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Abstract

Loops are considered the primary source of parallelism in various scientific applications.

Scheduling loop iterations across multiple computing resources is a challenging task,

i.e., the execution must be balanced across all computing. Several factors can hinder

such a balanced execution, and consequently, degrade application performance. Specif-

ically, problem characteristics, non-uniform input data sets, as well as algorithmic and

systemic variations lead to di↵erent execution times of each loop iteration. Dynamic

loop self-scheduling (DLS) techniques mitigate such factors. DLS techniques were orig-

inally devised for shared-memory systems. A recently developed MPI library, called

LB4MPI enables the use of various DLS techniques on distributed-memory systems.

LB4MPI has two versions: one for C and one for Fortran programs. C and Fortran

are often used to write scientific applications such as weather forecasting and N-body

simulations. At the same time, Python has emerged over the last couple of decades as

a first-class data science tool. This project aims to design and implement a Python

version or interface for the existing LB4MPI library. The experiments shows the com-

parison of the results of C, Python and Cython on Mandelbrot set calculation for all

DLS techniques. The results shows the best techniques found that can be comparable

by C, Python and Cython.
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1
Introduction

In today’s contemporary world, modern problems require modern solutions. We live in a

continuously evolving era where problems are exponentially arising, and these problems are

not e↵ortlessly solvable. These problems require supercomputers (HPC or high-performance

computing) that are executed on massively parallel applications. These problems need com-

plex calculations and have independent loop iterations which can be computed parallelly.

Here parallelism plays an important role and with parallel computing, results are obtained

faster. But such problem also have irregular loops that does not fully support parallelism.

Therefore, simply parallelizing application is enough? Is there a way to optimize the perfor-

mance of a parallel application?

1.1 Applications with independent loop iterations

1.1.1 Mandelbrot Set

Mandelbrot set is a shape generated from fractal geometry. Unlike classic geometry where

it has smooth shapes and curves for e.g. square, circle, triangle etc, fractal geometry are

rough and infinitely complex. Fractals have shown their usability in a wide range of domains

from Biology and Medicine, image processing, art etc. In biology it explores the potential of

fractal geometry for describing and understanding biological organisms, their development

and growth as well as their structural design and functional properties. In medicine it helps

to contribute to the understanding of pathogenetic processes in medicine.
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Above on the left side is the pseudocode of the calculation of mandelbrot set and on the right

side is the zoomed in image of mandelbrot set. In the psuedocode, there is an independent

loop iteration that is the range from 0 to the total number of pixel values. Every pixel value

is a complex number (x + iy). The magnitude of the complex values are taken and run

under another loop with the maximum number of iterations. This max iteration is the cut

o↵ value which helps to determine whether the pixel value is inside the mandelbrot set or it

goes to infinite. This inner loop is a irregular loop which can cause heavy load imbalance.

1.1.2 Ray Tracing

In 3D computer graphics [10], ray tracing is a technique for modeling light transport for use

in a wide variety of rendering algorithms for generating digital images.

In above on the left side is the pseudocode of the ray tracing algorithm and on the right

side is the image. The algorithm says that, for each pixel, we compute viewing ray. If the

ray intersect with an object for t larger than 0, then we compute the normal vector, do the

shading and set pixel to that color. Else we set the background color to the pixel. The inner

loop causes heavy load imbalance because the inner loop recursively tries to find out the

intersection of ray to each object.

1.2 Why Load Balance Is Important?

Many programmers don’t think about the load imbalance while writing a parallel appli-

cation. Load imbalance creates uneven scheduling of tasks or parallel loops in a program

which degrades the entire performance of a parallel application. This load imbalance is a

serious issue. Here we introduce the concept of load balance where it distributes the tasks

evenly to all the available resources. This load balancing utilizes the resources and makes

improvements in the performance of a parallel application.

Figure 1.1: Load Imbalance
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Figure 1.2: Load Balance

1.3 How to achieve load balance?

Load balancing is achieved through loop scheduling techniques. The definition of scheduling

says ”Ordering (organization) of parallel computations (and their associated data) in pro-

cessor space and time”. There are two di↵erent ways to assign the loop iterations, that is

either statically or dynamically. In static, the loop iterations are divided by the number of

processors to get an equal amount of chunk sizes. These chunk sizes are then distributed over

processors. This technique has a low scheduling overhead but high load imbalance because

the processors might finish the iterations at di↵erent times. In dynamic (self-scheduling or

SS), exactly one iteration is distributed among all the available processors. This has a very

high scheduling overhead but it achieves perfect load balance. It is better than the static

technique. More scheduling techniques are discussed in chapter 2.

There is standardized way to parallelize the code and using certain scheduling techniques.

Programming can be done on both shared memory using OpenMP and on distributed

memory using MPI.

This project focuses on scheduling loop techniques on distributed memory using MPI using

Python. We implemented the DLS techniques for distributed memory on Python using

MPI4PY.

1.4 Why Python is on rise?

Python has come into limelight since 2010 and it is still on the rise. Today it is the most

preferred programming language because not only it is flexible and easy to learn but it has

that ability to speak to the user. Python is very versatile language, from deploying web

server application to writing scientific computing application, one can easily do that with

Python. Python supports object-oriented approach which makes to write clear and logical

code. Python has vast libraries like numpy, scipy, django, matplotlib, pandas, scikit-learn,

tensorflow etc.

Numpy and SciPy are used for writing scientific applications where as Django is used in

web development applications, but currently most widely used libraries are tensorflow and

scikit-learn as these libraries are used for building Machine Learning and Neural Network

models.

In terms of P3HPC (section 1.6), Python is portable, it can be run on any hardware plat-

forms/architecture and in terms of productivity Python has the ability to quickly implement

new applications, features and maintain existing ones. But performance wise Python is poor

because it is an interpretable language. Also in Python one cannot declare datatype and
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due this Python takes a bit time to learn about the datatype of a given variable. Python

has both cons and pros, it depends on application type.

1.5 MPI4PY

MPI4PY is a Message Passing Interface for Python users. With the help of this library,

Python user has a leverage to write parallel code on multiple processes where each process

has its own memory. Thus working of tasks parallelly in isolation manner in di↵erent

processes.

In MPI4PY, one can do point-to-point communication and collective communication op-

erations. In Point-To-Point operation, data can be shared across di↵erent processes using

MPI Send() and MPI Recv() function. In Collective communication, data can be broad-

casted at once to all the process using MPI Bcast() function. Scattering and gathering of

data is also a part of collective communication. With, MPI4PY, one can also do advance

collective communication operations like MPI Reduce(). MPI Reduce() takes an array of

input elements on each process and returns an array of output elements to the root process.

The output elements contain the reduced result.

In chapter 3, we discuss about the history and the related work about the load balancing

library.

1.6 P3HPC

Performance, Portability, and Productivity in HPC (P3HPC) [11] events provide an oppor-

tunity for researchers and application developers to discuss their successes and failures in

tackling the compelling problems that lie at the intersection of performance, portability and

productivity (P3) in High-Performance Computing (HPC).

• Performance: Running an application at a reasonable fraction of peak performance on

a given hardware.

• Portability: Ability to run the code/application on di↵erent hardware platforms/ar-

chitectures with minimum modifications.

• Productivity: The ability to quickly implement new applications, features and main-

tain existing ones.
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Background

This chapter gives a short description about Loop Scheduling and all the DLS techniques

implemented in the library.

2.1 Loop Scheduling

Loops are finite sequence of instruction are run until a specific conditions are met. Scientific

applications containing large loops are time consuming, but parallelizing those loops can

significantly increase performance and reduce the execution of time.

Scheduling is the ordering of computation and data in space and time. In that case, dis-

tribution of loops in processor units are called loop scheduling. Sometimes the distribution

of loops causes a severe load imbalance and then this lead to overhead in computation. To

reduce the overhead, few load balancing techniques were introduced. There are two types

of load balancing that are, static and dynamic load balancing via loop scheduling

techniques.

2.2 Static Scheduling

In STATIC scheduling [1], the chunks are precomputed and are assigned to each processing

elements or workers. The task division and assignment do not change during execution.

2.2.1 STATIC

In STATIC chunking, the loop iterations are divided into P equal sized chunks, where P is

number of processing elements or MPI ranks.

Chunks =
No.ofIterations

PUs
(2.1)

This technique has a low scheduling overhead because of the minimum number of fixed

chunks each processor gets. The fixed chunks may give rise in severe load imbalance. Itera-

tion execution times vary.
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It can provide good load balancing only if the iterate times are constant and the processors

are homogeneous and equally loaded.[5]

2.3 Dynamic Scheduling

In DYNAMIC scheduling [1], the division and execution of tasks are carried during the

execution of program. The dynamic loop self-scheduling can be categorized as adaptive and

non-adaptive.

2.3.1 Non-Adaptive Technique

This technique calculated the chunks based on certain parameters which are obtained prior

the execution of an application.

2.3.1.1 SS

In SS chunking, each processing elements or MPI rank gets only one chunk size out of

number of iterations.

Chunks = 1 (2.2)

This technique perfectly balances the load but with a cost. It has high scheduling overhead.

Each processing element requests for the chunk size after completion of previous chunk size

and because of chunk size being equal to 1, it has high scheduling overhead.

2.3.1.2 FSC

In Fixed-Size Chunking (FSC)[15], it is calculated with a given formula

Chunks =

 p
2.N.h

�.P.
p
logP

! 2
3

(2.3)

where,

h = overhead time,

� = S.D. iterate execution time

With the fixed chunk size, this technique singularly reduces the scheduling overhead while

still providing a better load balance.

2.3.1.3 mFSC

In modified FSC (mFSC), the number of scheduling events are same as Factoring FAC

technique, that is it has same number of chunks but with di↵erent chunk sizes. [2]
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2.3.1.4 GSS

In Guided Self-Scheduling (GSS) [18], it uses di↵erent style of scheduling that is decreasing

chunk sizes across the processing elements or MPI ranks. This technique also provide a

good load balance with less scheduling overhead. At every scheduling step, GSS assigns a

chunk that is equal to the number of remaining loop iterations divided by the total number

of processing elements.[7]

Chunksi = dRi

P
e (2.4)

Ri = N � Chunksi (2.5)

where,

N = Total number of iterations

P = Number of processing elements or MPI ranks

Ri = Remaining iterations

2.3.1.5 TSS

In Trapezoid Self-Scheduling (TSS) [20], it uses the same style of scheduling as GSS uses,

that is decreasing chunk sizes across the processing elements.

KTSS
i = KTSS

i�1 � b
KTSS

0 �KTSS
S�1

S � 1
c (2.6)

S = d 2.N

KTSS
0 +KTSS

S�1

e (2.7)

KTSS
0 = b N

2.P
c (2.8)

KTSS
S�1 = 1 (2.9)

The TSS uses linear chunk function, which makes the TSS simple enough to be imple-

mented.[20]

2.3.1.6 FAC

In Factoring (FAC), it uses the same style of scheduling as GSS and TSS uses, that is

decreasing chunk sizes across the processing elements. Moreover it is a better version than

GSS significantly dropping the scheduling overhead and perfectly balancing the loads across

processing elements. [12]

The chunk calculation is based on probabilistic analyses using the prior knowledge of the µ

(mean) and the � (S.D.) of the loop iterations execution times.
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In contrast to earlier methods, this technique schedules iterations in batches of P equal size

chunks.[12]

Chunksi = d Ri

xi.P
e (2.10)

R0 = N (2.11)

Ri+1 = Ri � P ⇤ Chunksi (2.12)

bi =
P

2
p
Ri

.
�

µ
(2.13)

x0 = 1 + b20 + b0

q
b20 + 2 (2.14)

xi = 2 + b2i + bi
q
b2j + 4 � 0 (2.15)

where,

i = batch index.

One batch is calculated and placed after the previous batch is scheduled.

2.3.1.7 WF

In Weighted Factoring (WF)[13], the batch and chunk size are calculated like in Factoring

(FAC) method. Here, each processor is associated with a weightw that represent the relative

speeds. It dynamically assigns the decreasing size chunks of iterations to the processor

elements.

Chunksij = wi ⇤ FAC Chunksj (2.16)

PX

i=1

wi = P (2.17)

where,

i = ith processing element

j = batch chunk index



Background 9

2.3.1.8 TAP

TAPER (TAP) [16, 7] is a probabilistic model that considers the average of loop iterations

execution time µ and � to achieve a higher load balance than GSS. The goal of any tapering

method is to achieve optimally even finishing times while scheduling the smallest possible

number of chunks.

KTAP
i = KGSS

i +
v2↵
2

� v↵.

r
2.KGSS

i +
v2↵
4

(2.18)

where,

v↵ = ↵�
µ

2.3.1.9 TFSS

Trapezoid Factoring Self-Scheduling (TFSS)[6] is a trapezoid scheme with stages. The notion

of the technique uses the characteristics of two scheduling techniques that are TSS and FAC.

To calculate the chunk size, TFSS uses the same formula used in TSS technique. These P

chunks are then carried out in stages like Factoring (FAC) manner.

KTFSS
i =

(Pi+P
j=i KTFSS

j�1

P , if i mod P = 0

KTFSS
i�1 , otherwise

(2.19)

2.3.1.10 FISS

Fixed Increase Self-Scheduling (FISS) [17] is a dynamic scheduling technique where the size

of chunks gets increased until the remaining chunks are exhausted. In this technique the

number of stages required to calculate the chunks are need to be fixed. Once the stages are

fixed, the programmer then needs to select the initial chunk size. FISS depends upon the

value B (bump or stage increment) which is defined by user.

KFISS
i = KFISS

i�1 + d
2.N.(1� B

2+B )

P.B.(B � 1)
e (2.20)

where,

KFISS
0 = N

(2+B).P

2.3.1.11 VISS

Variable Increase Self-Scheduling (VISS) [17] follows the same approach like FISS technique

where there is the increase in chunk size. Only di↵erence is that the number of stages to

complete all the iterations are not fixed. ted, Variable Increase increases the chunk size

similar to the way Factoring decreases the chunk.

KV ISS
i =

(
KV ISS

i�1 +
KV ISS

i�1

2 if i mod P = 0

KV ISS
i�1 otherwise

(2.21)

where,
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KV ISS
0 = KFISS

0

2.3.1.12 RND

RND [7] technique makes use of Uniform Random Distribution to arbitrarily choose a chunk

size between lower and upper bounds.

KRND
i 2 [1,

N

P
] (2.22)

2.3.1.13 PLS

Performance-based Loop Scheduling (PLS) [19, 7] technique divides the loop into two parts.

The first part of loop is scheduled statically while the the second part is scheduled dynami-

cally. PLS uses Static Workload Ratio (SWR) to determine the amount of iterations to be

statically scheduled.

KPLS
i

(
N.SWR

P if Ri > N - (N.SWR)

KGSS
i , otherwise

(2.23)

where,

SWR = min.iterationexecutiontime
max.iterationexecutiontime

2.3.2 Adaptive Technique

This technique calculates the chunks based on latest information on the state of the both

application and system. Adaptive techniques are better than non-adaptive techniques.

2.3.2.1 AWF

In Adaptive Weighted Factoring (AWF)[5], is the adaptive version of Weighted Factor-

ing(WF) technique where the weights are adapted during the execution or computation.

No profiling is needed because AWF does not require any prior knowledge about the work-

loads. This technique was originally designed for executing a parallel loop in a scientific

application which involves time-stepping. At every time step, AWF updates the relative

processor weights wi. Initial value of wi is always 1.

2.3.2.2 AWF Variants

Adaptive Weighted Factoring (AWF)[5] has extended to 4 more variants that are AWF-B,

AWF-C, AWF-D, and AWF-E. AWF has a drawback where the weight updation happens

only after every time step where as in the variants the adaption happens during loop exe-

cution.

AWF-B(Batched - AWF) It schedules the remaining iterations by batches. Weights are

updated after each batch based upon the timings of previous chunks.

AWF-C(Chunked - AWF) It schedules the remaining iterations by chunks. To overcome

the drawbacks of AWF-B as well as AF, FAC and AWF scheduling techniques, AWF-C was
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introduced. In AWF-B, the size of the chunks are the fractions of the current FAC batch

size, once scheduled, then it cannot be changed. Due to the unchanged batch size the faster

PEs gets the remaining chunks of less-than-optimal size from the current batch. Therefore

AWF-C recomputes a new batch size each time a processor requests for work. With this

strategy, faster processors are assigned larger chunks from all the remaining iterates, not

just from the remainder of the current batch.

AWF-D It is similar to AWF-B, but the execution time is redefined to the total chunk time

tij . In AWF-D, tij includes the time spent by the processor doing other tasks associated

with the execution of a chunk of iterates.

AWF-E This strategy is similar to AWF-C, but using total chunk time as in AWF-D

2.3.2.3 AF

The Adaptive Factoring (AF) algorithm [3] is a more generalized version than FAC or WF

technique. AF is similar to FAC, it also uses the probabilistic model to calculate the chunk

sizes, but dynamically. Unlike FAC, where µ and � are know prior and additionally they

are same for all the PEs, where as in AF, the µ and � are calculated and adjusted during

run time. This insures a more e�cient method for balancing processor workloads, highly

tuned to the rate of change of processor speeds.

KAF
i =

D + 2.E.Ri �
p
D2 + 4.D.E.Ri

2µpi
(2.24)

where,

D =
PP

pi=1
�2
pi

µpi

E = (
PP

pi=1
1

µpi
)�1



3
Related Work

In this chapter, past related work is discussed. This project work is the implementation of

the existing Dynamic Loop Self-scheduling For Load Balancing (DLS4LB) library in Python.

Python is the most widely used programming language for scientific computation. For per-

forming scientific computation, we need a tool that can parallelize and execute these complex

applications, and thus we can obtain results in minimal time. Dynamic Loop Self-scheduling

For Load Balancing (DLS4LB) is an MPI-Based load balancing library. It is implemented

in C and FORTRAN (F90) programming languages to support scientific applications exe-

cuted on High-Performance Computing (HPC) systems. DLS4LB library is based on the

DLB tool developed by Dr. Carino and Dr. Banicescu. It is modified and extended by

Prof. Florina M. Ciorba and Dr. Ali Mohammed to support more scheduling techniques. It

has 14 DLS techniques. The DLS4LB parallelizes and load balances scientific applications

that contain simple parallel loops (1D loops) or nested parallel loops (2D loops). The tool

employs a master-worker model where workers request work from the master whenever they

become free. The master serves work requests and assigns workers chunks of loop iterations

according to the selected DLS technique.

The DLS4LB in Python is an extension of the existing library. It has 6 more DLS techniques

[7].
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Design Implementation

4.1 Mandelbrot Sets

Mandelbrot sets[9] are a set of complex numbers which are generated from quadratic recur-

rence equation

fc(z) = z2 + C (4.1)

where z does not tend to infinity are in the sets.

1 def calculate_mandelBrot(start, end):

2

3 for i in range(start, end):

4

5 # t1 = time.time()

6 x = i // h_pixel

7 y = i % h_pixel

8 a = (x - (w_pixel/2)) / (w_pixel/4)

9 b = (y - (h_pixel/2)) / (h_pixel/4)

10

11 # c = Complex(a, b)

12 c_r = a

13 c_i = b

14 # z = Complex(0, 0)

15 z_r = 0

16 z_i = 0

17 it = 0

18 for it in range(0,iterations):

19

20 t = (z_r * z_r) - (z_i * z_i)

21 z_i = 2.0 * z_r * z_i

22 z_r = t

23

24 t = (z_r * z_r) - (z_i * z_i)

25 z_i = 2.0 * z_r * z_i

26 z_r = t

27

28 z_r = c_r + z_r

29 z_i = z_i + c_i

30 # z = add(z, c)

31

32 mag = (z_r*z_r) + (z_i*z_i)

33
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34 if mag > 4.0:

35 pixel_arr[i] = it

36 break

37

38 if pixel_arr[i] == -1:

39 pixel_arr[i] = iterations

Image generated by the mandelbrot set code.

Figure 4.1: Mandelbrot Set Image
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4.2 DLS4LB

Dynamic Loop Self-Scheduling for Load Balancing (DLS4LB) is an MPI-based load balanc-

ing library. The library exists in two di↵erent programming flavors that are C and Fortran.

The library is now also available in Python for Python programmers with additional 6 DLS

techniques.

The Python library follows the Centralized Chunk Calculation approach (Master-Worker

model), where workers request chunk size whenever they are free.

Figure 4.2: Centralize Chunk Calculation Approach[8]

This library only parallelizes and balances the load of scientific applications which contains

1-D loops. One can also parallelize 2-D loops by applying loop optimization techniques such

as loop fusion technique which converts 2-D loop to 1-D loop.

4.3 How to use the library?

Listing 4.1: Usage of LB4MPI in Python

1 info = infoDLS(comm, size, rank, 0, total_iterations, master, method, .... )

2

3 startLoop(info)

4

5 while not DLS_Terminated(info):

6 start, chunks = DLS_StartChunk(info)

7

8 for i in range(start, start+chunks):

9 ....

10

11 DLS_EndChunk(info)

12

13 DLS_EndLoop(info)
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Outline of each function and step wise initializing of the DLS functions.

1. First, the object for infoDLS class is created with passing the parameters. Important

parameters like MPI communicator (comm), size of the communicator (size), ranks,

initial start of the iterations, end of the iterations, master value and DLS method are

required to fully functional of this library.

By calling the object, it set up values of infoDLS variables and also precomputes

required chunks for some DLS techniques like AWF, TSS, FISS, VISS etc.

2. Second, startLoop() function is called. It plays a major role for sending few chunks of

the iterations to the available workers (MPI ranks).

3. Third, in while loop parameter we set function DLS Terminiated() which return

boolean value 0 or 1. This loop plays a major role in terminating the loop when there

are no remaining chunk sizes.

4. Fourth, inside while loop, DLS StartChunk() and DLS EndChunk() functions are

called.

The DLS StartChunk() returns start value and chunk size value.

5. At last, DLS Endloop() is called.
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4.4 Flowchart

Figure 4.3: LB4MPI Single For Loop

4.4.1 DLS Parameter Setup

In this function, user needs to provide some parameters to initialize variables of a class or

struct called infoDLS in respect to run the further function. Certain parameters like size of

the communicator, range of ranks, assigning master, breakAfter value, requestWhen value,

and probeFrequency are initialized in this function.

Some predetermined values are set up which are used to calculate various chunking tech-

niques like FSC, AF, AWF etc.
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4.4.2 DLS Start Loop

1. In Start loop function, some more parameters are set up before entering the loop and

also sending initial work to all process.

2. Parameters like first iteration, last iteration, setting go to work to true, and initializing

batch remaining, number of chunks and batch size to zero.

3. At the end of the function, work is sent to all the process from range 1 - N including

MASTER rank by calling SendChunk() function. Distribution of chunk size is only

done by the foreman (MASTER rank).

4. If the chunkstart is greater than lastiter then we terminate the worker(rank), because

no chunks left to compute.

Figure 4.4: StartLoop() function
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4.4.3 SendChunk() Function

1. In SendChunk() function another function is called GetChunkSize(). This func-

tion calculates the chunk size from one of the given techniques like STATIC, SS, GSS,

TSS etc.

2. Now the chunk is distributed to all the ranks. Except MASTER rank, the chunk is

send to all other process by calling MPI Send() function with WRK TAG.

3. After distribution of the respective chunk size, a SetBreak() function is called which

breaks the chunk into smaller sizes to work e�ciently.

4. DLS StartLoop() function ends and a while loop starts calculating the start chunk

and end chunk for the respective iterations.

Figure 4.5: SendChunk() function.
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4.4.4 SetBreak() Function

1. In SetBreak(), the smaller chunk size are calculated and stored in a variable called

probFreq if breakAfter is less than 0. This is for the master worker.

2. One can set the breakAfter variable for di↵erent smaller chunk sizes.

3. For slave workers, if the requestWhen is less than 0, then the chunk sizes are break

down and calculated, and are sent to the slaves.

Figure 4.6: SetBreak() function.
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4.4.5 DLS Terminated

A function nameDLS Terminated() is passed as a parameter in the while loop. DLS Terminated()

plays important role to terminate the loop.

Inside DLS Terminated(), two important variables name gotWork and wSize helps in

taking the decision to end the loop or to continue the loop.

If both gotWork and wSize variables are zero then it terminates the loop.

Figure 4.7: DLS Terminated() function.

4.4.6 DLS StartChunk

In DLS StartChunk() it updates chunk size and the start value of the iteration.

This function also plays an important role in handling requests. Below are defined with

respective to there TAGS.

• WRK TAG - This message is only received by workers only. Distribution of chunk

size takes place by setting the wSize and wStart variable of the worker process. After

distribution, SetBreak() function is also called which breaks the chunk size into more

smaller pieces.

• REQ TAG - The message is only received by the foreman or MASTER. If any un-

finished iterations left, then it again assigns the remaining chunk size to the requested

worker and worker then starts executing it.

If no iterates left, it then sends an end message to terminate the loop.

• END TAG - This message is received by both MASTER and worker processes. This

message helps in terminating the loop.

At the end of the function it also updates chunkStart and chunkSize variable to determine

the next iteration.
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Figure 4.8: DLS StartChunk() function.
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4.4.7 DLS EndChunk

In DLS EndChunk(), it also updates the wSize and wStart variable in order to execute

further iterations.

This function also keep track of the execution time of each process.

Figure 4.9: DLS EndChunk() function.



5
Performance Evaluation and Discussion

The chapter depicts the time results of mandelbrot application implemented with all DLS

(Dynamic Loop Self-Scheduling) techniques produced in C, Python and Cython.

5.1 Design of Factorial Experiments

Factors Values Properties

Applications Mandelbrot Image Size = 1024 x 1024 (Total number of loop iterations)

Max iterations = 10,000

Scheduling Techniques Static Plain parallelization, N/P distribution of chunks

SS, GSS Dynamic and Non-Adaptive Techniques

FSC, mFSC

TSS, FAC, WF

TAP, TFSS

FISS, VISS

RND, PLS

AF, AWF Dynamic and Adaptive Techniques

AWF-B,C,D,E

System/Platform miniHPC Cores=20, Freq.=2.4GHz, Processor=Intel Xeon E5 - 2640

Memory=64GiB, Network=Intel Omni-Path 100

L1=32KB, L2=256KB, L3=25MB

Number of nodes = 16

nTasks-per-node = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

14, 15, 16

Total ranks = 16, 32, 48, 64, 80, 96, 112, 128, 144, 160

176, 192, 208, 224, 240, 256

Experiment Repeatations 10
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5.2 Relative Difference between C and Python

Figure 5.1: Relative Di↵erence

5.3 Relative Difference between C and Cython

Figure 5.2: Relative Di↵erence
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5.4 Relative Difference between Python and Cython

Figure 5.3: Relative Di↵erence

For all ranks from 16 to 256, we have a graph plots for C, Python and Cython version. We

have observed that for all the tests ranks and for all the programming version, STATIC has

performed the worst. Parallel per execution time is the highest for STATIC. Another thing

we observe that AWF-D and FISS are the second worst technique to perform poor. All

other techniques achieve comparable performance.

From rank 128 onwards, we observe some unexptected behaviour from SS and AWF-B

technique. Along with STATIC, AWF-D and FISS techniques, they started to exhibit poor

performance.

Another unusual behaviour we observe that for AWF-D and AF technique we observe that

there is no di↵erence in the parallel execution time. We expected Cython to perform better

than Python version as Cython is designed to give C like performance.

Overall we find that RND technique performed the best. The parallel loop execution time

for RND techqniue found to be the lowest among all other techniques.

To compare the relative performance between C and Python, and C and Cython, we have

a heatmap. This heatmap show the relative di↵erence of the parallel loop execution time of

all the programming version. On the Y axis of the heatmap we have all the ranks from 16
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to 256, and on the X axis we have all the scheduling techniques. The color value has range

from 0 to 14. 0 is the lightest green color which indicates that there is very less relative

di↵erence and 14 which is the darkest blue indicates that there is high relative di↵erence

between the performance of the programming language.

We observe that the first 10 scheduling techniques and the last PLS technique depicts

moderate relative di↵erence of the parallel execution time. For C and Python the range of

values are between 4 to 6 where as for C and Cython the range is from 3 to 5. Cython clearly

shows that it has performed better than Python. We also observe that AF has very high

relative di↵erence between C and Python, and C and Cython. For AF, C has performed

well than both Python and Cython. But RND technique has a very low relative di↵erence

that range from 0 - 2. We found that bot Python and Cython version has nearly performed

well with the C version.



6
Conclusion and Future Work

The results concluded from the experiments depicts that in Python for some dynamic (adap-

tive and non-adaptive) loop scheduling techniques, it is 55 % slower to C, where as in Cython

for the same techniques like Python shows 34.1 % slower to C. But few DLS techniques like

AWF-E, VISS and RND performed well in both Python and Cython, and the timing results

were some what near to the C results.

RND found to be 8.3 % slower in Python when compared to C and 6.1 % slower in Cython

when compared to C. RND performed better because in RND the chunks sizes are calculated

using random function from range 1 to N/P. No additional calculation required. And also

why RND performed because of the specified range. Value 1 indicates the size of SS technique

where as static chunk is N/P. These ranges gives a random value that ensures both load

balancing and less scheduling overhead.

AF(Adpative Factoring) technique performed the worst in both Python and Cython when

compared to C. The reason why AF performed worst is because it is a very complex schedul-

ing technique. The profiling values required by AF that are µ and � are calculated during

runtime, and also AF does not uses fixed weights, those are also calculated dynamically

during runtime.

LB4MPI has potentiality extensions in future like, one can extend with more DLS schedul-

ing techniques that can give optimum performance with less scheduling overhead and high

load balance. This library only supports applications with independent loop iteration but

some time step applications like Computational Fluid Dynamics (CFD) has dependent loop

iterations, therefore one can extend this library for dependent loop iterations. One can

also implement a decentralize chunk calculation approach because the current version uses

master-worker model and master can be a bottleneck.

Overall, some DLS techniques used in Python has achieved the performance but not all has.

In performance wise C is always better than Python but productivity wise Python is better

than C. Cython is somewhat acceptable where it shows both productivity and performance

but only for few DLS techniques but not for all.
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