
Classifying jobs and predicting applications

in HPC systems

Master Project

The University of Basel

Faculty of Science

Department of Mathematics and Computer Science

HPC Research Group

Examiner: Prof Dr. Florina M. Ciorba

Supervisor: Thomas Jakobsche

Author: Hari Narayanan

Email: hari.narayanan@stud.unibas.ch

December 31, 2022

Abstract

High-performance computing has high resource usage with high-performance requirements. Under-
standing and optimizing resource usage while maintaining high performance is one of the biggest
challenges in this area. In this project, we determine a way to classify jobs based on the application
and predict which application will be executed based on the job. We also identify opportunities for
using application knowledge to improve HPC resource consumption and save energy. Here, we gen-
erated hashes of nm commands, strings, and ldd and compared them. We first used the traditional
hashing technique, which was more complex and failed to consider the changes that e↵ects changes
in a hash that could misclassify the applications. We use fuzzy hashing as context-based piece-wise
hashing to compare hashes of di↵erent applications. Here, we demonstrate the classification of jobs
based on a similarity percentage between the hashes. We used the executables from NAS parallel
benchmarks and classified them based on the application. As mentioned, there are eight bench-
marks, including five kernels and three pseudo applications. We could classify the applications in
clusters using an appropriate threshold using fuzzy hashing.

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Challenges . 2
1.3 Goals . 2

2 Related Work 3

3 Methods 4
3.1 nm-command . 4
3.2 ldd command . 5
3.3 strings Command . 5
3.4 Initial approach . 6
3.5 Fuzzy Hashing . 7

4 Results 13

5 Discussion 16

1

Chapter 1

Introduction

HPC systems submit various jobs in large quantities, leading to an increase in performance issues,
which in turn consumes much power, increasing resource utilization. The idea is to classify the jobs
application-wise before execution so we can predict the power usage and performance. As mentioned
in the research paper by Yamamoto, they could predict jobs with 92 percent accuracy since resource
usage and power consumption depend on the applications being executed. In the research paper,
they proposed predicting the applications’ power consumption. The proposed method was to extract
the features of the executable and classify them based on the similarity of the hashes.

1.1 Motivation

In our current HPC systems, while we are submitting the jobs, the only details are the job name
and the executable’s name. The job names are chosen arbitrarily and need to be appropriately
labeled. With the lack of the current practice of the jobs and executables needing to be labeled
appropriately, we have the problem of identifying the application where the executable belongs.
The idea is to label/classify the jobs before the execution, so we know the application and the
resources required to run the same.

1.2 Challenges

The answer to the question is not trivial because of the security aspects of cryptocurrency mining
in HPC systems. We also face resource bottlenecks if the same application being executed multiple
times has a di↵erent performance which shouldn’t be the case. In many applications, we could
reduce CPU frequencies without losing performance. It can be best achieved if we know which
application runs inside a job. If we know the application in the job, we could also co-schedule jobs
on the same nodes.

1.3 Goals

This project aims to find a way to classify and cluster the executables based on the application
or a programming paradigm, which can help us predict the applications that would be running on

2

the nodes. To achieve the mentioned goals, we need to extract the features of the executables and
compare their similarity with each other. Further, we cluster the binaries based on their similarities.

Chapter 2

Related Work

There are a lot of methods and approaches to predicting and classifying jobs in HPC systems.
We have used the method expressed in a research paper by Yamamoto, where they performed
classification using the hash extracted from the executables. In this paper, the main idea is to
extract the features of the file and place them in an application class. This helps determine the
application class before the job is executed, which can, in turn, predict the application’s resource
usage. They have also seen its usage in the prediction of power usage of the application based on
history.

In the paper by Yamamoto[1], they extract features and check the similarity of the symbol
sets where they can be compared for the same application. The symbol sets generated from these
features are placed in the feature vector. They measure the feature vectors’ degree of similarity,
called cosine similarity. Here, they identify the optimal threshold for classification.

We also came across a paper by Denis Shaikhislamov[2] where they use machine learning methods
to detect similar supercomputer applications. Here they used autoencoders and Doc2Vec to detect
similarities between the applications. They have also used static and dynamic analysis, which was
used for sub-classification. The future work from this paper indicates using the techniques for
further classification.

Our first idea was to go with the method described by Yamomoto and use the sci-kit learn
library from python and generate similarities based on the distance between the vectors. We then
switched to fuzzy hashing, which was relatively fast and e↵ective, and hashes were easily categorized
because of context-based piecewise hashing.

3

Chapter 3

Methods

We are using hashes of nm, ldd and strings command to compare and cluster the files.

3.1 nm-command

The nm command displays information about symbols in a specific file(executable or binary). The
nm command reports numerical values in decimal notation by default. The nm command writes
the following symbols in the output:

• Symbol Name

• Symbol Type

• Library or Object Name

Table 3.1: Symbol type description in nm

[3]

Symbol Description
A Global absolute symbol.
a Local absolute symbol.
B Global bss symbol.
b Local bss symbol
D Global data symbol
d Local data symbol
f Source file name symbol.
L Global thread-local symbol (TLS).
l Static thread-local symbol (TLS)
T Global text symbol
t Local text symbol
U Undefined symbol

4

Output for nm Command

[naraya0001@dmi−c l−l o g i n nas−mpi−nmout] $ nm bt .A. x
U abort@GLIBC 2 . 2 . 5

000000000053 b158 b abo r t on ex i t
0000000000517470 r ABS MASK

U access@GLIBC 2 . 2 . 5
0000000000441700 T accumulate norms
000000000044 f e40 t a c qu i r e l u b r e s ou r c e
000000000043 e8a0 T add
00000000004 e54a0 T addq
00000000004 e54 f0 t addq abs
00000000004 e5540 t addq abs .A
00000000004 e4240 t addq abs .L
. . .

3.2 ldd command

The ldd command lists the names of for all shared object dependencies like shared libraries.

Output for ldd Command

[naraya0001@dmi−c l−l o g i n nas−omp−lddout] $ ldd bt .A. x
l inux−vdso . so . 1 => (0 x00007f fda4975000)
l i bmp i f o r t . so . 12 => /opt/apps/ easybu i ld / so f tware / impi /
2021.4.0− i n t e l −compi lers −2021.4.0/mpi /2021 .4 . 0/ l i b /
l i bmp i f o r t . so . 12 (0 x00002b7c0e878000)
l ibmpi . so . 12 => /opt/apps/ easybu i ld / so f tware / impi /
2021.4.0− i n t e l −compi lers−
. . .

3.3 strings Command

The strings command looks through all printable characters in the file.

5

Output for strings Command

[naraya0001@dmi−c l−l o g i n nas−omp−s t r i n g s ou t] $ s t r i n g s bt .A. x
/ l i b 6 4 / ld−l inux−x86−64. so . 2
R88s

gmon s t a r t
f c n t l

e r r n o l o c a t i o n
l s e ek64
system
r a i s e
s i g a c t i o n
p t h r e a d s e l f
p thread mutex in i t
wr i t e
nanos leep
pth r ead key c r ea t e
p t h r e a d g e t s p e c i f i c
p t h r e a d s e t s p e c i f i c
. . .

3.4 Initial approach

Our initial approach was to generate hashed from nm, string, and ldd. We compare these hashes,
put them on feature vectors, and identify the distance between them. The hashes generated looked
like the ones as presented in the Table 3.1. The distance would generate the degree of similarity,
and further, we perform classification. We have a significant drawback using regular hashing, where
the complete hash changes with a slight change in the executable. This method might need fixing
with classification and would misclassify the executables. Hence, we used fuzzy hashing to move
further with the research.

Table 3.2: Hash table for BT application from NAS benchmarks
BT

Applicatio Mod-
ules

nm strings ldd

A c3e29c4f08d5a5... 91322cec66c8a57... 8585df828902fc9...
B c3e29c4f08d5a5... af97c498e9d2005... 0ed2d9761f99b4...
C c3e29c4f08d5a5... 642ec782f2d859c... 0290f4274b2937...
D c3e29c4f08d5a5... 53dde80c22a9b0... c06b2ac2fc35ee...
E c3e29c4f08d5a5... e8b5f577676ce42... 581042777df2b5...
F c3e29c4f08d5a5... 03a023566119b53... e9bbccd38a7a91...

6

3.5 Fuzzy Hashing

We are using Fuzzy hashing as the primary method for identifying the similarity between the hashes.
This method is used in malware analysis to gather hashes and compare them. We use SSDeep for
fuzzy hashing, which computes a signature based on context-triggered piece-wise hashes for each
input file, also known as a fuzzy hash.

When we generate one hash of a complete file, we can see that any change in the file completely
changes the hash, as seen in Figures 3.1 and 3.2.

Figure 3.1: Hashing of a file

Figure 3.2: Complete change in the hash with a small change in file

We are using fuzzy hashes because it uses context-triggered piece-wise hashing, where a slight
change in the executable only changes a part of the hash instead of generating a whole new hash,
as you can see in Figures 3.3 and 3.4. This method helps us not generate a new hash that might
be completely di↵erent and could also a↵ect similarity results.

We have a dataset of NAS benchmarks[4] from di↵erent applications. This dataset has 8 appli-
cations

• IS - Integer Sort, random memory access

• EP - Embarrassingly Parallel

7

Figure 3.3: Context-triggered piece-wise hashing where hashes are segmented

Figure 3.4: Context-triggered piece-wise hashing based on change of a part of file

• CG - Conjugate Gradient, irregular memory access and communication

• MG - Multi-Grid on a sequence of meshes, long- and short-distance communication, memory-
intensive

• FT - discrete 3D fast Fourier Transform, all-to-all communication

• BT - Block Tri-diagonal solver

• SP - Scalar Penta-diagonal solver

• LU - Lower-Upper Gauss-Seidel solver

We applied fuzzy hashing on the above-mentioned executables using SSDeep. We used the
hashes generated by the nm command, ldd command, and strings command. The outputs of these
commands are placed in folders nas-omp-stringsout, nas-omp-lddout and nas-omp-nmout.

We used first used the commands to compare the files within the folder to check the similarity
and have an idea about the same.

8

Command for comparison of files in the folder for stringsout

ml l i b t o o l
ssdeep−master / ssdeep − l −r −d nas−omp−s t r i n g s ou t /

Results for comparison in the strings folder

[naraya0001@dmi−c l−l o g i n har i−msc−p r o j e c t] $ bash compare−f o l d e r . sh
nas−omp−s t r i n g s ou t //bt .B. x matches nas−omp−s t r i n g s ou t //bt .A. x (90)
nas−omp−s t r i n g s ou t //bt .C. x matches nas−omp−s t r i n g s ou t //bt .A. x (94)
nas−omp−s t r i n g s ou t //bt .C. x matches nas−omp−s t r i n g s ou t //bt .B. x (91)
nas−omp−s t r i n g s ou t //bt .D. x matches nas−omp−s t r i n g s ou t //bt .A. x (91)
nas−omp−s t r i n g s ou t //bt .D. x matches nas−omp−s t r i n g s ou t //bt .B. x (90)
nas−omp−s t r i n g s ou t //bt .D. x matches nas−omp−s t r i n g s ou t //bt .C. x (90)
nas−omp−s t r i n g s ou t //bt .E . x matches nas−omp−s t r i n g s ou t //bt .A. x (91)
nas−omp−s t r i n g s ou t //bt .E . x matches nas−omp−s t r i n g s ou t //bt .B. x (88)
nas−omp−s t r i n g s ou t //bt .E . x matches nas−omp−s t r i n g s ou t //bt .C. x (88)
nas−omp−s t r i n g s ou t //bt .E . x matches nas−omp−s t r i n g s ou t //bt .D. x (90)
. . .

Command for comparison of files in the folder for lddout

ml l i b t o o l
ssdeep−master / ssdeep − l −r −d nas−omp−lddout /

Command for comparison of files in the folder for lddout

[naraya0001@dmi−c l−l o g i n har i−msc−p r o j e c t] $ bash compare−f o l d e r . sh
nas−omp−lddout //bt .C. x matches nas−omp−lddout //bt .A. x (74)
nas−omp−lddout //bt .E . x matches nas−omp−lddout //bt .A. x (61)
nas−omp−lddout //bt .F . x matches nas−omp−lddout //bt .B. x (63)
nas−omp−lddout // cg .A. x matches nas−omp−lddout //bt .A. x (69)
nas−omp−lddout // cg .A. x matches nas−omp−lddout //bt .E . x (61)
nas−omp−lddout // cg .B. x matches nas−omp−lddout //bt .E . x (63)
nas−omp−lddout // cg .C. x matches nas−omp−lddout //bt .A. x (69)
nas−omp−lddout // cg .C. x matches nas−omp−lddout //bt .E . x (61)
. . .

Command for comparison of files in the folder for nmout

ml l i b t o o l
ssdeep−master / ssdeep − l −r −d nas−omp−nmout/

9

Command for comparison of files in the folder for nmout

[naraya0001@dmi−c l−l o g i n har i−msc−p r o j e c t] $ bash compare−f o l d e r . sh
nas−omp−nmout//ep .B. x matches nas−omp−nmout//ep .A. x (99)
nas−omp−nmout//ep .C. x matches nas−omp−nmout//ep .A. x (96)
nas−omp−nmout//ep .C. x matches nas−omp−nmout//ep .B. x (96)
nas−omp−nmout//ep .D. x matches nas−omp−nmout//ep .A. x (99)
nas−omp−nmout//ep .D. x matches nas−omp−nmout//ep .B. x (99)
nas−omp−nmout//ep .D. x matches nas−omp−nmout//ep .C. x (96)
nas−omp−nmout//ep .E. x matches nas−omp−nmout//ep .A. x (99)
nas−omp−nmout//ep .E. x matches nas−omp−nmout//ep .B. x (99)
. . .

Command for clustering of files in the folder for stringsout

ml l i b t o o l
ssdeep−master / ssdeep − l −r −d −g nas−omp−s t r i n g s ou t /

Result of clustering of files in the folder for stringsout generated two clusters with sizes 42 and 9

[naraya0001@dmi−c l−l o g i n har i−msc−p r o j e c t] $ bash c l u s t e r−a l l . sh
∗∗ Clus te r s i z e 42
nas−omp−s t r i n g s ou t //bt .A. x
nas−omp−s t r i n g s ou t //bt .B. x
nas−omp−s t r i n g s ou t //bt .C. x
nas−omp−s t r i n g s ou t //bt .D. x
nas−omp−s t r i n g s ou t //bt .E . x
nas−omp−s t r i n g s ou t //bt .F . x
nas−omp−s t r i n g s ou t // cg .A. x
nas−omp−s t r i n g s ou t // cg .B. x
nas−omp−s t r i n g s ou t // cg .C. x
. . .

∗∗ Clus te r s i z e 9
nas−mpi−s t r i n g s ou t //dt .A. x
nas−mpi−s t r i n g s ou t //dt .B. x
nas−mpi−s t r i n g s ou t //dt .C. x
nas−mpi−s t r i n g s ou t //dt .D. x
nas−mpi−s t r i n g s ou t //dt .E . x
. . .
. . .

10

Result of clustering of files for nmout generated mulitple clusters with di↵erent sizes

[naraya0001@dmi−c l−l o g i n har i−msc−p r o j e c t] $ bash c l u s t e r−a l l . sh
∗∗ Clus te r s i z e 6
nas−omp−nmout//ep .F . x
nas−omp−nmout//ep .A. x
nas−omp−nmout//ep .B. x
nas−omp−nmout//ep .D. x
nas−omp−nmout//ep .C. x
nas−omp−nmout//ep .E. x

∗∗ Clus te r s i z e 3
nas−omp−nmout//mg.A. x
nas−omp−nmout//mg.B. x
nas−omp−nmout//mg.D. x

∗∗ Clus te r s i z e 3
nas−omp−nmout// f t .D. x
nas−omp−nmout// f t .E . x
nas−omp−nmout// f t .F . x
. . .

Result of clustering of files with ldd generated a single cluster of size 45 for OpenMP

[naraya0001@dmi−c l−l o g i n har i−msc−p r o j e c t] $ bash c l u s t e r−a l l . sh
ssdeep : Did not p roce s s f i l e s l a r g e enough to produce meaningful r e s u l t s
∗∗ Clus te r s i z e 45
nas−omp−lddout //bt .A. x
nas−omp−lddout //bt .B. x
nas−omp−lddout //bt .C. x
nas−omp−lddout //bt .D. x
nas−omp−lddout //bt .E . x
nas−omp−lddout //bt .F . x
nas−omp−lddout // cg .A. x
nas−omp−lddout // cg .E. x
nas−omp−lddout // cg .B. x
nas−omp−lddout // cg .C. x
nas−omp−lddout // cg .D. x
nas−omp−lddout //ep .A. x
nas−omp−lddout // cg .F . x
. . .

We generated the outputs for MPI and OpenMP executables. Based on the results obtained for
clustering and classification, we realized that there are better options than using ldd. Since ldd is
dynamic and uses dynamic memory allocation, the hashes generated are entirely di↵erent. It would
always result in creating one distinct cluster with all the applications.

We use the results of nm and strings to apply thresholds on the given cluster for finer clustering
and identify the optimal threshold for classification.

11

Command for clustering of files in the folder for stringsout with threshold of 85 percent

ml l i b t o o l
ssdeep−master / ssdeep − l −r −d −g nas−mpi−s t r i n g s ou t / −t 85

Using this command we came to the conclusion that at 85 percent similarity MPI executables have
the optimal classification which is further discussed in the results section.

Cluster generated for stringsout with threshold at 85 percent which results in optimal classification
of applications

[naraya0001@dmi−c l−l o g i n har i−msc−p r o j e c t] $ bash c l u s t e r−a l l . sh
∗∗ Clus te r s i z e 6
nas−mpi−s t r i n g s ou t //bt .A. x
nas−mpi−s t r i n g s ou t //bt .B. x
nas−mpi−s t r i n g s ou t //bt .C. x
nas−mpi−s t r i n g s ou t //bt .D. x
nas−mpi−s t r i n g s ou t //bt .E . x
nas−mpi−s t r i n g s ou t //bt .F . x

∗∗ Clus te r s i z e 5
nas−mpi−s t r i n g s ou t //bt .A. x . ep i o
nas−mpi−s t r i n g s ou t //bt .B. x . ep i o
nas−mpi−s t r i n g s ou t //bt .C. x . ep i o
nas−mpi−s t r i n g s ou t //bt .D. x . ep i o
nas−mpi−s t r i n g s ou t //bt .E . x . e p i o

∗∗ Clus te r s i z e 6
nas−mpi−s t r i n g s ou t // cg .A. x
nas−mpi−s t r i n g s ou t // cg .B. x
nas−mpi−s t r i n g s ou t // cg .C. x
nas−mpi−s t r i n g s ou t // cg .D. x
nas−mpi−s t r i n g s ou t // cg .E . x
nas−mpi−s t r i n g s ou t // cg .F . x

∗∗ Clus te r s i z e 4
nas−mpi−s t r i n g s ou t //dt .A. x
nas−mpi−s t r i n g s ou t //dt .B. x
nas−mpi−s t r i n g s ou t //dt .C. x
nas−mpi−s t r i n g s ou t //dt .D. x

∗∗ Clus te r s i z e 6
nas−mpi−s t r i n g s ou t //ep .A. x
nas−mpi−s t r i n g s ou t //ep .B. x
nas−mpi−s t r i n g s ou t //ep .C. x
nas−mpi−s t r i n g s ou t //ep .D. x
. . .

12

Chapter 4

Results

We evaluated our solutions based on the similarity percentage. We had to set a threshold for the
similarity percentage between the di↵erent hashes. The percentage is manually set where we can
visually notice that the executables are clustered as per the applications.

Figure 4.1: Clustering with a threshold at 55 percent(Clustered multiple applications together)

The hashes that generated the best similarity were the ones generated from strings. In our
research, we classify binaries into application classes in di↵erent ways, with varying degrees of
success, with ldd, nm, regular hashes, fuzzy hashes, etc. We found fuzzy hashes of strings to be
most successful for our example data which had a success with 85 percent. Figure 4.1 depicts
how decreasing the threshold combined multiple applications. It could be because they might be
using similar libraries and functions, but they have entirely di↵erent functionalities, which are not
ideal for classification. At 90 percent, as we see in Figure 4.3, executables of the same applications

13

Figure 4.2: Clustering with a threshold at 85 percent(Most Optimal)

are clustered separately. It is because these executables might have di↵erent usages in the same
application. Hence, a high threshold is overfitting for the whole dataset.

The advantages of classification are with the security (not being used for cryptocurrency). It
would help in better understanding the system design and procurement and knowing which applica-
tions use the most resources and the characteristics of these applications. A minority of applications
consumes many systems resources, and if we know which application it is, we can optimize the sys-
tem for those specific applications. We can also perform optimization on applications that can
be executed with lower CPU frequencies without losing performance, which would save energy(in
terms of power consumption).

We could also understand performance variability and how the performance of specific appli-
cations changes over time. With the trends, we could figure out which applications are getting
slower. It would need the applications to be labeled. HPC systems have pre-installed application
labels that can help track which modules are used, identify modules that are not used anymore
(potentially candidates to uninstall and free memory), or identify applications/codes that multiple

14

Figure 4.3: Clustering with a threshold at 90 percent(Separate clusters created for the same appli-
cation i.e. for ft)

15

di↵erent users use, then include this app into the pre-installed list

Chapter 5

Discussion

The results indicate that we can predict the application without a proper naming convention. It
will provide preliminary information for resource usage based on the application being executed.
Some applications have consistent behavior or characteristics (CPU frequency, memory-bound,
CPU-bound: co-scheduling, they may lead to failures than other applications, etc.)

One of the substantial limitations to this approach is that potentially some applications change
their behavior drastically with input arguments, decreasing the usefulness of application binary
labels (not a↵ecting the security aspect)

The future aspect is to collect binary hashes of production jobs, matching or recognizing re-
peated executions. We need to investigate performance variation of production jobs to evaluate the
potential success of job predictions for CPU frequency, co-scheduling, and backfilling.

16

Bibliography

[1] Keiji Yamamoto, Yuichi Tsujita, and Atsuya Uno, 2019, Classifying Jobs and Predicting Ap-
plications in HPC Systems.

[2] Denis Shaikhislamov and Vadim Voevodin, 2018, Solving the Problem of Detecting Similar
Supercomputer Applications Using Machine Learning Methods.

[3] IBM documentation, 2022, nm Command, https://www.ibm.com/docs/en/aix/7.1?topic=n-
nm-command

[4] NASA Advanced Supercomputing (NAS) Division, 2022, NAS Parallel Benchmarks,
https://www.nas.nasa.gov/software/npb.html

17

	Introduction
	Motivation
	Challenges
	Goals

	Related Work
	Methods
	nm-command
	ldd command
	strings Command
	Initial approach
	Fuzzy Hashing

	Results
	Discussion

