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Abstract

Performance degradation due to load imbalance in computationally-intensive applications is

a significant road block on the way of achieving higher parallel application performance. It

is predominantly caused by idling processors, while there are other computation tasks ready

to be executed but no processor has started doing so. This results in uneven execution

progress among the parallel processing units. This imbalance stems from varying applica-

tion, algorithmic, and systemic characteristics. Computationally-intensive applications often

represent irregular workloads and the computing systems used to run such applications of-

ten consist of heterogeneous processors and may be affected by non-uniform memory access,

operating system noise, and contention due to the sharing of resources. Load imbalance

can effectively be alleviated by dynamic scheduling of computation units onto processing

units. As a consequence many different scheduling heuristics have been devised over the

past decades. Finding an optimal scheduling algorithm is a NP-hard problem.

Parallel applications, such as OpenMP programs, are susceptible to the effects of load im-

balance. Through careful selection of a scheduling technique for either every loop or the

entire application, the problem of imbalanced loads can be addressed effectively. However a

manual selection approach is time-consuming, can lead to decision paralysis, and is fixed for

the entire duration of the application’s runtime. As a solution we propose an extension to

the existing LB4OMP library consisting of a reinforcement learning technique (named Re-

inforcedSel) as an alternative way to achieve automated selection of scheduling algorithms

for OpenMP loops. ReinforcedSel implements a reinforcement learning agent for every

parallel application loop, using two popular learning methods, Q-Learning and SARSA.

ReinforcedSel leverages the schedule(auto) directive in OpenMP’s runtime library to au-

tomatically select a scheduling algorithm during execution for automated application load

balancing.

The results show that ReinforcedSel increases performance compared to the static schedul-

ing technique by up to 15.6%. This result is on par with the automatic load balancing

methods proposed in LB4OMP using expert knowledge instead of machine learning. Addi-

tionally we showed that when using Q-Learning and SARSA as the agents learning methods,

the learning rate and discount factor associated with the agent’s configuration affect the ex-

periment’s results only in a minor way.

This project reveals the potential of machine learning as a promising tool to increase parallel

applications’ performance in an unsupervised fashion.
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1
Introduction

Scientific applications that require a high number of time-steps to converge toward a solution

are considered time- stepping scientific applications (TSSA). These applications often involve

one or several parallel loops that have a high number of loop iterations. The existence of

loops with independent iterations in a program is a good resource of parallelism. While

running a program on a HPC system, various factors can lead to reduced performance during

execution - such as load imbalance, inter-processor communication, general communication

overhead, and processes synchronization.

Load imbalance is one of the primary factor that affects the performance of an application

[8] and is mainly caused by fluctuations in problem, algorithm, and system characteristics.

This lets load imbalance have a complex influence on an applications performance. To lessen

the effects of load imbalance during the application’s runtime, scheduling of the workload

among the different parallel compute units is essential. For this purpose numerous loop

scheduling algorithms have been conceived [9, 11]. As one can imagine, it is a non-trivial

issue to select the correct scheduling algorithm [10] for an application in advance to achieve

a balanced load - as it partly depends on the characteristics of the specific application (and

even its input parameters) and in other parts on the unpredictability of the environment it

is executed in. The only way to know about the effectiveness of a scheduling algorithm, is to

test it for a specific application and system combination. On the other hand the process of

testing all available scheduling techniques is lengthy, costly and therefore highly impractical.

To mitigate the selection problem, an automatic mechanism to choose the best suited

scheduling algorithm at runtime is needed. Such a mechanism can employ any number

of techniques and expert knowledge, as the LB4OMP [13, 14] library already implements

four automated scheduling algorithm selection methods RandomSel, ExhaustiveSel,

BinarySel and ExpertSel. We propose a fifth and new method called ReinforcedSel

based on machine learning. We think that the selection process of loop scheduling algo-

rithm can benefit from the extensive range of machine learning techniques and can further

improve the performance of parallel applications. As a first step we propose the usage of

reinforcement learning, since it is a good fit the problem space [4, 6, 16, 17].
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1.1 Contributions and Research Problem
The work done in this paper is summarized best by the questions “How to select schedul-

ing algorithms during execution efficiently?” from which the following contributions and

hypotheses are derived:

C.1 Extend the LB4OMP library with two reinforcement learning algorithms, SARSA and

Q-Learning as additional options for the schedule(auto) clause.

C.2 Compare the performance of different scientific applications executed on real systems

using the newly implemented automatic selection method with the existing expert

selection methods in Auto4OMP.

C.3 Compare the scheduling technique selection (frequency) for every automated selection

approach.

H.1 The new automatic algorithm selection method using reinforcement learning

(ReinforcedSel) improves overall parallel execution time.

H.2 ReinforcedSel adapts to applications’ need of different scheduling algorithms across

time-steps for each loop to achieve high performance.

H.3 ReinforcedSel adapts to applications’ need of different scheduling algorithms for

different loops in a single time-step (and across time-steps).

1.2 Organization
This project report is structured as follows: A summary of previous work on dynamic loop

scheduling techniques, automatic selection methods and reinforcement learning is given in

chapter 2. The design and implementation of the proposed extension is presented in chapter

3. The experimental setup and results with a detailed performance analysis and comparison

to other scheduling algorithms and automatic selections methods are given in chapter 4. A

quantitative perspective on the experimental results as well as the conclusion and future

work are presented in chapter 5.



2
Background And Related Work

This chapter gives an overview of the techniques from the perspective of both scheduling

algorithms for load balancing, the automatic selection of aforementioned algorithms and ma-

chine learning/reinforcement learning as well as a summary on previous work on automatic

schedule selection using reinforcement learning.

2.1 Scheduling And Load Balancing
This section touches on the subject of loop scheduling as a means of load balancing the work

of a parallel application and as a consequence increasing performance.

Load imbalance is a significant performance degradation factor in computationally-intensive

applications. It is defined by a processors being idle while there is still work ready to be

executed that has not been allocated to any processor. This results in irregular execu-

tion progress among the parallel processing units. Computationally-intensive applications

such as time-stepping scientific applications, often represent uneven workloads, e.g., due to

boundary conditions, non-uniform domain, convergence, conditions, and branches. Com-

puting systems may consist of heterogeneous processors and may be affected by nonuniform

memory access, operating system noise, and contention due to sharing of resources. Load

imbalance can be mitigated by an efficient mapping of tasks onto processing units. Finding

optimal schedules is NP-hard [10]. In addition, many scheduling heuristics with distinct

characteristics have been proposed over the years [9, 11].

OpenMP is the most pervasive standard for harnessing the power of multi-threading provided

by modern HPC hardware. The OpenMP standard specifies three scheduling algorithms,

which are insufficient to address the load imbalance that arises during the execution of

multi-threaded applications. LB4OMP [13] is a dynamic load balancing library for multi-

threaded applications that extends the LLVM OpenMP runtime library. LB4OMP supports

12 dynamic and adaptive loop scheduling techniques in addition to those existing in the

standard-compliant OpenMP libraries.
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2.2 Automatic Selection of Scheduling Algorithms
This section examines the process of automatically selecting a scheduling algorithm from a

known portfolio of algorithms to overcome choice paralysis.

The increased number of scheduling techniques in OpenMP (as well as in the LB4OMP

library), leads to the difficulty of choosing the most performing scheduling algorithm for a

given application-system pair. This is known as the algorithm selection problem [15]. A user

needs to decide on the scheduling algorithm which yield the best performance from a set of

tens of scheduling techniques on a per loop, per application, and per system configuration

basis. Increasing the number of choices stifles the usability of the library and may lead to

overwhelming the user [7] and sub-optimal decisions.

To avoid analysis paralysis, the OpenMP standard provides the auto keyword as an argu-

ment to the schedule clause. This option delegates the scheduling decision to the compil-

er/runtime implementation. Currently, most widespread and successful OpenMP implemen-

tations do not take full advantage of the OpenMP auto scheduling option. For example, the

GNU OpenMP [1] runtime library maps auto → static, which equally divides the number

of loop iterations over the threads. The LLVM OpenMP runtime library, maps auto to an

optimized implementation of guided scheduling. This displays that the state of practice

implementations of automatic schedule selection has not yet matured enough to be of any

significance for end users and indicates that more research in this area is needed.

Recently a paper with the title Automated Load Balancing in OpenMP (from now on re-

ferred to as Auto4OMP [14]), made strides towards an automatic loop scheduling system

that requires no user interaction and no prior knowledge about the application by imple-

menting four distinct schedule selection mechanisms that effectively unburden the user of

the scheduling algorithm and chunk selection problem. They showed that their methods

could dynamically and adaptively refine their selection during application execution, yield-

ing decreased application performance variation and achieving performance that is better

than any state of the practice method [14].

2.3 Concepts Of Reinforcement Learning
This section describes the basic concepts on reinforcement learning techniques which will be

employed in the design of the agent for the stated problem of this project.

In computer science the area of machine learning concerns itself with the exploration of

algorithms that grow with learning which produces intelligent programs. The basic concept

is the interaction between an intelligent system, the agent, and the environment in which the

agent operates. Machine learning can be generally classified into supervised, unsupervised

and reinforcement learning (RL).

In supervised learning, the agent is told how to behave while with unsupervised learning,

the agent learns to reduce the problem size but may learn the correct outputs only with an

associated error margin. As a middle ground between supervised and unsupervised learning

there is reinforcement learning. An agent receives feedback for performing an action, which
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guides it to the correct solution. The interaction between the agent and the environment is

illustrated in figure 2.1.

Figure 2.1: Basic components of a reinforcement learning setup. [18]

Reinforcement learning is of particular interest for our implementation because of its adapt-

ability to both accessible and inaccessible environments. RL focuses on a goal-driven ap-

proach for solving learning problems by interacting with the complex and uncertain envi-

ronments (such as large-scale heterogeneous computer systems). Reinforcement learning

involves an agent, which learns the behavior of a dynamic environment through trial and

error. The agent is given an immediate reward for taking an action and the environment

is transferred into the state following the action. The agent learns the optimal path that

will lead to the goal (e.g. minimizing parallel execution time or load imbalance) by learning

through the experience gained about the states, actions, and rewards. The trial and error

learning mechanism and the concept of reward makes the reinforcement learning distinct

from other learning techniques. A challenging problem and a key aspect in reinforcement

learning is the trade-off between exploration and exploitation. To exploit is to use the best

experienced action, and to explore, the agent has to try new actions to discover better action

selections for the future.

The components of the reinforcement learning system consist of distinct states, actions, re-

wards, a policy, the environment and in some cases a model of the environment. In chapter

3 we will define how these components map to the problem of automatic schedule selection.

All reinforcement learning problems are based on value functions to determine the return

for being in a particular state. Two important concepts involved here are the policy and the

value. A policy defines the learning agent’s way of behaving at a given time. The policy is

a mapping from the the environment’s states to actions to be taken when in those states.

Given a policy, the expected return can be obtained from a given state. The value is the

expected return that can be achieved by being in a particular state when following a given

policy. The optimal value function assigned to each state is the largest return achievable

by a given policy. The policy whose value functions are optimal, is the optimal policy.

We can find the optimal policy through an optimal value function through value iteration.

The policy iteration finds the optimal policy directly without the optimal value function.

There are two designs for learning optimal policy - one is through a model-free learning

and the other is through a model-based learning (see figure 2.2 for an overview of different



Background And Related Work 6

reinforcement learning categories).

Figure 2.2: Categorisation of different reinforcement learning techniques. [20]

The model-based method uses a model and its utility function. The model-free approach

uses a action-value function (Q) and does not require a model for the learning process. Tem-

poral Difference (TD) learning is a model free approach of reinforcement learning. The TD

methods are classified in on-policy and off policy methods. The State-Action-Reward-State-

Action (SARSA) learning method is an on-policy method, while the Q-Learning method

is an off-policy method [18]. The SARSA learning algorithm learns the transitions from a

state-action pair to another state-action pair and finds the policy by using a greedy approach.

The Q-function directly approximates to Q∗ (optimal value) independent of the policy being

followed. In Q-Learning, the agent chooses the action with the maximum Q-value from a

particular state. The pseudocode for both algorithm is listed in figure 2.3.

(a) SARSA: On-policy TD control. (b) Q-learning: Off-policy TD control.

Figure 2.3: Examples of temporal difference learning algorithms [18].

The takeaway from figure 2.3 and the key difference between both learning methods is, that

SARSA learns action values relative to the policy it follows, while Q-Learning does it relative

to the greedy policy. Under some common conditions, both converge to the optimal value

function, but at different rates. Q-Learning tends to converge slower, but has the capability

to continue learning while changing policies.
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2.4 Previous Work On Reinforcement Learning
Previous work proposed and evaluated the usage of several reinforcement learning algorithms

to solve the algorithm selection problem in the context of scheduling. In the following we

give a short summary for the most important work in order of their publication date.

[6], Dhandayuthapani, S., 2005 This work arose from the need for an automatic se-

lection of scheduling algorithm for scientific applications in a environment using machine

learning. The design and implementation of an integrated (into the scientific application)

reinforcement learning agent, which improves the performance of large applications with

parallel loops. Embedding the integrated technique into the scientific applications improves

the performance by cost minimization and efficient utilization of computational resources.

The obtained results were gathered from a wave-packet simulation algorithm using quantum

trajectory method (large number of time steps).

[16], Rashid, M., et al., 2008 This paper investigates the performance of a dynamic

loop scheduling with reinforcement learning (DLS-with-RL) approach to load balancing.

The RL agent was designed for the class of large-scale time-stepping applications that have

one or more computationally intensive parallel loops with nonuniform iteration execution

times. Each parallel loop is assigned an RL agent which dynamically chooses from a library

a loop scheduling algorithm to minimize the loop completion time. Analysis of the results

showed that the application performance is insensitive to the RL technique used and to a

particular combination of the learning parameters.

[17], Sukhija, N, et al., 2014 A portfolio-based approach for selecting the most robust

DLS algorithm was proposed in this paper. A wide range of supervised machine learning

techniques were investigated to obtain an empirical hardness model which predicts the ro-

bustness of DLS algorithms with better accuracy than previous models. The prediction

model enables selection of the most robust DLS algorithm for a given simulated problem

instance. A shortcoming of our approach, common to supervised machine learning, is that

the learned models do not generalize well to completely new populations but still remained

competitive with other strategies because the predictions still were able to often separate

robust algorithms from non-robust ones.

[4], Boulmier, A., et al., 2017 This paper presents an autonomic computing approach

for performance optimization of the time-stepping scientific application (TSSA) via an au-

tonomic selection of robust DLS techniques. This approach employs a RL agent for each

parallel loop of a TSSA. The present work proposes a modified version of the flexibility met-

ric to reward the choices of the RL agents. This paper uses a generic simulation framework

to study the effectiveness of the modified flexibility metric as a RL reward. The results show

that the RL agent was unable to select the optimal DLS technique during the execution of

a TSSA facing extreme perturbations. The robust-DLS-with-RL performed either as good

as, or worse than, the fixed-DLS approach.



3
ReinforcedSel

This chapter presents the design and implementation details of a reinforcement learning

agent for automatic selection of dynamic scheduling algorithms based on the LB4OMP

library reported in [13] and as an extension to the already existing portfolio of automatic

selection methods from Auto4OMP [14]. This chapter is divided into two sections. The first

section describes the design of the reinforcement learning system with regards to the theory

provided in the previous chapter. The second section provides a short technical explanation

of the implementation.

3.1 Design And Implementation
A time-stepping scientific application (for example a modified Mandelbrot program) which

requires dynamic load balancing, provides an excellent environment for an reinforcement

learning agent’s operation. This section describes the integration of our reinforcement learn-

ing algorithm selection method into a time-stepping scientific application for performance

improvements on the basis of the LB4OMP library with the extension from the Auto4OMP

paper. Such performance gains can be achieved by overcoming the scheduling algorithm se-

lection problem in OpenMP. We take advantage of the auto keyword, present in the LLVM

OpenMP runtime library as a scheduling option, to extend the existing implementation with

our new reinforcement learning selection method. Figure 3.1b illustrates a high-level view

of a general time-stepping application with L number of computationally intensive sections

containing parallel loops.

Such an application evolves over N time steps. Within a single time-step, L parallel loop

sections are executed. The full design is obtained by integrating the reinforcement learning

logic for each loop into the overall time-step loop. The goal of the reinforcement learning

agent is to minimize the total time spent by the application in each loop. Due to the lack of

any prior knowledge, the agent selects each algorithm in the portfolio set sequentially during

the initial Nexplore time-steps of the loop - this is called the exploration phase. The explo-

ration phase will take exactly card(Portfolio)2 time-steps, since the agent will explore every

state-action transition that is possible. For our use case, we map the environment’s states

to the different scheduling algorithms that can be employed and the actions to switching to
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any other algorithm that is not currently in use. After knowledge about the environment is

first obtained during this initial learning period (exploration), the agent applies the learned

policy for the remaining Nexploit time-steps (Nexploit = N −Nexplore). The loop completion

time for the selected algorithm (Sts) is the basis for the reward Rts+1 given to the agent for

taking action Ats.

(a) Loop scheduling workflow of the standard LLVM
OpenMP RTL augmented with Auto4OMP (adaption
from [13, 14]).

(b) Anatomy of a time-stepping application
with reinforcement learning agents (adapta-
tion from [16]).

Figure 3.1: Architecture

The LLVM OpenMP runtime and LB4OMP libraries collect information about the appli-

cation’s loops and make them available as data structures in kmp dispatch.cpp (refer

to figure 3.1a). We take advantage of this potential by deriving the needed knowledge

about changes in the environment and in turn reward the agent to continuously improve

the learned policy and select the best actions. As depicted in figure 3.1b the reinforcement

learning agent and the associated data structure (which stores the agent’s data such as

e.g., the Q-values) is created and updated separately for every parallel loop present in the

application. Thusly state, action and reward information for each parallel loop is handled

by the appropriate agent. This favors a more fine-grained control for selecting a scheduling

algorithm and consequently also allows for larger performance gains (due to large differences

in loop characteristics as we can observe from figure 4.2) instead of just using one agent for

the entire application.
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3.2 Usage
This section will provide a short technical overview on how the reinforcement learning se-

lection method was implemented in the OpenMP+LB4OMP library and how to use it with

a time-stepping application.

The usage of the reinforcement learning technique in any OpenMP application is designed

to be as effortless as possible and explained in figure 3.2. As an initial step, the target

OpenMP loops in the application must contain the schedule(runtime) clause. If this prereq-

uisite is already satisfied, no further changes to the application’s source code are required.

Otherwise the existing scheduling clause needs to be altered to runtime in all target loops

and the application must be recompiled. Further, the path to the compiled LB4OMP li-

brary has to be added to the environment variable that the linker uses to load dynamic and

shared libraries (e.g., LD LIBRARY PATH on UNIX/LINUX systems). Additionally the host

CPU clock frequency as a system-related parameter is required. This is passed to LB4OMP

via the environment variable KMP CPU SPEED as an integer in MHz. Refer to the example

jobfile in the appendix (section A.4) for more details.

Figure 3.2: Workflow using automatic selection of scheduling algorithms in LB4OMP.

Based on the previous work of the Auto4OMP paper, the same method to enable our

automatic selection method for scheduling algorithms is used. The environment variable

OMP Schedule needs to be exported with a value of auto,<int> where <int> can take

a value from range 1 to 6. The number 1 refers to the standard implementation by OpenMP,

values 2 to 5 denote the automatic selection methods implemented by Auto4OMP and the

value 6 identifies our new automatic selection method via reinforcement learning. Further

there are 3 additional environment variables that can be exported to control the behaviour

of the reinforcement learning agent during runtime (all three variables have defaults - setting

them is not required to use this selection method).
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• KMP RL ALPHA=<value> (Learning Rate, Range 0.1 .. 0.9): The learning rate sets

the ratio of importance between old and new information. A factor of 0 makes the

agent learn nothing, while a factor of 1 makes the agent consider only the most recent

information.

• KMP RL GAMMA=<value> (Discount Factor, Range 0.1 .. 0.9): The discount factor

determines the importance of future rewards. A factor of 0 will make the agent short-

sighted, while a factor close to 1 will make it look for a long-term high reward.

• KMP RL LMETHOD=<value> (Learning Method, Selection 0/1): Values-based model-

free temporal difference learning support different learning methods. In this work two

methods have been implemented: SARSA (0) and Q-Learning (1).

As described in the Auto4OMP paper, the portfolio of scheduling algorithms from which

the automatic selection methods can choose from, has been compiled according to three in-

clusion characteristics and ordered in ascending order of their scheduling overhead and load

balancing capacity. Our reinforcement learning selection method will also select algorithms

from the same portfolio to make the comparison of the results as meaningful as possi-

ble. Therefore, the ordered set from which to choose the loop scheduling algorithms from

is composed of: STATIC, SS, GSS, GAC1, TSS, Static Steal, mFAC2, AWF-B,

AWF-C, AWF-D, AWF-E, mAF.

1 GAC refers to LLVM’s implementation of schedule(auto) for the OpenMP runtime library. The acronym is
short for guided analytical chunked (a special variation of GSS). We will refer to this scheduling algorithm
with Auto(LLVM).



4
Performance Evaluation

This chapter presents the experiments and analysis of the results to verify and validate the

hypotheses stated below. The main objective of this project, to provide an automatic se-

lection mechanism for finding the optimal scheduling algorithm in a dynamic environment

without prior execution using reinforcement learning, was realized by implementing the de-

sign from the previous chapter.

The performance experiments are conducted using a modified version of the parallel Man-

delbrot [12] application, to be compatible with our time-stepping approach. The application

was compiled using the Intel compiler version 2019/a. If not stated otherwise, we use the

following input for Mandelbrot (maxiter, [x0, y0, size]): 〈 1000, 512, 0, 0,

0.5 〉.
All of the experiments were conducted on the same operating system (CentOS 7) on the

miniHPC-Broadwell cluster at the Department of Mathematics and Computer Science of the

University of Basel. The exact specifications of the system are listed in table 4.1. The table

also shows the set of performance evaluation experiments we designed to test the following

hypotheses that motivated this project:

H.1 The new automatic algorithm selection method ReinforcedSel, using reinforcement

learning, improves overall parallel execution time.

H.2 ReinforcedSel adapts to applications’ need of different scheduling algorithms across

time-steps for each loop to achieve high performance.

H.3 ReinforcedSel adapts to applications’ need of different scheduling algorithms for

different loops in a single time-step (and across time-steps).

Each experiment was repeated 5 times and the time values in the results denote the average

of those 5 runs. We collect the execution time of every modified loop (latest finishing thread),

every application thread, and the total duration of the execution of the applications. The

number of time-steps within the Mandelbrot application is denoted as T , the number of

loops we annotated with the schedule(runtime) as L. To keep the amount of experiment to

a manageable size, we have split the execution into two different categories:
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Table 4.1: Design of factorial experiments for the performance evaluation of the automatic
schedule selection method using reinforcement learning

Factors Values Properties
Applications Mandelbrot N = 262′144, T = 200, Total loops=3, Modified loops=3

Computing nodes Type A (miniHPC-Broadwell)
Intel Broadwell E5-2640 v4 (2 sockets, 10 cores each),
P = 20 without hyperthreading, P = 40 with hyperthreading
Pinning: OMP PLACES=cores OMP PROC BIND=close

Scheduling
techniques

OpenMP standard
STATIC Straightforward parallelization
GUIDED (GSS), DYNAMIC (SS)

Dynamic and non-adaptive self-scheduling techniques
OpenMP non-standard
(LB4OMP)

mFAC2
mAF Dynamic and adaptive self-scheduling techniques

Selection
methods

Expert based
(Auto4OMP)

RandomSel, ExhaustiveSel, BinarySel, ExpertSel
Automated DLS algorithm selection across
application loops and time-steps

ML based ReinforcedSel
Automated DLS algorithm selection across
application loops and time-steps

Chunk
parameter

State of the practice Default
Chunk size = N/P for static and 1 for all
other scheduling algorithms

Auto4OMP Expert chunk
A point at 0.618 on the curve between N/(xP ) and 1,
with x increasing in steps of 2

Computing nodes Type A (miniHPC-Broadwell)
Intel Broadwell E5-2640 v4 (2 sockets, 10 cores each),
P = 20 without hyperthreading, P = 40 with hyperthreading
Pinning: OMP PLACES=cores OMP PROC BIND=close

Metrics
Performance per loop Parallel loop execution time T loop
Schedule selection Counter (in case of auto methods)

1. Comparing the performance of our new ReinforcedSel method to itself with dif-

ferent configurations.

2. Compare the ReinforcedSel method to fixed scheduling algorithms and other au-

tomatic selection methods.

The pseudocode in listing 1 and 2 explain the design and partitioning of the factorial exper-

iments according to the two aforementioned categories. The results are presented in section

4.1 for listing 1 and sections 4.2, 4.3 for listing 2.

Algorithm 1: Factorial experiment showing α, γ sensitivity of Mandelbrot

input : DLS ← ReinforcedSel, GOLDEN ← TRUE

for RL in { Q-Learning, SARSA } do

/* Denotes the crossprodcut */

for α, γ in { 0.1, 0.2, .., 0.9 } do

repeat the following 5 times:

• execute Mandelbrot with 〈 DLS, GOLDEN, RL, α, γ 〉;
• record frequency of scheduling algorithm per loop;

• record Tp;

end

end
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Algorithm 2: Factorial experiment comparing parallel execution times of Mandelbrot

input : RL, α, γ

DLS METHODS = { STATIC, GUIDED, DYNAMIC, ... }
AUTO METHODS = { RandomSel, ExhaustiveSel, BinarySel, ... }
PORTFOLIO = DLS METHODS ∪ AUTO METHODS

for DLS in PORTFOLIO do
for GOLDEN in { FALSE, TRUE } do

repeat the following 5 times:
• execute Mandelbrot with 〈 DLS, GOLDEN, RL, α, γ 〉;
• record frequency of scheduling algorithm per loop;
• record Tp;

end

end

4.1 Comparison Of Reinforcement Learning Parameters
Figure 4.1 illustrates all the results generated from the 162 experiments specified by listing 1.

The figure consists of 6 sub-figures depicting the different combinations of learning method

and maxiter parameter. For one sub-figure we see the different α and γ values on the vertical

and horizontal axis respectively. To the right the heatbar indicates the execution time of

the application (lighter colors are better). At the intersection of two corresponding α and γ

values, the related execution time is denoted. The heatmap itself illustrates the distribution

of the execution times in that particular plot. The best combination of learning rate α and

discount factor γ for each sub-figure are highlighted in red.

Table 4.2 shows a summary of the best performing α,γ-value combination given one of the

two learning methods, Q-Learning and SARSA. The experiment is also conducted for 3

different input sizes for the maxiter parameter of the Mandelbrot application.

Firstly we observe that the execution time increases in a linear fashion proportional to the

maxiter parameter. Secondly we see that the learning method has no significant impact

on the overall execution time of the application. The difference in execution time is less

than 1% across all the experiments. Furthermore we discover that regardless of the maxiter

parameter a higher value for the learning rate α is preferred, while for the discount factor

γ a lower value for less iterations, increasing shortsightedness of the agent, is favored. For

longer running experiments a higher discount factor seems to perform better. This result

can be explained through the fact that for longer running experiments the true characteristic

of the associated loop has a larger effect on the execution time that decides the reward and

in turn also the next action. This should in theory lead to better choices regarding to the

actions taken by the agent.

In practice, however the overall application performance is not sensitive to any of the three

configuration parameters for the agent, α, γ and learning method. In the following experi-

ments the parameters for the agent are nevertheless chosen according to table 4.2. Since the

next set of experiments is run with maxiter=100’000, the following values for the learning

method, α and γ are chosen: 〈 SARSA, 0.8, 0.9 〉. For completeness’ sake the rest of the

experiments are also conducted with the parameters 〈 Q-Learning, 0.7, 0.4 〉, however the

results will only be mentioned in the appendix.
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(a) Method: SARSA, maxiter: 1’000 (b) Method: Q-Learning, maxiter: 1’000

(c) Method: SARSA, maxiter: 10’000 (d) Method: Q-Learning, maxiter: 10’000

(e) Method: SARSA, maxiter: 100’000 (f) Method: Q-Learning, maxiter: 100’000

Figure 4.1: Comparing the performance for the Mandelbrot application with different max-
iter parameters and α,γ-values (lighter colors are better).
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Table 4.2: Best performing α,γ-values with respect to the overall parallel execution time.

SARSA Q-Learning
Time (s) Time (s)Iterations

α γ
Min Avg

α γ
Min Avg

∆
(Min. Time of
Learning Met)

1’000 0.9 0.1 55.33 55.85 0.7 0.1 55.17 55.83 + 0.29%
10’000 0.9 0.8 452.48 452.82 0.6 0.2 452.69 454.24 − 0.05%

100’000 0.8 0.9 4’453.34 4457.21 0.7 0.4 4’454.71 4479.65 − 0.03%

Comparing the distributions of the execution times for every row in the 4.1, we realize

that for a larger maxiter parameter the hotpots for good or bad α,γ-value combinations

disappear. This becomes even more apparent when looking at the density plots in figure

A.1 in the appendix and emphasizes the insensitivity of the execution time toward the

agent’s configuration parameters.

4.2 Comparison Of Automatic Selection Methods
The evaluation in this section is comprised of two different plots. The first plot shows the

loop execution times and scheduling algorithm selection per time-step and application loop

(rows) for 5 different automatic scheduling technique selection methods (columns). The x

and y axis on the subplots are labeled with the time-step and the loop execution time. The

colors represent the 12 different loop scheduling algorithms implemented in the portfolio.

The second plot shows how often a scheduling algorithm for a specific loop (rows) has been

chosen from the portfolio by the given selection method (columns). The difference between

figure 4.2 and figure A.4 lies in the KMP GOLDEN CHUNK parameter, which has been left

enabled (as per default) for the first set of experiments and deliberately disabled for the sec-

ond set of experiments. Generally it can be stated that there is no difference in the relative

performance between the automatic selection methods weather the KMP GOLDEN CHUNK

parameter was set to true or false. But as shown in [13], the absolute value of the par-

allel execution time decreases significantly with expert chunks enabled for any of the loop

scheduling algorithms.

For the first plot we observe at first glance that loop L0 of the Mandelbrot application does

not experience any speedup, regardless of which scheduling technique is used. Further we

establish the the plots in the column ReinforcedSel clearly show the difference between

the exploration and exploitation phase of the agent. It is also observable that in the current

implementation of this method, the exploration phase lasts for almost 75% of the total 200

time-steps present in the Mandelbrot application. It is also interesting to note that the

agent quickly settles on one particular scheduling algorithm once the exploitation phase has

begun. This indeed leads to a reduction in the execution time for for loops L1 and L2.

However as we will reveal In the following section, the selected scheduling algorithms by

ReinforcedSel did not yield the best overall result.
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Figure 4.2: Comparing loop execution times and frequency of DLS algorithm selection for
AUTO methods (KMP GOLDEN CHUNK=true, LEARNING METHOD=SARSA).
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4.3 Comparison Of Automatic Selection Methods And Fixed Scheduling
Algorithms

Figure A.5 shows the results from the factorial experiments constructed by listing 2 in de-

tail. The different bars represent the scheduling techniques selected for the performance

evaluation. On the y axis we find the corresponding parallel execution time. The bars

also show how much every loop in the parallel application contributed to the parallel exe-

cution time. The three horizontal lines represent the highest (red), baseline (dashed) and

lowest (black) measured parallel execution time. Here the highest and baseline lines coincide.

Figure 4.3: Parallel execution time for each loop in Mandelbrot executing on node Type A.
The percentages denote performance improvements for the selected scheduling method vs.
the baseline (STATIC scheduling method) with learning method SARSA.

Table 4.3 presents an overview of the performance achieved by the available scheduling

algorithms in LB4OMP and by the automatic selection methods in Auto4OMP and the

proposed reinforcement learning selection method. As a comparison baseline we use the

STATIC scheduling method provided by the OpenMP library. The percentage of perfor-

mance degradation for the scheduling methods are computed by using the parallel execu-

tion time of the STATIC method (Tpar,static) as reference value. The remaining values are

calculated according to the following formula: Pschedule = abs(
Tpar,static

Tpar,schedule
∗ 100− 100).
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Table 4.3: Comparison between state of the practice scheduling algorithms vs. automatic
selection methods in terms of performance (execution time) degradation relative to the
baseline (STATIC schedule) for the learning method SARSA.

Fixed Scheduling Algorithms Automatic Selection Methods
App-Sys Pair

Selection
STATIC SS GSS Static Steal mFAC2 mAF RandomSel ExhaustiveSel BinarySel ExpertSel ReinforcedSel

Mandelbrot-Type A
(Expert Chunk false)

±0.00% 16.40% 16.17% 16.39% 14.21% 14.94% 15.66% 15.81% 15.46% 16.02% 14.71%

Mandelbrot-Type A
(Expert Chunk true)

±0.00% 16.49% 16.21% 16.39% 14.24% 15.34% 16.15% 16.04% 14.96% 16.10% 15.60%

Table cells with red and green backgrounds, highlight the lowest and the highest perfor-

mance gain relative to the baseline for every selection method in the set of state of practice

scheduling algorithms and in the set of automatic selection methods separately. From the

these results we observe that the proposed automatic selection method ReinforcedSel is on

par with the other automatic selection methods from Auto4OMP, but can never outperform

them.

When we take figure 4.2, A.5 and table 4.3 into consideration and remember the 3 hypotheses

stated at the beginning of this chapter, we can confirm hypotheses H.1, H.2 and H.3. Even

though we never outperform all of the selection methods from the Auto4OMP paper, our

method can compete in terms of performance optimization. In chapter 5 we suggest several

improvements and further experiments that might give deeper insight into the benefits of

using reinforcement learning as a automatic selection method.



5
Conclusion and Future Work

This chapter summarizes the issues that were addressed and the contributions made by this

project. It is followed by an outline of the conclusions and the possible directions for future

research work.

This project introduces an automatic method (named ReinforcedSel) for selecting loop

scheduling algorithms from a portfolio using reinforcement learning. The agent has been

implemented alongside the work of Auto4OMP as an effort to overcome the algorithm se-

lection problem for massively parallel OpenMP scientific applications and to improve the

overall performance via load balancing. We evaluated the performance for ReinforcedSel

for a parallel Mandelbrot time-stepping application on a single hardware system and tested

three hypothesis. We compared the performance achieved by ReinforcedSel with the set

of automatic selection methods from Auto4OMP and a reduced set of fixed loop scheduling

algorithm from the LB4OMP portfolio. The recorded parallel execution time for each loop

was used to calculate the performance gain compared to the static scheduling technique,

provided by the LLVM OpenMP runtime library, as a baseline.

The evaluation of the results show, the proposed automatic algorithm selection method

quickly settles on a scheduling algorithm after its exploration phase and as a result yields in-

creased application performance by up to 15.60% better than the selected baseline schedul-

ing algorithm. This puts our method on par with the ones from LB4OMP. The best per-

forming method from their portfolio, RandomSel, achieved a performance gain of 16.15%,

while the worst achieved 14.96%.

The advantage of an automatic schedule selection method based on reinforcement learning

(or machine learning in general) is that it will always learn to act in its environment to the

best of its abilities. To results from this paper show that this method is only on par with

the methods based on expert knowledge presented in LB4OMP. However improving on the

expert knowledge in the future might be difficult as to where a machine learning agent can

be tuned and adapted in an easier fashion. In case of the reinforcement learning method,

more research has to be made on the metric used to derive the reward and on the other

techniques employed by the agent.
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5.1 Future Work
In this section we are proposing changes and extensions to implementation provided with

this paper based on the shortcomings of our method we uncovered during the performance

evaluation and insights provided by related work.

Verification Most importantly we need a method to reliably and reproducibly test the

behaviour of the reinforcement learning agent. Without this addition we cannot be certain

that our implementation fulfills the correctness criterion. Therefore an interface for test-

ing the reinforcement learning logic outside time-stepping applications should be created.

There has been recent research [3, 19] which is looking into the verification of trained ma-

chine learning models via policy extraction.

Applications & Hardware Further we should extend the range of time-stepping appli-

cation and system types we use to obtain the performance evaluation data. This project

only relied on a parallel Mandelbrot time-stepping program and a single hardware type to

measure parallel execution time. This can be problematic since this particular implemen-

tation of Mandelbrot is known to produce a constant amount of load imbalance which is

well controlled by any dynamic loop scheduling algorithm. Instead we should employ other

time-stepping applications (e.g., SPHYNX [5]) for performance analysis as well. Another

drawback of Mandelbrot for this performance evaluation is the small number of time-steps

present in the application. Compared to the amount of time-steps required for the rein-

forcement learning agent to complete its exploration phase, the ensuing exploitation phase

is rather short.

Metrics Additionally other performance metrics to determine the reward for the rein-

forcement learning agent should be considered as well. Here we compared the execution

time of the loops for two consecutive time-steps to reward or punish the agent’s actions. In

future research one could consider load imbalance, robustness [17], flexibility [4] or a rolling

average of loop execution times as an input for the reward function. In general any metric

used as a decision criteria for loop scheduling algorithm selection needs to be able to encode

the environments state well in terms of load imbalance and absorbed perturbations.

Learning Methods As discussed in section 2.3, we can leverage an abundance of learning

methods that we can interchangeably use in our reinforcement learning setup. So far this

project uses the well known Q-Learning and SARSA algorithms. As an extension we should

also look at more advanced learning methods such as Expected-SARSA, Double-Q-Learning,

QV-Learning and even Deep-Q-Learning which eliminate some of the shortcomings of Q-

Learning and SARSA (overhead, may become trapped in local minima).
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Agent Policy For the on- and off-policy temporal difference learning methods, the agent

usually follows a certain policy that dictates (in accordance with the learning method) which

action should be chosen next. In this work we implemented a greedy policy that simply

chooses the action which promises the most reward by exploiting the agent’s current action-

value estimates. Epsilon-Greedy is a simple alternative policy to balance exploration and

exploitation by choosing between exploration and exploitation randomly. In epsilon-greedy,

the epsilon refers to the probability of choosing to explore, otherwise the current best action

is exploited. This could serve as a valuable improvement over the current implementation

where exploration only happens at the beginning.



Bibliography

[1] openmp - GCC Wiki. URL https://gcc.gnu.org/wiki/openmp.

[2] Mandelbrot-Menge, August 2021. URL https://de.wikipedia.org/w/index.php?title=

Mandelbrot-Menge&oldid=214955674. Page Version ID: 214955674.

[3] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable Reinforcement

Learning via Policy Extraction. May 2018.

[4] Anthony Boulmier, Ioana Banicescu, Florina M. Ciorba, and Nabil Abdennadher. An

autonomic approach for the selection of robust dynamic loop scheduling techniques. In

2017 16th International Symposium on Parallel and Distributed Computing (ISPDC),

pages 9–17, 2017. doi: 10.1109/ISPDC.2017.9.
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A
Appendix

For completeness, this appendix lists figures for the performance evaluation which where

no featured in the main part of this report due to the similarity in the results between the

Q-Learning and SARSA learning methods.
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A.1 Distribution Of Parallel Execution Times

(a) Iterations: 1’000

(b) Iterations: 10’000
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(c) Iterations: 100’000

Figure A.1: Distribution of parallel execution times when varying α, γ-values.
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A.2 Comparison Of Automatic Selection Methods

Figure A.2: Comparing loop execution times and frequency of DLS algorithm selection for
AUTO methods (KMP GOLDEN CHUNK=false, LEARNING METHOD=SARSA).
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Figure A.3: Comparing loop execution times and frequency of DLS algorithm selection for
AUTO methods (KMP GOLDEN CHUNK=true, LEARNING METHOD=Q-Learning).
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Figure A.4: Comparing loop execution times and frequency of DLS algorithm selection for
AUTO methods (KMP GOLDEN CHUNK=false, LEARNING METHOD=Q-Learning).
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A.3 Comparison Of Automatic Selection Methods And Fixed Scheduling
Algorithms

Figure A.5: Parallel execution time for each loop in Mandelbrot executing on node Type A.
The percentages denote performance improvements for the selected scheduling method vs.
the baseline (STATIC schedule) with learning method Q-Learning.



Appendix 34

A.4 Sample Jobfile

Listing A.1: Running the distributed time-stepping Mandelbrot application with the

SLURM workload manager with appropriate parameters on the miniHPC-Broadwell system

1 #!/bin/bash

2

3 #SBATCH --job-name mandel

4 #SBATCH --time=03:00:00

5 #SBATCH --nodes=1

6 #SBATCH --ntasks-per-node=1

7 #SBATCH --cpus-per-task=20

8 #SBATCH --partition=xeon

9 #SBATCH --exclude=cl-node001,cl-node002,cl-node004,cl-node007,cl-node006,cl-node010

10 #SBATCH --hint=nomultithread

11 #SBATCH --output=/storage/shared/msc/luc-kury/kury-msc-project/code/mandel/output/

mandel_schedule-auto,6_golden-1_run-1.txt

12

13 module load intel/2019a

14

15 export LD_LIBRARY_PATH=/storage/shared/msc/luc-kury/kury-msc-project/code/lb4omp/intel/

runtime/src/:$LD_LIBRARY_PATH

16 export OMP_NUM_THREADS=20

17 export OMP_PROC_BIND=close

18 export OMP_PLACES=cores

19 export OMP_SCHEDULE=auto,6

20 export KMP_ALPHA=1

21 export KMP_CPU_SPEED=2600

22 export KMP_Golden_Chunksize=1

23 export KMP_TIME_LOOPS=/storage/shared/msc/luc-kury/kury-msc-project/code/mandel/output/

looptimes/looptime_mandel_schedule-auto,6_golden-1_run-1.txt

24 export KMP_RL_ALPHA=0.80

25 export KMP_RL_GAMMA=0.90

26 export KMP_RL_LMETHOD=1

27

28 srun /storage/shared/msc/luc-kury/kury-msc-project/code/mandel/mandel.o 100000 512 0 0 0.5
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