
Automated Collection of
OpenMP Usage in HPC Applications

Bachelor Thesis

University of Basel
Faculty of Science

Department of Mathematics and Computer Science
HPC Research Group

Examiner: Prof. Dr. Florina M. Ciorba
Supervisor: Thomas Jakobsche

Author: Ilhan Kizildere
Email: i.kizildere@stud.unibas.ch

September 25, 2022

Acknowledgments

From April 6th 2022 to September 25th 2022, I was intensively engaged in researching and writing
this bachelor thesis with the support of my examiner, Prof. Dr. Florina M. Ciorba, and supervi-
sor Thomas Jakobsche. Thanks to their expertise in High Performance Computing, both of them
provided me with valuable insights into the subject matter. They answered my open questions and
gave me valuable input for the methodological approach so that I could successfully finish my work.
With them, I discussed every step of my thesis and I realized that my findings were taken seriously
as well as it could make a significant difference for their own purposes. Before the time of writing
my thesis, I had only partial experience with High Performance Computing.

Therefore, I would like to thank my examiner and supervisor for their valuable guidance and
support during this process. I also express my gratitude to all my family members, good friends
and colleagues; without their previous support during my study time, I would not have been able
to even start this thesis.

Abstract

OpenMP is the most used standard for shared memory parallel programming in high perfor-
mance computing (HPC). Despite its popularity it is not clear which or how many OpenMP features
are actively used by the HPC community. The contribution of this thesis is a large-scale study on
source code of OpenMP applications to understand the state-of-the-practice in parallel program-
ming with OpenMP. This thesis is focused on understanding the characteristics of OpenMP usage
in terms of the most commonly used features and functionalities. The goal is to assess the cur-
rent state-of-practice in OpenMP usage, which is important for many aspects of HPC: (a) find
opportunities for researchers to optimize the scheduling and load balancing of HPC applications,
(b) identify the most commonly used OpenMP features to focus optimization efforts by vendors,
centers, and developers, and (c) find unpopular or completely unused OpenMP features to inform
standardization bodies. To obtain these insights, we developed a Python script that automatically
extracts and visualizes OpenMP usage in the source code of a large portfolio of HPC applications.
The main findings for our set of applications are: (1) functionalities provided by the OpenMP
execution environment routines are used by 90% of all applications, the most used routine from
this group is omp get thread num which is also the most used functionality overall, (2) the most
used OpenMP directives (starting with #pragma omp) are for, critical, and barrier (all directives
were introduced in OpenMP version 1.0), and (3) the synchronization construct critical is present
in more applications compared to barrier or atomic, synchronization constructs regarding tasking
are used the least, (4) the most used OpenMP scheduling clause is static with default chunk size,
followed by dynamic with custom chunk size, the least used clause is guided with custom chunk
size, (5) the most used combination of programming paradigms is OpenMP + MPI, followed by
OpenMP + MPI + CUDA, these combinations are used more often compared to pure OpenMP,
and (6) C is the most used programming language, followed by C & Fortran, C & C++, and C &
C++ & Fortran, the least used combination of programming languages is Fortran & C++.

Contents

1 Introduction 6
1.1 Motivation, Goal and Research Questions . 6
1.2 Outline . 7

2 Related Work 8
2.1 Laguna et al. vs. Older Work . 9
2.2 Laguna et al. vs. Thesis . 9

3 Background 11
3.1 OpenMP . 11
3.2 OpenMP Feature Groups . 11

4 Methods 13
4.1 OpenMP Applications . 13
4.2 Usage Collection Script . 13
4.3 Plotting with MS Excel . 14
4.4 Difficulties & Problem-Solving . 14

5 Results 16
5.1 Unique OpenMP Features . 16
5.2 Usage of Unique OpenMP Features by Applications 17
5.3 Usage of Execution Environment Routines . 19
5.4 Usage of Synchronization Constructs . 20
5.5 Usage of Schedule Clauses . 21
5.6 Usage of Functions by OpenMP Standard Versions 22
5.7 Usage of Features by oldest OpenMP Standard Versions 23
5.8 Usage of Multi-Threaded Programming Models . 24
5.9 Usage of Programming Languages . 25
5.10 Usage of Programming Languages vs. Sample Code Size (Part I - Size by Lines of

Code) . 26
5.11 Usage of Programming Languages vs. Sample Code Size (Part II - Size by Files count) 28
5.12 Top 5 OpenMp Commands . 30

1

6 Discussion 31
6.1 Unique OpenMP Features . 31
6.2 Usage of Unique OpenMP Features by Applications 31
6.3 Usage of Execution Environment Routines . 32
6.4 Usage of Synchronization Constructs . 32
6.5 Usage of Schedule Clauses . 32
6.6 Usage of Functions by OpenMP Standard Versions 33
6.7 Usage of Features by oldest OpenMP Standard Versions 33
6.8 Usage of Multi-Threaded Programming Models . 34
6.9 Usage of Programming Languages . 34
6.10 Usage of Programming Languages vs. Sample Code Size (Part I - Size by Lines of

Code) . 34
6.11 Usage of Programming Languages vs. Sample Code Size (Part II - Size by Files count) 34
6.12 Top 5 OpenMp Commands . 35

7 Conclusion 36
7.1 Main Insights . 36
7.2 Future Work . 37

Appendices 39

A OpenMP Features and Commands 40

B List of HPC Applications & Release or Last Update Year 53

2

List of Figures

5.1 Unique OpenMP features, shown as a percentage of samples using them. 16
5.2 Usage of unique OpenMP features by samples. The majority of samples use only a

portion of the OpenMP features. We can also state, that no one use all provided
features. 17

5.3 Usage of unique OpenMP features by samples. The majority of samples use only a
portion of the OpenMP features. We can also state, that no one use all provided
features. 18

5.4 Overview of the top 1 OpenMP feature (Execution environment routines) used in
our set of samples. We find out that omp get thread num is the most used function
in Execution environment routines, which was used in exact 71 samples out of 109. . 19

5.5 Overview of the second most used OpenMP feature (Synchronization constructs)
used in our samples, where we don’t distinguish the usage by C/C++ and Fortran.
We find out that critical is the most used construct in Synchronization constructs. 20

5.6 Overview of the Schedule clause in OpenMP in our samples. We find out that the
most used scheduler is static. Note that some schedulers have multiple parameters;
for clarity, these have been terminated with commas instead of the usual closing
parenthesis. 21

5.7 Application count vs the minimum version of OpenMP which provides the function-
ality required by each sample. Most samples need only early version 1 of OpenMP
standard. 22

5.8 Frequency of samples (Application count) with regards to the oldest version of
OpenMP which provides the functionality required by each sample. But this time,
we count the functions of OpenMP Version to the OpenMP Version where the first
member of the function’s member (feature) were introduced. We find out, that most
samples use early version 1 of OpenMP standard. 23

5.9 Percentage of total samples using multi-threaded programming models. The most
often used model is OpenMP+MPI. 24

5.10 The frequency of samples (applications) with percentage using C, C++, and Fortran.
Most samples use a mixture of languages (58%). 25

5.11 Usage of programming language percentage versus sample code size. If we consider
the sample code size by lines of code, the most used programming language for an
OpenMP application is C. 26

5.12 Usage of programming language percentage versus sample code size. If we consider
the sample code size by lines of code, the most used programming language for an
OpenMP application is C. 27

3

5.13 Usage of programming language percentage versus sample code size (size by files
count). Most used programming language with OpenMP is a combination between
C/C++ and Fortran. 28

5.14 Usage of programming language percentage versus sample code size (size by files
count). Most used programming language with OpenMP is a combination between
C/C++ and Fortran. 29

5.15 Top 5 OpenMP commands of all samples together. Most used OpenMP command
is OMP NUM THREADS. 30

4

List of Tables

2.1 Comparison between Older Work and Laguna et. al. 9
2.3 Comparison between Laguna et. al. and Thesis . 10

4.1 Example of false and true count . 15

5.1 Release Year of OpenMP Versions . 22

B.1 List of HPC Applications & Release or Last Update Year (Part I) 53
B.3 List of HPC Applications & Release or Last Update Year (Part II) 54
B.5 List of HPC Applications & Release or Last Update Year (Part III) 55
B.7 List of HPC Applications & Release or Last Update Year (Part IV) 55

5

Chapter 1

Introduction

This bachelor thesis addresses the ’Automated Collection of OpenMP Usage in HPC Applications’.
The work behind this is a quantitative large-scale study, that was conducted on current OpenMP
applications and their usage which were subsequently evaluated. The final goal was to find out the
usage of OpenMP functionality in HPC applications

High performance computing (HPC) is the most used way to increase and to upscale system
performance. Parallel computing allows applications to run on multiple processors or threads. This
means, a program can be split into many (sub-) routines which can run simultaneously on different
processors of the same single computer system [1]. With that, developer and scientists have a useful
tool for their applications to meet their demand for higher performance with low costs and accurate
results.

Today’s HPC computer systems are powerful enough to run application programs on multiple
processors, to achieve this, many parallel programming paradigms are available for these computer
systems such as OpenCL, OpenACC, CUDA, MPI and OpenMP. OpenMP is the main focus of this
thesis because it is the most used standard for shared memory parallel programming.

1.1 Motivation, Goal and Research Questions

University of Basel, Switzerland, consists of various departments and research groups, including
the DMI-HPC 1 research group (https://hpc.dmi.unibas.ch/en) led by Prof. Dr. Florina M.
Ciorba. Here, Students, Doctorates and other member of the staff use a lot of features provided
by OpenMP standards for their HPC source codes. In order to improve the quality of these HPC
source codes we will take a closer look into the OpenMP applications. For this purpose, we collected
a big set of applications, which use the OpenMP programming paradigm. There are 109 samples
for examination. Our goal is to understand the state-of-the-practice in OpenMP usage through
source code analysis. For this purpose we will answer the following research questions:

(a) What OpenMP functionalities are used most often?

1Department of Mathematics and Computer Science – High Performance Computing Group

6

https://hpc.dmi.unibas.ch/en

(b) Which OpenMP version introduced the most used functionalities?

(c) What other technologies (MPI, CUDA etc.) are used alongside OpenMP?

(d) What are the most used OpenMP scheduling clauses?

The main goal of this thesis is to extract and visualize OpenMP usage in source code of given
HPC application samples. To answer these questions, a quantitative large-scale study was con-
ducted on OpenMP applications and their usage. The focus of this thesis is to understand the
characteristics of OpenMP usage with respect to the most used features provided by OpenMP
standards.

With the help of this thesis, we want to find out which and how many of OpenMP features are
actively used by the HPC community. Understanding the state-of-the-practice in OpenMP usage
is important for many aspects of HPC:

(a) To find opportunities for researchers to optimize the scheduling and load balancing of HPC
applications,

(b) to identify the most commonly used OpenMP features to focus optimization efforts by vendors,
centers, and developers, and

(c) to find unpopular or completely unused OpenMP features to inform standardization bodies.

1.2 Outline

After talking about motivation, goal and research question in section 1.1 (Motivation, Goal and
Research Questions), this section is about getting an overview of this thesis. We start with chapter
2 (Related Work), where we look at the work that served as inspiration for our thesis. In section
2.1 (Laguna et al. vs. Older Work) we have created a table so that we can get an overview of
the scientific paper written by Laguna et al. and also how his work differs from previous work of
similar research area. Then in section 2.2 (Laguna et al. vs. Thesis), we venture a comparison of
his work with our work and how our work differs. We have tabulated this as well. Then in the next
chapter 3 (Background), we briefly look at OpenMP and its meaning (see section 3.1 (OpenMP)).
In sections 3.2 (OpenMP Feature Groups), we try to get a rough overview of the OpenMP features
and OpenMP functions. Chapter 4 (Methods) is mainly about how we create our plots. Here,
we get an overview of our samples in section 4.1 (OpenMP Applications). In section 4.2 (Usage
Collection Script), we dive into our scripts. In the last section 4.3 (Plotting with Excel), we briefly
try to understand how we graphically displayed our data using MS Excel. In chapter 5 (Results),
we talk about our results of the plots, each representing a sub-chapter. There is also a description
of what these plots are about. Afterwards in chapter 6 (Discussion), we describe our thoughts and
findings about the results from chapter 5 (Results). In final chapter 7 (Conclusion), we summarize
our findings and mention where the future approaches for related work might be.

7

Chapter 2

Related Work

In 2019, a scientific paper titled ”A Large-Scale Study of MPI Usage in Open-Source HPC Appli-
cations” was published by Laguna et al. [3].

Laguna et al. [3] produced the first extensive static analysis of source code of HPC application
that use the MPI programming paradigm. Their work produced multiple interesting and impor-
tant insights into the usage of MPI and what that means for the MPI standard as a whole (e.g.
unused features and versions). According to Laguna et al. [3] static source code analysis can lead
to important insights. This study then served as the source of the inspiration for our own thesis.
Hence, we oriented ourselves on the available related work that analyzed MPI applications.

Laguna et al. surveyed more than a hundred MPI applications. They focused on understanding
the characteristics of MPI usage with regards to the most used features, programming models, and
languages. The research questions defined in their work form the basis of our own investigation,
since most of the questions regarding programming paradigm usage in source code can be applied
to any programming paradigm. The most important findings of Laguna et al. are summarized
below:

• a large number of MPI applications do not use advanced features of the MPI standard (e.g.
the majority of applications use blocking send and receive),

• only a small set of features provided by the MPI standard are actually used, some parts of
the standard are unused by many applications,

• many applications only employ functionality of the MPI version 1.0, and not of newer versions,
additionally, features introduced in sub-versions are rarely used,

• MPI is used together with other programming paradigms, OpenMP is the most popular
combination,

• C++ is the most used language in MPI programs.

The work of Laguna et al. is a static code analysis of MPI applications, it is very important
for us because it serves as an inspiration and blueprint for our own static analysis of OpenMP
applications.

8

2.1 Laguna et al. vs. Older Work

The large-scale study of MPI usage of Laguna et al. was also based on older work by other HPC
experts [3] - but Laguna et al. changed their focus from related scientific work. We also took over
most of these changes for our own thesis. In table 2.1 we see an overview of how the focus of
Laguna’s work shifted from the related work by other authors [8] [2] [4]:

Table 2.1: Comparison between Older Work and Laguna et. al.

Focus Older Work Laguna et al.

Size of samples (to un-
derstand the MPI usage)

Small set of samples (ap-
plications)

Much larger set of samples

• over 100 unique MPI programs

• containing a total of more than
forty million lines of code

Characteristics of MPI
usage

Focus on dynamic char-
acteristics of MPI usage
1

Focus on static characteristics of MPI
usage 2

Source of samples
• Samples from specific

projects

• Samples from specific
HPC centers

Random samples from many sources –
therefore more realistic survey of the
study

2.2 Laguna et al. vs. Thesis

In this thesis we want to produce similar insights for HPC applications that use the OpenMP
programming paradigm. Laguna et al. produced important related work for us, because our
approach takes inspiration of it, and we orient some of our static source code analysis on their
study of MPI applications. In some cases we introduce new analysis that is tailored to OpenMP
(e.g. counting and analyzing the usage of schedule clauses). This work is not a reproduction of
the work done by Laguna et al. but a continuation of the static source code analysis of HPC
applications, in this case, of OpenMP applications. Table 2.3 shows how the two works differ from
each other.

1dynamic characteristics are those characteristics of running applications – aka characteristics on run-time of a
source-code after or during compile-time

2static characteristics are non-compiled characteristics of a source-code

9

Table 2.3: Comparison between Laguna et. al. and Thesis

Focus Laguna et al. Thesis

Research focus
Findings about the usage
of MPI

Findings about the usage of OpenMP

Size of samples
About 100 unique MPI
samples

109 unique OpenMP samples

Static characteristics of
MPI/OpenMP usage

Focus of the work Same is true for us

Dynamic characteristics
of MPI/OpenMP usage

Not interested Same is true for us

Source of samples

Random samples from
many sources – therefore
more representative sur-
vey of the study

Also random samples of OpenMP appli-
cations with open source code.

Scalable program analy-
sis method

Written in Python Same is true for us

Lines-of-code counting
Use of external tool
named cloc

Our own solution written inside in our
Python code

Detection of program-
ming languages

Use of external tool
named cloc

Our own solution written inside in our
Python code

Analyzed programming
languages

• C

• C++

• Fortran

• others (with no fur-
ther distinction)

• C / C++ (handled as one and same
programming language), if not ex-
plicitely mentioned

• Fortran

• others (with no further distinctions
between other programming lan-
guages)

Multi-threaded pro-
gramming models

MPI + X model, where
X stands for:

• OpenMP

• OpenCL

• OpenACC

• CUDA

• none

• Combination of the
above mentioned

OpenMP + X model, where X stands
for:

• MPI

• OpenCL

• OpenACC

• CUDA

• none

• Combination of the above men-
tioned

10

Chapter 3

Background

This chapter includes a small introduction to OpenMP and how features are sorted into feature
groups.

3.1 OpenMP

OpenMP (Open Multi-Processing) is an API (Application Programming Interface) for parallel ex-
ecution of application (sub-) routines to increase this computational speed. This API supports
multiprocessing programming with C/C++ and Fortran, among others [7]. It focus lies in multi-
platform and shared-memory programming. OpenMP is the most used standard for this purpose
[1]. It is compatible with many computer platforms, instruction-set architectures and operating
systems like Unix Systems, Linux, macOS, and Windows [5]. And in addition to that, OpenMP
uses a portable and scalable model that gives users a simple and flexible interface for developing
their parallel applications. This applications can then run on platforms ranging from standard
desktop computer environment to supercomputer cluster system [1].

According to the Website of OpenMP, OpenMP is managed by the nonprofit technology con-
sortium called OpenMP ARB (OpenMP Architecture Review Board) [6]. This consortium is led
by leading computer hardware and software vendors, including ARM, AMD, IBM, Intel, Cray, HP,
Fujitsu, NVIDIA, NEC, Red Hat, Texas Instruments, and Oracle Corporation [9].

3.2 OpenMP Feature Groups

In this section, we list what we took as ”functionality groups” or ”feature groups” (e.g. ”paral-
lel construct”, ”worksharing construct”, ”combined construct”) from the OpenMP - Application
Programming Interface [5]. OpenMP version 5.0 (Version from November 2021) specifies roughly
180 distinct directives, constructs and routines. Some clauses can be added as well. These can be
grouped into 30 categories. In our analysis, we refer these categories as OpenMP features. On the
basis of this API, we have compiled a list of all groups and their commands, which we structured
this way:

11

• feature 1: a small description about feature 1

– functionality 1 in C (and F): a small description about functionality 1 of feature 1

– functionality 2 in C (and F): a small description about functionality 2 of feature 1

• feature 2: a small description about feature 2

– functionality 1 in C (and F): a small description about functionality 1 of feature 2

– functionality 2 in C (and F): a small description about functionality 2 of feature 2

This list of all groups and their commands is available in appendix A.

12

Chapter 4

Methods

We employ a static analysis of source code by using a python script that crawls all files in a given
directory. The generated data were then plotted with MS Excel.

4.1 OpenMP Applications

All OpenMP applications (name + release year) for this thesis are listed in Appendix B. Unfortu-
nately, the release year is not always available. In such cases, we used the last update year.

4.2 Usage Collection Script

These are the following steps to run our Python script:

• Step 1 (Input): Put samples (folder or file) and all the Python-script in the same directory
(root).

• Step 2 (Black Box): Run main.py in terminal. (No parameter required.)

• Step 3 (Output): Use the Excel-files with Excel for plots; (can be found in the root directory).

In case, when not all plots are required, we can select them individually. Therefore, consult the
list below to select the requested data:

• figure2.runFig2(automatedListsOfPaths): Figure 5.1

• figure3.runFig3(automatedListsOfPaths): Figure 5.2

• figure4.runFig4(automatedListsOfPaths): Figure 5.4, 5.5 & 5.6

• figure5.runFig5(automatedListsOfPaths): Figure 5.7 & 5.8

• figure8.runFig8(automatedListsOfPaths): Figure 5.11, 5.13

• figure11.runFig11(automatedListsOfPaths): Figure 5.9

13

• figCountCommandsPerApplication.runFigCounter(automatedListsOfPaths): no correspond-
ing plot (overview of OpenMP commands)

• figCountCommands.runFigCounterAll(automatedListsOfPaths): Figure 5.15

• figure9.runFig9(automatedListsOfPaths): Figure 5.10

To use the Python script, we need following Python libraries:

• re: A library to work with regular expression.

• os: This library has useful functions for working with Operating System. It helps to find
information about the system #environment and to get the path of the application, files, etc.

• time: This module has several time functions.

• pandas: Is a package to work with labeled or relational data easily and to do data analysis.

4.3 Plotting with MS Excel

After generating the requested information using Python script, we opened the generated data
with MS Excel to create a bar chart. Unfortunately, MS Excel cannot handle a bar chart with
percentages by itself, so we tricked MS Excel. Therefore, we created two bar charts side by side,
usually one for frequency and one for percentages. Then we hid the bar chart for the percentages
behind the bar chart for the frequency, after adding the percentage value. Finally, we manually
edited the plot to make it more readable, for example, by increasing the font size etc.

4.4 Difficulties & Problem-Solving

Partially, the conducted implementation of the Python code showed some difficulties to read the files
(with substructures) properly. Sometimes we have OpenMP commands that are spelled the same
way at the beginning, for example #pragma omp distribute or #pragma omp distribute simd,
which then leads to problems with correct counting: For example, when an OpenMP application
contains the OpenMP command #pragma omp distribute twice and the command #pragma omp distribute simd
once, then the Excel file would store the value 2 for counts at #pragma omp distribute and the
value 3 instead of 1 for counts at #pragma omp distribute simd. Finally, we were able to solve
this problem after an extensive manual analysis of the results. Below, we put an example with
!$omp parallel, !$omp loop and !$omp parallel loop:

import numpy as np
. . .
de f incmatr ix (genl1 , gen l2) :

! $omp p a r a l l e l
. . . some code

! $omp end p a r a l l e l

! $omp loop

14

. . . some code
! $omp end loop

! $omp p a r a l l e l loop
. . . some code

! $omp end p a r a l l e l loop

Table 4.1: Example of false and true count

OpenMP command false count true count

!$omp parallel 2 1

!$omp loop 1 1

!$omp parallel loop 1 1

15

Chapter 5

Results

Our results are visualized in the following plots.

5.1 Unique OpenMP Features

Figure 5.1: Unique OpenMP features, shown as a percentage of samples using them.

Figure 5.1 shows the overall usage of unique OpenMP features which are defined according to
OpenMP standards in version 5. We have sorted these features by frequency of occurrence. We
have also indicated the percentage of occurrence for better analysis. An overview of these OpenMP
features can be seen in appendix A.

16

5.2 Usage of Unique OpenMP Features by Applications

Figure 5.2: Usage of unique OpenMP features by samples. The majority of samples use only a
portion of the OpenMP features. We can also state, that no one use all provided features.

Figure 5.2 shows the usage of OpenMP features by each samples. For that reason, we have
listed all 109 samples with file names in our plot. Different samples use different sets of given
OpenMP features. These OpenMP features are represented with their own colors. Then we sorted
the usage of unique OpenMP features of samples by frequency of occurrence. For better view, see
figure 5.3, which is an enlarged plot of figure 5.2. An overview of these OpenMP applications with
its properties can be seen in appendix B.

17

F
ig
u
re

5.
3:

U
sa
ge

of
u
n
iq
u
e
O
p
en
M
P
fe
a
tu
re
s
b
y
sa
m
p
le
s.

T
h
e
m
a
jo
ri
ty

o
f
sa
m
p
le
s
u
se

o
n
ly

a
p
o
rt
io
n
o
f
th
e
O
p
en
M
P
fe
a
tu
re
s.

W
e
ca
n
al
so

st
at
e,

th
at

n
o
on

e
u
se

a
ll
p
ro
v
id
ed

fe
a
tu
re
s.

18

5.3 Usage of Execution Environment Routines

Figure 5.4: Overview of the top 1 OpenMP feature (Execution environment routines) used in
our set of samples. We find out that omp get thread num is the most used function in Execution
environment routines, which was used in exact 71 samples out of 109.

Figure 5.4 shows the overall usage of functionalities of top 1 OpenMP feature (Execution environment routines)
which are defined according to OpenMP standards in version 5. We have sorted these functional-
ities by frequency of occurrence. We have also indicated the percentage of occurrence for better
analysis.

19

5.4 Usage of Synchronization Constructs

Figure 5.5: Overview of the second most used OpenMP feature (Synchronization constructs) used
in our samples, where we don’t distinguish the usage by C/C++ and Fortran. We find out that
critical is the most used construct in Synchronization constructs.

Figure 5.5 shows the overall usage of functionalities of the second ranked OpenMP feature
(Synchronization constructs) which are defined according to OpenMP standards in version 5. We
have sorted these functionalities by frequency of occurrence. We have also indicated the percentage
of occurrence for better analysis.

In this figure, we do not distinguish between the use of these constructs by the two programming
languages C/C++ and Fortran. In other words, if this construct occurs in C/C++ or in Fortran
sample, we have added plus 1 in both counts of these programming languages because logically
they do the same thing.

20

5.5 Usage of Schedule Clauses

Figure 5.6: Overview of the Schedule clause in OpenMP in our samples. We find out that the most
used scheduler is static. Note that some schedulers have multiple parameters; for clarity, these have
been terminated with commas instead of the usual closing parenthesis.

Figure 5.6 shows the overall usage of schedule clauses. We have sorted these schedule clauses
by frequency of their occurrence. We have also indicated the percentage of occurrence for better
analysis. Schedule clauses were differentiated and analyzed in the following manner:

• schedule(auto)

• schedule(runtime)

• schedule(guided)

• schedule(guided,

• schedule(dynamic)

• schedule(dynamic,

• schedule(static)

• schedule(static,

This way we can also distinguish between the standard version schedule(static) and the version
where the programmer specifies a chunk size like schedule(static, 10).

21

5.6 Usage of Functions by OpenMP Standard Versions

Figure 5.7: Application count vs the minimum version of OpenMP which provides the functionality
required by each sample. Most samples need only early version 1 of OpenMP standard.

In figure 5.7 we count the occurrence of samples vs. the lowest version of OpenMP stan-
dard which provides the functionality which were required by each sample. We have sorted the
OpenMP standards according to version number, adding percentage of occurrence for every ver-
sion of OpenMP standard. Table 5.1 shows release year of each OpenMP version for C/C++ and
Fortran.

Table 5.1: Release Year of OpenMP Versions

Release Year Release Year for C/C++ Release Year for Fortran

5 2019 2019

4.5 2015 2015

4 2013 2013

3 2008 2009

2 2002 2000

1 1998 1997

22

5.7 Usage of Features by oldest OpenMP Standard Versions

Figure 5.8: Frequency of samples (Application count) with regards to the oldest version of OpenMP
which provides the functionality required by each sample. But this time, we count the functions of
OpenMP Version to the OpenMP Version where the first member of the function’s member (feature)
were introduced. We find out, that most samples use early version 1 of OpenMP standard.

During a DMI group meeting, we were asked to look more closely at this issue with introduction
of functions by every OpenMP version. So we created another graphical illustration (figure 5.8)
where instead of introducing functionality we also look more closely at functionality by feature
introduction criteria. This means that a feature only exists if at least one new function has been
implemented in an OpenMP version. So if we now look at a specific function and check if it has
been added to one of our samples, we only look at the oldest OpenMP version from which the
corresponding feature exists.

Last but not least, we have sorted the OpenMP standards according to version number. We
have also indicated the percentage of occurrence for better understanding.

23

5.8 Usage of Multi-Threaded Programming Models

Figure 5.9: Percentage of total samples using multi-threaded programming models. The most often
used model is OpenMP+MPI.

In figure 5.9, we show the percentage of total samples using various OpenMP+X multi-threaded
programming models, where X represents a placeholder for one or more multi-threaded program-
ming models in conjunction with OpenMP. Therefore, figure 5.9 shows whether the provided samples
use OpenCL, OpenACC, MPI, and/or CUDA constructs. We do not consider the frequency of use
of these constructs in a given sample, but only if they occur at least once in a sample. If none of
the programming models are present in the sample, the result is evaluated as None. Combinations
which were not used are not shown in the graphic. In conclusion, we have checked all combinations
of mixed use of the programming models, such as OpenMP in combination with MPI. Finally, we
have sorted these programming models by frequency of occurrence. We have also indicated the
percentage of occurrence for better analysis.

24

5.9 Usage of Programming Languages

Figure 5.10: The frequency of samples (applications) with percentage using C, C++, and Fortran.
Most samples use a mixture of languages (58%).

Figure 5.10 shows the frequency and percentage of samples whose source codes were written
exclusively in C, C++ and Fortran or a mixture of these programming languages.

25

5.10 Usage of Programming Languages vs. Sample Code
Size (Part I - Size by Lines of Code)

Figure 5.11: Usage of programming language percentage versus sample code size. If we consider the
sample code size by lines of code, the most used programming language for an OpenMP application
is C.

Figure 5.11 shows the percentage of programming languages of a sample ordered in respect to
the code base size (lines of code) from left small size to right big size. Usually an application
consists of several files written in different programming languages and is written in different major
programming languages for HPC, mainly C, C++, Fortran, and a combination between them.

For better view, see figure 5.12, which is an enlarged plot of figure 5.11.

26

F
ig
u
re

5.
12
:
U
sa
ge

of
p
ro
gr
am

m
in
g
la
n
g
u
a
g
e
p
er
ce
n
ta
g
e
v
er
su
s
sa
m
p
le

co
d
e
si
ze
.
If
w
e
co
n
si
d
er

th
e
sa
m
p
le

co
d
e
si
ze

b
y
li
n
es

o
f

co
d
e,

th
e
m
os
t
u
se
d
p
ro
gr
am

m
in
g
la
n
g
u
a
g
e
fo
r
a
n
O
p
en
M
P

a
p
p
li
ca
ti
o
n
is

C
.

27

5.11 Usage of Programming Languages vs. Sample Code
Size (Part II - Size by Files count)

Figure 5.13: Usage of programming language percentage versus sample code size (size by files
count). Most used programming language with OpenMP is a combination between C/C++ and
Fortran.

Figure 5.13 shows the percentage of programming languages of a sample ordered in respect to
the code base size (number of files). An application is usually made up of several files written in
different programming languages. These programming languages are C, C++ and Fortran, among
many others. Here, we ignore the programming languages that are not explicitly mentioned among
the first three. For example, let’s have a closer look at the most left application on the X-axis: This
application consists 100% only of Fortran files.

For better view, see figure 5.14, which is an enlarged plot of figure 5.13.

28

F
ig
u
re

5.
14
:
U
sa
ge

of
p
ro
gr
am

m
in
g
la
n
g
u
a
g
e
p
er
ce
n
ta
g
e
ve
rs
u
s
sa
m
p
le

co
d
e
si
ze

(s
iz
e
b
y
fi
le
s
co
u
n
t)
.
M
o
st

u
se
d
p
ro
g
ra
m
m
in
g

la
n
gu

ag
e
w
it
h
O
p
en
M
P

is
a
co
m
b
in
a
ti
o
n
b
et
w
ee
n
C
/
C
+
+

a
n
d
F
o
rt
ra
n
.

29

5.12 Top 5 OpenMp Commands

Figure 5.15: Top 5 OpenMP commands of all samples together. Most used OpenMP command is
OMP NUM THREADS.

Figure 5.15 shows the top 5 OpenMP overall commands ordered by frequency.

30

Chapter 6

Discussion

In the following sections we will discuss the results about the plots in chapter 5.

6.1 Unique OpenMP Features

Figure 5.1 shows the overall usage of unique OpenMP features which are defined according to
OpenMP standards. The figure shows that almost half of the provided features by OpenMP stan-
dards are not used at all (e.g. Cancellation constructs,Distribute loop constructs and many more).
We can also state that the percentage of samples using Execution environment routines is over
80%. Furthermore we can see that less than half of the samples use only the top 2 OpenMP features –
these are Synchronization constructs beside the before mentioned Execution environment routines.
A lot of features are rarely used in our provided samples: These features are for example the
Worksharing − Loop SIMD or Combined constructs and many more. But note, that constructs
like Loop Constructs and Tasking Constructs”” being at zero does not necessarily mean that
loops and tasks are not used; they might be used in combination with other constructs and thus
be counted inside Combined Constructs. In figures 5.4, and 5.5, we will take a focus on the top 2
OpenMP features: Execution environment routines and Synchronization constructs.

6.2 Usage of Unique OpenMP Features by Applications

Figure 5.2 shows the usage of OpenMP features by each samples. Different samples use different
sets of given OpenMP features. Not a simple one of these samples use all features provided by the
OpenMP standard. We can also state, that from our samples, all of them actually use at least two
OpenMP features. Our figure also shows that more than two third of our samples use more than
15 provided OpenMP features. Therefore the majority of samples uses a lot of OpenMP features
provided by the OpenMP standard.

But we also found out that many features of OpenMP standards are seldom used in HPC appli-
cations. Thus, Vendors, centers and developers should not focus their optimization efforts on these
features, because they are not widely employed by OpenMP users. It’s better to focus their efforts
on more widely used features, which we also identified in figure 5.2. The OpenMP standardization

31

body and researchers involved with the development and maintenance of the OpenMP standard
should be aware of the popularity of each feature, because that is important feedback from the
community as to which features actually translate well into scientific applications. HPC researchers
trying to optimize applications, can identify specific features (e.g. the schedule clause) to focus
their optimization efforts and also identify features to stay away from because they are only used
by a small minority of applications.

6.3 Usage of Execution Environment Routines

In figure 5.4 we find out that only nine functions of the first placed OpenMP feature are used in 10 or
more distinct samples which were provided to us. The top 3 functions of the Execution environment routines
are:

• omp get thread num,

• omp get max threads and

• omp get num threads.

Furthermore, we find out that over 50 of our samples use the top 3 functions of Execution environment routines.
We also know that omp get thread num, omp get max threads, etc. is some of the most basic
quality-of-life OpenMP functionality that developers use in their code, hence the popularity.

6.4 Usage of Synchronization Constructs

In figure 5.5 we find out that five constructs of the second ranked OpenMP feature (Synchronization constructs)
are used in more than five distinct samples which were provided to us. The top 3 constructs of the
Synchronization constructs are:

• critical,

• barrier and

• atomic.

From our point of view, we know that critical, barrier and atomic are very basic methods to
ensure synchronization and to avoid race conditions. This explains why these three functions are
so popular among OpenMP users.

6.5 Usage of Schedule Clauses

OpenMP, at its core, is designed to distribute the work done in ”loops” across threads so that the
”loop” can be done faster. In general, loop iterations do not always have the same amount of work,
so some iterations might take longer than others.

The schedule clause determines how the loop iterations are distributed:

32

• does each thread get the same number of iterations schedule(static)?

• do we give the threads only new iterations when they are done with the old ones schedule(dynamic)?

• do we give an increasing or decreasing number of iterations to the threads schedule(guided)?

• etc.

So a schedule clause can make a program faster or slower, depending on whether the right
schedule clause is used. That’s why these schedule clauses are so interesting, to see if we can make
a program faster if we use the right schedule clauses.

In Figure 5.6, we find out, that the static scheduler with no parameter is used by exact 35 samples
which were provided to us. The next most used scheduler is dynamic with further parameter which
is used by more than 25 samples. The static scheduler with further parameter and the dynamic
scheduler with no parameter are used by over 20 examples and other scheduler were used by less
than 11 samples.

6.6 Usage of Functions by OpenMP Standard Versions

In figure 5.7 we count the occurrence of samples vs. the minimum version of OpenMP standard
which provides the functionality which were required by each sample. While new features and
functionalities of OpenMP are added to existing one, the idea behind that is of course to improve
performance and code readability. To our surprise, a large set of our samples do not use these
newer functionalities like in the MPI paper of Laguna et. al. The most used version in MPI paper
is 1.0 [3]. It would be certainly interesting to know why developers are not adopting newer features
of OpenMP standard to write better and more readable code. However, we believe this could also
be due to the fact that many of the examined samples are older than the release year of more
recent OpenMP versions. Unfortunately, we do not have information about the age of the sample.
Normally, newer applications tend to use newer features (i.e. from standard version 5). We also
state that more than half of our samples rely only on the provided functionalities of OpenMP
version 1.0. And last but not least, we think that minor updates (OpenMP versions 3.1 and 4.5)
do not represent any progress or relief for most developers when developing their application since
they are used very rarely. The same is true for the last major releases (OpenMP Version 5.0).

6.7 Usage of Features by oldest OpenMP Standard Versions

The idea behind figure 5.8 is to look more closely at functionality by feature introduction criteria.
That means that a feature only exists if at least one new function has been implemented in a
OpenMP version. So if we now look at a specific function and check if it has been added to one of
our samples, we only look at the oldest OpenMP version from which the corresponding feature exists.

To our surprise, a large set of our samples do not use these newer features by introduction
criteria. We can state that most samples use early functions introduced by version 1 of OpenMP
standard. We also find out, that in OpenMP Version 3.1 no new features were introduced by this
introduction criteria.

33

6.8 Usage of Multi-Threaded Programming Models

In figure 5.9, we show the percentage of total samples using various OpenMP+X multi-threaded
programming models, where X represents a placeholder for one or more multi-threaded program-
ming models in conjunction with OpenMP.

We can state that 77% of the provided sample use some form of hybrid code (i.e. OpenMP+X),
almost half (40%) of which have been constructed from only 2 multi-threaded programming models,
for example OpenMP in combination with MPI, which is also the most widely used multi-threaded
programming model found in a third (36%) of the provided samples. In contrast, we have no
provided samples belonging to the category ”None”. Then we find out, that a fourth of the provided
samples use OpenMP exclusively with no other multi-threaded programming models. Furthermore,
we find out that OpenCL, OpenACC, CUDA, and MPI are not used exclusively in any of the
provided samples.

6.9 Usage of Programming Languages

In figure 5.10 we find out that the least used programming language out of the trio is Fortran with
6% share of all provided samples. By far, the most commonly used programming language is C
(26%), followed by C++ (10%). We also see that - with the exception of Fortran & C++ - all
mixtures have a share of 19%. The least used mixture of these languages with only 1% share is
Fortran & C.

6.10 Usage of Programming Languages vs. Sample Code
Size (Part I - Size by Lines of Code)

Figure 5.11 shows the percentage of programming languages of a sample ordered in respect to the
code base size by its lines of code. Usually, a provided sample (application) consists of several
files written in specific programming languages. These programming languages are C, C++ and
Fortran, among many others. Here, we ignore all the programming languages that are not explicitly
mentioned among the first three. For example, the first application on the X-axis is very small and
is written purely in C++.

We do this plot, because we want to see what programming languages are the most used in
OpenMP applications according to their size. In figure 5.11 we see a trend of how pure Fortran is
used less and less as the sample size gets larger. As an application increases in its size, usage of
combinations between C/C++ and Fortran is the predominant one.

6.11 Usage of Programming Languages vs. Sample Code
Size (Part II - Size by Files count)

Figure 5.13 shows the percentage of programming languages of a sample ordered in respect to the
code base size by file counts. An application is usually made up of several files written in different
programming languages. These programming languages are C, C++ and Fortran, among many

34

others. Here, we ignore the programming languages that are not explicitly mentioned among the
first three.

In figure 5.13 we see a trend of how pure Fortran is used less and less as the counts of files of
a sample (application) gets bigger. As the file counts increases, usage of combinations between C,
C++ and Fortran is the predominant one.

6.12 Top 5 OpenMp Commands

Figure 5.15 shows the top 5 OpenMP overall commands ordered by frequency. The top OpenMP
commands of all samples together is OMP NUM THREADS. Furthermore, the most used
OpenMP directives (starting with #pragma omp)1 are for, critical, and barrier (and all of these
directives were already implemented and standardized in OpenMP version 1.0).

1in Fortran it starts with !$omp

35

Chapter 7

Conclusion

This chapter provides the conclusion and proposes for future work. The contribution of this thesis is
a large-scale study on source code of OpenMP applications to understand the state-of-the-practice
in parallel programming with OpenMP.

Using custom Python scripts we were able to extract and understand the characteristics of
OpenMP usage in terms of the most commonly used features and functionalities in the source code
of HPC applications. The plots presented in this thesis allow for a representative and comparative
look into how OpenMP functionalities are used across applications.

7.1 Main Insights

In the following section we will summarize the main findings of our work:

1. Most used functionalities provided by OpenMP feature execution environment routines are
used by 90% of all applications, and the most used routine from this group is omp get thread num
which is also the most used functionality overall.

2. The most used OpenMP directives (starting with #pragma omp)1 are for, critical, and
barrier (and all of these directives were already implemented and standardized in OpenMP
version 1.0).

3. The synchronization construct critical is present in more applications compared to barrier
or atomic, synchronization constructs regarding to tasking are used the least.

4. The most used OpenMP scheduling clause is static with default chunk size, followed by
dynamic with custom chunk size, the least used clause is guided with custom chunk size.

5. The most used combination of programming paradigms is [OpenMP + MPI], followed by
[OpenMP + MPI + CUDA], these combinations are used more often compared to pure
OpenMP.

1in Fortran it starts with !$omp

36

6. C is the most used programming language, followed by [C & Fortran], [C & C++], and [C &
C++ & Fortran]. The least used combination of programming languages is [Fortran & C++].
And finally, we can state that all of these features were already implemented and standardized
in Version 1.0 of OpenMP.

Beyond the main insights summarized above, there are many more potential insights to be
gained by looking at the source code statistics that we collected. For example, we also collected
how many OpenMP schedule clauses are used for each application, and where in the source code
they are (file and line of code). This information can directly guide HPC researchers to the specific
location in source code, where potential scheduling or load balancing changes can be implemented.

7.2 Future Work

This section will introduce potential future work that can extend and/or complement the work
presented in this thesis. Future work ranges from extending the application pool, extending the
programming paradigm coverage, to including more source code metrics. The specific future work
opportunities are listed below:

• Our script could be applied to a larger and more up-to-date collection of OpenMP applications,
to gain more representative insights that also reflect the latest usage of OpenMP features.

• The script that we developed also collects the individual functions of CUDA into a XLSX file.
Although these lists of features are currently not further processed, the script can be easily
adjusted to create similar plots, as presented in this thesis, also for CUDA applications.

• Another interesting continuation of this project is to correlate OpenMP, MPI, CUDA, etc.
usage, to see whether specific OpenMP functionality is more used with MPI as compared to
CUDA.

• Since our approach is based on source code, it can also be extended to include other non-
programming paradigm specific features, such as source code complexity.

37

Bibliography

[1] Ashwini M. Bhugul, International Journal of Computer Science and Mobile Computing, Vol.6
Issue.2, February 2017, pg. 90-94.

[2] David E. Bernholdt, Swen Boehm, George Bosilca, Manjunath GorentlaVenkata, Ryan E. Grant,
Thomas Naughton, Howard P. Pritchard, Martin Schulz, and Geoffroy R. Vallee. 2017. A survey
of MPI usage in the US exascale computing project. Concurrency and Computation: Practice
and Experience (2017), e4851.

[3] Laguna, I., Marshall, R., Mohror, K., Ruefenacht, M., Skjellum, A., & Sultana, N. (2019,
November). A large-scale study of MPI usage in open-source HPC applications. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis (pp. 1-14).

[4] Nawrin Sultana, Anthony Skjellum, Purushotham Bangalore, Ignacio Laguna, and Kathryn
Mohror. 2018. Understanding the Usage of MPI in Exascale Proxy Applications. Workshop on
Exascale MPI (ExaMPI). (2018).

[5] OpenMP - Application Programming Interface. https://www.openmp.org/wp-content/

uploads/OpenMP-API-Specification-5.0.pdf, Version 5.0 November 2018.

[6] OpenMP - The OpenMP API specification for parallel programming. https://www.openmp.
org/, Date: August 2019.

[7] Parallel Programming - Multithreading (OpenMP). https://wvuhpc.github.io/

2018-Lesson_4/03-openmp/index.html, Date: August 2019.

[8] Steven P. VanderWiel, Daphna Nathanson, and David J. Lilja. 1997. ”Complexity and perfor-
mance in parallel programming languages. In Proceedings Second International Workshop on
High-Level Parallel Programming Models and Supportive Environments”. IEEE, 3–12.

[9] Ying hao Xu Lin, ”Porting and tuning of the Mont-Blanc benchmarks to the multicore ARM
64 bit architecture”. Universitat Politècnica de Catalunya, Computer Engineering, FACULTAT
D’INFORMÀTICA DE BARCELONA (FIB). 2016.

38

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/
https://www.openmp.org/
https://wvuhpc.github.io/2018-Lesson_4/03-openmp/index.html
https://wvuhpc.github.io/2018-Lesson_4/03-openmp/index.html

Appendices

39

Appendix A

OpenMP Features and Commands

The following descriptions are taken from the OpenMP standard 5.0 [6].

• feature 1: a small description about feature 1

– functionality 1 in C (and F): a small description about functionality 1 of feature 1

– functionality 2 in C (and F): a small description about functionality 2 of feature 1

• feature 2: a small description about feature 2

– functionality 1 in C (and F): a small description about functionality 1 of feature 2

– functionality 2 in C (and F): a small description about functionality 2 of feature 2

Now let’s look at OpenMP features and their commands, each sorted alphabetically:

• Cancellation constructs: The cancel construct activates cancellation of the innermost en-
closing region of the type specified.

– #pragma omp cancel (!$omp cancel): ”Requests cancellation of the innermost
enclosing region of the type specified.”

– #pragma omp cancellation point (!$omp cancellation point): ”Introduces a
user-defined cancellation point at which tasks check if cancellation of the innermost
enclosing region of the type specified has been activated.”

• Combined constructs: Combined constructs are shortcuts for specifying one construct im-
mediately nested inside another construct containing a worksharing-loop construct with one
or more associated loops.

– #pragma omp master taskloop (!$omp master taskloop): ”Shortcut for speci-
fying a master construct containing a taskloop construct and no other statements.”

40

– #pragma omp master taskloop simd (!$omp master taskloop simd): ”Shortcut
for specifying a master construct containing a taskloop simd construct and no other
statements.”

– #pragma omp parallel for simd (!$omp parallel do simd): ”Shortcut for speci-
fying a parallel construct containing only one worksharing-loop SIMD construct.”

– #pragma omp parallel loop (!$omp parallel loop): ”Shortcut for specifying a
parallel construct containing a loop construct with one or more associated loops and no
other statements.”

– #pragma omp parallel master (!$omp parallel master): ”Shortcut for specifying
a parallel construct containing a master construct and no other statements.”

– #pragma omp parallel master taskloop (!$omp parallel master taskloop):
”Shortcut for specifying a parallel construct containing a master taskloop construct and
no other statements.”

– #pragma omp parallel master taskloop simd (!$omp parallel master taskloop
simd): ”Shortcut for specifying a parallel construct containing a master taskloop simd
construct and no other statements”

– #pragma omp parallel sections (!$omp parallel sections): ”Shortcut for speci-
fying a parallel construct containing a sections construct and no other statements.”

– #pragma omp target parallel (!$omp target parallel): ”Shortcut for specifying
a target construct containing a parallel construct and no other statements.”

– #pragma omp target parallel for (!$omp target parallel do): ”Shortcut for
specifying a target construct with a parallel worksharing loop construct and no other
statements.”

– #pragma omp target parallel for simd (!$omp target parallel do simd): Short-
cut for specifying a target construct with a parallel worksharing-loop SIMD construct
and no other statements.

– #pragma omp target parallel loop (!$omp target parallel loop): ”Shortcut for
specifying a target construct containing a parallel loop construct and no other state-
ments.”

– #pragma omp target simd (!$omp target simd): ”Shortcut for specifying a target
construct containing a simd construct and no other statements”

– #pragma omp target teams (!$omp target teams): ”Shortcut for specifying a
target construct containing a teams construct and no other statements.”

– #pragma omp target teams distribute (!$omp target teams distribute): ”Short-
cut for specifying a target construct containing a teams distribute construct and no other
statements.”

– #pragma omp target teams distribute parallel for (!$omp target teams dis-
tribute parallel do): ”Shortcut for specifying a target construct containing a teams
distribute parallel worksharing loop construct and no other statements.”

– #pragma omp target teams distribute parallel for simd (!$omp target teams
distribute parallel do simd): ”The omp distribute parallel for simd construct is a
composite construct. Clause can be any of the clauses that are accepted by the omp
distribute or omp parallel for simd directive with identical meanings and restrictions.”

41

– #pragma omp target teams distribute simd (!$omp target teams distribute
simd): ”Shortcut for specifying a target construct containing a teams distribute simd
construct and no other statements.”

– #pragma omp target teams loop (!$omp target teams loop): ”Shortcut for
specifying a target construct containing a teams loop construct and no other statements.”

– #pragma omp teams distribute (!$omp teams distribute): ”Shortcut for speci-
fying a teams construct containing a distribute construct and no other statements.”

– #pragma omp teams distribute parallel for (!$omp teams distribute parallel
do): ”Shortcut for specifying a teams construct containing a distribute parallel work-
sharing loop construct and no other statements.”

– #pragma omp teams distribute parallel for simd (!$omp teams distribute
parallel do simd): ”Shortcut for specifying a teams construct containing a distribute
parallel work-sharing-loop SIMD construct and no other statements.”

– #pragma omp teams distribute simd (!$omp teams distribute simd): ”Short-
cut for specifying a teams construct containing a distribute simd construct and no other
statements.”

– #pragma omp teams loop (!$omp teams loop): ”Shortcut for specifying a teams
construct containing a loop construct and no other statements.”

– !$omp parallel workshare1: ”Shortcut for specifying a parallel construct containing
a workshare construct and no other statements.”

• Data environment directives: This one specifies that variables are replicated, with each
thread having its own copy.

– #pragma omp declare mapper (!$omp declare mapper): ”Declares a user-defined
mapper for a given type, and may define a mapper-identifier for use in a map clause.”

– #pragma omp declare reduction (!$omp declare reduction): ”Declares a reduction-
identifier that can be used in a reduction clause.”

– #pragma omp threadprivate (!$omp threadprivate): ”Specifies that variables are
replicated, with each thread having its own copy. Each copy of a threadprivate variable
is initialized once prior to the first reference to that copy.”

• Device directives and construct: This one creates a device data environment for the
extent of the region.

– #pragma omp declare target (!$omp declare target): ”A declarative directive
that specifies that variables, functions, and subroutines are mapped to a device.”

– #pragma omp target (!$omp target): ”Map variables to a device data environment
and execute the construct on that device”

– #pragma omp target data (!$omp target data): ”Creates a device data environ-
ment for te extent of the region.”

– #pragma omp target enter data (!$omp target enter data): Maps variables to
a device data environment.

1no C command available

42

– #pragma omp target exit data (!$omp target exit data): Unmaps variables from
a device data environment.

– #pragma omp target update (!$omp target update): ”Makes the correspond-
ing list items in the device data environment consistent with their original list items,
according to the specified motion clauses.”

• Device memory routines: This one describes routines that support allocation of memory
and management of pointers in the data environments of target devices.

– omp target alloc: Allocates memory in a device data environment.

– omp target associate ptr: ”Maps storage to which a device pointer points to stor-
age to which a host pointer points. The device pointer may be the result of a call to
omp target alloc or have been obtained from implementation-defined runtime routines.”

– omp target disassociate ptr: ”Removes the association between a host pointer and
a device address on a given device.”

– omp target free: ”Frees the device memory allocated by the omp target alloc routine.”

– omp target is present: ”Validates whether a host pointer has an associated device
buffer on a given device.”

– omp target memcpy: ”Copies memory between any combination of host and device
pointers.”

– omp target memcpy rect: ”Copies a rectangular subvolume from a multi-dimensional
array to another multi-dimensional array.”

• Distribute loop constructs: These construct specifies the iterations of one or more loops
that will be executed by the initial teams in the context of their implicit tasks.

– #pragma omp distribute (!$omp distribute): Specifies loops which are executed
by the initial teams.

– #pragma omp distribute parallel for (!$omp distribute parallel do): ”These
constructs specify a loop that can be executed in parallel by multiple threads that are
members of multiple teams.”

– #pragma omp distribute parallel for simd (!$omp distribute parallel do simd):
”Specifies a loop that can be executed concurrently using SIMD instructions in parallel
by multiple threads that are members of multiple teams.”

– #pragma omp distribute simd (!$omp distribute simd): ”Specifies loops which
are executed concurrently using SIMD instructions and the initial teams.”

• Environment Variables: These variables specify the settings of the ICVs (Internal Control
Variables) that affect the execution of OpenMP programs.

– OMP AFFINITY FORMAT: ”Sets the initial value of the affinity-format-var ICV
defining the format when displaying OpenMP thread affinity information. The format is
a character string that may contain as substrings one or more field specifiers, in addition
to other characters. The format of each field specifier is: %[[[0].] size] type, where the
field type may be either the short or long names”

43

– OMP ALLOCATOR: ”Sets the def-allocator-var ICV that specifies the default allo-
cator for allocation calls, directives, and clauses that do not specify an allocator. arg
is a case-insensitive, predefined allocator. OpenMP memory allocators can be used to
make allocation requests. The behavior of the allocation process can be affected by the
allocator traits specified.”

– OMP CANCELLATION: ”Sets the cancel-var ICV. var may be true or false. If true,
the effects of the cancel construct and of cancellation points are enabled and cancellation
is activated.”

– omp cgroup mem alloc: ”Sets the def-allocator-var ICV that specifies the default
allocator for allocation calls, directives, and clauses that do not specify an allocator. arg
is a case-insensitive, predefined allocator. OpenMP memory allocators can be used to
make allocation requests. The behavior of the allocation process can be affected by the
allocator traits specified.”

– omp const mem alloc: ”Sets the def-allocator-var ICV that specifies the default al-
locator for allocation calls, directives, and clauses that do not specify an allocator. arg
is a case-insensitive, predefined allocator. OpenMP memory allocators can be used to
make allocation requests. The behavior of the allocation process can be affected by the
allocator traits specified.”

– OMP DEBUG: ”Sets the debug-var ICV. var may be enabled or disabled. If enabled,
the OpenMP implementation will collect additional runtime information to be provided
to a third x0002 party tool. If disabled, only reduced functionality might be available in
the debugger.”

– OMP DEFAULT DEVICE: ”Sets the default-device-var ICV that controls the de-
fault device number to use in device constructs.”

– omp default mem alloc: ”Sets the def-allocator-var ICV that specifies the default
allocator for allocation calls, directives, and clauses that do not specify an allocator. arg
is a case-insensitive, predefined allocator. OpenMP memory allocators can be used to
make allocation requests. The behavior of the allocation process can be affected by the
allocator traits specified.”

– OMP DISPLAY ENV: ”If var is TRUE, instructs the runtime to display the OpenMP
version number and the value of the ICVs associated with the environment variables as
name=value pairs. If var is VERBOSE, the runtime may also display vendor-specific
variables. If var is FALSE, no information is displayed.”

– OMP DYNAMIC: ”Sets the dyn-var ICV. var may be TRUE or FALSE. If TRUE,
the implementation may dynamically adjust the number of threads to use for executing
parallel regions.”

– omp high bw mem alloc: ”Sets the def-allocator-var ICV that specifies the default
allocator for allocation calls, directives, and clauses that do not specify an allocator. arg
is a case-insensitive, predefined allocator. OpenMP memory allocators can be used to
make allocation requests. The behavior of the allocation process can be affected by the
allocator traits specified.”

– omp large cap mem alloc: ”Sets the def-allocator-var ICV that specifies the default
allocator for allocation calls, directives, and clauses that do not specify an allocator. arg

44

is a case-insensitive, predefined allocator. OpenMP memory allocators can be used to
make allocation requests. The behavior of the allocation process can be affected by the
allocator traits specified.”

– omp low lat mem alloc: ”Sets the def-allocator-var ICV that specifies the default
allocator for allocation calls, directives, and clauses that do not specify an allocator. arg
is a case-insensitive, predefined allocator. OpenMP memory allocators can be used to
make allocation requests. The behavior of the allocation process can be affected by the
allocator traits specified.”

– OMP MAX ACTIVE LEVELS: ”Sets the max-active-levels-var ICV that controls
the maximum number of nested active parallel regions.”

– OMP MAX TASK PRIORITY: ”Sets the max-task-priority-var ICV that controls
the use of task priorities.”

– OMP NESTED: Controls nested parallelism with max-active-levels-var ICV.

– OMP NUM THREADS: ”Sets the nthreads-var ICV for the number of threads to
use for parallel regions.”

– OMP PLACES: ”Sets the place-partition-var ICV that defines the OpenMP places
available to the execution environment. places is an abstract name (threads, cores,
sockets, or imple x0002 mentation-defined) or a list of non-negative numbers”

– OMP PROC BIND: ”Sets the value of the global bind-var ICV, setting the thread
affinity policy to use for parallel regions at the corresponding nested level. policy can be
the values true, false, or a comma-separated list of master, close, or spread in quotes.”

– omp pteam mem alloc: ”Sets the def-allocator-var ICV that specifies the default
allocator for allocation calls, directives, and clauses that do not specify an allocator.
arg is a case-insensitive, predefined allocator. OpenMP memory allocators can be used
to make allocation requests. The behavior of the allocation process can be affected by
the allocator traits specified.”

– OMP SCHEDULE: ”Sets the run-sched-var ICV for the runtime schedule kind and
chunk size. modifier is one of monotonic or nonmonotonic; kind is one of static, dynamic,
guided, or auto.”

– OMP STACKSIZE: ”Sets the stacksize-var ICV that specifies the size of the stack for
threads created by the OpenMP imple x0002 mentation. size is a positive integer that
specifies stack size. B is bytes, K is kilobytes, M is megabytes, and G is gigabytes. If
unit is not specified, size is measured in K.”

– OMP TARGET OFFLOAD: ”Sets the initial value of the target-offload-var ICV. arg
must be one of MANDATORY, DISABLED, or DEFAULT.”

– OMP THREAD LIMIT: ”Sets the thread-limit-var ICV that controls the number of
threads participating in the OpenMP program.”

– omp thread mem alloc: ”Sets the def-allocator-var ICV that specifies the default
allocator for allocation calls, directives, and clauses that do not specify an allocator. arg
is a case-insensitive, predefined allocator. OpenMP memory allocators can be used to
make allocation requests. The behavior of the allocation process can be affected by the
allocator traits specified.”

45

– OMP TOOL: ”Sets the tool-var ICV. If disabled, no first-party tool will be loaded
nor initialized. If enabled the OpenMP implementation will try to find and activate a
first-party tool.”

– OMP TOOL LIBRARIES: ”Sets the tool-libraries-var ICV to a list of tool libraries
that will be considered for use on a device where an OpenMP implementation is be-
ing initialized. library-list is a list of dynamically-linked libraries, each specified by an
absolute path.”

– OMP WAIT POLICY: ”Sets the wait-policy-var ICV that provides a hint to an
OpenMP implementation about the desired behavior of waiting threads. Valid values
for policy are ACTIVE (waiting threads consume processor cycles while waiting) and
PASSIVE.”

• Event routine: This one describes a routine that supports OpenMP event objects.

– omp fulfill event: Fulfills and destroys an OpenMP event.

• Execution environment routines: hese are routines that affect and monitor threads, pro-
cessors, and the parallel environment.

– omp capture affinity: ”Prints the OpenMP thread affinity information into a buffer
using the format specification provided.”

– omp display affinity: ”Prints the OpenMP thread affinity information using the for-
mat specification provided.”

– omp get active level: ”Returns the value of the active-level-vars ICV for the current
device, which is the number of active, nested parallel regions on the device enclosing the
task containing the call.”

– omp get affinity format: ”Returns the value of the affinity-format-var ICV on the
device.”

– omp get ancestor thread num: ”Returns, for a given nested level of the current
thread, the thread number of the ancestor of the current thread.”

– omp get cancellation: ”Returns the value of the cancel-var ICV, which is true if
cancellation is activated; otherwise it returns false.”

– omp get default device: ”Returns the value of the default-device-var ICV, which
determines the default target device.”

– omp get device num: ”Returns the device number of the device on which the calling
thread is executing.”

– omp get dynamic: ”This routine returns the value of the dyn-var ICV, which is true
if dynamic adjustment of the number of threads is enabled for the current task.”

– omp get initial device: Returns a device number representing the host device.

– omp get level: ”Returns the value of the levels-var ICV for the current device, which
is the number of nested parallel regions on the device that enclose the task containing
the call.”

– omp get max active levels: ”Returns the value of max-active-levels-var ICV, which
determines the maximum number of nested active parallel regions.”

46

– omp get max task priority: ”Returns the maximum value that can be specified in
the priority clause.”

– omp get max threads: ”Returns an upper bound on the number of threads that could
be used to form a new team if a parallel construct without a num threads clause were
encountered after execution returns from this routine.”

– omp get nested: ”Returns whether nested parallelism is enabled or disabled, according
to the value of the max-active-levels-var ICV.”

– omp get num devices: Returns the number of target devices.

– omp get num places: ”Returns the number of places available to the execution envi-
ronment in the place list.”

– omp get num procs: ”Returns the number of processors that are available to the
current device at the time the routine is called.”

– omp get num teams: ”Returns the number of teams in the current teams region, or
1 if called from outside a teams region.”

– omp get num threads: ”Returns the number of threads in the current team. The
binding region for an omp get num threads region is the innermost enclosing parallel
region. If called from the sequential part of a program, this routine returns 1.”

– omp get partition num places: ”Returns the number of places in the place-partition-
var ICV of the innermost implicit task.”

– omp get partition place nums: ”Returns the list of place numbers corresponding to
the places in the place-partition-var ICV of the innermost implicit task.”

– omp get place num: ”Returns the place number of the place to which the encounter-
ing thread is bound.”

– omp get place num procs: ”Returns the number of processors available to the exe-
cution environment in the specified place.”

– omp get place proc ids: ”Returns numerical identifiers of the processors available to
the execution environment in the specified place.”

– omp get proc bind: ”Returns the thread affinity policy to be used for the subsequent
nested parallel regions that do not specify a proc bind clause.”

– omp get schedule: ”Returns the value of run-sched-var ICV, which is the schedule
applied when runtime schedule is used.”

– omp get supported active levels: Returns the number of active levels of parallelism
supported.

– omp get team num: ”Returns the team number of the calling thread. The team num-
ber is an integer between 0 and one less than the value returned by omp get num teams,
inclusive.”

– omp get team size: Returns, for a given nested level of the current thread, the size of
the thread team to which the ancestor or the current thread belongs.

– omp get thread limit: ”Returns the value of the thread-limit-var ICV: the maximum
number of OpenMP threads available in contention group.”

47

– omp get thread num: ”Returns the thread number of the calling thread, within the
current team.”

– omp in final: ”Returns true if the routine is executed in a final task region; otherwise,
it returns false.”

– omp in parallel: ”Returns true if the active-levels-var ICV is greater than zero; other-
wise it returns false.”

– omp is initial device: ”Returns true if the current task is executing on the host device;
otherwise, it returns false”

– omp lock t: ”In the following example, note that the argument to the lock functions
should have type omp lock t, and that there is no need to flush it. The lock functions
cause the threads to be idle while waiting for entry to the first critical section, but to do
other work while waiting for entry to the second”

– omp nest lock t: These routines provide a means of setting an OpenMP lock

– omp pause resource: ”Allows the runtime to relinquish resources used by OpenMP
on the specified device. Valid kind values include omp pause soft and omp pause hard.”

– omp set affinity format: ”Sets the affinity format to be used on the device by setting
the value of the affinity-format-var ICV”

– omp set default device: ”Assigns the value of the default-device-var ICV, which de-
termines default target device.”

– omp set dynamic: ”Enables or disables dynamic adjustment of the number of threads
available for the execution of subsequent parallel regions by setting the value of the
dyn-var ICV”

– omp set max active levels: ”Limits the number of nested active parallel regions, by
setting max-active-levels-var ICV”

– omp set nested: ”Enables or disables nested parallelism, by setting the max-active-
levels-var ICV.”

– omp set num threads: ”Affects the number of threads used for subsequent parallel
constructs not specifying a num threads clause, by setting the value of the first element
of the nthreads-var ICV of the current task to num threads.”

– omp set schedule: ”Affects the schedule that is applied when runtime is used as sched-
ule kind, by setting the value of the run-sched-var ICV.”

• Lock routines: These are a set of general-purpose lock routines that can be used for synchro-
nization. These general-purpose lock routines operate on OpenMP locks that are represented
by OpenMP lock variables. Two types of locks are supported: simple locks and nest-able
locks. A nest-able lock can be set multiple times by the same task before being unset; a
simple lock cannot be set if it is already owned by the task trying to set it.

– omp destroy lock: Ensure that the OpenMP lock is uninitialized.

– omp destroy nest lock: Ensure that the OpenMP lock is uninitialized.

– omp init lock: Initialize an OpenMP lock.

– omp init lock with hint: Initialize an OpenMP lock with a hint.

48

– omp init nest lock: Initialize an OpenMP lock.

– omp init nest lock with hint: Initialize an OpenMP lock with a hint.

– omp set lock: ”Sets an OpenMP lock. The calling task region is suspended until the
lock is set.”

– omp set nest lock: ”Sets an OpenMP lock. The calling task region is suspended until
the lock is set.”

– omp test lock: ”Attempt to set an OpenMP lock but do not suspend execution of the
task executing the routine.”

– omp test nest lock: ”Attempt to set an OpenMP lock but do not suspend execution
of the task executing the routine.”

– omp unset lock: Unsets an OpenMP lock.

– omp unset nest lock: Unsets an OpenMP lock.

• Loop construct: This construct specifies that the iterations of the associated loops may
execute concurrently and permits the encountering thread(s) to execute the loop accordingly.

– #pragma omp loop (!$omp loop): ”Specifies that the iterations of the associated
loops may execute concurrently and permits the encountering thread(s) to execute the
loop accordingly.”

• Master construct: The master construct specifies a structured block that is executed by
the master thread of the team.

– #pragma omp master (!$omp master): ”Specifies a structured block that is exe-
cuted by the master thread of the team.”

• Memory management directive: Predefined memory spaces represent storage resources
for storage and retrieval of variables.

– #pragma omp allocate (!$omp allocate): Specifies how a set of variables is allo-
cated.

• Memory management routines: This one describes routines that support memory man-
agement on the current device.

– omp alloc: Requests a memory allocation from a memory allocator.

– omp allocator handle t: ”Specifies the memory allocator to be used to obtain storage
for private variables of a directive.”

– omp destroy allocator: Releases all resources used by the allocator handle.

– omp free: Deallocates previously allocated memory.

– omp get default allocator: ”Returns the memory allocator to be used by allocation
calls, allocate directives, and allocate clauses that do not specify an allocator.”

– omp init allocator: Initializes allocator and associates it with a memory space.

– omp set default allocator: ”Sets the default memory allocator to be used by alloca-
tion calls, allocate directives, and allocate clauses that do not specify an allocator.”

49

• Parallel construct: This feature creates a team of OpenMP threads that execute the region.

– #pragma omp parallel (!$omp parallel): ”Creates a team of OpenMP threads that
execute the region.”

• Requires directive: This feature specifies the functionality that an implementation must
provide so that the code to compile and to execute is correct.

– #pragma omp requires (!$omp requires): ”Specifies the features that an imple-
mentation must provide in order for the code to compile and to execute correctly.”

• Scan directive: This feature specifies that scan computations update the list items on each
iteration.

– #pragma omp scan (!$omp scan): ”Specifies that each iteration of scan computa-
tions update the list items”

• SIMD directives: The simd construct can be applied to a loop to indicate that the loop can
be transformed into a SIMD loop (this means, multiple iterations of the loop can be executed
concurrently using SIMD directives).

– #pragma omp simd (!$omp simd): ”Applied to a loop to indicate that the loop can
be transformed into a SIMD loop.”

• Synchronization constructs: A synchronization construct orders the completion of code
executed by different threads. This construct restricts execution of the associated structured
block to a single thread at a time.

– #pragma omp atomic (!$omp atomic): Ensures a specific storage location is ac-
cessed atomically.

– #pragma omp barrier (!$omp barrier): ”Specifies an explicit barrier that prevents
any thread in a team from continuing past the barrier until all threads in the team
encounter the barrier.”

– #pragma omp critical (!$omp critical): ”Restricts execution of the associated struc-
tured block to a single thread at a time.”

– #pragma omp depobj (!$omp depobj): ”Stand-alone directive that initalizes, up-
dates, or destroys an OpenMP depend object.”

– #pragma omp flush (!$omp flush): ”Makes a thread’s temporary view of mem-
ory consistent with memory, and enforces an order on the memory operations of the
variables.”

– #pragma omp ordered (!$omp ordered): ”Specifies a structured block that is to
be executed in loop iteration order in a parallelized loop, or it specifies cross iteration
dependences in a doacross loop nest.”

– #pragma omp taskgroup (!$omp taskgroup): ”Specifies a region which a task
cannot leave until all its descendant tasks generated inside the dynamic scope of the
region have completed”

– #pragma omp taskwait (!$omp taskwait): ”Specifies a wait on the completion of
child tasks of the current task.”

50

• Tasking constructs: This construct defines an explicit task.

– #pragma omp task (!$omp task): ”Defines an explicit task. The data environment
of the task is created according to the data-sharing attribute clauses on the task construct
and any defaults that apply.”

– #pragma omp taskloop (!$omp taskloop): ”Specifies that the iterations of one or
more associated loops will be executed in parallel using OpenMP tasks.”

– #pragma omp taskloop simd (!$omp taskloop simd): ”Specifies that a loop can
be executed concurrently using SIMD instructions, and that those iterations will also be
executed in parallel using OpenMP tasks.”

– #pragma omp taskyield (!$omp taskyield): ”Specifies that the current task can
be suspended in favor of execution of a different task.”

• Teams construct: This feature creates a league of initial teams and the initial thread in
each team executes the region.

– #pragma omp teams (!$omp teams): ”Creates a league of initial teams where the
initial thread of each team executes the region.”

• Timing routines: This one describes routines that support a portable wall clock timer.

– omp get wtick: ”Returns the precision of the timer (seconds between ticks) used by
omp get wtime”

– omp get wtime: Returns elapsed wall clock time in seconds.

• Tool Activation: A function to activate a tool.

– ompt callback t: ”All callbacks registered with ompt set callback or returned by ompt get callback
use the dummy type signature ompt callback t. While this is a compromise, it is better
than providing unique runtime entry points with a precise type signatures to set and get
the callback for each unique runtime entry point type signature.”

– ompt set callback: ”To monitor execution of an OpenMP program on the host device,
a tool’s initializer must register to receive notification of events that occur as an OpenMP
program executes. A tool can register callbacks for OpenMP events using the runtime
entry point known as ompt set callback.”

– ompt set error: ”If the ompt set callback runtime entry point is called outside a
tool’s initializer, registration of supported callbacks may fail with a return code of
ompt set error.”

– ompt start tool: ”A tool indicates its interest in using the OMPT interface by provid-
ing a non-NULL pointer to an ompt start tool result t structure to an OpenMP imple-
mentation as a return value from ompt start tool.”

• Tool control routine: This routine enables a program to pass commands to an active tool.

– omp control tool: Enables a program to pass commands to an active tool.

51

• Variant directives: There are two variant directives. The meta-directive is a directive that
can specify multiple directive variants of which one may be conditionally selected to replace
the meta-directive based on the enclosing OpenMP context. On the other hand, the declare
variant directive declares a specialized variant of a base function and specifies the context in
which that specialized variant is used.

– #pragma omp declare variant (!$omp declare variant): ”Declares a specialized
variant of a base function and the context in which it is used.”

– #pragma omp metadirective (alternative in C: #pragma omp begin metadi-
rective and in Fortran: !$omp metadirective): ”A directive that can specify
multiple directive variants, one of which may be conditionally selected to replace the
metadirective based on the enclosing OpenMP context.”

• Worksharing constructs: This non-iterative construct contains a set of structured blocks
that are to be distributed among and executed by the threads in a team.

– #pragma omp sections (!$omp sections): ”A noniterative worksharing construct
that contains a set of structured blocks that are to be distributed among and executed
by the threads in a team.”

– #pragma omp single (!$omp single): ”Specifies that the associated structured block
is executed by only one of the threads in the team.”

– !$omp workshare2: ”Divides the execution of the enclosed structured block into sep-
arate units of work, each executed only once by one thread.”

• Worksharing-loop construct: A worksharing construct distributes the execution of the
corresponding region among the members of the team that encounters it.

– #pragma omp for (!$omp do): ”Specifies that the iterations of associated loops will
be executed in parallel by threads in the team in the context of their implicit tasks.”

• Worksharing-Loop SIMD: Applied to a loop to indicate that the loop can be transformed
into a SIMD loop that will be executed in parallel by threads in the team.

– #pragma omp declare simd (!$omp declare simd): ”Applied to a function or
a subroutine to enable the creation of one or more versions that can process multiple
arguments using SIMD instructions from a single invocation in a SIMD loop.”

– #pragma omp for simd (!$omp do simd): ”Applied to a loop to indicate that the
loop can be transformed into a SIMD loop that will be executed in parallel by threads
in the team.”

2no C command available

52

Appendix B

List of HPC Applications &
Release or Last Update Year

Table B.1: List of HPC Applications & Release or Last Update Year (Part I)

Application names Year Application names Year

113.GemsFDTD 2007 502.gcc r 2017

125.RAxML 2007 505.mcf r 2017

127.wrf2 2007 507.cactuBSSN r 2017

147.l2wrf2 2007 521.wrf r 2017

305.md 2012 525.x264 r 2017

352.nab 2012 526.blender r 2017

357.bt331 2012 527.cam4 r 2017

358.botsalgn 2012 538.imagick r 2017

359.botsspar 2012 544.nab r 2017

360.ilbdc 2012 549.fotonik3d r 2017

362.fma3d 2012 554.roms r 2017

363.swim 2012 557.xz r 2017

367.imagick 2012 Alya missing

370.mgrid331 2012 amgcl-1.3.99 2012

371.applu331 2012 AMG-master 2014

376.kdtree 2012 ascent-0.5.1 2020

53

Table B.3: List of HPC Applications & Release or Last Update Year (Part II)

Application names Year Application names Year

b+tree 2015 feltor-5.0 2018

backprop 2015 FLASH4.6.2 2019

bfs 2015 gamess 2018

cfd 2015 GenASiS Basics-3.1 2019

Chombo-master 2015 genesis-1.5.1 2020

CloverLeaf ref-1.3 2015 gromacs-2020.3 2020

code saturne-6.2.0 2020 heartwall 2007

Comb-0.1.1 2019 hotspot 2007

CoMD-1.1 2017 hotspot3D 2007

CoreNeuron-0.21 2020 hpcg-3.1 2020

CoSP2-master 2015 hpgmg 2018

cp2k-7.1.0 2019 hypre-2.20.0 2020

E3SM-1.1.0 2019 kmeans 2007

EigenExa-2.4b 2018 Kratos-8.0.1 2020

elmerfem-release-8.4 2019 lammps-patch 18Sep2020 2020

faunus-2.4.1 2020 lavaMD 2007

54

Table B.5: List of HPC Applications & Release or Last Update Year (Part III)

Application names Year Application names Year

leukocyte 2007 nest-simulator-2.20.0 2018

lud 2007 nn 2007

LULESH-2.0.2 2017 ntchem-mini-1.2 2019

meep-1.16.0 2020 nw 2007

miniAMR-1.6.4 2019 nwchem-7.0.1-release 2018

miniFE-2.2.0 2017 Nyx-19.08 2018

miniMD 2019 particlefilter 2007

miniSMAC-2.0.0 2016 PENNANT-pennant v0.9 2016

miniTri-1.0 2017 picsar 2019

miniVite-1.1 2018 plasma 2014

moab 2019 primecount-6.1 2019

mummergpu 2007 qbox 67 4 2014

MUMPS 5.3.4 2017 qe-6.6 2019

myocyte 2007 qmcpack-3.9.2 2018

NAMD 2.14 Source 2019 rocALUTION-rocm-3.8.0 2019

nekbone 2014 siesta-4.0.2 2018

Table B.7: List of HPC Applications & Release or Last Update Year (Part IV)

Application names Year Application names Year

SimpleMOC-4 2018 TeaLeaf ref-1.3 missing

souffle-2.0.2 2020 Trilinos-trilinos-release-13-0-0 2019

sphynx missing tycho2 2019

splatt-1.1.0 2018 vlasiator 2021

srad 2007 WRF-4.2.1 2018

streamcluster 2007 yambo-4.5.0 2019

sw4lite-RAJA-v1.0 2019

55

	Introduction
	Motivation, Goal and Research Questions
	Outline

	Related Work
	Laguna et al. vs. Older Work
	Laguna et al. vs. Thesis

	Background
	OpenMP
	OpenMP Feature Groups

	Methods
	OpenMP Applications
	Usage Collection Script
	Plotting with MS Excel
	Difficulties & Problem-Solving

	Results
	Unique OpenMP Features
	Usage of Unique OpenMP Features by Applications
	Usage of Execution Environment Routines
	Usage of Synchronization Constructs
	Usage of Schedule Clauses
	Usage of Functions by OpenMP Standard Versions
	Usage of Features by oldest OpenMP Standard Versions
	Usage of Multi-Threaded Programming Models
	Usage of Programming Languages
	Usage of Programming Languages vs. Sample Code Size (Part I - Size by Lines of Code)
	Usage of Programming Languages vs. Sample Code Size (Part II - Size by Files count)
	Top 5 OpenMp Commands

	Discussion
	Unique OpenMP Features
	Usage of Unique OpenMP Features by Applications
	Usage of Execution Environment Routines
	Usage of Synchronization Constructs
	Usage of Schedule Clauses
	Usage of Functions by OpenMP Standard Versions
	Usage of Features by oldest OpenMP Standard Versions
	Usage of Multi-Threaded Programming Models
	Usage of Programming Languages
	Usage of Programming Languages vs. Sample Code Size (Part I - Size by Lines of Code)
	Usage of Programming Languages vs. Sample Code Size (Part II - Size by Files count)
	Top 5 OpenMp Commands

	Conclusion
	Main Insights
	Future Work

	Appendices
	OpenMP Features and Commands
	List of HPC Applications & Release or Last Update Year

