timestep for SPHYNX Evrard Collapse

Experimental Results 42

As illustrated in Figure 5.12, a quality, top-performing selection is one where the SS, AF
and even STATIC DLS techniques are selected for fewer timesteps. It can be noticed that
a short exploration phase is beneficial for all applications employing the 1ooptime reward
together with the explore—first policy, as the low-performing techniques are now rarely
encountered during the exploitation phase. This raises the question - Would exploring each
action exactly once, such as in the above chunk parameter selection, result in a selection
quality boost? Our belief is that the data gathered would not be sufficient to exclude lower-
achiever techniques without also eliminating true negatives. The level of non-decidability
would also be raised, just as observed in Figure 5.11. Instead, a quality improvement in
the automated selection is observed when downsizing the DLS portfolio from 12 to 6 DLS
techniques. It is also worth mentioning that the optimal DLS selection problem is harder
for the SPHYNX Evrard Collapse setup, as the amount of load imbalance is not linear for
the whole execution. Therefore, the performance of a DLS can improve or deteriorate over

time. For example, FAC2 is chosen by the Oracle more often after timestep 225.

1 Highest similarity g
100 4 1 Lowest similarity

o 90

© s

T n £ F3

Z w0 E

s £

2 = £

z 0 = b

7 s

c
40

z S 4

o w ~ & 4

T 3 = # " & i @ 3 E Z f &

o 2 & & = 2 s & o i o # = L # =

5wy = £ i 4 o . = 4 & _F

Oracle

QLearn, softrnax, LIB
SARSA saftma LIE

SARGA saftma|

a 5
OLeatn,sxplors.1st, LB I 144%

QLearn, explone. 1st, LT
ClLearr, explare L, (T-avy
CLearn explore- 158 cov
Oiearm. eps-greedy, [T
Olearm.eps-greedy. LT-avg
QLeam,eps-greedy, LIB
Qlearn eps-greedy.cov
OLeam,saftma,T-auy
Qleam.softmax cov
SARSA explare-15t,LT

B samsa explore. 150 1T-avg
SARSA.explore-1st.LIE
SARSA explora-1st,cov
SARSA eps-gready. LT
5ARSA,eps-greedy, LT-svy
SARSA eps-greedy LIB
SARSA eps-gresdy,cov
SARSA softmax, T-avg
SARSA, softma cav

Selection meth

Figure 5.13: Similarity of RL DLS selection versus Oracle’s for SPHYNX Evrard

Through analysing the results in figures 5.13 and 5.12, a correlation between the quality
of the DLS selection and its similarity to Oracle’s can be observed. However, there are
exceptions. For example, the QL.earn, explore-first, looptime configuration would
only resemble the Oracle in 19% of cases, the 14*" highest, would achieve the 4*" highest
performance. This observation situates comparing the selection similarity with Oracle’s as

insufficient in determining its quality by itself, while for most cases, it is a good indicator.

In Figure 5.14, performance results for different configuration components of the RL DLS
selector are illustrated. Each bar represents the average performance of all agents employing
this type. The olive-coloured bars show the performance’s standard deviation. These mea-
surements are in line with the results of PISOLVER and Mandelbrot. The agent type does
not influence the selection quality in the long run. Agents operating in a epsilon-greedy
manner achieve a performance level closer to the Oracle and under the all-average line, dis-
similar to Mandelbrot’s case. Judging by the standard deviation of explore-first, this

policy helps achieve results closer to the two extreme points - the lowest and highest execu-

Experimental Results 43

Agent type Palicy type Aeward type BN fandom DLS @ Oracle

£ - perfomance sta v+ RL Agent LS selector swerage peforeance: +82.15% oracle |
246, prl of fandsm OLS: 4 130,275

12500 4
o dmm 027
+LDET1%

$101.6%
) W01 gslgan +a043% ; S S it |
2 | i +69.7 7%]
5 h
H
a +49.863% +aala7e
£ 75004 i
b
3
R e R S e R O SOOTUOTR TR RERIUTTR ORISR SORSOORR 1
&
2500 {
Aaent Pulicy Reward
chojce: shgice. e

Qleamar SARSALeamaer ewplorefirst epsilon-groady softmax’ laptime-average loptime loadimbalance oV random DLS oratle
Configuratian

Figure 5.14: RL DLS selector configuration components comparison for SPHYNX Evrard

tion times. Meanwhile, the values for the softmax policy vary less, but an agent using this
policy would yield results worse than the RL agent’s mean performance. As for the reward
types, selection based on loadimbalance or cov is considerably worse than the agent’s
mean performance. On average, choosing a randomly-configured RL-based automated DLS

selector is better than choosing a random DLS manually.

Therefore, studying the SPHYNX Evrard Collapse application has revealed the potential
benefits of shrinking the size of the DLS portfolio, as opposed to reducing the exploration
phase to one timestep per action. Within this experiment set, we focused on the process-
level scheduling technique selection by fixing the thread-level technique to STATIC. We
believe that extending Mohammed et al. [35]’s study from a manual algorithm selection to

an automated one would be beneficial for advancing state of the art.

The results achieved throughout studying the replicated data setup are consistent. We now

shift the focus to distributed data and how RL can help improve the workload imbalance.

5.3 Distributed-data Experiments

For reasons that include the scalability of modern HPC systems, running an application
using a distributed-data approach is viable. Among the benefits, the memory needed for each
process is significantly lowered. Moreover, in a centralised data allocation approach, one rank
responsible for dividing the workload among all workers could easily become overwhelmed

with the task and become a performance-wise bottleneck.

At the application’s start, in the distributed setup that we study, the work array is divided
statically and workers would receive equal fragments of it. As we have previously discovered,
a static workload distribution would introduce an unknown level of workload imbalance. This
might be caused by some iterations being more demanding or the impact of uncontrollable
external system factors on the workers’ performance. One way to overcome this problem is
through Random Work Stealing (RWS). This load balancing method has been implemented
in LBAMPI by Wetten [9]’s work. RWS implies one rank acting as a coordinator, which is
queried by workers with no iterations left to finish, called the thief. A potential wvictim is

picked randomly such that it has not been a thief before, to avoid ping-pong style stealing,

Experimental Results 44

and it is not the coordinator, to avoid potential deadlocks. The victim either sends some
iterations based on the StealRatio parameter or a rejection message, if no iterations are
left. The steal ratio € [1,100] sets the percentage of remaining iterations to be stolen.

Table 5.2: Design of 210 factorial experiments for evaluating the StealRatio selection 33 using RL features
in a distributed-data setup

Factors ‘ Values ‘ Properties

PISOLVER in both replicated and distributed
Process-level

Applications . data versions with 7 workload imbalance levels: C++ | N =500°000 | T = 1’500 | Total loops = 1
parallelism y N N N N N N
+ 0% | 5% | 10% | 15% | 20% | 25% | 30%
Scheduling Techniques LB4MPI | STATIC (for replicated data) Straightforward parallelization
The meta type of the Reinforcement Learning Agent
RL Agent Type LB4MPI | stealRatioSelector (SRS), QLearn-based P °oe

StealRatioSelector internally uses a QLearn agent

Explore-First (expl-1st)

RL Selection Policies LB4MPI | Epsilon-Greedy (eps-greedy) Select the RL agent’s next action

Softmax (softmax)

Loop execution time (LT) Reward the RL agent’s actions

RL Reward Metrics LB4MPI
Percent imbalance of loop execution times (LIB) | Reward values (r, ro, 7—): (0.01, -2.0, -4.0)

Randomised work stealing with RL StealRatio selection

RL-based StealRatio RWS RL-based StealRatio selection . .
i LB4MPI X L for distributed data applications; StealRatio portfolio sized 10:
Parameter Selection (for statically distributed data) _
PISOLVER: {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
Total: 210 experiments
PISOLVER Agent configurations: 3 (policy types) x 2 (reward types) = 6

Size of the Experiments
~ 10 minutes per experiment run RL StealRatio parameter selection: 6 (RL configurations) x

7 (levels workload imbalance)x 5 (repetitions) = 210 runs

Intel Xeon E5-2640 v4 (Broadwell) nodes, no hyperthreading

Computing nodes miniHPC-Broadwell
P = 200; 10 nodes, 20 cores each
Thar Parallel execution time per application execution
Thoor Parallel loop execution time
Metrics c.0.v. = o/p, with o - standard deviation, and

c.0.v. [34] of loop execution times .
1o - mean loop execution time of all the workers

Niteals Number of successful steal attempts

For this set of experiments, we study the potential benefits of using the RL features to
automatically select the StealRatio parameter. Results for the replicated-data experiments
are reused from section 5.2. Again, we repeat each experiment 5 times and consider the

execution achieving the median performance as representative.

By analysing the replicated-data experiments, the QLearn and SARSA RL agents achieve
very similar results. Hence, we equip our StealRatioSelector (SRS) meta agent with
only the QLearn secondary agent type. Moreover, when analysing the results for the re-
ward types, 2 groups were noticed: the pure looptime-based (LT and LT-avg) and the
workers’ execution time imbalance-based (LIB and cov). We further use 2 reward types:
looptime LT and loadimbalance LIB. We further consider all three policy types, as
explore-first, epsilon—-greedy, and softmax can outperform each other given the

right context. Therefore, we study 6 RL configurations of type policy, reward.

5.3.1 PISOLVER (Distributed Version)

The PISOLVER application based on data replication has been modified into a distributed
version. Following a static work distribution, only relevant data is copied to each processor’s
internal memory. The memory saved through not replicating unnecessary data is noteworthy.
As the number of MPI ranks is 200, each rank’s work array is downsized 200 times, from
500’000 1ong data-type entries to 2’500 and from 4 MB to 20 KB per worker. In total, for
all MPI ranks, the initial memory allocated is reduced by 99.5%, from 800 MB to 4 MP.

However, to facilitate RWS, additional memory is needed.

Experimental Results 45

0%
sl [— i e e —
[= Lonaast pertrrring e 1 Largmnt aacate s trrm £ £
Q1L o00j8% OCOJUW 0.000%% OUOIEW S00LHW 00000 %
5%
¥ Stk perterg | ganens - e E1 S paraied sancateon e e,
way =7 Lowwn periring = omatd wn 0 gt aacude avecusion time £ v
ot as000% 3 e =
e | L TR M WED wmr TR
00000
o
an00
150000
00000
50000 4 e .
& DO0J8% O00F1% 0.00J8% QOIS S0010% HOGIN%
10 10%
s 3 vt pertemirg | auncon = e sres [e —r—
1 7 Lowem ety L= e 1 g vt eveiion te £t
as0c0n mecew weom s
:I S o - S B Tk 4
oy E)
o E
o 00000 sa
=0 150000
2004 10000
100+ stota
o 7 2 CO0IT% OQ0LT% 0ONITY 00JE% Q001T% 0O0NTW
185 18%
ik T Il R— - 7 e —————
1 % Lot perni = weedpen| 38 0 et e et e v
i ' semed] T e S mmem MR e : S :
BT B T L v~ H
0 0000 3
50 Ell) o
4005 00]
= 150000
004 W00
w00 st
& 73 2 G017 % 00016 % 00006 % Q000N Q01T % A0IE%
0% 0% s
wicd T3 et pertanng | aapegs -l rd s iz T e e eraton e cay,
1 3 Lowt et = nombiven | 33) Largast zurate sxmcation trrm 2 £
mn W08 | weomr meoem: woese Do e 3
~a B 7 S S O L T in
[S MBnay
e =m0 iz
| 5
500 4} 50000 5128
00 im0 g 4
=0 150000 0
| T F1
mog &
00> EE £4
o + 0 COUjES UOOIE% 00043 % CUOF6% D0015% 00015 %
] T S T AL T
g0 (= e p——r—
AR
Z
7
10
"
]
a
H CONLE% 00154 DODIE% GONIYS G015 0GML8%
warblnad imbaiaace: 0%
L St gt el v o
£ 0 gt auata mmcuion thr £ n:
B
E 6
a
H COUM S OCOJAw DO0M % G006% S0077% OO01N %

oy g o8 B & b BB k3 bz fnogr gx g
FHRURRY HREnEN PRRALRRG
& 3% FE' Eg]é }:E Ee EE Eg Eé Eg E§ 2 EE §§ §§ 3; §§ Eg

B R BoH ¥ EHD R EREE

Figure 5.15: Results summary for the distributed version of PISOLVER

Each row in Figure 5.15 displays the results for a certain level of workload imbalance. Sub-
plot column 1 depicts the parallel execution times for each configuration on the x-axis. In
essence, we compare the results of the RL agent’s StealRatio parameter selection in a dis-
tributed RWS context when compared to the static workload scheduling in the replicated
version of PISOLVER. We explore the benefits of balancing the workload using random
work stealing. In column 2, the steal attempts are shown, with the yellow portion rep-
resenting the successful steals. Column 3 illustrates the c.o.v. of the processes’ parallel
execution times. For a workload imbalance of 0%, the replicated-static division achieves
slightly better results. This roots in many time-consuming overhead-inducing work-stealing

operations completed, all without gaining a performance improvement. When the imbal-

Experimental Results 46

ance level becomes significant, the tradeoff between the stealing overhead and performance
improvement becomes obviously beneficial. At the peak of 30% workload imbalance, the
performance improvement is 21.2%. Also, it is interesting to note that in the 3"¢ column,
the parallel execution time c.o.v. of the first bar raises proportionally to the workload im-
balance, while it remains at a low level for the RWS case, which denotes that all RL agents
selections achieved high-quality load balancing. Naturally, the number of steal attempts
and the success rates are proportional to the level of imbalance. Overall, the RL agent’s

configuration seems irrelevant, as the execution times for all the configurations being verified

remain relatively constant.

BoWR e om0 w3 ha (M3 (N S TM3 6 T ER M3 M T Mm ME CHT Y (B3 0 W6 BE M mA T w0 (RN SHE DG I3 G DA M3 me Ma T 63 (M6 THO MG TR 6 TN B0 M3 MR N M0 (R D (M3 0 U6 oM ke TE mo o omma i
Tt =Y = e T s

Figure 5.16: StealRatio selectlon per timestep for distributed PISOLVER

Figure 5.16 displays the selected StealRatio parameter per timestep for all the RL config-
urations. Fach row contains information regarding a certain level of workload imbalance
introduced at the application’s level. Each column refers to an RL agent configured in a
certain way. The bar shaded from blue to red depicts the parallel loop execution time for
a certain StealRatio. The portfolio size is user provided as 10, and the colour-StealRatio
value mapping is shown in the top-right corner. When compared to the DLS or chunk pa-

Experimental Results 47

rameter selection per timestep from the previous experiments, one detail becomes obvious.
The looptimes for all timesteps and for all StealRatio values achieve indistinguishable per-
formance levels. This observation reveals some interesting facts about the selection process
itself. During the exploration phase, the explore—first, looptime agent in column 1
tends to select one item from its portfolio and stick with it, as shifting happens infrequently.
Meanwhile, the epsilon—-greedy, looptime’s subplots from column 2 are shown more
colourful, as shifting is often considered, but falling back to the highest-rewarded parameter
prevails. However, other agents seem relatively undecidable, and the selection looks rather
randomised, as each technique is picked in 10% of cases. Eventually, these agents might con-
verge on a decision when running the application beyond the 1500 timesteps. Alternatively,

the internally-used parameters «, 7, € and 7 need to be tuned in a context-aware manner.

Consequently, the experiments above show that the value of the StealRatio is rather irrel-
evant performance-wise, and simply using RWS provides a performance boost. Wetten [9]
has reached a similar conclusion in his thesis by manually fixing the StealRatio’s value to 1,
25, 35 or 45. Additionally, we show that an RL-based selection of this parameter holds no
real value if no differentiation criteria can be derived. Rather, one can argue that using an
RIL-based selection in this context would negatively impact the performance since the over-
head of using the RL agent is non-zero. We calculate this overhead in section 5.4; according

to Boulmier et al. [33], it would account for 0.01% of the application’s execution time.

Based on the observation that the software would achieve similar loop times independently
of StealRatio’s value, it is expected that the total execution times would remain constant
within the same level of workload imbalance. However, it is not the case, and in Figure
5.15, the maximum AT, in the first subplots column approaches 1 second. This might be

caused by external system perturbations, which we analyse in the next section.

5.4 Replaying the DLS Selection

Through this experiment, we measure the impact that external factors have on the perfor-
mance of an application. In order to replay an experiment, the selection of scheduling tech-
niques is recorded and rewinded during a later execution. When replaying the RL agent’s
selection, through using the custom policy, the current outputted technique is hijacked,

while the agent would follow the same states. This methodology introduces no overhead.

Based on the measurements available in Table 5.3, it can be observed that none of the config-
urations would produce the same results if the selection is replayed. There always exists an
unpredictable component caused by uncontrollable system factors that ultimately affect the
application’s execution time. The Oracle can be seen as an unachievable performance due
to the fact that this theoretical selection is based on measured performance. The variations
in the table show that saving the learned path for later executions is not a viable approach,

and there are no guarantees that the same performance would ever be reproducible.

Experimental Results

48

Table 5.3: Differences in total application execution time when the sequence of DLS
techniques achieved through automated or manual selection is replayed six times. For
PISOLVER, the percentage in parenthesis refers to the workload imbalance.

R L , Standard ~ Percentage of ~Max-Min
Application Configuration Mean Deviation Variation Difference
PISOLVER (0%) SARSALearner_explore-first looptime-average — 501.348 s 0.520 s 0.104 % 1473 s
PISOLVER (5%) QLearner_softmax_looptime 510.809 s 0.444 s 0.087 % 1.223 s
PISOLVER (10%) QLearner_epsilon-greedy_cov 583.601 s 1.275 s 0.219 % 3.867 s
PISOLVER (15%) SARSALearner_softmax_loadimbalance 567.019 s 0.951 s 0.168 % 2.776 s
PISOLVER (20%) SARSALearner_epsilon-greedy_loadimbalance 639.639 s 1.887 s 0.295 % 4.865 s
PISOLVER (30%) QLearner_explore-first_looptime 526.342 s 0.554 s 0.105 % 1.300 s
Mandelbrot SARSALearner_explore-first_looptime-average 848.753 s 0.327 s 0.039 % 0.908 s
Mandelbrot QLearner_softmax_cov 1402.620 s 4.107 s 0.293 % 11.500 s
Mandelbrot SARSALearner_epsilon-greedy_loadimbalance = 1448.702 s 3.100 s 0.214 % 8.466 s
PISOLVER (30%) SS 818.071 s 11.993 s 1.466 % 36.534 s
PISOLVER (15%) ORACLE 500.011 s 0.177 s 0.035 % 0.501 s
PISOLVER (30%) ORACLE 505.693 s 0.454 s 0.090 % 1.255 s
Mandelbrot ORACLE 774.900 s 0.150 s 0.019 % 0.358 s

Nevertheless, the RL agents based on the looptime and looptime-average reward
achieve a promising standard deviation of under 0.56 seconds, similar in size to the Oracle.
This might be seen as proof that the RL-based selection would not affect the stability
of the system any more than the manual selection, and the impact of external factors is
now evident and detrimental. On the other hand, larger differences are registered when
the RL agent uses an execution time imbalance-based reward, loadimbalance or cov.
The explanation is that the SS scheduling technique is picked more often. This technique
implies large communication costs to achieve the highest possible workload balancing, and

inter-process communication is an unmistakable root for execution time variance.

Therefore, uncontrollable system-level perturbations are demonstrated to exist. If replaying
the selection sequence is shown to yield different results, repeating one experiment is even
more unpredictable. A direct consequence is that the same RL agent is not guaranteed to
have an identical DLS selection sequence in distinct runs, as there is no clear hierarchy in the
performance times for the DLS techniques. To minimise the impact of external randomness,

our experiments were repeated 5 times, with the median run being representative.

5.5 RL Component Overhead

In this section, we measure the impact of the RL component on the application’s perfor-
mance. The main factors that influence the RL component’s overhead are the selection port-
folio’s dimensions, which are more important than its components (DLS, chunk or StealRatio
parameters), and the agent’s configuration (e.g. the active policy). Since MPI functions like
MPI_Bcast and MPI_Reduce are needed to propagate the current state or to analyse workers’
performance, they also impact the overhead of the RL component. Nonetheless, the total
time needed for using the RL component is independent of the nature of the application,

and the impact of the experiment size (e.g. number of MPI ranks) is minimal.

As shown in Figure 4.1 from a previous chapter, the LB4MPT library interacts with the RL
component during parameters setup, at the start of the loop, when determining the active

technique, and at the end of the loop, when analysing the workers’ performance.

Experimental Results 49

The results displayed in Table 5.4 are based on all experimental data gathered throughout
this thesis. The mean parallel execution time T, for the four applications aggregates data
for the selection of the DLS algorithm, chunk parameter or StealRatio, where applicable.
The times are as follows: PISOLVER distributed version - 586.03 s, PISOLVER replicated
version - 577.82 s, Mandelbrot - 1203.48 s, SPHYNX Evrard Collapse - 8857.56 s.

Table 5.4: Measuring the overhead introduced through using the RL component

Tpar of the Std Dev T, of the overhead % overhead % overhead % overhead %

RL component RL component PISOLVER dist. PISOLVER repl. Mandelbrot repl. SPHYNX repl.
Setup 0.00114 s 0.00014 s 0.00019 % 0.00020 % 0.00009 % 0.00001 %
StartLoop 0.06729 s 0.00778 s 0.01148 % 0.01165 % 0.00559 % 0.00076 %
EndLoop 0.06060 s 0.00260 s 0.01034 % 0.01049 % 0.00504 % 0.00068 %
Total 0.12903 s 0.00948 s 0.02202 % 0.02233 % 0.01072 % 0.00146 %

From Table 5.4, it can be noticed that the RL component’s times fluctuate the most during
the start of the loop. This is due to the fact that some RL configurations are more resource-
demanding than others. For example, an agent using the explore-first policy would cost more
performance-wise than one using epsilon-greedy due to how these configuration components
work internally. The blocking MPI functions MPI_Bcast and MPI_Reduce are important
sources of performance degradation, and asynchronous operations such as MPI_IBcast would
likely improve the performance in a future software version. While the absolute cost of using
the RL component remains relatively unchanging, the size of the experiment affects the
overhead inflicted by using RL. As seen in the table, the RL component accounts for 0.001%
t0 0.022% of the total execution times ranging between 8857 seconds and 577 seconds. These
results are comparable with the outcome of Boulmier et al. [33], where an overhead of under
0.01% is noticed for the application’s execution time of 3°000°000 seconds (assuming the RL

component’s performance is calculated using data depicted in their figure 5).

Given the above measurements of the overhead, we will now study the potential gain in the

performance of using the automated selection feature.

5.6 Potential Performance Gained
In this section, we measure the performance gained by using the automated RL DLS selection

feature compared to randomly fixing the DLS technique with no prior knowledge.

In Table 5.5, the times in column 2 portray the mean parallel execution time of running
an application where the DLS technique has been fixed manually to a random technique in
the portfolio. Further, columns 3 and 4 display data based on a randomly-configured RL
agent that automatically selects the DLS technique. It can be observed that the gain is
negative for PISOLVER, with under 15% workload imbalance. In the remaining cases, the
performance is improved by up to 17.30%. Columns 5 and 6 show the mean execution time
for an automated RL chunk parameter selector, and it is further compared with the baseline
in column 1. The performance gained is between 2.63% and 41.28%. In most cases, the RL
chunk parameter selection yields better results than the RL DLS selector, but it is not the

case for Mandelbrot. Overall, the performance has been improved in 14 out of 18 cases.

Experimental Results 50

Table 5.5: Potential performance gained through using the RL-based selection feature. For
PISOLVER, the percentage in parenthesis refers to the workload imbalance.

Manual Random Automated RL Automated RL SS chunk
DLS selection DLS selector parameter selector
Baseline Tpar Gain (%) Tpar Gain (%)
PISOLVER (0%) 543.30 s 558.19 s -2.74 % 522.58 s 3.81 %
PISOLVER (5%) 547.22 s 565.62 s -3.36 % 532.86 s 2.63 %
PISOLVER (10%) 555.20 s 567.78 s -2.27 % 539.17 s 2.89 %
PISOLVER (15%) 570.05 s 575.33 s -0.93 % 539.82 s 5.30 %
PISOLVER (20%) 586.91 s 584.31 s 0.44 % 545.09 s 713 %
PISOLVER (25%) 626.33 s 606.56 s 3.16 % 553.36 s 11.65 %
PISOLVER (30%) 719.15 s 652.04 s 9.33 % 558.15 s 22.39 %
Mandelbrot 1375.08 s 1198.85 s 12.82 % | 1216.71 s 11.52 %
SPHYNX Evrard 11320.81 s 9362.00s 17.30 % | 6647.60 s 41.28 %

Therefore, an informed decision of using or not the RL features must consider the following:

e The parallel execution time per loop should be large enough so that the overhead of

the RL component becomes insignificant.

e The level of load imbalance at the application’s level should be above a certain thresh-
old; otherwise, the possible performance gains might be overcome by the RL agent’s
exploration costs. Nonetheless, most real-world scientific applications would introduce

a significant level of load imbalance above zero.

Nevertheless, through this experiment, we assume a random configuration of the RL agent.

We will perform an ANOVA analysis throughout the following section.

5.7 Analysis of Variance

In this section, we perform an Analysis of Variance (ANOVA) to find which RL agent’s com-
ponent category is more significant for the application’s parallel execution time. This type
of analysis was proposed in 1989 by Snedecor and William [36]. This tutorial available online
has proven useful when learning about how to perform this kind of analysis. Furthermore,
for the Python implementation, we consulted this online tutorial and used automated tools

from the bioinfokit, statsmodels and scipy Python libraries for statistical measures.

In essence, the one-level ANOVA compares the means of multiple groups of data. In our case,
a level is the RL component type (agent/policy/reward), while a group contains specific
RL algorithms. The group mean is calculated using the variance-based F-test. The F-
test quantifies how much items in a group vary through a comparison of the resulting F
statistic and the significance threshold of 0.05. The F statistic takes into consideration both
the between-group variance SSB and the within-group variance SSW. Large values for this
metric imply a large variance, while a small value means that items inside the group are

highly-similar.

Experimental Results 51

We show in Figure 5.17 an aggregation of all the performance data recorded for the replicated
data experiments set as a way to visualise the statements we soon make. By gathering all
the items in a column, we define the one-level, while groups are represented by specific com-
ponent types represented through boxplot objects. Each row displays information regarding
one benchmarking application. The red dots inside each boxplot represent the performance

recorded for a particular experiment where a certain configuration type is equipped.

PISOLVER variations in performance per agent type PISOLVER variations in performance per policy type PISCAVER varintions in perfarmance per reward type
a0 +4 20 r 38 a0n
=70 T 7
'
S 0 £ 0 o £ 08
] £ £
7 s 7 a0 50
i § §
2 - H -
oo E oo Lo -
z g g
= s £) il I z
00 san 09 i
Geamer - gttt et ety whtma: bopmemege kopme ioammlance ™
agent Type Patcy Tyge Hewand Type
Mandelbrot variations i per apent type Mandeibrot varisticrs in perfonmance per palicy type Mtandelhrot variations in performance per reward typs
1800 1800 1500 0
. " . ——— ==
| E 1m0 ¥ 1o
£ B E - %
£ 2 1m0 £ 100 -
fuie L £
z 2 z
£ Zaom £ 1000
w00 @ 400
aueamer precnme— sploe-irss epston-gresdy sattmes noptimemersge loopome lodmalance o
agent Type Fakcy Type Rewar Type
SPHYNX Evrar Collapse variations in performance per agent type SEHYNX Evrard Callapse variatians in per poficy type SPHYN Evrard Collapse varistions in performance per reward type
1200 t2000 t7m00 |
= 1 = e Z 1000
H i i -
5 10008 § 10600 g =
§ e % 000 § w00
3 s I g BT
£ H £
ot o s
e - - ooan woa| - e
QLeames SAREALenmer e epsion greedy saftma boptime verage teapmme teadmalance w
agent Type Pacy Tige Rewand Type

Figure 5.17: Parallel execution times for all replicated-data experiments grouped by the
RL configuration type

In Table 5.6, we display the sum of squares, which measures the deviation from the mean,
and the F statistic for an RL configuration type. For the agent type, we observe that the
F statistic is under the threshold of 0.05, hence using any of QLearn or SARSALearn
achieved no advantage in the 1’835 replicated-data factorial experiments we ran. As for the
policy type, the F statistic is slightly above the significance threshold, and this component
type is proven somewhat important. However, as graphically displayed in Figure 5.17, the

configuration type that achieves performance results varying the most is the reward type.

Table 5.6: One-factor ANOVA F-statistic

Source Sum of squares F-statistic
Agent Types 15499 0.001921
Policy Types 1170257 0.072251
Reward Types 15071660 0.622446

ANOVA shows how significant the difference is in general among the groups but does not
provide any data on particular components. With the results displayed in Table 5.6, we dive
deeper into statistically measuring the impact of each item of a group. By using Tukey’s

Honestly Significantly Differenced (HSD) [37] test, we perform multiple pairwise comparisons

Experimental Results 52

of the components and search for possible similarities. A lower Diff is associated with two
components being similar. The Lower and Upper refer to the lowest and largest differences
recorded between any two experimental results. The ¢-value measures the possibility that
this discovery is a false-positive, and a lower value is considered better. Also, the p-value
measures how likely this value of Diff would occur, starting from an initial hypothesis that

the items in a pair items are not different. A p-value closer to 1 is better.

Table 5.7: Tukey’s Honestly Significantly Differenced analysis

groupl group2 Diff (s) Lower (s) Upper (s) q-value p-value
QLearner SARSALearner 16.94 -744.87 778.75 0.06 0.90
explore-first epsilon-greedy 13.39 -1106.13 1132.92 0.04 0.90
explore-first softmax 149.01 -970.51 1268.54 0.44 0.90
epsilon-greedy softmax 162.41 -957.11 1281.93 0.48 0.90
looptime-average looptime 11.60 -1404.29 1427.49 0.03 0.90
looptime-average loadimbalance 568.24 -847.65 1984.13 1.47 0.70
looptime-average cov 466.87 -949.02 1882.76 1.21 0.81
looptime loadimbalance 579.84 -836.05 1995.73 1.5 0.69
looptime cov 478.47 -937.42 1894.36 1.24 0.79
loadimbalance cov 101.37 -1314.52 1517.26 0.26 0.90

In Table 5.7, we display a three-level comparison for the levels RL agent type, RL policy type
and RL reward type. The most similar pair contains looptime and looptime-average
rewards. Amongst the Agent type level, QLearn and SARSA are somewhat similar. The
most unexpected result shows that the explore—-first and epsilon—-greedy policies
are highly similar, hinting that when the exploration happens is less important than if
it happens. As expected, the highest differences are among the execution time-based reward

metrics and the imbalance-based metrics.

The true potential of a carefully customised RL agent is explored in the next section. The

discussion will touch on all topics analysed in this chapter.

5.8 Discussion

In this section, we summarise the findings of all the above-described experiments.

We focus first on the replicated-data experimental results. We tested our software using 3
time-stepping applications. PISOLVER maintains a constant level of workload imbalance
throughout the entire application’s run, and this level can be user-specified. In Mandelbrot,
the selection has been tested within three loops, with constant/increasing/decreasing load
imbalance. Finally, SPHYNX Evrard Collapse is closest to how a real-life application would

behave, and the timestep-to-timestep level of load imbalance is hard to predict.

All benchmarking results are condensed in Figure 5.18. The columns represent selection
strategies, while the rows represent different application setups. Hence, their intersec-
tion represents the parallel execution time for one selection strategy, and the percentage
above is the performance lost from the theoretical best, Oracle. A smaller performance
loss percentage is, of course, better. The performance lost over Oracle by the RL DLS se-

lector agent is between 0.82% for the SARSALearner,explore-first,looptime agent,

Experimental Results 53

QI Leen B4SDR LAERN 213W Amm Bsen TaeR dewn
e 5 MmO

S = oo SRR 2318 ravN T
SIVER U | aain soLDs z T MEH MW WAN N4N bR M0 0S8 M

g 7 V1w TH WM RETR Acen GO ATIR TALR Blek A4 ons
monen e | G0 0T S Sifde HER M} Mt 3076 WS My WPl MEE M3 sIn

DM 1mam IEMS TTI dame aiww Iiiww lnomw tiew 11w RN
ae

3 11 LEw MMM fATeM LIE AW LUmW LLieh 10T mone faew
PRI (0% | S RN srim suri Satgs SeAbe ALk Siba mAsm adm Mah E nan B s, ek Hem AL

M DTN MM TN AIN AmW 134T LISTM

1T TR am dmno LIl AR amm
noana WEN WG WX N4 WTM MIBh San aras 2 %

PROLER (199 | Speas som

3 R P Ria G e 3
§ FEOUTR TN sy 4e 0y AT B WETE s M MR ey Nam 5

& B 260N Lnere Dlves BN E
reaver e | BT e S L

RO L] e

Harntant | G

s s i

]

b vty s

PESTRETCE -
FrOpmser - -

Froroesere - -
[ET———
Bt spgraney AT
e
B e LD
AR gy,
T

P]
A T

Wl Uity

P p—

:
!
:
B

i cfanmans
5+ e sk Lk i ég

il s goreay L
T ram

Figure 5.18: Results of benchmarking automated selection strategies using time-stepping
applications. Formula to calculate the decline in performance compared with the Oracle:

x% = (Tpar - Tp(l)lfd“de) / Tg;f’de x 100, where Ty, is the parallel execution time

and 144.79%, for QLearner, explore—first,loadimbalance. Similarly, for the RL
chunk selector, the top performance is within 0.69% from Oracle, and it is achieved by
ChunkParameterSelector+QLearn,explore—-first,looptime. The poorest result
is 75.85% performance degradation, and it is achieved by ChunkParameterSelector
+QLearn, explore—first, loadimbalance. Nevertheless, for each application, at least
an automated selector exists such that it would outperform the randomised manual DLS se-
lection. Generally, the RL agent’s configuration component that affects performance most is
the reward type. Agents using the looptime or looptime-average reward achieve lower
execution times than those equipped with loadimbalance or cov. The second most im-
portant configuration component is the policy type. Agents employing an explore—first
policy would often achieve the highest rewards - having a reward function focusing on achiev-
ing high performance is significant. As for the agent’s type, as most literature studies men-
tion [5, 7, 16], using QLearn or SARSALearn would yield no long-term advantage. These
intuition-based results are statistically proven through the ANOVA analysis we performed.

Moving from the replicated data to a distributed data setup would be beneficial in terms
of scalability and memory consumption. However, for RWS, using the RL agent to set the
StealRatio is excessive. The RL agent’s overhead would deteriorate the performance; hence

using any fixed value is preferred in our experimental setup.

Further, we demonstrated that using RL would not bring instability in the application’s
total execution time any more than external system perturbations would do. We measured
the overhead of using the RL-based selection to be between 0.001% and 0.022% of the ap-
plication’s total parallel execution time. This overhead percentage is inversely proportional
to the loop execution time, as using the RL feature requires a seemingly constant amount
of time. Also, the performance gain through using a randomly configured RL agent for
automated DLS selection is between -3.36% and 41.28%, when compared to manual random
DLS selection. For applications with a notable level or workload imbalance, using the RL

features to automatically select the optimal DLS or the chunk size parameter is advised.

The next chapter will conclude this thesis and will overview the potential future steps.

Conclusions and Future Work

This work extends the LB4MPI library with automated scheduling algorithm selection ca-
pabilities. Our software uses a C++-based Reinforcement Learning solution to build an
autonomic computing instrument able to improve the performance of time-stepping appli-
cations. While the main functionality includes automatically selecting the most promising
DLS, the software is also able to select various parameters for diverse load-balancing strate-
gies. Through using the ChunkParameterSelector RL agent, the chunk size parameter
for the SS technique can be automatically selected. The chunk parameter selection can also
be coupled with other DLS techniques in order to set the minimum chunk size. As a novelty,
we propose the StealRatioSelector RL agent, which would select the most promising
value for the StealRatio in an RWS distributed-data context. The RL component is highly
customizable, and the user can choose between 7 agent types, 3 action selection policies (or

enter the expert-custom mode), 10 reward metrics, and can tune the hyper-parameters.

To establish the quality of the RL-based selection, we used 3 time-stepping scientific appli-
cations. For PISOLVER, we studied both the replicated-data and distributed-data versions.
For Mandelbrot, three loops (constant, increasing, and decreasing workload imbalance) run
synchronously. Through the third application, SPHYNX Evrard Collapse, we study the
potential of multi-level scheduling at both process and thread levels. The performance de-
terioration from the theoretical best selection, the Oracle, is used as the main comparison
metric. This quantity can vary from 0.69% for top-quality selections to the undesirable
144.79%. Meanwhile, manually fixing the DLS to a random value yields results in the range
of 9.43% to 120.27% performance degradation when compared to the Oracle, depending on
what benchmarking application is being used and the level of workload imbalance.

The reward’s nature would affect the selection quality the most. An RL agent using
looptime and looptime—-average rewards outperform the load imbalance or cov
rewarded selections in almost all cases. Our improved explore—first policy helps achieve
the highest rewards, but having a performance-oriented reward type is very important. Re-
gardless of using a QLearn or SARSALearn agent, no long-term advantage is created. Our
findings are in line with the general consensus encountered through reviewing the literature.

The intuition-based results have been statistically proven through an ANOVA examination.

Conclusions and Future Work 55

As distributed-data solutions are considerably more scalable than replicated-data ones, as
the memory usage at the node level would be drastically reduced, we apply RL to select
the StealRatio in a distributed-data RWS load-balancing strategy. However, regardless
of the amount of work that is set to be stolen, the looptimes are identical. Nevertheless, the

overhead introduced by the RL component would negatively impact the overall performance.

Through replaying the selection process, we demonstrated that external system-level pertur-
bations would affect the execution times for all DLS techniques. Moreover, we have shown
that the RL component would not add additional variance to the application’s performance.
Also, the cost of using the RL-based selection is rather constant in the context of a loop.
The overhead represents between 0.001% and 0.022% of the application’s execution time.
The performance gain of automating the selection process is between -3.36% and 41.28%

when comparing a randomly-configured RL agent and the manual fixing of a random DLS.

Through this work, the all-automated selection of the cross-node load balancing algorithm
is now possible. Since both the LB4OMP and LB4MPTI libraries are now able to access
the RL features, one logical future step is to study the multi-level automated workload
scheduling technique selection for hybrid MPI 4+ OpenMP applications. Furthermore, at the
moment, the configuration and parameter tuning of the RL agent is manually done. Perhaps
training a Machine Learning model specifically for hyper-parameter tuning of the RL agent
can improve its performance. Additionally, building the DeepQ-Learning agent to learn the
state-action space without using the memory-inefficient tabular structures would be desired.
Also, variants of the QLearn and SARSALearn that promise to improve scalability (e.g.
DoubleQLearn, QVLearn, E-SARSA) need to be experimented with using computation-
intensive applications. Moreover, a neural network able to combine the signals of the 10
existing reward functions would most likely lead to a better-informed selection. Finally, a
distributed data setup is shown to decrease the node-level memory needs, hence improving
the scalability of HPC systems. Perhaps RL-based selection using meta agents can be applied

in parameter selection for other scheduling strategies, such as locality-aware work-stealing.

Based on all of the above remarks, we achieved the Master’s thesis goal of performing an

Automated Selection of Scheduling Algorithms using Reinforcement Learning in LB4MPI.

(1l

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

Bibliography

A. Mohammed, A. Eleliemy, F. M. Ciorba, F. Kasielke, and I. Banicescu. An approach for realistically simu-
lating the performance of scientific applications on high performance computing systems. Future Generation
Computer Systems, 111:617-633, 2019.

F. M. Ciorba, C. Iwainsky, and P. Buder. OpenMP Loop Scheduling Revisited: Making a Case for more
Schedules. In International Workshop on OpenMP, pages 21-36. Springer, 2018.

J. H. Miiller Korndérfer, A. Mohammed, A. Eleliemy, and F. M. Ciorba. LB4OMP: A Dynamic Load Balancing
Library for Multithreaded Applications. IEEE Transactions on Parallel and Distributed Systems, 33(4):830—
841, 2022.

S. Dhandayuthapani. Automatic selection of dynamic loop scheduling algorithms for load balancing using

reinforcement learning. Master’s thesis, Mississippi State University, 2004.

I. Banicescu, F. M. Ciorba, and S. Srivastava. Performance optimization of scientific applications using an

autonomic computing approach. Scalable Computing: Theory and Practice, pages 437-466, 2012.

N. Sukhija, B. Malone, S. Srivastava, I. Banicescu, and F. M. Ciorba. Portfolio-based Selection of Robust
Dynamic Loop Scheduling Algorithms Using Machine Learning. In 2014 IEEE International Parallel &
Distributed Processing Symposium Workshops, pages 1638—-1647. IEEE, 2014.

L. Kury. Automated Selection of Scheduling Algorithms for Parallel Scientific Applications using Reinforce-
ment Learning with OpenMP. Master’s thesis, Universitit Basel, 2022.

A. Mohammed, J. H. Miiller Korndorfer, A. Eleliemy, and F. M. Ciorba. Automated Scheduling Algorithm
Selection and Chunk Parameter Calculation in OpenMP. IEEE Transactions on Parallel and Distributed
Systems, 33(12):4383-4394, 2022.

G. A. Wetten. Dynamic Scheduling in HPC using a Distributed Data Approach. Master’s thesis, Universitat
Basel, 2022.

A. Afzal, G. Hager, S. Markidis, and G. Wellein. Making Applications Faster by Asynchronous Execution:
Slowing Down Processes or Relaxing MPI Collectives. arXiv preprint arXiv:2302.12164, 2023.

B. B. Mandelbrot. Fractal aspects of the iteration of z— Az (1-z) for complex A\ and z. Annals of the New
York Academy of Sciences, 357(1):249-259, 1980.

R. M Cabezén, D. Garcia-Senz, and J. Figueira. SPHYNX: an accurate density-based SPH method for
astrophysical applications. Astronomy € Astrophysics, 606:A78, 2017.

HPC Group at Basel Universitiat. miniHPC: SMALL BUT MODERN HPC. https://hpc.dmi.unibas.ch/en/
research/minihpc/, 2016. Accessed: May 1, 2023.

L. Clarke, I. Glendinning, and R. Hempel. The MPI message passing interface standard. In Programming
Environments for Massively Parallel Distributed Systems: Working Conference of the IFIP WG 10.3,
April 25-29, 1994, pages 213-218. Springer, 1994.

R. Carino and I. Banicescu. A tool for a two-level dynamic load balancing strategy in scientific applications.

Scalable Computing: Practice and Experience, 8(3), 2007.

M. Rashid, I. Banicescu, and R. Carifio. Investigating a dynamic loop scheduling with reinforcement learning
approach to load balancing in scientific applications. In 2008 International Symposium on Parallel and
Distributed Computing, pages 123—-130. IEEE, 2008.

P. Tang and P. Yew. Processor self-scheduling for multiple-nested parallel loops. Technical report, Illinois
Univ., Urbana (USA). Center for Supercomputing Research and Development, 1986.

Bibliography 57

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

I. Banicescu, V. Velusamy, and J. Devaprasad. On the scalability of dynamic scheduling scientific applications
with adaptive weighted factoring. Cluster Computing, 6(3):215-226, 2003.

C. P. Kruskal and A. Weiss. Allocating independent subtasks on parallel processors. IEEE Transactions on
Software engineering, 100:1001-1016, 1985.

R. Carifio and I. Banicescu. Dynamic load balancing with adaptive factoring methods in scientific applications.
The Journal of Supercomputing, 44(1):41-63, 2008.

I. Banicescu, F. M. Ciorba, and S. Srivastava. Performance optimization of scientific applications using an
autonomic computing approach. Scalable Computing: Theory and Practice, pages 437-466, 2012.

C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical scheduling scheme for parallel
supercomputers. IEEE Transactions on Computers, 100(12):1425-1439, 1987.

T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: A practical scheduling scheme for parallel compilers.
IEEE Transactions on parallel and distributed systems, 4(1):87-98, 1993.

S. Hummel, E. Schonberg, and L. Flynn. Factoring: A method for scheduling parallel loops. Communications
of the ACM, 35(8):90-101, 1992.

I. Banicescu and Z. Liu. A dynamic scheduling method tuned to the rate ofweight changes. In High Perfor-
mance Computing Symposium, pages 122-129, 2000.

S. Hummel, J. Schmidt, R. Uma, and J. Wein. Load-sharing in heterogeneous systems via weighted factoring.
In Proceedings of the eighth annual ACM symposium on Parallel algorithms and architectures, pages 318—
328, 1996.

O. Pearce, T. Gamblin, B. R. De Supinski, M. Schulz, and N. M. Amato. Quantifying the effectiveness of load
balance algorithms. In Proceedings of the 26th ACM international conference on Supercomputing, pages
185-194, 2012.

R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT press, 1992.

H. Hasselt. Double g-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc., 2010.

M. A. Wiering and D. Leone. QV (lambda)-learning: A new on-policy reinforcement learning algorithm. In

Proceedings of the 7th European workshop on reinforcement learning, pages 17-18, 2005.

J. Fan, Z. Wang, Y. Xie, and Z. Yang. A Theoretical Analysis of Deep Q-Learning. In Proceedings of the
2nd Conference on Learning for Dynamics and Control, volume 120 of Proceedings of Machine Learning
Research, pages 486—489. PMLR, 10-11 Jun 2020.

H. Van Seijen, H. Van Hasselt, S. Whiteson, and M. Wiering. A theoretical and empirical analysis of expected
sarsa. In 2009 IEEE symposium on adaptive dynamic programming and reinforcement learning, pages
177-184. IEEE, 2009.

A. Boulmier, I. Banicescu, F. M. Ciorba, and N. Abdennadher. An Autonomic Approach for the Selection
of Robust Dynamic Loop Scheduling Techniques. In 2017 16th International Symposium on Parallel and
Distributed Computing (ISPDC), pages 9-17. IEEE, 2017. doi: 10.1109/ISPDC.2017.9.

S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoring: A method for scheduling parallel loops. Commu-
nications of the ACM, 35(8):90-101, 1992.

A. Mohammed, A. Cavelan, F. M. Ciorba, R. M. Cabezén, and I. Banicescu. Two-level Dynamic Load
Balancing for High Performance Scientific Applications. In Proceedings of the 2020 SIAM Conference on
Parallel Processing for Scientific Computing, pages 69-80. STAM, 2020.

G. W.C. Snedecor and G William. Statistical Methods. lTowa State University Press, Eighth Edition, pages
84-86, 1989.

H. Abdi and L. J. Williams. Tukey’s honestly significant difference (HSD) test. Encyclopedia of research
design, 3(1):1-5, 2010.

Appendix

The appendix brings completeness to the topics discussed in the main body of the thesis. The following figures are
grouped so that the reader can have an ensemble view of each replicated PISOLVER experiment, with a level of

workload imbalance between 0% and 30%.

Appendix: Results for PISOLVER repl. with 0% workload imbalance

o oy W STATIC mE 55 WS OFSC D55 W TSSO ACZ NN AN SN ANTD SR ANTC ANP-D e mTE -

— w compared b Gracia e Srandard DAS sverage- +0.43% hunk Selectar averaga: +5 26%
= - MUK axac b 54.73% <o+ RLDLS Salector average: +12.43% Gracie 406.40 5

5a0 4 LBAMP standaed = BL it

i 'SLS tmchmins DL skt 5 P
S 2
wol 3 i i
w00 — -

a0

|1 Highest performing 1 Lowest parforming
QLearnar_ eupme-nm Iwﬁﬁne 1511146!]

0% workloacd
imbalance
OLearner_explare-first_|ooptime-average (5009651

i

]

]

Confguratian.

W STATIC WEE S5 W mFSC

G55 W TS5

Qlearmer_sxplore-ficst_loadimbalance {735.63s)

g

1

A2

L

Figure A.1: Performance summary for PISOLVER 0% workload imbalance

st etren bt
L DLsam e 1 LB et
T lmrm achrn 8 it

— ANWF
QLearner_explone-first_cov (730.363)

 ANFE e AWFC AWFD 0 AWFE AF

OLearner_epsilon-gready_losptimea {501.018)

(B TATIC 2ETWS LINA0 mE AW JEN S 3TWIND

Faralial loop exmcution time (51

GLeamer_epsilon-greedy_loadimbalance {571 564)

Qlearner_epsiion-greedy_losplime-sverage {501 75s)

= sar o 0L

QLearner_spsilan-greedy_eov [553.514)

e s L A G G |
N 160131 W ARED DA%+ AN
s e lulEs e mrcooE s
G A - LU Lt Ll P LT
g LAAE |
a1t

- TED
-0 LS

Qlearner_saftmax_looplime-averags [$10.105)

-sr.wcmh m:aul AT TR S LLVIMT T B ¢ 1050

- 0
st =5 2233w e 28800 A L L1501
AW bz~ T30

FPAC A - T3

Qleamer_softmax_cav (537 525}

Olearrsr_scfimax_lsadimbalance (528.73s)

- T 2

W T 1
awi

ST 0 ¢ DT
L

_Sm:rmr oxplora-first_fooptime-average (501,095}

 sARSALparnor_explara first o

-] 1 s G
=il

@ (733.01s]

-smmm»mm - L - L5 - - L5
AT e L0
T B 20% 12801800
© T 7o s 100D
e BN+ 1EE10L

[STRIN 6% < HULEED
0 1]

T STATC R - LIS
|- = 121131 a1 0% AL
MELC BT LAIEIL W ARG 16 % ¢ R |

e te2ae « 2n4m mr amie it |

™ B+ Lamam s pmre137m 4 s |

: i

AL < 28NSO

TN LT+ LVLS0L
e s A
P AL 4%

1569.98s)

s 0
L ey |
AT 0§80
-mon.mml
e - L2aE
T

rner_epsilon-greedy_looptine (S01.61s)

S GONC 2% e 10150 MR WAE 1O 4 THLAL

O I4TI0L W AR 13T LIS

PR D 1M JINEL W WATC L3 5T 20600
55 0 32, + Sl AT LTI ¢ 20500

SARSALearner_softmax_looptime (507.175) SARSALearnes_softrmax_looplime-average (S10.664)

SARSALearner_softmax_loadimbalance (538 90s)

Rt 123501

SARSALearner_softmax_cov {536.155) Oracle (496,495}

ST 1 LYW = USR0S e 7039 ¢ 171500
g e 2600 A 11405 = 113
S 1TINS AN M AT 12124 1820
o 12 11m + JesaL w210 s g1
- T WA 1L $ s 1L

T TG 1LV A 4 B = 050

250 - sl

- 1330w - 19

© EmND 2 s R

A Laen ¢ RERSL
aF

1118 il 11 L AR (AL LTI LIS L

a mmmmnu 900 1050 1200 1350 1300 0
Timestep

150 300 430 600 750 900 1050 1200 1350 1500 0O
Timestep

— I T80+ 1150500
- T LAYEL
= e e 1201803
s he - 1501591
|- - L6

il
30 300 450
Timesten

e e E

—Ea RN e 1es0
A E2e% 13100

S ENEE § 3% < 300

L) T!U m 1050 1200 1350 1500 O

- TATT B 69 + 91102501

- DA s IS

D
0 = AL

-5 0 ELSE]

mmauwumm

150 300 450 600 750 SO0 1050 1200 1330 1500 0
Timestep Timestep

Figure A.2: DLS selection per timestep for PISOLVER with 0% workload imbalance

1% b ¢ R |
- 0 - 100

e IZW 1350 1500

Appendix: Results for PISOLVER repl. with 5% workload imbalance

W STATIC S5 W OPSC

OS5 WEN TSS MR PACI W ANT W AN SR AWPD

AAP-D e ANTE

-

= Compared [OFacla +oo STandand DLS serage: +0.06% Ehunk Sele<tar avarage: +7.07%
= e HAX 5252% --o- RLDLS Salecter averago: 413 65% Gratie A0TEES
5004 LBAMP stanidard - BLAgeni = I\Lm“
i 9L5 tachniquas : £ (P £ 5 chunk
800 I 5 =l
[¥ 3. g
<t —
=
E 600
i
& .
5 o
&
T

EREE
i

Figure A.3: Performance summary for PISOLVER 5% workload imbalance *

|1 Highest performing 1 Lowest parforming

Im.mmer explore-first_|ooptime {501.86s)

5%
imbalance
OLearner_explore-first_|ooptime-average [502.958)

T

W STATIC WEE S5 W mFSC

B

n

G55 W TS5

A

i

A2

£

— ANE

QLearner_explone-first_cov (740.375)

 ANFE e AWFC

T lmrm achrn 1 i

AWFD 0 RWEE AF
Olearner_epsilon-gready_losptimea {503.115)

e 32em% + 0150
e 22 T - ML

G 131+ S D - LML
R AEE R s Lz
BACHTLAOR + AL A%DAN L2200

Faralial loop exmcution time (51

Glesrner_epsilon-greedy oopime-sverage {503.355)

QLearner_spsilan-gresdy_eov [574.224)

- TED
-0 LS

Glearner_softmas_isoptime {510.695)

O e L1 |
—arn paw e o |
- o 23301 |
i s - Lt |
A g g LA |
B Lo

Olearner_saftmax_looplime-averags [S16.835)

o]
2.5 ¢ E TS0

I
Qleamer_softmax_cav (547.235)

‘Olearmer_softman_loadimbalance (548,845}

UG 2T e LEIIOT. W A 78 ¢ L300
5 2150 e mmansE wara: .

| b+ L
~ amazal

D 10 TH s L

- 1T 20
i es1sL

- STET 3 0+ L
T
e EC 1374 0L
oo 2 29+ aarL00
-0

T L2 7 = 2301
ARY - 12 40% 187,130

EF 354+ 4EDL

_explora-first_ja

- T L5 - L - L58
- R 1 L0500
AN BN ¢ 1331500
W 020 - AT
a8 + LIS

ST 8 e L

5593 = L5
MISC. 4 00 » LIYEIL
Da nams - 127L1

- STATC KT - LSL

- LIS

T3 8 0L

AT TLIO 10N
| maTa gm0

e 3,1 4 213300
S

W 1S 9 4GS0
30 4T ¢ 0 |

—STATIC BT + LLS0L
8 e 1L
L ¢ L5

roame i |
s wmre 1piem 4 2L
"

(599,455} epsilan-greedy_cov (571.57s)

rner_epsilon-greedy_looptine (503.485)

SN G 7ML LS B WWE 1R JETAS
: -—re

SARSALearner_softrnax_looplirme (S10.26s) SARSaLsamer_softmax_looptime-sverage (516.355)

SARSALearner_softmax_loadimbalance (548, 76s)

SARSALsarner_softmax_coyv (S46.72<)

e | T T S e we
201 | it

|

EAED 9 T - 1AL |

S EAEE 2 XYW s 13S0 |
e e LaLEARL

- TEE LaTh e 1501 W w13 06% ¢ 2260501 NG e SVIME W AWE 1D 1T ¢ 15501
5283+ 4471501 M 15 6 23001550

S PR RADN TS R WWT-C L3 ST% 218030

m: 431 ¢ e W 233% + 33801
TS 2 ¢ SIL
[¥

S 10 - TR
WD 2 AT < 320

-
"

a2 1)
e 24w+ a0y

- T 2 A L 5 2% « VIS

A 1T 2R
A 611

Timestep

i Il AT TR i A ilIRIRIIE il
4 150 300 450 400 750 900 1050 1200 1350 1500 9 150 300 450 600 7S50 500 1050 1200 1350 1500 O IS0 300 450 800 7S50 500 1050 12
Timestep Timestep

- 7 T

e 11
- O 1)

R = TV
—ER RN s 230500
- rc w13l
v i
W - 601
:

a0 1350 1500 0

- T 17T+ 160

S 10 L3 » L3030

s 73 - T

ne mam e zwisa

-1 A6
i

150 300 450 600 750 SO0 1050 1200 1330 1500 0
Timestep

L e |

ANFD B LN ¢ 1251500

- anrc n2ws s AT

© s e Lo g

s s = 01 |]
4500 » 61501

130
Timestep

Figure A.4: DLS selection per timestep for PISOLVER with 5% workload imbalance

300 450 600 TR0 900 I0S0 1200 1350 1500

Appendix: Results for PISOLVER repl.

with 10% workload imbalance d

o S W STATIC mE 55 WS OFSC oS5 THS ANP-D e mTE A
corpared tr Oeade oo Srandard DS svarage +11.36% hunk Seleetar avaraga: -0 O5%
50.70% AL DLE Salgetir average: +13.78% st 400,01 5
e - e
¢ 'SLS tmchmins E § P
i S 5.5 -
g 4 o :
s |8 £ 3 : : ¢
E 600 ¥ T b
i
; 500 f dwewad frawatwwwndoooeoos SRR, aauen prmm pmmam sasee e e e s .
5 o
&
T
200
1wt |
al

10% workioad
imbalance

Qlearnar_sxplore-first_|poptime {504.49s)

|1 Highest performing 1 Lowest parforming

@ § i
i

Olearner_explore-iist_noptime-average (504.745)

L
o

W STATIC WEE S5 W mFSC

1]

3 §
Hil

G55 W TS5

Qlearmer_sxplore-first_loadimbalance {737.67s]

' i
Figure A.5: Performance summary for PISOLVER 10% workload imbalance *

A2

i £ ¥

ER

T lmrm achrn 1 i

— ANWF
QLearner_explone-first_coy (737.79s|

 ANFE e AWFC

060 2t

]
- s 1200
Loz

B

Faralial loop exmcution time (51

- sar o I0n

i 0
T

OLearner_spsilan-greedy_eov [585.005)

-t o i |

e o2

- e o 233 |

NG Q- Lt

T TEE AW IR e AMEE dd Ll |
-0 LS

learner_saftmax_looplime-averags [519.915)

- TEC 107 ¢ UII HE E
T L120 e

‘Olearmer_softmax_loadimbalance (556.825)

Sleamner_saftmax_cav (554, 315)

- 1AL

SaRSALeamar_explorefirst_looptime [504,325)

- 5% B

[TAT 2 T NI

 sARSALparnor_explara first o @ (734,145]

- g 2 LS5
- T e 11700
- 010%

ST 0% s L1183

S 10 N TS

B S D 13181
T RN L

- b
A T T L0500
A% ¢ 1310500

© D 02 s A
e 3 - L2

- STATC QTR LRISIL B AWE 10 - LMUISED
50 RS 5 0% - TR0
A - LNLSE R AEC TLION - 10MILH
2% - 1zna | waTa am - 121301
- a0 < aen w319 ¢ s

—STATIC BT+ LLS0L
8 e 1L
mELE 0%+ a0

|ESTIC B SUISEL B R L6 1P IS0 | 05 L0
- 1500 -9 1 WL
EESC 336 WIS AEC 1T 0%
a9 0 230
a3 0 1IB0L

» s |

) =
- mrs 14028 ¢ 201300
r

1598.39s)

SARSALearner_explore-first_cov (739.98s)

epsilon-greedy_cow (569.20s)

SN 337 ¢ LINE AN 2 s L2180

SARSALsarner_soltrmax_looptirme (515, 34:)

403N 11200

SARSALsamer_softmax_looptime-sverage (517.955)

SARSALearner_sofimax_loadimbalance (555 83<)

A s LR |) T s L1520

- 0 I

TR LA ¢ A5 S A 1659% + 2051
-

17 T - 2630
WD AT < 32
15 1% - AN
L

e ras T o)

e 2 1m szl

5 2 = 3UISE
e

R Al I L
150 300 450 G600 750 900 1050 1200 1350 1300
Timestep

AT 2ITR LN W AR 1259 ¢ JsL
AT 14 200 ¢ 20058

AT 1.00% - Z30AE
A4 < 231

AR 13809 = 2L

5 [
- TS5 R - V1501
o

9 150 3N 450 600 750 SO0 1050 1200 1350 1500 O
Timestep

W TTIC G ONLSEL AR R TR = T3S

LIS AWEG R TIA200
s paw s T
ArD- 1 - LRI

R A % SR

LILILIL
30 300 45

B RRAIALT B LN LI S
B0 750
Timestep

500 1050 1200 1350 1500 O

- e
8

150 300 450 600 750 SO0 1050 1200 1330 1500 0
Timestep

10 300 450 600 730 000 1030 1200 1350 1500
Timestep

Figure A.6: DLS selection per timestep for PISOLVER with 10% workload imbalance

Appendix: Results for PISOLVER repl. with 15% workload imbalance e

- = o e B e
500 4 ﬁ&m\
zm
i
=
ém
) ‘*iiisﬁggggas NERERRE
Esisgagmgmﬁéu i EE;
Figure A.7: Performance summary for PISOLVER 15% workload imbalance * i
15% workload |1 Highest performing 1 Lowest parforming e STATIC . mem 55 em mFSC G55 mEm TS5 mem FAC? mem AWF R RNFE e AWFC ANED o AWEE AF

imbalance

ﬁLauma explore-fisst, lmlmlanceﬂ“.sﬁs}} " OLearner_explore-first_cov [737.465)

O LI |
w3
T

e o2
OLearner_spsilan-greedy_cov [507.415)

o 2L |

NS Q- Ll
T TEE AW IR e AMEE dd Ll |
-0 LS

W ALT LSRN IOISOL AR LEP - 101831

Faralial loop exmcution time (51

Glearner_softmas_isoptime (521 53s)
]

ptime-averags (509,36} QLeamer_epsilon-greedy loadimbalance (606 T7x)
- TATC 7T AULN] S AWF 44T YO0

‘Olearmer_softmax_loadimbalance (567, 51s) i Qleamer_softmax_cav (565 20s)
ST R34S N A RS - LASOL = EIC W LUSISEL W AR I s LTRSE

TATE 306 - G101
2% 43I0

T 110 TN . 1T 0 2611500
132301 W2 13 4 30
o2 Ee s

-G 3 d e LG
RO 108 s

_ sARSALparnor_explara-first_oadi o (740,525]

SARSALeamar_explore-first_looptima |506,785)

W STATIC O ETH - LUIS0L N AWE D ¢ L0561 (W ST G- KNEEEL M wmE L) 004 LINAS0L | W STATIC QBT L1500 B AE 058 e LS00
B SE 10 B AN - M 1T S G s 1R AR RN ¢ L2100 S0 e RLSE] - TA 5 s N300 WSSO+ 1R W EEA RN %L e ETUERE e
OEEC I ¢ IZA1N00 W AW C RN 0 LI0IS0L S = LALS0 A TL IO - LML S 4 T RS0 G A T TS N ELC % v LA
Ao 3 - 120 ams 2 | WD A - 121301 o3 0 13000 D o - 1 “
ey Ly AR e merE 3 s T - s - L |
- o " e

L)

SARSALearner_explore-first_cov (739.42s)) rner_epsilon-greedy_looptine (507.555) SARSALearnes_epsidon-greedy leoptime-average (S07.86s) SARSALearmer_spsilon-greedy | 1627.93s) epsilon-greedy_cov (584.22s)
WIC L L3t s L0 e 3 3 a - L OIS0

ST 1itae 1708 M WE 357w ¢ JeR0NU BUTC 1078 ¢ 31361 B AAF 500N 1 163301
5050 - LALHE - WT.E O BT 131201 - ATE 4D - 90/1305
-

SIIE 337 ¢ LINE AN £ s L8

0% ¢ 10
TEE: 16+ B2SE
- 35 b - 29010803

0551w Ti150L S AWTD L2Te ¢ S0
TG BQMes LULSE S AWEE A V10
FACH L SIAE A AT 30

SARSALearner_softrnax_looplirme (519.86s) SARSALearnes_softmax_looplime-average (523.475) SARSALearner_softmax_loadimbalance (566 16s) SAASALearner_softmax_coy (S66.33<) Oracle (500,405
ST A M AE R s O G4 AT0] A TA1N LIS LT fir I T A 10T
AW ISUINI W AWER 773N 3500300 5% 9 Lassc R 05 - LS | £ 0 0% » IIsaL - L0 gL |

1 - rc B2 1wl e e ITNINN W MW AT - 12800 e L] - 8 e

s mres ¢ 12U D 8 L1 ¢ TS| s e < s 05+ 1190
R LSO e S 63 L) -0 ¢ s W b B

o+ P 4500 » 61501

T 2w MGNSN] S e 18R ¢ 26500
AT TOON, » L0e15aL
T 18 5% - 24RO
P L - e
L 3 SR
sl

ST TR MM W AWE 430 2165
=

PR 1L - NI R AWT-C 13 5% - LANRA0L
e 2 L1 WS ¢ TEsT
-T2 IS AN 1 - T
233 SISl

Anen m - AL
S NEE L < DR
ol

gm0 AL LT 0 R AT I S SRR MU Al IS i1 BB I AN ST 111 G HLE] | ER D DI SRR
9 150 300 430 600 750 900 1050 1200 1350 1300 0 150 300 450 600 750 9§00 1050 1200 1350 1500 0 150 300 450 SI0 730 SO0 1050 1200 1350 1500 0 130 300 450 600 750 SO0 1050 1200 1350 1500 O
Timestep Timestep Timestep Timestep

Figure A.8: DLS selection per timestep for PISOLVER with 15% workload imbalance

10 300 450 600 730 000 050 1200 1350 1500
Timestep

20% workioad
imbalance

Faralial loop exmcution time (51

Appendix: Results for PISOLVER repl. with 20% workload imbalance

W STATIC S5 W OPSC D55 WEN TS5 mER PACT AAP-D e ANTE L

LB4MP standard
4 B3 tachniques

Standard DLS sarage- +16. 56%
RLOLS Salector average: +16.44%

Ehunk Selectar avaraga: +B67%
Oracie S01LA1 5

P

|1 Highest performing 1 Lowest parforming

P

Figure A.9: Performance summary for PISOLVER 20% workload imbalance *

W STATIC. mem S5 mem mFSC G55 mEW TSS W FAC? R AWF EEE ANFE e WFC

Qlearmer_explare-fist laoptime-sverags (535755

Qlearmer_sxplore-ficst_loadimbalance {750.73s)

T lmrm achrn 1 i

AWFD 0 RWEE AF
Olearner_epsilon-gready_losptimea {511.155)

Glesrner_epsilon-gready oopime-sverage {512.715)

o s e s Lt A G G |

swra pao e

- g s |

Lt Ll P LT

g LAAE |
a1t

- TED
-0 LS

QLearner_epsilon-gready loadimbalance {602 165) QLeamner_epsilan-greedy cov [597.725)

- LT 18100

T 0 LTI W N D83 ¢ 2T
a2

=5 L0

Olearrsr_sefimax_sadimbalance (585.41s)

THC A1 AN R L0V
1A it
o e o

= s Mh Swisel e ewE T
e

" e E 319 34581
- aF aam s LwatEL

i

Qleamer_softmax_cav (584 91s) _Sm:rmr oxplore-first_fooptime-average (510, 625]_

 sARSALparnor_explara first o

-swx\rmnmml - g - L5

L W L5ISEL W AR T s LIOSAE ST O LUISIL e AEQE s LML |
0 LI D 08 ¢ L0501
RS 4138 » 173500 a aansol |
284 o9 g - 2nan
71 A < sl
Lo

e T ¢ TELE
1L

—STATIC BT + LLS0L
8 e 1L
Fo

rner_epsilon-greedy_looptine (511.41s) SARSALearnes_epsdon-greedy looptime-average (312.635)

SARSALearner_softmax_looptime [530.795)

SO Lo e e | T e AW T s
EEmr 14250 TR L5 - IV
P APCLLTN 4 INIOL AW 37%4 38)
s 07+ LI WATD LT < B
O LIne el e AR 3000 s
AT T BOIBAL S AR GATR » 333500

SARSALearnes_softrmax_looplime-average (533.164) SARSALearner_softmax_loadimbalance (588 .69s) SARSALearnes_softmax_cov {584.255)

- e |
A0 T 86+ 1005 |
e

Oracle (501.815)

T 7P NI W AAF 5% BLATSE

Timestep

Figure A.10: DLS selection per timestep for PISOLVER with 20% workload imbalance

430 600 750 900 1050 1Z00 1350 10 0

ST VAP LIRS0 W ARE 5 s DAY
—E 2 20350
f—rc 71 DI
P T
AN L5

W STETC] W JNOTOL W AWE S O s L5 T T IR g
- s

s 2 am e Tl AT T 1 113

|- S 1A ZLANAGT R AT 1340% - 2300300
|- 2 T allsE -
Racr

£ 18 3k - TN
B ans

Timestep

150 300 450 500 790 900 10% 1200 190 1300 6 130 0 40 @0 70 %0 100 1200 1350 1500 0 130 N0 450 80 750 500 1050 1200 1350 1500
Timestep Timestep

B - 0w W0

e 00 » a0 £ O Bt s 0151
R % s |
- o nom ¢ B S ar - B

AT = T

130 300 450 600 70 900 IWDIZWESDJSW

Timestep

Appendix: Results for PISOLVER repl. with 25% workload imbalance

WEE STATIC mmm S5 W SO

AT W ANTR WD

HAPD e ANTE L

compared o orale
57.76%

2
2

Standard DLS sarage: +24.36%
AL DLS Salecter avermge: +20.43%

hunk Seleetar avaraga: +0.87%
Geacie S03.6E 5

. 8

25% workload
imbalance

(QLearner splorefist_oaptine mum]

|1 Highest performing 1 Lowest parforming

i

e STATIC

Olearmer_explare-fist lagptime-sverags (5167351

TN

. 55 mEm FSC G55 mm TS5

Clearmer_sxplore-ficst_loadimbalance {T66.565]

A2

i

i

Figure A.11: Performance summary for PISOLVER 25% workload imbalance *

W ANF R ENFA e AWFC

T lmrm achrn 1 i

AWFD 0 RWEE AF
Olearner_epsilon-gready_losptimea {520.068)

Faralial loop exmcution time (51

Gleamer_epsilon-greedy_leoptime-average (S23.63s)

= aTATIC: D AT 197501
= b s 120
s 4 - T2
665 = 1L

GLearner . epaﬂan—glaeﬁy Ioadimbalance (651 505)

AN3TT . A 0w EI0D

- TED
Gk paw s s

Glearner_softmas_isoptime (358 065)

QLearner_softmax_|soptime-average [565.065)

DN AT G LA AF 1) 0% = TS0 A AN W dWE S AL

- LATR e 13200 - o -

W 0 1313 - 101303
o Lam e 21mem

-5 e 1550

T LT s L

Olearrsr_sefimax_sadimbalance (634, 59s)

Qleamer_softmax_cav (621,125}

5 10 10+ 27181
- bR ¢ 1133

£0- 343+ 4GS0
AL 725 TomIIOL

- T 111153

S ENEE L e LS
= am-umm

SAaRSALeamar_explorefirst |

Iooptima |514.885)

- TATE 3 1
4 Bzl

-5 |
AN 1A ¢ SO

5w T |
AF A0 LAY

OGS TV G
0 BAE + 32200

L T 1203201 |

o nm s sanse

A R - B0 |

S anweoma |

 sARSALparnor_explara first o @ (767.285]

B STATC T LWISOL M A 87 - LS00 B ERIC A% PULSH R AR B 10 LILSH
R eI e A 110 e e e]
ESE 35 = LHRALL A B8O ¢ 121 R DAEN » LIWISL W ANEC REER L3500
D 0100 - 1T

3L

IR R0 1L RS

S STATIC 0T LS00
e L
ahn 1150
o am- 29
- o qumn
-

- 0 s S0
A A e L0
T

o mmrm amge 1AL

-t 0 sl ||
e L0
saasel|

{666.755)

—STATIC BT + LLS0L
8 e 1L
L .

- L0
B AEA G+ L3500 |
A DB 300
x|
e - L2aE

SARSALeamer_explore-first_cov (768.115)

SARSALearnes_epsilon-greedy leoptime-average (323.30s)

SARSALearner_softmax_looptime [556.634) SARSALearnes_softrmax_looplime-average (S64.921)

SARSALearner_softmax_loadi

mbalance (623.995)

- Ml!m *awisa |
nnwl
s |
5L

SARSALsarner_softmax_cov (622 70<)

Oracle (5036465}

- A AT W e e a8
-2 0% IS ARG 435 - TAEL
W 280 - ATVLH] AN 0T LY
| D8 SEEN P Y1301 | WD 3 LI TULIL
]

=3 Laes
L il L VTILS EREEE B ELEL L EET ST

130 300 M 600 750 900 1050 1200 1350 1300 0
Timestep

Felidibas? AWISNL W AWE 386 e DINIS0
a1

Figure

150 300 430 600 750 900 1050 1200 1350 1500 0O
Timestep

- T Ta7% + 1180501
55 A - AL
| /== nam e 123030
| i
-me{m u;usu

L HRSILELY
30 300 450

1

Timestep

- e 1
- 0 LN
- NTC 71 1MAML

i
4w s Lm0

B0 750 SO0 1050 1200 1350 1500

S 43 500

- NS
- |

- I IV

s B+ L
- - 12k
- .

|
l
{
‘
I
o

150 300 450 600 750 SO0 1050 1200 1330 1500 0
Timestep

150 300 450 600 TS0 860 :wnuwusﬂuw
Timestep

A.12: DLS selection per timestep for PISOLVER with 25% workload imbalance

Appendix: Results for PISOLVER repl. with 30% workload imbalance h

W CACT W ANT W ANTD R WD AAF-D e ANTE L

L1 Highaar pertarming 4.-96 POTEIANER Com PR ta Dl
== Lawsst parforming - 47

W STATIC S5 W SO 055 W TS

%

Standad DLS awerage: +41.03% Churk Salactor avarage: +10.15%
AL OLE Solectar svarage: -+ 28.68% Gracle: 30671 &

E R 3 P ! g
Figure A.13: Performance summary for PISOLVER 30% workload imbalance * "

W STATIC. WEm S5 W WFSC G55 EEE TSS W FAC? R AWF BN AWFE e AWF-C AWFD 0 RWEE AF
QLearmes_epsilon-greedy_poptime {534.295)

=T 3018 1se1301 |

30% werkload figh i - =
bl |0 Highest perfarming 1 Lowest parforming
DLeamu &pmr&ﬂrﬂ Ioomlmmaqe [sn 1!!} Qlearmer_sxplore-ficst_loadimbalance {B04.325)

i lm.mmer eepeae-lm Implﬁne 1515.84:!
. cme e L sy 0 e 100

- TED
-0 LS

Faralial loop exmcution time (51

Glearner_softmas_isoptime {397 28s) Qlearner_saftmax_looplime-average [615.335)

QLemr gpﬂlm-grew cav (706305}
ST AR ¢ SR il [SUTE 17R eI W AF I s AL
aanss a o = s b

N B T 1L

26+ 2910 |
e

i T

Qleamer_softmax_cav (710485} : SARSALeamar_explore-first_looptime [526,215)

S STATIC UETH L1010 e LSO

N LI

SO 0%+ LU0
© em 3w e

Olearrsr_sefimax_lsadimbalance (711.08s) i
ST e L -m—zam-nmsm - ST T3 - LS
50 3550 . 3
S 3 - TN

- S WS -t 0 sl ||
- A - L2050
a aansol |

D 019% - 1720
T T+ nioganL

SARSALearnes_epsilon-greedy_looplime-average {543.37s)
X 1 0% = 1L
naTa 13% 0 10E |
AT NTISIL S TS T4
DS 214 JsaL “ il sk
TS L 07 ¢ 1S — iz

SAASALearner_softmax_coy (T11.77s) Oracke (506,715}

|-mn»‘1:mm R - AL |
55 aim - L3908 AP BT+ 2ps0 |

38 11% - 0L

e - Lt
S AEE T SRS

SARSALearner_softrmax_looptime-average (616.35s) SARSALearner_softmax_loadimbalance (713.525)
l Al L ORTET A0 B I
150 30 450 600 750 SO0 1050 1200 1350 1500 O

I RT1 10 W ARE AT 12
o
Timestep

Figure A.14: DLS selection per timestep for PISOLVER with 30% workload imbalance

150 300 450 &0 750”1”0]2110]390“0 130 300 450 G600 T30 800 1050 1200 1350 1500
Timestep Timestep

130 300 430 m T30 900 1050 1200 1350 10 0

e mwsomu:ssuuw
Timestep Timestep

Appendix:

PISOLVER RL

chunk selection results

-1 Highest porfarming AL chunk saloczar for % workload imasiance
= i AL

S8+QLearm apEgraedy LT.chunkSel (5050761

SS+Ceam seftmax, [T chunkSel 524 335)

. Crnk 5202
B Chunk Sze 4

= Chunk Size 9
J— Chunk Size 19

S0 ChenkSze3d o CrunkSEe 156 @S Chunk S2e 625
ChunkSiza 78 W Crunk Siee 312 WS Chunk Size 1250

S5+0learn, softma. LIB.chunkSel (535,035

e £ i T A DL o e AT G
acd e ek S -

N3 3T -2

51
e]

ek B ARG et
ik 1N ALIAL a2, 400 - AL
S 3 il o

s dasLaL

e 16715 DL o 5
LU TN e ST 1

S5+ Queam explors-1SLLT, chunkSel (575 61x)

s
- L3045
S ke 135 TSR

SS+0mam softmax LT chunihel (529 &)

- 1 L0 R0 vk T AEL
gt - 5w Arrer]
n:

k398 2T L1

T80 a0 b a3 2% 1AL
LRTRT = P R]
1

PaadyLT,

10 20 T
| |

5w caeir- Lo irnan

- any dLain s LT

-t 101 - 2T
1w s

55-+QLnam,ups-greecy, LT chunktal (375,324

2
e

BN

Faraliel leap mamcution Hme ikl

g8 o000

&

workload imbalance: 25%

| 55+QLeam zxplore Lt LT chunkSel |522. 7121

Sh+0Lmam anfmax LT chonkSel (557 85

[T o 7, Lt + t5at.
- - AR
-

e A - LA
o ik 18)
-k 2RI LR
- G518 4 B3
- 0 v

S5+ Olemarn, wps-greedy LB < huniSed (537 053) S5+ 0Lmarn, s, LIB, < hurkSel (538,194
| - A (1) o TR]
LD TR Tk T 7O LT

g Lt L e 1L 0k BeROL
o (AL ek R LA © S

[55+0Learn, explore-1st LIBchunkse (547 48s|

(S Lo, o e oL LB £hunkses (565 495

O TH TN LANLMY B i S CLTL IS

[Eouy

S5+ 0Lemarn, softman. LilL.chunkSel (544.53s|

-t L 3TN

TR ew s 1M e T IR

1P ¢ 19HISL A8
e] - W
P

(552,615}

T e 7 1080 kTR 3008 - VIS

b 812 e TR
19 0T - Lo
Lty

e 111 -)
AT

554+ Olearn, sftman LB chunkSel (562.115)

- orara B h s dei
e ey
213 - mamen et TLT D00 - LT
Enmtln O

S5+ OLearn, eps-groady, LB chuniSel (558 575
TG - s - e O

ek T G + Wi
v L1 0 Tl
ek T2 ETT TR
awms
=i

s
B v« (b

S5+ Qlmarn,aps-grendy LB chuntsel (868 175 S5+QUmarn softma LIl chunkSel (567 123

-1

w1 o S
o chu 135 04T « 0801 ner LA i
. s

e aaTe 3L
crm 1 0 T - L1

1001 T sy i
o cums W LTR-IMML ks L1301 P LI

I 30 450 €00 TS0 B 1050 1200 1350 1500 O
Timestep

Liiy tE1SEH
150 300 50 E00 TS0 600 LSO 1200 1350 1500 0
Timesten

Figure A.15: RL chunk size

150 30 450 B0 TS0 O30 BOSO 1200 1350 1500
Timestap

FLgE T

e 1] P i IRy 0
e L o 3 a1
e 313 A

e
e 2 8 BT oot T2 18
- i L Uil |

s |
Wi A e AR S LAY

i

[ELL S5+0Learm,

rara.ans)

50§00 T30 M 1080 1200 1350 1500 0
Timesten

selection for PISOLVER

155 131 8E 4 180 ik L
150 30 450 G0 TS0 OO0 MOS0 120D 1350 1500 150 30 450 SO0 TS0 600 1050 1200 1350 1500
Timastap Timesten

