
Investigation of the Relation Between
the Linux Operating System Scheduler

and Scheduling Decisions at Thread
and Process Level

Master Project

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

HPC Group

https://hpc.dmi.unibas.ch/

Advisor: Prof. Dr. Florina M. Ciorba

Supervisor: Jonas H. Müller Korndörfer

David Kuhn

david.kuhn@stud.unibas.ch

16-057-960

30.06.2022



Table of Contents

1 Introduction 1

2 Related Work 2

3 Measuring the Scheduling overhead of an Parallel Application 5

3.1 Linux Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Perf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Thread Level Scheduling Techniques . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 Two Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.6 Table of Factorial Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Results 10

4.1 Rofline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Overhead of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Scheduling Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 Migration Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.2 Context Switch Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.3 Idle Time Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Scheduling Overhead for Two Applications . . . . . . . . . . . . . . . . . . . 16

5 Discussion and Future Work 19

5.1 Limitations and Future Work with Two Applications . . . . . . . . . . . . . . 19

5.2 Perf on different Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Bibliography 22

Appendix A Appendix 24

Declaration on Scientific Integrity 25



1
Introduction

The behavior of parallel applications is influenced by multiple factors during the execution.

The distribution of work, system noise, and OS scheduler routines introduce additional work

that causes overhead to the execution of applications.

The Linux operating system (OS) uses the complete fair scheduler (CFS). CFS triggers

thread migrations to balance the load among different cores. To let other threads execute,

CFS interrupts running threads and initiates a context switch. All this additional work slows

down single threads of the application, which leads to load imbalance. Also, the amount of

idle CPU time is a factor that influences the application.

In this work, we investigate how much overhead the Linux scheduler causes on different

applications with different thread level scheduling techniques. We want to quantify the

overhead that scheduling introduces. Measuring the influence of the OS is not easy. There

are many tools to measure different performance aspects of applications. But few distinguish

between the OS background work and the application. Perf is a tool that achieves this with

little overhead during the measurement.

We use perf to measure the OS scheduling overhead on the execution of parallel appli-

cations. We measure the impact of thread migrations, context switches, and CPU idle time.

We measure the impact of these events on different types of parallel applications.

To investigate the relation between OS scheduling and application thread level schedul-

ing, we compare the results of executions with different thread level scheduling techniques.

Besides this, we also evaluate how OS level scheduling overhead and application thread

level scheduling influence two applications executed at the same time. We execute two

applications that share a system and compete for resources. The OS scheduler has to

balance the load and give all threads a fair share of execution time.

In chapter 2 we discuss related work that quantified OS scheduling in different ways.

We explain our procedure and how we conducted the measurements in chapter 3. In chapter

4 we present the results of our experiments. We end with the discussion and future work 5.



2
Related Work

Petrini et al. [17] present how they improved the performance of the supercomputer ASCI

Q. They describe several different techniques and tools to analyze the performance of the

system. One technique is to use an application with different system configurations and

measure how it performs. For this purpose, they used SAGE, an application paralyzed

with MPI. They show that the performance of the application executed on more than 256

nodes improved when they used fewer processors per node. On ASCI Q each node had four

processors. Although they used fewer cores in this experiment, which results in 25% less

processing power, they reported better performance. The reason for this is, that the OS uses

the idle cores for background work unrelated to the application. This work does not affect

the performance of the application. There is less delay, which influences the performance of

all nodes when they wait for the slowest node at the next barrier. Another problem was, that

there was high variability in the performance for the individual cycles. To address this, they

improved the synchronization phase of the application, which did not reduce the overhead

significantly. Not all applications are impacted the same by each noise frequency. Fine-

grained applications are more influenced by fine-grained noise. Coarse-grained applications

are more affected by low-frequency noise. Applications that communicate less frequently are

less affected by high-frequency noise because they become co-scheduled. On the other hand,

fine-grained applications are more impacted by this noise. Petrini et al. reduced noise by

removing unnecessary daemons and reducing the frequency of heartbeats that are necessary

for the correct functioning of the system. These alterations to the system lead to higher

performance. In this work, we concentrate on the influence of the OS scheduler. We also do

not investigate the influence of idle cores on the scheduling overhead.

Akkan et al. [3] review methods to reduce interruptions to the HPC applications. They

consider compile- and runtime measurements on an unmodified Linux kernel. To measure

the effect of kernel-induced noise, they used a series of benchmarks. Another way to find

information about the system interrupts is in the file /proc/interrupts. There is a list of the

total accumulated counts of interrupt sources since the last system boot. The highest number

is usually Local Timer Interrupts. At each of those time ticks, several tasks are executed

that often are not relevant to the HPC application. For example, scheduling accounting

and possible preemption of the executing task, or global kernel time updates. Akkan et al.



Related Work 3

analyzed existing ways to reduce this OS noise. An easy way to reduce load balancing is to

pin each application process to a CPU with the job launcher. But this does not pin system

services to a CPU. These tasks are therefore often migrated for load balancing. It is possible

to use one or several CPUs less than are available, to leave them for the OS tasks [17]. This

reduces the computing power for the application, but it decreases the migration overhead.

HPC job launchers, for example, SLURM, use kernel Control Groups (cgroups) to create

virtual partitions for a set of CPUs. This prevents interference with other jobs and system

services. It is also possible to turn off scheduler load balancing in cgroups. They used Fixed

Work Quantum (FWQ) benchmark to measure the system noise under different conditions.

They reported the least noise with scheduler load balancing explicitly turned off. Simply

pinning tasks to a CPU does not provide the same results. To identify events, that cause

overhead, they used the tool ftrace. Akkan et al. modified the Linux kernel, to isolate the

application from OS jitter with dedicated cores. These OS cores execute OS tasks. This

improves the performance of HPC applications because the tasks that would interrupt the

application can execute on these separate cores. They also describe how they customized

the Linux kernel to resemble a lightweight kernel. This reduces the number of interrupts for

the application, which is a major source of overhead. Another alteration, they presented,

is to remove clock tick from cores that are dedicated to the HPC application. Additionally,

allowing I/O processes to execute on OS processors fully parallelizes the communication of

the application. The drawback of this is that not all functionalities of a normal kernel are

supported. Without ticks, not all bottom half handlers are processed. This did not allow

the application to make progress when using the Ethernet network. They used the PAPI

tool to measure the numbers of cache misses with this modified kernel. Without ticks the

application experiences no L1 cache misses. In our work, we focus on the influence of the

Linux OS scheduler. We measure its influence with perf.

Akhmetova et al. [2] investigate the interplay between task granularity and scheduling

overhead. Task-based programming models are a promising approach for HPC applications.

The workload is divided into small tasks, which define basic units of computation. The

number of tasks is much larger than the number of processors, so there are very few idle

cores. These tasks are mapped to the processors by the runtime scheduler. There are

many different schedulers that can be chosen. Simpler schedulers have a smaller runtime

overhead, but more sophisticated schedulers may increase the application performance by

considering the task locality or power efficiency. But this requires more execution time

for scheduling which increases the overhead. For the systematic analysis of the impact

of the task granularity, they have an algorithm that analyses the directed acyclic graph

(DAG) of the application and aggregates it into corresponding coarser-grained tasks. The

DAG is generated by Prometheus, a system emulator for task-based applications [12]. The

experiments were performed with a system emulator. The optimal granularity depends on

the scheduler overhead. It varies between 1.2 ∗ 104 and 10 ∗ 104 cycles. Larger granularity

leaves the system idle, and smaller granularity introduces too much scheduling overhead.

Dursun et al. studied the effect of the Linux OS on the execution of parallel applications

with Perf [7]. For that, he recorded the tracepoint events of the scheduler during the

execution. In the Perf output, there are many threads that interrupt the application. Also,



Related Work 4

the OpenMP threads migrate between CPUs. This migration can be prevented by binding

the threads to a specific CPU. The analysis of the GNU and Clang compiler shows that the

OpenMP scheduling techniques guided and auto do not provide good load balance. They

concluded that the influence of the Linux scheduler is greater than the overhead caused

by the preemption, context switches, and migration of OpenMP threads. Building on these

results, we want to investigate different scheduling methods. Not only the standard OpenMP

scheduling methods. We also want to find out what the influence of the measurement tools

on the applications is.



3
Measuring the Scheduling overhead of an

Parallel Application

3.1 Linux Scheduler
The OS scheduler is responsible to let all threads on a system execute on the processor,

according to the scheduling policy [14] [19] [10]. For this, the scheduler can interrupt an

executing application thread and let other threads execute. The new thread has to load data

to the cache, which removes the cache of the application thread. When the application can

execute again, it has to reload this data. So every scheduling decision affects the performance

of an application.

Linux uses a complex scheduling framework since the kernel version 2.6.23. The OS

scheduler is divided into two components, a set of Scheduling Classes and a Scheduling Core

[9]. When deciding which thread can execute next the scheduling class with the highest

priority, with runnable threads, is chosen. This scheduling class decides which of its threads

based on its scheduling policy. This framework guarantees that no thread with low priority

is scheduled if there is a runnable thread in a Scheduling Class with higher priority. It also

allows having several scheduling policies for different tasks at the same time. By default,

there is a class, with the highest priority, for real-time threads. Normal threads belong to

the Complete Fair Scheduler (CFS) class. The completely fair scheduler (CFS) simulates a

real multitasking processor by allocating 1/n of the total processor time to a thread. Where

n the total number of runnable threads is. So the allocated processing time of a thread is

lower when there are many other threads requesting processing time. To guarantee that not

too many switches deteriorate the performance of all threads, this share of computing time

has a lower bound. CFS uses the Nice value of threads to give some threads more computing

time. The target latency is the interval in which each runnable thread is executed so that

no thread has to wait for too long. A smaller target latency results in better interactivity

for I/O-bounded processes. If there are too many threads, the allocated timeslice would

become too small and the threads would switch too often. To prevent this, CFS has a

minimal granularity. This is the minimal time that a thread should execute to prevent the

switching costs from affecting the performance of the whole system. The default minimal

granularity is 1 millisecond. To determine the next thread, the CFS has a red-black-tree



Measuring the Scheduling overhead of an Parallel Application 6

(rbtree) ordered to the runtime of each thread. With this, the next thread is found in the

left-most leave of the rbtree. This is the thread that had the least time on the processor.

With this choosing the next thread to execute is trivial. To balance the load between CPUs,

dynamic load balancing is used. CFS checks the system for load imbalance at regular

intervals. If the imbalance is too big CFS moves threads from CPUs with high loads to

CPUs with less load.

When the runqueue is empty, the Linux scheduler idle scheduling class starts the idle

thread. This is a special thread that activates architecture-specific hardware features to save

energy. This thread is only executed when nothing else needs execution time.

In this work, we explore the CentOS 7.9 with the Linux kernel version 3.10.0 x86 64.

3.2 Perf
We use the Linux kernel tool perf to measure the OS scheduling overhead of the applications

[11][22]. Perf was introduced to the Linux kernel version 2.6.31 in 2009. As with the rest of

the kernel source code, perf is open source. The idea of perf was to have a built-in tool to

make use of the performance counters of the Linux kernel. It can observe the performance of

applications or hardware events. Perf uses events from many parts of the system. Hardware

events come from the CPU performance monitoring counters (PMC). PMC depends on the

hardware on which the system runs. Typically, it is only possible to record a few PMCs at

the same time. They contain among many others CPU cycles and cache misses on all levels.

Software events are low-level events that are based on kernel counters like CPU migrations

and page faults. Kernel tracepoint events are instrumentation points on the kernel level.

They are hard-coded in points of interest in the kernel. Tracepoint events allow tracing

high-level behavior of the system, for example, network events, file or disk I/O events,

or system calls. These events are grouped into tracepoint libraries, for example, socket

events are called ”sock”, CPU scheduler events ”sched”, or ”kmem” for kernel memory

allocation events. Other events are tracepoints for user-level programs. These events are

hard-coded into the source code of applications, usually with macros. Many applications

can be compiled with the Dtrace flag to support DTrace. The static tracing interface is

more stable and easier to use than dynamic tracing. But it is possible to enable dynamic

tracing on a system without restarting it.

We used perf version 3.10.0 to record the scheduling events during the execution of

applications. With perf we recorded the scheduling events during the execution of the

application. For this, we used the command:

$ perf sched record -a -R -o output ./app

This command records and saves all scheduling events in a binary file during the execution

of an application. It is designed to have a small overhead to make as little impact on the

performance of the application as possible. The flag -a tells perf to collect events on all

CPUs on the system. With -R we collected the raw sample records from all counters for later

analysis. The generated data can be analyzed with several perf tools after the application

is finished. We used:

$ perf sched timehist



Measuring the Scheduling overhead of an Parallel Application 7

Timehist outputs a list of every recorded scheduling event. For each event, there is the

timestamp and name of the process, the CPU ID on which the event was recorded, and

what type of event it was. The last information are the different time measurements for

these events. For each event, perf reports the wait time, sched delay, and execution time.

Wait time is the time between a sched-out and the next sched-in event. Also, the time a

process waited to wake up, while other processes were executed. For the first recorded event

of each process on a CPU, the wait time is zero. There is no time elapsed since the last

event of this process. Sch delay (scheduler delay) is the time between wake-up and actually

executing. This is the scheduler latency, the time the scheduler needs to assign the next

thread to a processor. Runtime is the time this thread could execute. For an application,

it is the time until the next interrupt. Perf shows all time measurements in milliseconds.

Figure 3.1: Example for the output of perf latency.

With this information, we calculate the overhead of thread migrations, context switches, and

CPU idle time. The migration overhead for an application is the sum of all wait times and

scheduling delays for each migration event that affects an application thread. The overhead

of CPU idle time is the sum of the runtime of all recorded idle threads. The overhead of

context switches for the application is the sum of all wait times and scheduling delays of all

entries of the application. These are events when the application threads were interrupted

to let some other process execute.

3.3 Applications
For our measurements, we selected three applications with different characteristics

regarding load imbalance and compute or memory bound.

1. Mandelbrot is a simple code that calculates the Mandelbrot-set. This app is ex-

tremely compute bound and load imbalanced. The version of Mandelbrot we used

is implemented in a time-stepping fashion. It is composed of three main loops with

different load imbalance characteristics across time steps: constant, increasing, and

decreasing.

2. STREAM-Triad is one of the kernels available at the STREAM benchmark [1]. This

kernel performs one addition, one multiplication, and one copy operation each step.

Therefore, this application is extremely memory bound and load balanced.



Measuring the Scheduling overhead of an Parallel Application 8

3. SPH-EXA [6] is a smoothed particle hydrodynamics (SPH) mini-app which can be

used to simulate different SPH problems. The problem we approached is named Sedov

blast wave. This problem is mixed in terms of memory/compute bound characteristics

and it is slightly load imbalanced.

We present the details about the parameters for the applications in the table of factorial

experiments ??

All applications were executed without thread pinning. This gives the OS scheduler

the most freedom to choose the best cores for the application threads.

In addition to the executions with one single application, we also investigated the

impact of the OS scheduling overhead when two applications are executed on the system at

the same time.

3.4 Thread Level Scheduling Techniques
To investigate the relationship between the OS scheduler overhead and scheduling on the

thread level, we compare the different thread level scheduling techniques of the OpenMP

standard. Additionally, we chose four scheduling techniques that are added to the LLVM’s

OpenMP runtime library by LB4OMP [13][15] We compare seven thread level scheduling

techniques, with different characteristics.

We use all scheduling techniques from the OpenMP standard. The straight forward

scheduling technique static. This technique has the least overhead to distribute the work.

dynamic,1 (SS) [16] archives the highest load balance by assigning one iteration for each

work request by a thread. This can lead to considerable overhead because it disregards

data locality. guided (GSS) [18] is a dynamic and non-adaptive scheduling technique

implemented in the OpenMP standard. Static steal from the LLVM, works similarly to

static. In the beginning, the work is distributed equally, but in the end, threads can steal

work from other threads. This lowers the load imbalance. FAC2 [8] is another dynamic and

non-adaptive technique. Both, GSS and FAC2 achieve good load balance and low overhead,

by assigning large chunks of work at the beginning of the execution. In the end, this chunk

size decreases for a good load balance. With adaptive weighted factoring (AWF) [5] and

adaptive factoring (AF) [4] we have two dynamic and adaptive scheduling techniques from

LB4OMP. These two techniques collect information about the executed loop to adapt the

chunk size. The measurement and calculation of the chunk size lead to more overhead, and

small chunk sizes can lead to loss of data locality.

3.5 Two Applications
We also want to investigate how the scheduler behaves when two applications execute

at the same time. For this, we start the applications Mandelbrot and STREAM-Triad at

the same time. Each application with ten threads. Every other configuration is the same

as with the other experiments sumariced in table ??. No threads are pinned so that the OS

scheduler can migrate the threads to any core. The thread level scheduling technique is the

same for both applications that are executed at the same time.



Measuring the Scheduling overhead of an Parallel Application 9

For the execution, perf is mounted only on the application that takes longer, not for

both applications. We execute perf sched record with the -a flag to record events on all

CPUs. So the scheduling events of the other application are also recorded and perf is only

executed once. We did not investigate whether perf would influence the results if perf is

executed twice, once for every application. We made sure that perf is mounted on the

application that takes longer.

Since both applications execute with only ten threads, the execution time is larger

than in the other experiments where they used twenty threads. We normalize the scheduling

overhead by the execution time so that we can compare these results.

3.6 Table of Factorial Experiments

Table 3.1: Design of factorial experiments resulting in a total of 210 experiments.

Factors Values Properties

Applications
Mandelbrot N = 262,144 — T = 100 — Total loops = 3 — Modified loops = 3
SPH-EXA Sedov N = 125,000 — T = 100 — Total loops = 16 — Modified loops = 3

Microbenchmark STREAM-Triad N = 2,000,000,000 — T = 400 — Total loops = 1 — Modified loops = 1

Thread-level Scheduling

OpenMP Standard
static Straightforward parallelization
guided (GSS), dynamic,1 (SS)

Dynamic and non-adaptive self-scheduling techniques

LB4OMP
FAC2
AWF D, AF Dynamic and adaptive self-scheduling techniques
static steal LLVM implementation of work stealing

Operating System Linux CentOS 7.9, Linux kernel version 3.10.0 x86 64

Computing nodes miniHPC-Xeon
Intel Broadwell E5-2640 v4 (2 sockets, 10 cores each)
P=20 cores without hyperthreading,

Metrics

Average application execution time
Thread migration overhead % avg(sum(wait time + sch delay))/avg(application execution time) × 100
Context switches overhead % avg(sum(wait time + sch delay))/avg(application execution time) × 100
CPUs idle time overhead % avg(sum(run time))/avg(application execution time) × 100



4
Results

In this chapter, we present the results of our measurements. First, we show that the applica-

tions behave as we expect regarding memory or compute boundness. Then we show that the

overhead of our measurements with perf does not introduce too much overhead. After that,

we present the measurements of the OS scheduling overhead for the different applications

and thread level scheduling techniques. In the end, are the results for the measurements

with two applications executing at the same time.

4.1 Rofline Model
To show that the applications we chose are indeed memory or compute bound on

our system, we show their performance in a roofline model [23] [20]. The roofline model

compares the arithmetic intensity, on the x-axis, with the performance, on the y-axis. The

arithmetic intensity is the number of floating-point operations per byte loaded to memory.

The horizontal line in roofline plots shows the peak floating-point performance of a system.

The diagonal line in a roofline plot shows the maximum performance of the memory system

for a given operational intensity. These two lines create the roofline. This line shows

the maximum performance a system can achieve. Most applications will not achieve this

performance. We measured the performance of the system and applications with Likwid

[21]. In figure 4.1 we show the roofline model for the applications Mandelbrot, STREAM-

Triad, and SPH-EXA on the miniHPC-Broadwell nodes. We see that Mandelbrot is compute

bound, and STREAM-Triad is extremely memory bound. SPH-EXA is memory bound, but

not as extreme as STREAM-Triad.



Results 11

0 50 100 150 200 250
Arithmetic Intensity [flops/bytes]

0

50000

100000

150000

200000

250000

300000

350000

400000
Pe

rfo
rm

an
ce

 [M
Fl

op
s/

s]

M
an

de
lb

ro
t

SP
H-

EX
A-

Se
do

v
St

re
am

-T
ria

d 

411985.78 MFlops/s

Figure 4.1: Roofline model of the applications on the Intel Broadwell system

4.2 Overhead of Measurement
Every measurement during the execution of an application adds a bit more work. Al-

though perf is designed to introduce only a small overhead we want to quantify this overhead.

For this, we compare executions of the applications with and without perf measurements.

The configurations are the same as in the table ?? described and each measurement is

repeated ten times.

In figure 4.2 we show the execution time of the application Mandelbrot with and

without measurements with perf. There are results for all thread level scheduling techniques.

We see that the overhead of perf is neglectable.



Results 12

ST
AT

IC

ST
AT

IC
-p

er
f

SS

SS
-p

er
f

GS
S

GS
S-

pe
rf

ST
AT

IC
_S

TE
AL

ST
AT

IC
_S

TE
AL

-p
er

f

FA
C2

FA
C2

-p
er

f

AW
F_

D

AW
F_

D-
pe

rf AF

AF
-p

er
f0

50

100

150

200

250

300
Ex

ec
ut

io
n 

tim
e 

in
 se

co
nd

s

0.0% -0.4% 0.0% 0.1% 0.0% -0.0% 0.0% 0.8% 0.0% -0.0% 0.0% 0.0% 0.0% 0.2%

Figure 4.2: Execution time of the application Mandelbrot. Without measurements with
perf (left), compared to the execution time of the application with the additional overhead
that measurements with perf introduce (right). For the different thread level scheduling
techniques

The application STREAM-Triad is highly memory bound. So perf has a higher influence

on this application because it adds more memory that needs to be written to the disc. This

lowers the amount of data that the application can use. So the overhead of STREAM-Triad

(see figure 4.3) show that the measurements introduce a bit more overhead than compared

to the application Mandelbrot. The different thread level scheduling techniques influence

the performance of STREAM-Triad much more than Mandelbrot. Also, the overhead of perf

is much higher with some thread level scheduling techniques. For example, static shows

an overhead of 20%. This is caused by the imbalance that the perf measurements cause.

They slow down the data for some threads, which leads to load imbalance. The scheduling

technique static can not balance the work.



Results 13

5000

10000

15000

ST
AT

IC

ST
AT

IC
-p

er
f

SS

SS
-p

er
f

GS
S

GS
S-

pe
rf

ST
AT

IC
_S

TE
AL

ST
AT

IC
_S

TE
AL

-p
er

f

FA
C2

FA
C2

-p
er

f

AW
F_

D

AW
F_

D-
pe

rf AF

AF
-p

er
f0

20

40

60

80

0.0% 20.2% 0.0% -0.9% 0.0% -8.8% 0.0% -1.2% 0.0% 5.8% 0.0% 4.6% 0.0% -22.9%Ex
ec

ut
io

n 
tim

e 
in

 se
co

nd
s

Figure 4.3: Execution time of the application of the measurements with perf, compared to
the execution time of the application without any additional measurements.

4.3 Scheduling Overhead
In this section, we present the results for the scheduling overhead measurements. The data

is shown in heatmaps. On the x-axis are the different thread level scheduling techniques, and

on the y-axis the different applications. For details on how the applications were executed,

check table ??. In each field are two numbers, the upper value is the overhead of the

measured events normalized by the execution time of the application. The lower number

in brackets is the average execution time of the application. Each experiment was repeated

ten times. The scheduling overhead for the different applications is derived with the output

of the perf sched timehist command. We show the results for the overhead of migration,

context switches, and CPU idle time.



Results 14

ST
AT

IC SS GS
S

ST
AT

IC
_S

TE
AL

FA
C2

AW
F_

D AF

Mandelbrot

STREAM-Triad

SPH-EXA-Sedov

1.508055%
(295.47sec.)

1.018989%
(265.22sec.)

1.128512%
(262.51sec.)

0.210322%
(263.14sec.)

1.294454%
(263.83sec.)

1.610773%
(267.38sec.)

1.322466%
(266.44sec.)

0.257898%
(28.7sec.)

1.994129%
(15126.82sec.)

0.744908%
(39.15sec.)

1.244781%
(2191.98sec.)

0.733232%
(39.26sec.)

0.954724%
(6934.7sec.)

1.210727%
(71.02sec.)

1.92955%
(4307.02sec.)

1.934067%
(4570.24sec.)

1.944731%
(5569.85sec.)

1.952592%
(5699.5sec.)

1.933701%
(5108.99sec.)

1.920625%
(4329.91sec.)

1.937203%
(4712.73sec.)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Th
re

ad
 m

ig
ra

tio
n 

ov
er

he
ad

 %

Figure 4.4: Percentage of time spent on thread migration over the execution of the applica-
tions. Average execution time of the application in brackets.

4.3.1 Migration Overhead
The migration overhead is the sum of all wait times and scheduling delays of all migration

events related to the application threads. In figure 4.4 we see the three applications on the

x-axis and the thread level scheduling techniques on the y-axis. The top number in the fields

is the overhead, that thread migrations cause. Note that the thread level scheduling tech-

niques have a high influence on the execution time. The migration overhead is normalized

by the execution time. For SPH-EXA the overhead of thread migrations is for all thread

level scheduling techniques around 1.9%. The scheduling techniques have a high influence

on the overhead for the applications Mandelbrot and STREAM-Triad. The differences in

the overhead are quite large between the different scheduling techniques. STATIC intro-

duces the least migration overhead to Mandelbrot and static steal the least overhead

to STREAM-Triad.



Results 15

ST
AT

IC SS GS
S

ST
AT

IC
_S

TE
AL

FA
C2

AW
F_

D AF

Mandelbrot

STREAM-Triad

SPH-EXA-Sedov

0.048663%
(295.47sec.)

3.9e-05%
(265.22sec.)

3.9e-05%
(262.51sec.)

3.2e-05%
(263.14sec.)

3.8e-05%
(263.83sec.)

0.003133%
(267.38sec.)

0.001943%
(266.44sec.)

0.008557%
(28.7sec.)

0.000641%
(15126.82sec.)

0.02221%
(39.15sec.)

1.7e-05%
(2191.98sec.)

0.012608%
(39.26sec.)

1.433164%
(6426.45sec.)

0.437436%
(71.02sec.)

0.865775%
(4307.02sec.)

0.877146%
(4570.24sec.)

0.927569%
(5569.85sec.)

0.933171%
(5699.5sec.)

0.907094%
(5108.99sec.)

0.868918%
(4329.91sec.)

0.893397%
(4712.73sec.)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sw
itc

h 
ov

er
he

ad
 %

Figure 4.5: Percentage of time spent on context switches over the execution of the applica-
tions. Average execution time of the application in brackets.

4.3.2 Context Switch Overhead
The overhead introduced by context switches is very small of Mandelbrot and STREAM-

Triad with most scheduling techniques. SPH-EXA experiences much more overhead from

context switches. The thread level scheduling techniques have only little influence on the

overhead from context switches. Except for AWF and AF for the application STREAM-Triad.



Results 16

ST
AT

IC SS GS
S

ST
AT

IC
_S

TE
AL

FA
C2

AW
F_

D AF

Mandelbrot

STREAM-Triad

SPH-EXA-Sedov

0.957099%
(295.47sec.)

0.963176%
(265.22sec.)

0.907499%
(262.51sec.)

0.861307%
(263.14sec.)

0.923397%
(263.83sec.)

0.996765%
(267.38sec.)

0.997822%
(266.44sec.)

0.903045%
(28.7sec.)

0.999968%
(15126.82sec.)

0.949221%
(39.15sec.)

0.984202%
(2191.98sec.)

0.962677%
(39.26sec.)

0.848052%
(6426.45sec.)

0.563452%
(71.02sec.)

0.27778%
(4307.02sec.)

0.260539%
(4570.24sec.)

0.214534%
(5569.85sec.)

0.210095%
(5699.5sec.)

0.235423%
(5108.99sec.)

0.276785%
(4329.91sec.)

0.253339%
(4712.73sec.)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CP
U 

id
le

 ti
m

e 
ov

er
he

ad
 %

Figure 4.6: Percentage of time spent in CPU idle time over the execution of the applications.
Average execution time of the application in brackets.

4.3.3 Idle Time Overhead
The thread level scheduling technique does not influence the overhead of idle times

much. A scheduling technique should use all available execution time and leave as little as

possible unused. All thread level scheduling techniques achieve this. The difference between

the application is much bigger. It is not surprising that STREAM-Triad has a high CPU

idle time because the threads have to wait for the data. Mandelbrot has nearly the same

overhead in CPU idle time as STREAM-Triad. SPH-EXA has a much lower overhead. A

reason for this is that SPH-EXA is much more balanced than Mandelbrot. So there are

fewer threads that have to wait on other threads at barriers.

4.4 Scheduling Overhead for Two Applications
In this section, we explore the overhead that scheduling introduces when two applications are

executed at the same time. We executed the applications Mandelbrot and STREAM-Triad

with ten threads each. All experiments are repeated ten times.



Results 17

ST
AT

IC SS GS
S

ST
AT

IC
_S

TE
AL

FA
C2

AW
F_

D AF

Mandelbrot

Stream-Triad

0.025344%
(578.57sec.)

1.7e-05%
(525.39sec.)

2.2e-05%
(471.9sec.)

1.5e-05%
(526.69sec.)

0.025402%
(578.62sec.)

0.000333%
(578.82sec.)

0.025316%
(578.33sec.)

7.185438%
(49.63sec.)

1.848891%
(14667.93sec.)

2.830658%
(48.05sec.)

0.861142%
(1064.94sec.)

5.966437%
(54.71sec.)

1.219938%
(54.39sec.)

5.860499%
(47.85sec.)

1

2

3

4

5

6

7

Th
re

ad
 m

ig
ra

tio
n 

ov
er

he
ad

 %

Figure 4.7: Percentage of time spent on thread migration over the execution of the applica-
tions. Average execution time of the application in brackets.

We observe a big difference in the overhead for thread migration between the two applica-

tions (see figure 4.7). Mandelbrot has a very low overhead for all thread level scheduling

techniques. STREAM-Triad has with most scheduling techniques a very high overhead. If

we compare this overhead with the execution when the application does not share the system

(figure 4.4) we see that the migration overhead for Mandelbrot is much lower with this setting

than compared to the executions with twenty threads. For STREAM-Triad the migration

overhead with ten threads is much higher. The only exception are the executions with

the scheduling technique static steal, which has a little bit lower migration overhead

compared to the executions with one application. The execution time for STREAM-Triad

is shorter with this configuration and the scheduling techniques (SS), static steal,

and (AWF). This is because these scheduling techniques do not consider data locality, which

is important for this very memory bound application. So fewer threads actually finish faster.



Results 18

ST
AT

IC SS GS
S

ST
AT

IC
_S

TE
AL

FA
C2

AW
F_

D AF

Mandelbrot

STREAM-Triad

0.025344%
(578.57sec.)

1.7e-05%
(525.39sec.)

2.2e-05%
(471.9sec.)

1.5e-05%
(526.69sec.)

0.025402%
(578.62sec.)

0.000333%
(578.82sec.)

0.025316%
(578.33sec.)

0.030591%
(49.63sec.)

0.000803%
(14667.93sec.)

0.001119%
(48.05sec.)

1.1e-05%
(1064.94sec.)

0.030621%
(54.71sec.)

0.030865%
(54.39sec.)

0.020735%
(47.85sec.)

0.005

0.010

0.015

0.020

0.025

0.030

Sw
itc

h 
ov

er
he

ad
 %

Figure 4.8: Percentage of time spent on context switches over the execution of the applica-
tions. Average execution time of the application in brackets.

The overhead of context switches differs widely between the different thread level scheduling

techniques. AWF only for the application Mandelbrot and SS, GSS, and static steal, for

both applications, have much fewer overhead from context switches than the other scheduling

techniques. This difference is really astonishing. We expected to see more context switches

for scheduling techniques that lead to load imbalance, as we see for example with STATIC.

But it is interesting that scheduling techniques that have the same properties, for example,

GSS and FAC2, or for Mandelbrot AWF and AF, have such different switch overheads.

The application STREAM-Triad has in most cases a bit higher overhead than the

application Mandelbrot. This is what we expected because the threads of STREAM-Triad

have to wait for data.

When comparing the overhead of context switches for the measurements with two

simultaneously executed applications with the results when only one application is executed

4.5, we can clearly see that the thread level scheduling influences the context switch overhead

more with two applications executed simultaneously.



5
Discussion and Future Work

Our results show that different aspects of OS level scheduling overhead are influenced more

by different parameters. The overhead of context switches and the CPU idle time depends

mostly on the application. For some applications, the thread level scheduling techniques

introduce more thread migrations.

5.1 Limitations and Future Work with Two Applications
The results for the two applications executed at the same time show that thread level

scheduling has a big influence on the OS scheduling overhead. At least for some applications.

The plot for the idle time overhead for the experiment with two applications executed

simultaneously is in the appendix (see figure A.1). The problem with these results is that

we record all idle events on all CPUs. When the first application finishes, perf records on

all CPUs until the second application finishes too. The second application uses only ten

threads, which leaves ten CPUs unused. The scheduler can put all background work on

these unused CPUs and leave ten cores for the application. But this will most likely result

in a lot of idle time for the unused cores.

This issue does not affect the results for thread migration and switch events. We

assigned these events to the different applications. We did not assign an idle event to the

application that was executed last on the same core. We are not sure if it is correct to

assign an idle time to one application. If we would assign an idle event to one application it

would not be sufficient to assign the event to the last application that executed on this core.

Additionally, it is necessary to make sure that this thread was not migrated to another core.

This would be possible with the output of perf. One could argue that both applications are

equally responsible for idle time as long as both execute. A better solution to this problem

would be to mount perf on the application that executes shorter. Then the idle events would

only be recorded when both applications are executing.

We mounted perf to the application with the longer execution time to compare these

executions with the execution when only one application is executing. It would be difficult to

compare the overhead of the OS scheduler when for one result only a part of the execution

is measured. Our comparison between the two different execution is that the number of



Discussion and Future Work 20

threads is different. Once we had single applications with twenty threads and once two

applications with ten threads each. We can see the different performances in the execution

times.

There are many different ways to explore the behavior of the OS scheduler and different

thread level scheduling techniques with more than one application. We only executed the

application with ten threads each. It would be interesting to investigate the OS scheduling

overhead when for example both application executed with 20 thread, so that these threads

really compete for execution time. We executed both applications with the same thread level

scheduling technique. It would be interesting to see what happens when two applcations

with different thread level scheduling techniques are executed.

5.2 Perf on different Hardware
We tried to execute all measurements on the GPU node on miniHPC. This node has an

Intel Xeon Gold 6258R processor with 56 cores. Perf is highly dependent on the hardware

in use. On this system, the normal perf sched record command does not work correctly. It

generates the data but the other perf tools can not analyze it. The cause of this problem is

that perf can not find the number of CPUs on the system. We can help perf by specifying

on which CPUs to record with an additional flag –cpu 0-55. With that perf records the

scheduling event on all 56 CPUs on the system.

The timehist command and other analysis tools from perf can work with this data. But

there is no name for most of the processes. Instead, there are numbers (see figure 5.1) Not

all process names are replaced with numbers but the application threads, in which we are

most interested, are replaced. Therefore, we can not calculate the scheduling overhead for

the applications the same way as with the results from the Broadwell nodes. The latency

command summarizes the scheduling latency for each process. So we have a list of each

process that was executed at the same time as the application. Most of these are kworkers

and daemons. Besides this also perf is listed. But most names that are human-readable in

the output from other systems, are replaced by numbers. These numbers are not process

IDs.

We executed the application with 56 threads. Also, the number of these ”processes”

that are named by numbers is often 56, or very close. So it is possible that only the threads

of the application are not listed by their names. If this is the case, it would be possible to

treat these numbers all as threads from the application and get the results we want from all

events that involve a thread with these numbers. This would only work if the application

threads are the only threads that are not listed by their names. If other threads are listed

with these numbers too, this approach would mix the scheduling events of the application

with these other threads. Then we would measure a similar overhead as in my thesis, where

we measured the scheduling overhead during the execution of an application.



Discussion and Future Work 21

Figure 5.1: Example for the perf output on the GPU node. Most task names are not human
readable names.



Bibliography

[1] STREAM Microbenchmark. http://www.cs.virginia.edu/stream/ref.html. Accessed:

March 29, 2021.

[2] Dana Akhmetova, Gokcen Kestor, Roberto Gioiosa, Stefano Markidis, and Erwin Laure.

On the application task granularity and the interplay with the scheduling overhead in

many-core shared memory systems. In 2015 IEEE International Conference on Cluster

Computing, pages 428–437. IEEE, 2015.

[3] Hakan Akkan, Michael Lang, and Lorie Liebrock. Understanding and isolating the

noise in the linux kernel. The International journal of high performance computing

applications, 27(2):136–146, 2013.

[4] Ioana Banicescu and Z. Liu. Adaptive Factoring: A Dynamic Scheduling Method Tuned

to the Rate of Weight Changes. In P. of th H. P. C. Symp., pages 122–129, 2000.

[5] Ioana Banicescu, Vijay Velusamy, and Johnny Devaprasad. On the Scalability of Dy-

namic Scheduling Scientific Applications with Adaptive Weighted Factoring. J. of Clus.

Comp., pages 215–226, 2003.

[6] Ruben Cabezon, Aurelien Cavelan, Florina Ciorba, Michal Grabarczyk, Danilo Guer-

rera, David Imbert, Sebastian Keller, Lucio Mayer, Ali Mohammed, Jg Piccinali, Tom

Quinn, and Darren Reed. Github repository of the miniapp application SPH-EXA.

https://github.com/unibas-dmi-hpc/SPH-EXA mini-app, (26.01.2022). Commit #26.

[7] Mustafa Dursun. Analysis of openmp applications with linux perf tracepoint events.

University of Basel Department of Mathematics and Computer Science High Perfor-

mance Computing, 2018.

[8] Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring: A Method

for Scheduling Parallel Loops. J. of Comm., pages 90–101, 1992.

[9] Roberto Gioiosa, Sally A McKee, and Mateo Valero. Designing os for hpc applications:

Scheduling. In 2010 IEEE International conference on cluster computing, pages 78–87.

IEEE, 2010.

[10] Redha Gouicem. Thread Scheduling in Multi-core Operating Systems. PhD thesis,

Sorbonne Université, 2020.

[11] Brendan D. Gregg. perf examples. http://www.brendangregg.com/perf.html, February

2022.

http://www.cs.virginia.edu/stream/ref.html
https://github.com/unibas-dmi-hpc/SPH-EXA_mini-app
http://www.brendangregg.com/perf.html


Bibliography 23

[12] Gokcen Kestor, Roberto Gioiosa, and Daniel Chavarrıa-Miranda. Prometheus: scalable

and accurate emulation of task-based applications on many-core systems. In 2015 IEEE

international symposium on performance analysis of systems and software (ISPASS),

pages 308–317. IEEE, 2015.

[13] Jonas H. Müller Korndörfer, Ahmed Eleliemy, Ali Mohammed, and Florina M.

Ciorba. Lb4omp: A dynamic load balancing library for multithreaded applications.

IEEE Transactions on Parallel and Distributed Systems, 33(4):830–841, 2022. doi:

10.1109/TPDS.2021.3107775.

[14] Robert Love. Linux Kernel Development. Pearson Education, 2010.

[15] Jonas H. Müller Korndörfer, Ahmed Eleliemy, Ali Mohammed, and Florina M. Ciorba.

unibas-dmi-hpc/LB4OMP: LB4OMP v1.0, 2020. URL https://doi.org/10.5281/zenodo.

3872907.

[16] Tang Peiyi and Yew Pen-Chung. Processor Self-Scheduling for Multiple-Nested Parallel

Loops. In P. Intern. C. on Par. Proc., pages 528–535, 1986.

[17] Fabrizio Petrini, Darren J Kerbyson, and Scott Pakin. The case of the missing super-

computer performance: Achieving optimal performance on the 8,192 processors of asci

q. In SC’03: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, pages

55–55. IEEE, 2003.

[18] Constantine D. Polychronopoulos and David J. Kuck. Guided Self-Scheduling: A Prac-

tical Scheduling Scheme for Parallel Supercomputers. J. Trans. on Compu., pages

1425–1439, 1987.

[19] Andrew S Tanenbaum and Herbert Bos. Modern operating systems. Pearson, 2015.

[20] Thomas Gruber Thomas Roehl, Georg Hager. Tutorial: Empirical roofline model.

https://github.com/RRZE-HPC/likwid/wiki/Tutorial%3A-Empirical-Roofline-Model,

February 2022.

[21] Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid: Lightweight performance

tools. In Christian Bischof, Heinz-Gerd Hegering, Wolfgang E. Nagel, and Gabriel

Wittum, editors, Competence in High Performance Computing 2010, pages 165–175,

Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-24025-6.

[22] Unknown. Perf wiki. https://perf.wiki.kernel.org/index.php/Main Page, February

2022.

[23] Samuel Williams, Andrew Waterman, and David A. Patterson. Roofline: An Insightful

Visual Performance Model for Multicore Architectures, April 2009. URL https://doi.

org/10.1145/1498765.1498785.

https://doi.org/10.5281/zenodo.3872907
https://doi.org/10.5281/zenodo.3872907
https://github.com/RRZE-HPC/likwid/wiki/Tutorial%3A-Empirical-Roofline-Model
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785


A
Appendix

ST
AT

IC SS GS
S

ST
AT

IC
_S

TE
AL

FA
C2

AW
F_

D AF

Mandelbrot

STREAM-Triad

0.447247%
(578.57sec.)

14.322428%
(525.39sec.)

0.35454%
(471.9sec.)

1.201772%
(526.69sec.)

0.449527%
(578.62sec.)

0.064701%
(578.82sec.)

0.436713%
(578.33sec.)

5.213481%
(49.63sec.)

0.513013%
(14667.93sec.)

3.481955%
(48.05sec.)

0.594366%
(1064.94sec.)

4.754313%
(54.71sec.)

0.688514%
(54.39sec.)

5.277683%
(47.85sec.)

2

4

6

8

10

12

14

CP
U 

id
le

 ti
m

e 
ov

er
he

ad
 %

Figure A.1: Results with two applications executing at the same time with ten threads each.
Percentage of the execution time, the CPU is idle. Average execution time of the application
in brackets. The result is not comparable because perf recorded when one application already
finished and the events are not assigned to one specific application.



Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

David Kuhn

Matriculation number — Matrikelnummer

16-057-960

Title of work — Titel der Arbeit

Investigation of the Relation Between the Linux Operating System Scheduler and Scheduling

Decisions at Thread and Process Level

Type of work — Typ der Arbeit

Master Project

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 30.06.2022

Signature — Unterschrift


	Table of Contents
	1 Introduction
	2 Related Work
	3 Measuring the Scheduling overhead of an Parallel Application
	3.1 Linux Scheduler
	3.2 Perf
	3.3 Applications
	3.4 Thread Level Scheduling Techniques
	3.5 Two Applications
	3.6 Table of Factorial Experiments

	4 Results
	4.1 Rofline Model
	4.2 Overhead of Measurement
	4.3 Scheduling Overhead
	4.3.1 Migration Overhead
	4.3.2 Context Switch Overhead
	4.3.3 Idle Time Overhead

	4.4 Scheduling Overhead for Two Applications

	5 Discussion and Future Work
	5.1 Limitations and Future Work with Two Applications
	5.2 Perf on different Hardware

	Bibliography
	A Appendix
	Declaration on Scientific Integrity

