
Automated Selection of Scheduling
Algorithms for Parallel Scientific

Applications using Reinforcement
Learning with OpenMP

Master thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

HPC Group

https://hpc.dmi.unibas.ch

Advisor: Prof. Florina M. Ciorba

Supervisor: Jonas H. M. Korndorfer

Luc Kury

luc.kury@unibas.ch

10-462-687

30th of July, 2022

https://hpc.dmi.unibas.ch

Abstract

Performance degradation due to load imbalance in computationally-intensive applications

is a significant road block on the way of achieving higher parallel application performance.

It is predominantly caused by idling processors, while there are other computation tasks

ready to be executed. This results in uneven execution progress among the parallel process-

ing units. Computationally-intensive applications often represent irregular workloads. The

computing systems running such workloads consist of heterogeneous processors and may be

affected by interference such as non-uniform memory access, operating system noise and

contention. The resulting load-imbalance can effectively be combated by dynamic schedul-

ing of computation units onto processing units. As a consequence many different scheduling

heuristics have been devised over the past decades. Finding an optimal scheduling algorithm

is a NP-hard problem. Through careful selection of a scheduling technique, the problem of

imbalanced loads can be addressed effectively. However, a manual selection approach is

time-consuming, tedious, and is fixed for the entire duration of the application’s runtime.

As a solution we propose RL4OMP, an extension to the LLVM OpenMP runtime, consisting

of Reinforcement Learning agents, as a mean to achieve automated selection of DLS algo-

rithms for OpenMP-loops. RL4OMP has 6 different agent types, 3 different action selection

policies and 6 different reward functions at its disposal and is implemented in a extendable

fashion through a class-based component system. Further we propose a new scheduling

algorithm Chunk-Learn, which directly estimates the chunk-sizes for the scheduling rounds

by the use of Reinforcement Learning.

The results of our performance analysis campaign show that our Reinforcement Learning

extension RL4OMP in some cases can outperform state-of-practice loop scheduling algo-

rithms and achieve the performance closest the ground-truth without any prior knowledge

about the applications characteristics. However we also reveal that depending on the ap-

plication, the configuration of the learning agent can have an non-negligible impact on its

performance and therefore fall behind other expert knowledge based automated DLS algo-

rithm selection methods.

This work reveals the feasibility of Machine Learning, Reinforcement Learning in partic-

ular, as a promising tool to increase parallel applications’ performance in an unsupervised

fashion. We also show the use of Reinforcement Learning as a scheduling algorithm can lead

to better overall performance than trying to use it to solve the algorithm selection problem.

Table of Contents

Abstract ii

1 Introduction 1

2 Background 2

2.1 Machine Learning . 2

2.2 Reinforcement Learning . 3

2.2.1 Basic Principles . 3

2.2.2 On-Policy v.s. Off-Policy Learning . 4

2.2.3 Reward Function Design . 5

2.2.4 Learning Methods . 6

3 Related Work 10

4 Implementation 13

4.1 The LB4OMP Library . 13

4.2 The Auto4OMP Extension . 14

4.3 The RL4OMP Extension . 15

4.4 Usage . 20

5 Benchmark & Results 21

5.1 Mandelbrot . 24

5.1.1 Ground-truth . 24

5.1.2 Results . 25

5.2 SPHYNX Evrard Collapse . 31

5.2.1 Ground-truth . 31

5.2.2 Results . 32

6 Conclusion & Future Work 37

Bibliography 39

Appendix A Appendix 42

A.1 Environment Variables . 42

Table of Contents iv

A.2 Mandelbrot - Extended Results . 43

A.2.1 Overall Application Performance . 43

A.2.2 DLS Selection Sequence . 49

A.3 SPHYNX - Extended Results . 60

A.3.1 Overall Application Performance . 60

A.3.2 DLS Selection Sequence . 66

1
Introduction

Performance degradation in parallel or distributed applications originating from load-imbalance

is a significant barrier to achieve shorter parallel execution times. Load-imbalance is pre-

dominantly caused by idling processors, while there are other tasks ready to be executed

but no processor has started doing so. This results in uneven execution progress among the

parallel processing units. Computationally-intensive applications often represent irregular

workloads and HPC clusters may be affected by non-uniform memory access, operating sys-

tem noise, and contention due to the sharing of resources. These effects are also known as

perturbations. Load-imbalance can effectively be reduced by dynamically and adaptively

scheduling computation units. For this task, many different scheduling heuristics have been

devised. However finding and selecting an optimal scheduling algorithm is non-trivial. [4]

Parallel applications, such as OpenMP programs, are especially susceptible to the effects

of load-imbalance. Through careful selection of a scheduling technique for either every

loop or the entire application, the problem of slow execution can be addressed effectively.

However, a manual selection approach is time-consuming, can lead to decision paralysis,

and is fixed for the entire duration of the application’s execution. An automatic selection

methods can address this problem and shortcomings in an effective manner. Previous work

based on export knowledge and Machine Learning, shows that automatic selection methods

perform as good or outperform a statically selected state-of-practice scheduling algorithm.

[2, 13, 25]

For this thesis we intend to implement a Reinforcement Learning extension for the LLVM

OpenMP runtime to augment its capabilities to automatically select between the available

scheduling algorithms during runtime using Machine Learning. We will achieve this by ap-

plying an Object-Oriented approach using C++14, encapsulating every component in its

own class. This allows for the extension to be lightweight, extensible and portable. Besides

Q-Learning and SARSA, which have been explored in previous work, we plan to explore

additional learning methods like Expected-SARSA, DoubleQ-Learning, QV-Learning to im-

prove the selection process of DLS algorithms. Additionally the effects of three different

actions selection policies and 6 different reward functions shall be investigated. For the

performance evaluation we use two scientific benchmark applications on a real-world HPC

system. [2, 20]

2
Background

Reinforcement Learning (RL) has gained popularity in the last decade with a series of

successful real-world applications in robotics, games and many other fields.

In this chapter we will provide a high-level structural overview of classic Reinforcement

Learning algorithms. The discussion will be based on their similarities and differences in

the intricacies of algorithms.

2.1 Machine Learning
Reinforcement Learning is a part of the Machine Learning domain, along with supervised

and unsupervised learning (Fig. 2.1). Supervised and Unsupervised learning are better

suited for classification of clustering problems, while Reinforcement Learning enables an

agent to learn how to make decisions under uncertainty for sequential decision problems.[26]

Figure 2.1: Overview of machine learning disciplines. The big three are: Unsupervised
Learning, Supervised Learning and Reinforcement Learning.

Background 3

2.2 Reinforcement Learning
There are two fundamental tasks in Reinforcement Learning: prediction and control. In

prediction tasks, we are given a policy and our goal is to evaluate it by estimating the value

Q of taking actions following this policy. In control tasks, we don’t know the policy, and the

goal is to find the optimal policy that allows us to collect the most rewards. As one might

assume, the selection of scheduling algorithms belongs to the group of control tasks.

Figure 2.2: Overview of Reinforcement Learning method categories. The suitable learn-
ing methods for the control tasks presented in this thesis are the model-free (temporal-
difference), values-based on-policy and off-policy methods.

2.2.1 Basic Principles
With Reinforcement Learning, the agent learns how to behave optimally in an unknown

environment by taking actions and learning from the effects of that particular action. Each

time the agent acts, the environment rewards the agent with a scalar value, and exposes the

new state of the environment. The agent has to decide again which action to use, given the

current state of the environment, to maximize its rewards. Figure 2.3 illustrates the main

components and information flow in a RL system.

Figure 2.3: Basic working principle of a RL system. The figure shows the connection between
the agent and environment entities via actions, observations and rewards.

Background 4

In Reinforcement Learning there are different algorithms that govern the decision mak-

ing of an agent and they can be divided into two groups: model-free and model-based.

Model-free algorithms learn the optimal action-value function and use it to derive a control

policy. This function represents the expected reward for taking a certain action. Model-

based algorithms learn the model of the environment and use it to derive the control policy.

In unpredictable environments (such as HPC systems that are influenced by random per-

turbations), the model-based algorithms are not suitable to derive any meaningful control

policy.

To learn the problems optimal control policy, model-free agents iteratively approximate

the optimal action-values via temporal difference (TD) learning. The agent updates the

current approximation of the control policy after each action-reward cycle (i.e. a single time-

step in a time-stepping application). Each model-free RL agent implements a behavioral

policy (e.g. greedy policy, ϵ-greedy policy, etc.) that determines how to choose the next

action [26]. This policy decides whether the agent should operate with the current best

choice (exploitation) or test alternatives (exploration).

Learning methods like Q-Learning, SARSA and its derivatives are also know as tabular

methods. They use a two-dimensional table like data structure to associate possible future

rewards with a given state-action pair. This can become a problem with memory and

lookup overhead when the environment has a large number of states and the agent can

select amongst many actions. DeepQ-Learning differs from the tabular based approach and

replaces it with a neural network to approximate the action-value function Q. Instead of

updating a single value in the lookup after a complete action-reward cycle, the weights of the

network are updated via back-propagation. From this also follows that all the action-state

values are output by the network at the same time and we can still employ any control

policy that suits our problem the best. [21, 22] This design entails a few advantages and

new possibilities:

• The network is able to generalize from states the agent has visited to states it has not

visited → reduction in states that need to be visited to reach an approximate solution

• Allows action-value function approximation to be non-linear

• Can handle a large number of inputs

• Incremental training support

2.2.2 On-Policy v.s. Off-Policy Learning
Using either On-Policy or Off-Policy learning methods leads back to the exploration vs.

exploitation dilemma. Essentially, an agent is forced to make a choice between making the

best decision given the current information or start exploring and finding more information.

If the algorithm for policy improvement always updates the policy greedily, meaning it takes

only actions leading to immediate reward, actions and states not on the greedy path will not

be sampled sufficiently, and potentially better rewards would stay hidden from the learning

process.

On-policy methods solve the exploration vs. exploitation dilemma by either forcing

exploration at the start or including randomness in the form of a policy that is soft, meaning

Background 5

that non-greedy actions are selected with some probability. It will do so by evaluating and

improving the same policy that the agent is already using for action selection. We say that

the target policy is equal to the behavior policy (see Fig. 2.4). It is worth noting that

because the optimal action will be sampled more often than the other actions, using on-

policy algorithms the agent will generally converge faster but also have the risk of trapping

the agent into a local optimum of the action-value function. An example of an On-Policy

algorithm is SARSA.

Figure 2.4: On-Policy learning with either policy gradients or value learning.

Off-Policy approaches have two different policies: a behavior policy and a target policy.

The behavioral policy b is used for exploration, and the target policy π is used for function

estimation and improvement. This works because the target policy π gets a “balanced”

view of the environment and can learn from potential mistakes of b while still keeping track

of the good actions and trying to find better ones. We say the target policy is NOT equal

to the behavior policy (see Fig. 2.5). Some examples of Off-Policy learning algorithms are

Q-Learning and Expected SARSA.

Figure 2.5: Off-policy learning with policy optimization.

2.2.3 Reward Function Design
The reward function is an incentive mechanism that tells the agent what is correct and

what is wrong using reward and punishment. The goal of agents in Reinforcement Learning is

to maximize the total rewards. In some cases designing a reward function is straightforward

(i.e. if you have knowledge of the problem). For example, if we consider the game of chess.

Background 6

There are three possible outcomes: win (good), loss (bad), or draw (neutral). Following

that logic, we could reward the agent with +1 if it wins the game, −1 if it loses, and 0 if it

draws.

However, in certain cases, the specification of the reward function can be a difficult

task because there are many factors that could affect the performance of the RL agent.

Considering the task of driving a car. In this scenario, there are many factors that affect

the behavior of a driver. and it is difficult to incorporate these factors in a reward function.

Therefore designing a reward function is trial-and-error and an engineering process. Usu-

ally we define an initial reward function based on the knowledge of the problem, we then

observe how the agent performs, then tweak the reward function to achieve better per-

formance. It can be observed that the miss-specification of the reward function can have

unintended consequences. To overcome this problem or improve the reward functions, there

are methods such as:

• Learning from demonstrations (apprenticeship learning), i.e. do not specify the reward

function directly, but let the RL agent imitate another agent’s behavior, either to

– learn the policy directly (known as imitation learning), or

– learn a reward function first to later learn the policy (known as inverse Reinforce-

ment Learning or sometimes known as reward learning)

• Incorporate human feedback in the RL algorithms

• Transfer the information in the policy, learned in another but similar environment, to

your environment (i.e. use some kind of transfer learning for RL)

2.2.4 Learning Methods
This section will briefly explain the concepts of the Reinforcement Learning methods

that will later be implemented for the automated DLS algorithm selection.

SARSA is an algorithm for learning a Markov decision process policy. The name simply

reflects the fact that the main function for updating the Q-value depends on the current

state of the agent S1, the action the agent chooses A1, the reward R the agent gets for

choosing this action, the state S2 that the agent enters after taking that action, and finally

the next action A2 the agent chooses in its new state. The pseude-code of the algorithm is

listed in Alg. 1 and the action-value function in equation 2.1. [26]

Q(St, At) = Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)) (2.1)

Q-Learning is a model-free Reinforcement Learning algorithm to learn the value of an

action in a particular state. It does not require a model of the environment, and it can

handle problems with stochastic transitions and rewards without requiring adaptations. For

any finite Markov decision process (FMDP), Q-learning finds an optimal policy in the sense

of maximizing the expected value of the total reward over any and all successive steps,

starting from the current state. Q-learning can identify an optimal action-selection policy

Background 7

Algorithm 1: Pseudo-Code for SARSA Learning.

Input: policy π, positive integer num episodes, small positive fraction α
Output: value function Q (≈ qπ if num episodes is large enough)
Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s ∈ S and a ∈ A(s))
for i← 1 to num episodes do

ϵ← ϵi
Observe S0

Choose action A0 using policy derived from Q (e.g., ϵ-greedy)
t← 0
repeat

Take action At and observe Rt+1, St+1

Choose action At+1 using policy derived from Q (e.g., ϵ-greedy)
Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At))
t← t+ 1

until St is terminal ;

end
return Q

for any given FMDP, given infinite exploration time and a partly-random policy. “Q” refers

to the function that the algorithm computes – the expected rewards for an action taken in

a given state. The pseude-code of the algorithm is listed in Alg. 2 and the action value

function in equation 2.2. [26]

Q(st, at) = Q(st, at) + α(rt+1 + γmaxaQ(st+1, a)−Q(st, at)) (2.2)

Algorithm 2: Pseudo-Code for Q-Learning.

Input: policy π, positive integer num episodes, small positive fraction α
Output: value function Q (≈ qπ if num episodes is large enough)
Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s ∈ S and a ∈ A(s))
for i← 1 to num episodes do

ϵ← ϵi
Observe S0

t← 0
repeat

Choose action At using policy derived from Q (e.g., ϵ-greedy)
Take action At and observe Rt+1, St+1

Q(St, At)← Q(St, At) + α(Rt+1 + γmaxa Q(St+1, a)−Q(St, At))
t← t+ 1

until St is terminal ;

end
return Q

Q-Learning vs. SARSA We will highlight the differences in learned agent behaviour

by looking at an example environment called Cliffworld (see Fig. 2.6) - we can think of it

as a playground for the agent. Cliffworld is an episodic task, with a start and goal state,

and actions causing movement up, down, right, and left. The reward is given −1 on all

transitions, except those into the region marked Cliff. Moving into this region awards the

agent a score of −100 and resets the agent’s position back to the start.

Background 8

Q-Learning learns values for the optimal policy (no unnecessary steps taken), the path

which travels right along the edge of the cliff. This leads to the agent sometimes stepping off

the cliff because of the “epsilon-greedy” action selection. SARSA, on the other hand, takes

the action selection into account and learns the longer but safer path through the upper part

of the grid. Although Q-Learning actually learns the values of the optimal policy, its online

performance is worse than that of SARSA, which learns the safer path. If ϵ were gradually

reduced, then both methods would asymptotically converge to the optimal policy.

Figure 2.6: Comparison of paths taken by Q-Learning vs. SARSA in the Cliffworld
example environment.

Figure 2.7: Comparison of rewards earned by Q-Learning vs. SARSA in the Cliffworld
example environment.

Expected-SARSA is an alternative for improving the agent’s policy. It is very similar

to SARSA and Q-Learning, and differs in the action value function it follows (see equation

Background 9

2.3). We have established that SARSA is an On-Policy and Q-Learning is an Off-policy

technique. Expected-SARSA can be used either On-Policy or Off-Policy and is much more

flexible. Expected SARSA takes the weighted sum of all possible next actions with respect

to the probability of taking that action. If the Expected Return is greedy with respect to the

expected return, then this equation gets transformed to Q-Learning. Otherwise Expected

SARSA is On-Policy and computes the expected return for all actions. [26]

Q(st, at) = Q(st, at) + α(rt+1 + γ
∑
a

π(a|st+1)Q(st+1, a)−Q(st, at)) (2.3)

DoubleQ-Learning is an Off-Policy algorithm that utilises double estimation to coun-

teract overestimation problems with traditional Q-Learning. The max operator in standard

Q-Learning uses the same values both to select and to evaluate an action. This makes it

more likely to select overestimated values, resulting in overoptimistic value estimates. To

prevent this, we can decouple the selection from the evaluation. For this purpose we main-

tain two Q-value functions QA and QB . In the update step we randomly select (with the

same probability) either QA or QB . When updating QA we use the estimate from QB for

the Q-value. When predicting the next action we consider both functions. [9]

Q (st, at) = Q (st, at) + αt (st, at)
(
rt + γmax

a
Q (st+1, a)−Q (st, at)

)
(2.4)

QV-Learning works by keeping track of both the Q-and V -functions. In QV-Learning,

the state-value function V is trained with normal TD-methods. The adaptation from Q-

Learning is that the Q-values are learned indirectly from the V -values using the one-step

Q-Learning algorithm. The V -function converges faster to optimal values than the Q-

function, since it does not consider the actions and is updated more often. Therefore, using

QV-Learning, the Q-values can be learned and compared by the way an action in a state

leads to different successor states. [29]

Q (st, at) = Q (st, at) + α (rt + γV (st+1)−Q (st, at)) (2.5)

3
Related Work

With the emergence of hyperthreaded and simultaneous multithreaded commodity hard-

ware, the ability to parallelize applications grew at a fast pace. This lead to the realization

that load imbalance is a major contributor to performance degradation and therefore needs

to be addressed via (dynamic and adaptive) scheduling algorithms. It is agreed upon that

no single statically selected algorithm yields the best overall performance ([2, 17–19]), in-

stead there should be an automated system that selects the best scheduling strategy during

execution according to some metric.

In [30], two scheduling techniques for applications executing on symmetric multiproces-

sors with simultaneous multithreaded processors are introduced: (1) a loop-based scheduler

for individual loops (2) an off-line created hardware-counter directed scheduler using a de-

cision tree. Similarly this work will also implement a selection process for every individual

loop, but in contrast our decision logic is not created off-line to avoid the need for profiling.

Self-Scheduling is another important and commonly used principle when scheduling tasks

on multiprocessors in multiprogrammed systems. Probabilistic Self-Scheduling is a self-

scheduling algorithm proposed by Girkar et al. in [7]. Its goal is to minimize the run-time

scheduling overhead by selecting an appropriate task size (chunks) based on the number

of available (idle) processors and remaining iterations. This reduces the number of allo-

cation points and in turn promises better performance. While not directly applicable to

the present work, the observation of the system state (namely available processors) is an

interesting proposition and can be adopted for the use with a reinforcement learning agent.

Using reinforcement learning to automatically select the most appropriate dynamic loop

scheduling algorithm from a set of available algorithms is described in [20]. Our work will

improve upon the findings in multiple ways. Instead of just the quantum trajectory method

simulation for the performance evaluation we will use balanced, unbalanced and memory-

bound kernels as well as two different scientific applications on native hardware. On top the

results from [20] show that it did not matter weather the Q-Learning or SARSA algorithm

was employed with the agent. This might stem from the fact that their time-stepping ap-

Related Work 11

plications had to few time-steps or that the two learning algorithms are not the best fit for

the problem. Instead in our work we focus on more recent learning algorithms.

Thoman et al. show in [28] that an automatic scheduling algorithm selection based on

polyhedral compiler analysis can result in significant performance gains. They achieve this

by generating an effort estimation function in combination with current runtime system

behaviour monitoring. Opposing to [28] our work will not perform any sort of compiler

analysis to improve the selection process - this has the advantage that the availability of

the source-code is not a requirement. However as stated previously we will also employ the

monitoring of the overall system state to estimate the fitness of a dynamic loop scheduling

algorithm during runtime.

A similar approach to [20] is introduced by Sukhija et al. in [25]. The similarities lay

in the portfolio-based selection of scheduling algorithms. The approach however differs in

the machine learning technique that was applied. Supervised learning is used to build an

empirical robustness prediction model. Performance evaluations were conducted with the

SimGrid simulation framework. The usage of a robustness metric is an interesting propo-

sition and is also applicable to our work - however we focus on performance evaluation on

real HPC system instead of a simulated environment.

Adapting the insights from [25], Boulmier et al. devised a new robustness metric called

”flexibility” to be used as reward input for a reinforcement learning agent to estimate the

capability of a DLS technique to resist variations in the loop iteration’s execution time. As

in previous work, the performance was evaluated in a simulated environment using SimGrid.

Tying on to the research done in [2], a simulator assisted method called ”Simulator in

the Loop” (SiL) and also ”Simulator-Assisted Scheduling Approach (SimAS) has been intro-

duced in [17] and [18]. SiL is inspired by control theory, where a scheduler is used to achieve

and maintain a desired load balance of the system by using the simulator to predict the

performance of the system and then to dynamically select a DLS technique that maximizes

application performance during execution.

Sreenivasan et al. proposes the concept of an autotuner in [24], which automatically de-

termines the best combination of thread count, schedule type and chunk size associated with

a loop based on a user defined search space. This is achieved by sampling every combination

for a set period of time, then using the reported execution time for a loop to determine the

best set of parameters. The downside of this method is the fast growth of the search space.

In our work this is mitigated by assuming that the DLS method has the most impact on

the applications performance.

A different approach to parallel performance optimization is taken in [11]. Instead of

selecting a DLS method from a new set, the factoring self-scheduling (FSS) algorithm is

extended to use Bayesian optimization. The new algorithm is appropriately called Bayesian

Related Work 12

optimization augmented factoring self-scheduling (BO FSS) and achieves its performance

improvements through solving an optimization problem. The tuning procedure only re-

quires online execution time measurement of the target loop. BO FSS does not perform as

well in some crucial scientific workloads that dynamically change during execution. We will

investigate if reinforcement learning can overcome this weakness of BO FSS by selecting

appropriate workloads.

Recently another supervised machine learning approach has emerged in [19]. The re-

search explores a method called ADAPTIVELB which employs a K-Nearest Neighbors clas-

sifier to select the best suitable load balancing algorithm from the training set. It con-

siders system workload information and communication among jobs during inference. The

drawback of this method is the relatively high overhead during the inference step, which

prevented the method from being the overall highest performing scheduling method during

performance evaluation. In our evaluation we will record the execution time in and out of

the loop to compare the overhead of the different automatic selection methods as well.

So far all of the above mentioned related work referred to speeding up parallel applica-

tions with dynamic loop scheduling. However similar algorithms exist for efficiently mapping

processes with MPI in multi-/many core machines. This is predominantly interesting and

challenging for cloud-based HPC systems where the architecture brings more diversity. [8]

proposes two novel algorithms to construct efficient MPI mappings for any given architec-

ture and application communication pattern. This is done by using low-level benchmarking

utilities to extract machine information. Our goal is to use the same reinforcement learning

agent as with the loop scheduling algorithm selection, but apply it to the process mapping

problem to construct efficient communication graphs for MPI.

4
Implementation

In the following section we will discuss the architecture and the features of the Reinforcement

Learning implementation (RL4OMP) for the scheduling algorithm selection problem as

well as the libraries it builds on. The work presented in this thesis does not propose a

new framework to improve thread-level scheduling with Reinforcement Learning. Rather it

builds on, extends and improves an existing solution like the LB4OMP library - even though

we took extra care to make sure our extension is lightweight, encapsulated, extensible and

portable.

LB4OMP

LLVM OpenMP RTL

Auto4OMP

RL4OMP Our contributionOur contribution

Figure 4.1: Showing the dependencies of RL4OMP in the “technology stack”.

To understand how our Reinforcement Learning extension was implemented, we first

need to understand the tools and libraries we employ to make the Reinforcement Learning

work. The following sections are ordered according to their position in the “technology

stack” (see Fig. 4.1).

4.1 The LB4OMP Library
LB4OMP extends the LLVM OpenMP RTL, which is widely used and compatible with

various compilers (e.g. Intel, GNU, etc). Figure 4.2 shows the LB4OMP loop schedul-

ing mechanism which extends the scheduling mechanism in the LLVM OpenMP RTL.

The three main functions responsible for the chunk calculation are implemented in the

file kmp_dispatch.cpp .

Upon initialization, each thread calls the __kmp_dispatch_init_algorithm function in-

Implementation 14

k
m
p
_
d
i
s
p
a
t
c
h
.
c
p
pinit

Worksharing loop

next

finish

Auto4OMP
Portfolio | selection | chunk

Auto4OMP
Timing | re-trigger

sync

Explanation: OpenMP
Thread Chunk Loop iteration

search

RL4OMP
Agent Management

kmp_agent_

provider.cpp

Figure 4.2: Extension of the OpenMP LLVM RTL scheduling process for work-sharing
loops with LB4OMP and RL4OMP.

side the kmp_dispatch.cpp file (init in Fig. 4.2). This function then initializes the needed

structures for the selected scheduling technique and calls __kmp_dispatch_next_algorithm

(next in Fig. 4.2). The logic of the chunk calculation of all DLS techniques is implemented

in the __kmp_dispatch_next_algorithm function. The __kmp_dispatch_next_algorithm is

called each time a thread needs to obtain work. Since the threads obtain work from a

shared queue, __kmp_dispatch_next_algorithm relies on different synchronization opera-

tions (sync in Fig. 4.2) depending on the scheduling technique in execution. Finally, the

threads call __kmp_dispatch_finish (finish in Fig. 4.2) to reset variables or free allocated

memory. The OpenMP standard scheduling techniques and the newly implemented schedul-

ing techniques in LB4OMP support the declaration of a chunk parameter which bears dif-

ferent meanings among the scheduling techniques. For schedule(static,chunk) and

schedule(dynamic,chunk), the chunk parameter denotes the amount of iterations that

the threads should receive for every work request. For the other techniques, the chunk pa-

rameter works as a threshold. When chunks sizes calculated by a scheduling technique fall

below this threshold, they will be replaced by a chunk sizes equal to the size of the chunk

parameter. The chunk parameter was introduced by the OpenMP standard to minimize the

scheduling overhead and to improve data locality.

4.2 The Auto4OMP Extension
Auto4OMP is designed to address the scheduling algorithm selection problem in OpenMP.

It leverages the existence of auto as a scheduling option in OpenMP and extends its imple-

mentation in the LLVM OpenMP runtime library with expert chunk selection, a portfolio

of loop scheduling algorithms, and algorithm selection methods. The portfolio is an impor-

tant concept which we will reuse in our Reinforcement Learning implementation. Scheduling

algorithms are added to the portfolio if they posses certain characteristics in order to help re-

duce the search space and cost for automated selection methods. The Auto4OMP portfolio

Implementation 15

includes the following 12 algorithms, sorted in ascending order of their scheduling over-

head and load balancing capacity: STATIC, SS, GSS, GAC, TSS, Static Steal,

mFAC2, AWF-B, AWF-C, AWF-D, AWF-E, and mAF. By default, Auto4OMP uses the

expert chunk parameter. For our performance analysis campaign we will not use this fea-

ture and set the parameter KMP_Golden_Chunksize=0 . Using the expert chunk feature has

proven favourable for the performance of the combination of computing node and bench-

mark application chosen in our work. Leaving the option enabled leads to a similar parallel

execution time for many scheduling algorithms which will not convey the true performance

of the Reinforcement Learning agent.

4.3 The RL4OMP Extension
RL4OMP was created to further improve the ability of OpenMP to select the best

available scheduling algorithm automatically, using Reinforcement Learning. This should in

principle dismiss the need for expert knowledge to be transformed and hard-coded into the

library’s source code.

This extension is written in Object-Oriented C++14. For this thesis the source files were

added to the CMakeLists.txt file of the LB4OMP extension for easier compilation. But

the extension can be compiled stand-alone. Every component of the extension was designed

to be extensible and as much logic as possible is contained within the abstract classes (see Fig.

4.3) in order for the implementation classes to be as small as possible. The AgentProvider

class is used to pass information back and forth between the loop scheduling library and

the RL4OMP extension. The class contains two static maps. The maps keep track of the

elapsed time-steps and the agents for each loop. We use the loop name provided by the

LLVM OpenMP runtime as the key. The static class method AgentProvider::search

is called with every scheduling round (call to __kmp_dispatch_next_algorithm) and either

creates a new agent for the corresponding loop name, or looks up the existing agent from

the map and passes pointers to the data structures in order for the agent to learn and take

an action. The selected action (next scheduling algorithm) is the only value returned to

the LLVM OpenMP runtime. When a new agent gets created, the base class constructor

gets called first which initialises the required fields and reads all the supported configura-

tions from the environment. The specific implementation of an agent only implements the

Agent::update function and any additional fields if needed. The base class Agent also

takes care of instantiating the different sub-components like initialisers, policies or reward

functions and using them during runtime.

Implementation 16

«Abstract Class»
Agent

«Abstract Class»
BaseInitializer

«Abstract Class»
BasePolicy

«Abstract Class»
BaseReward

ZeroInitializer

RandomInitializer

ExploreFirstPolicy

EpsilonGreedyPolicy

SoftmaxPolicy

LooptimeReward

LooptimeInverseReward

LooptimeAverageReward

AgentProvider

LooptimeRollingReward

LoadimbalanceReward

RobustnessReward

DoubleQLearner

QLearner

SarsaLearner

ESarsaLearner

QVLearner

Factory Class

Implementation

Abstract Class

Legend:

Chunk-Lerner

Meta Class

LLVM
OpenMP
runtime

Figure 4.3: UML-Diagram of the RL4OMP extension’s architecture and components.

The implementation for the Reinforcement Learning (RL) extensions hooks into the ex-

isting dispatch mechanism established by LB4OMP and Auto4OMP. It works by hijacking

the chunk parameter for the auto schedule keyword (e.g. auto,8). While the Auto4OMP

extensions reserves parameters 2 to 5 (RandomSel, ExhaustiveSel, BinarySel and

ExpertSel) for itself, the RL extension uses parameters 8 to 15 (assignments listed below).

When the LLVM’s OpenMP runtime dispatcher encounters a chunk parameter belonging

to the RL extension, it forwards the call to the newly created AgentProvider class1.

The class-method search (see Fig. 4.2) serves as the only interface between the LLVM’s

OpenMP runtime and the Reinforcement Learning extension. It takes care of instantiating

1 In this chapter when we talk about “classes”, we mean it in the sense of Object Oriented Programming
and not in the sense of a group of algorithms or things.

Implementation 17

new agents and their sub-components, as well as keeping track of which agent belongs to

which application loop. This minimizes the pollution of the existing codebase and facilitates

extensibility and portability. When creating a new agent, a user is able to choose from the

following learning methods (which also constitutes its own agent type):

• 8 → Q-Learning

• 9 → DoubleQ-Learning

• 10 → SARSA

• 11 → Expected-SARSA

• 12 → QV-Learning

• 15 → Chunk-Learning (special case)

How the agent types (8 - 12) are different in terms of their in learning behaviour, has

been discussed in chapter 2. The Chunk-Learning agent (option 15) is a special case - we

can think of it as a meta-agent. In itself the Chunk-Learning does not implement a classic

learning algorithm from literature. Rather it wraps the other learning methods in such a

way, that the output of its decision is not the next scheduling algorithm but the chunk-

size directly. We use the chunk-size found by the agent in conjunction with the dynamic

schedule to directly influence how many iterations we would like to get from the work-sharing

loop. Theoretically we could let the agent try every chunk-size from 1..n/p. This leads to

a huge state-action space which performs poorly in time and space. Therefore we limit the

available choices of chunk-sizes (for our implementation we choose to have the same number

of choices as there are algorithms in the portfolio = 12). Equation 4.1 describes how the

chunk-size C is derived. The total number of iterations in a loop is denoted by n, the

numbers of available threads by p and x represents the desired size of the search space.

Ci =
n

2i ∗ p
, i ∈ [1..x] (4.1)

For all agents apllies, that besides the learning method for the agent (which governs the

update process of new experiences to the agent’s internal state), there are 3 sub-components

to an agent which can be fine tuned by the user as well: (1) the initializer for the internal

data structure, (2) the policy that selects the next action and (3) the function which cal-

culates the agent’s reward.

(1) Initializers For the initializer there are two choices - the ZeroInitializer class

which sets all the values of the tabular data structure of the agent to 0 and the Rando-

mInitializer class that sets the values to a random floating point number between the

minimum and maximum reward value. [14]

(2) Policies The RL extension provides 3 options for the agent’s policy. the Explore-

FirstPolicy class selects every state-action pair at the beginning of the learning process

exactly once in sequential order. After that, the ExploreFirstPolicy class acts greed-

Implementation 18

ily. EpsilonGreedyPolicy class uses a random number generator to decide between

exploitation (greedy behaviour) and exploration. Exploration is chosen with a probabil-

ity of 1 − ϵ and the greedy action is chosen with a probability of ϵ. This policy can be

tuned with the two following environment variables: KMP RL EPSILON (initial value) and

KMP RL EPS DECAY (decay factor). The last available policy class is the SoftmaxPolicy.

While the first two policies would look for the highest Q value (in the greedy case) when

deciding the action, here the probability of selecting an action increases with a high Q value.

This policy can be tuned with the KMP RL TAU environment variable. τ is also called the

temperature. A high temperature increases the probability to select an action associated

with a high Q value even further, while a low temperature arranges for the probabilities to

be more uniformly distributed.

(3) Rewards Further we have several choices regarding the reward function. As discussed

in chapter 2, the reward function is an important part when implementing a domain specific

Reinforcement Learning problem. Since it is difficult to have an intuition for the behaviour

of an agent to a specific reward signal, we implemented a wide range of different reward

functions to test with a real world scientific applications. The implementations for the

rewards generally follow the same principle across all classes (compare equation 4.2).

Rt(x) =

r+ x ≤ min

t
(x)

r0 min
t
(x) < x < max

t
(x)

r− max
t

(x) ≤ x)

(4.2)

From the above equation we can gather that depending on the input x (which is usually

the parallel execution time), the agent can be given 3 different values as the reward - we

can think of them as good, neutral and bad values. To distinguish between these 3 cases we

keep track of the min and max for the input x across all time-steps. The following reward

function classes are available:

• LooptimeReward: Award is given according to the last thread finishing time for a

time-step.

• LooptimeInverseReward: The inverse of the parallel execution time for a time-

step is given as an award Rt(tPAR) = 1/tPAR∗c. This reward function is an exception!

There are no distinct 3 cases for the reward value. This reward function can be cus-

tomized with the KMP RL INVERSE REWARD MULT environment variable. It provides

a value for the factor c and is used to combat small values.

• LooptimeAverageReward: An award is given based on the parallel execution time

of the current time-step being above or below the running average for the execution

time. This reward function is an exception! There are no distinct 3 cases for the

reward value, only 2 ({r+, r−}).
• LooptimeRollingAverageReward: An award is given based on the parallel exe-

cution time of the current time-step being above or below the rolling average for the

Implementation 19

execution time. This reward function can be customized with the KMP RL ROLLING -

AVG WINDOW environment variable. It determines the amount of previous time-steps

are taken into account when calculating the average. This reward function is an ex-

ception! There are no distinct 3 cases for the reward value, only 2 ({r+, r−}).
• LoadimbalanceReward: Award is given based on the percent load imbalance (LIB)

after the current time-step. LIB = (1− mean of thread finishing times
max of thread finishing times) ∗ 100

• RobustnessReward: Award is given based on the robustness metric after the current

time-step. [2]

The class AgentProvider is designed to work as a factory that creates the right Agent

class depending on the value of the OMP SCHEDULE variable. The constructor of the Agent

class reads all the environment variables (specified in listing 2 in section A.1) and initializes

and configures all sub-components accordingly. During runtime, the learning rate α and the

exploration rate ϵ are decayed exponentially according to their decay rate after each time-

step. When the ExploreFirstPolicy is used, the decay process is delayed until the initial

exploration phase is complete. Decaying these values ensures that the agent gradually uses

more and more of its existing knowledge rather that learning for the entire duration of the

application run. To prevent this behaviour, the user can set the decay factor to a value of

1. The initial values for all the agent’s parameters are specified in listing 1 below. When

not overwritten via the environment or a job-file, this way a scientific application can be

run with minimal setup required.

1 namespace defaults {
2 const double SEED = 420.69f;//Random number generators
3

4 const double ALPHA = 0.85f; // Initial learning rate
5 const double ALPHA_MIN = 0.10f; // Stop learning rate decay
6 const double ALPHA_DECAY_FACTOR = 0.01f; // Decay for learning rate
7 const double GAMMA = 0.95f; // Initial discount factor
8 const double EPSILON = 0.90f; // Initial exploration rate
9 const double EPSILON_MIN = 0.10f; // Stop learning rate decay

10 const double EPSILON_DECAY_FACTOR = 0.01f; // Decay for exploration
11 const double TAU = 1.50f; // Temperature for softmax
12

13 const int CHUNK_TYPE = 8; // Type for chunk learner
14

15 const int ROLLING_AVG_SIZE = 10; // Sliding windows size
16 const int INVERSE_REWARD_MULT = 10; // Inverse reward multiplier
17

18 const RewardType REWARD_TYPE = RewardType::LOOPTIME;
19 const InitType INIT_TYPE = InitType::ZERO;
20 const PolicyType POLICY_TYPE = PolicyType::EXPLORE_FIRST;
21 const DecayType DECAY_TYPE = DecayType::EXPONENTIAL;
22

23 const std::string REWARD_STRING = "0.0,-2.0,-4.0"; // r+, r0, r-
24 }

Listing 1: Default values for Reinforcement Learning agents (contained in its own names-
pace).

Implementation 20

4.4 Usage
This section will provide a short overview on how to use the Reinforcement Learning

selection method with a time-stepping application.

The usage of the Reinforcement Learning technique in any OpenMP application is de-

signed to be as effortless as possible and explained in Fig. 4.4. As an initial step, the

target OpenMP loops in the application must contain the schedule(runtime) clause.

If this prerequisite is already satisfied, no further changes to the application’s source code

are required. Otherwise the existing scheduling clause needs to be altered to runtime in

all target loops and the application must be recompiled. Further, the path to the compiled

LB4OMP library has to be added to the environment variable that the linker uses to load

dynamic and shared libraries from (e.g. LD_LIBRARY_PATH on UNIX/LINUX systems). Ad-

ditionally the host CPU clock frequency as a system-related parameter is required. This is

passed to LB4OMP via the environment variable KMP_CPU_SPEED as an integer in Megahertz.

App. loops contain
schedule(runtime)?Start

Add schedule runtime to the target loops
Example in C:
 #pragma omp parallel for schedule(runtime)
 for(int i = 1000; i > 0; i++) {
 // block of code
 }

 No

Compile Application

Link application with LB4OMP
Example for UNIX/LINUX:
export LD_LIBRARY_PATH=LB4OMP_path

 Yes

Select scheduling technique and
provide other settings
export OMP_SCHEDULE=auto,6
export KMP_CPU_SPEED=CPU_Clock
export KMP_Golden_Chunksize=1
export KMP_RL_ALPHA=e.g. 0.80
export KMP_RL_GAMMA= e.g. 0.90
export KMP_RL_LMETHOD=e.g. 1

Execute Application End

Figure 4.4: Showing the workflow for how to connect a time-stepping application to the
Reinforcement Learning extension.

5
Benchmark & Results

In this chapter we discuss the experimental setup and results of the two benchmark appli-

cations that were used to measure the parallel performance of our proposed Reinforcement

Learning extension.

As discussed in the previous chapter, the extension implements several different learning

agents. Additionally the agent is composed of several sub-components which can be con-

figured to the users needs via environment variables (see listing 2 in the appendix for all

the available options). In table 5.1 we assembled the details of our factorial experiments for

two different scientific time-stepping applications to asses the performance (parallel execu-

tion time) of different scheduling algorithms against the automated DLS algorithm selection

methods - such as Auto4OMP or RL4OMP. From this table of experiments we derived 11

different configurations (specified in table 5.2) for the Reinforcement Learning agent, for

which the performance has been evaluated. Running the 2 application with all the agents

and reference methods for 11 different configurations, and repeating every run 5 times for

consistency, resulted in over 1’440 experiments conducted in total, for which the log data

have been collected and stored. On top of that we gathered the ground-truth for each

application with respect to the portfolio of scheduling algorithm.

The factorial experiments add up to 70 individual runs per configuration. Each con-

figuration only changes one aspect of the agent and its sub-components. We forewent the

possibility to generate additional experiments by combining different settings for the sub-

components of the agent. The evaluation process would become increasingly difficult and

the source of the effect on the performance might be hard to trace. In table 5.2 we also

describe what the anticipated effect of the different configurations and the difference to the

default configuration is.

The experiments show that for a constant load-imbalance like the Mandelbrot appli-

cation, the Q-Learning agent performs the best but cannot outperform some of the best

automated DLS selection methods from previous work. The Chunk-Learn agent however

achieves the performance closest to ground-truth for the Mandelbrot application. In the

SPHYNX Evrard Collapse experiment the Chunk-Learn agent again outperform every other

agent of the RL4OMP extension but falls behind automated DLS selection methods from

Auto4OMP.

Benchmark & Results 22

Table 5.1: Design of factorial experiments for the performance evaluation of the Reinforce-
ment Learning extension to LB4OMP.

Factors Values

N = 262,144 T = 500 Total loops = 3,

Modified loops L = 3

N = 1,000,000 T = 400 Total loops = 37,

Modified loops L = 2

static

ss

gss

gac

tss

static steal

mfac2

awf-b

awf-c

awf-d

awf-e

maf

RandomSel (auto,2)

ExhaustiveSel (auto,3)

BinarySel (auto,4)

ExpertSel (auto,5)

Q-Learning (auto,8)

DoubleQ-Learning (auto,9)

SARSA (auto,10)

Expected-SARSA (auto,11)

QV-Learning (auto,12)

ChunkLearning (auto,15)

Zero

Random

Loop Time

Loop Time Inverse

Loop Time Average

Loop Time Rolling Average

Percentage Loadimbalance

Robustness

Explore First

Epsilon Greedy

Softmax

Chunk Parameter Standard Chunk

miniHPC-BroadwellComputing nodes

Intel Broadwell E5-2640 v4 (2 sockets, 10

cores each), P=20 cores w/o HT, Pinning:

OMP_PLACES=cores,

OMP_PROC_BIND=close

-

-

-

-

-

-

-

Reinforcement Learning

Selection Policies

Reinforcement Learning

Reward Metrics

-

-

Properties

Scheduling techniques

Selection Methods

Expert

Reinforcement

Learning

Automated DLS algorithm selection

Straightforward parallelization

Automated DLS algorithm selection

Mandelbrot OpenMP only

SPHYNX Evrard Collapse OpenMP only

-

Reinforcement Learning

Initializer

-

-

Applications

Dynamic and non-adaptive

self-scheduling techniques

Dynamic and adaptive

self-scheduling technique

The LB4OMP library and the applications were compiled with the Intel compiler version

2019/a on the miniHPC-Broadwell cluster. We denote with the number of total iterations of

the application with N , the amount of time-steps with T and he number of loops for which

we modified the schedule clause with L.

Benchmark & Results 23

Table 5.2: Explanation of the experiment configuration titles.

Configuraiton Description

All Defaults See listing 1 for default settings for agents.

Random
Uses the random intizializer for the agents internal data struc-
ture. The randomness could help the agent overcome its own
learning bias and help select actions that have a higher reward.

Looptime Inverse

Instead of having distinct reward values, we return the inverse of
the parallel execution time as a reward to the agent. The thought
behind the principle is twofold: We use the dimension (parallel
execution time) the agent should maximize as the actual reward.
A small execution time results in a big reward and vise-versa.

Looptime Average

Instead of min and max, we track the average of the parallel
execution time. This will help in a situation where early in the
learning process the agent encountered a very extreme (fast or
slow) parallel execution time and all subsequent rewards will
mostly be neutral (not punishing or rewarding the agent enough
for the chosen action).

Looptime Rolling

Instead of min and max, we track the average of the parallel
execution time. But the average is only collected for the x =
10 last time-steps. The same principle as above applies, but
for applications and system with strongly varying loadimbalance
throughout the execution of the application this reward function
might perform better.

Neutral Reward

Rather than setting the reward range to mostly negative values
[0,−2,−4], we set the reward range to [+2, 0,−2]. Offsetting
the reward values might help the policy optimisation process
and escape local extrema.

Positive Reward
Rather than setting the reward range to mostly negative val-
ues [0,−2,−4], we set the reward range to [+4,+2, 0]. Same as
above.

Loadimbalance
The standard reward of looptime gets replaced by the percentage
loadimbalance (formula presented in section 2.2).

Robustness
The standard reward of looptime gets replaced by an adapted
robustness metric (formula also presented in section 2.2).

Epsilon Greedy
Epsilon-Greedy is an alternate policy that relies on probability
to explore new actions.

Softmax

The Softmax policy is an alternate policy that assigns a soft
probability to every action instead of acting greedy. This in-
creases the the chance for the second or third best action to be
chosen as well, which might not yield the highest reward in the
short term but increase the overall earned rewards.

Benchmark & Results 24

5.1 Mandelbrot
This section describes the properties and results for the benchmarks of the modified

Mandelbrot application. The application can be launched with a set of input parame-

ters (./mandelbrot.o maxiter [pixels x0 y0 size]) which mainly increase the applica-

tions runtime, since Mandelbrot is able to run ad infinitum. The actual input parameters

chosen for the test runs are: ./mandelbrot.o 1000 512 0 0 0.5 . The application also has

been modified in such a way that it runs for 500 time-steps, which should give the agent

enough time to learn and the exploit its knowledge in a meaningful way. All the experiments

were run 5 times with the same configuration on the miniHPC-Broadwell of the university,

to make sure the variance of the results is in an acceptable range.

5.1.1 Ground-truth
The ground-truth (GT) is the theoretical best scheduling method and serves as a base for

comparison for the other scheduling algorithms. We construct the ground-truth by running

the chosen scientific application 5-times with every scheduling algorithm from the portfolio

defined in section 4.2. We then take the mean of the 5 runs and look for smallest parallel

execution time amongst all the methods in the portfolio for every time-step. The sum of the

smallest means over all the time-steps is the new theoretical best parallel execution time for

any automated DLS algorithm method. The ground-truth should only be used to compare

scheduling methods that use the same portfolio of algorithms.

AF
mAF

Auto
 (L

LVM)
AW

F
AW

F-B
AW

F-C
AW

F-D
AW

F-E SS Fac
2

mFac
2

GSS
Sta

tic

Sta
tic

 St
ea

l
TS

S

Loop scheduling technique / Selection method

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e5

+
16

.0
6%

+
9.

90
%

+
3.

54
%

+
2.

80
%

+
81

.2
7%

+
3.

50
%

+
90

.6
9%

+
5.

11
%

+
21

.6
0%

+
2.

50
%

+
2.

47
%

+
3.

55
%

+
15

.6
8%

+
9.

14
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Ground-truth

Figure 5.1: Results for the ground-truth for the Mandelbrot application. The numbers
presented in the graph are the mean collected over 5 runs for every scheduling algorithm in
the portfolio. Labels in red on the x axis represent scheduling algorithms not in the portfolio
serving as comparison.

Benchmark & Results 25

From Fig. 5.1 we observe that scheduling algorithm like AWF, Fac2, mFac2 and TSS

achieve a good performance when selected manually. We expect the automated selection

methods to ideally choose the same algorithms as well.

5.1.2 Results
The following section presents the results for the Mandelbrot experiments. Fig. 5.2

and Tab. 5.3 show an overview of the all benchmarked methods and configurations. We

want to show how the automated DLS selection methods from RL4OMP react to different

configurations and also learn what the best configuration is. Additionally we compare them

to other methods and algorithms. These results are presented in tabular form in Tab. 5.3

and as a line chart in Fig. 5.2. Bar plots with the results from a single configuration are

available as well. The plot for the All Defaults configuration is included in this section in

Fig. 5.3. The remaining plots are included in section A.2 in the appendix.

Table 5.3: Results for the benchmarks with the Mandelbrot application. The table shows
the percentage difference in runtime against the ground-truth for different experiment con-
figurations. Configurations are listed as rows and selected scheduling methods are shown
as columns. A green cell-color indicates a performance closer to ground-truth, while a red
cell-color indicates an overall bad application performance result. The graphs for all the
results are located in the appendix in section A.2.

R
an
d
o
m
Se
l

Ex
h
au
st
iv
eS
el

B
in
ar
yS
el

Ex
p
er
tS
el

Q
-L
ea
rn

D
o
u
b
le
Q

SA
R
SA

ES
A
R
SA

Q
V
-L
ea
rn

C
h
u
n
k-
Le
ar
n

G
ro
u
n
d
-t
ru
th

All Defaults 23.30 % 16.11 % 52.61 % 13.72 % 20.40 % 22.05 % 22.75 % 21.63 % 21.23 % 2.21 % 0.00 %

Random 24.39 % 15.85 % 47.32 % 15.09 % 52.01 % 16.41 % 20.77 % 19.97 % 19.72 % 4.71 % 0.00 %

Looptime Inverse 22.14 % 15.34 % 48.37 % 14.44 % 13.06 % 21.37 % 20.12 % 20.67 % 20.73 % 8.67 % 0.00 %

Looptime Average 24.04 % 15.15 % 56.45 % 13.80 % 17.82 % 16.13 % 13.87 % 16.38 % 19.79 % 2.02 % 0.00 %

Looptime Rolling 24.20 % 16.03 % 49.33 % 15.44 % 20.30 % 21.62 % 10.04 % 16.06 % 19.87 % 2.03 % 0.00 %

Neutral Reward 22.26 % 16.14 % 50.91 % 12.69 % 12.50 % 19.64 % 20.05 % 19.58 % 14.38 % 8.33 % 0.00 %

Positive Reward 22.22 % 15.76 % 47.89 % 14.42 % 13.22 % 21.15 % 20.97 % 21.53 % 21.00 % 9.27 % 0.00 %

Loadimbalance 24.44 % 16.74 % 51.38 % 14.84 % 20.50 % 23.05 % 22.78 % 22.80 % 22.41 % 2.09 % 0.00 %

Robustness 26.50 % 14.98 % 55.85 % 13.77 % 12.97 % 20.55 % 21.51 % 20.85 % 20.15 % 8.95 % 0.00 %

Epsilon Greedy 24.04 % 16.74 % 54.92 % 13.12 % 20.55 % 22.22 % 22.07 % 21.79 % 21.27 % 1.76 % 0.00 %

Softmax 21.66 % 15.94 % 56.17 % 14.26 % 21.05 % 24.12 % 19.40 % 19.98 % 20.14 % 4.69 % 0.00 %

Average 23.56 % 15.89 % 51.93 % 14.14 % 20.40 % 20.76 % 19.48 % 20.11 % 20.06 % 4.98 % 0.00 %

 Selection

 Method

Configuration Auto4OMP Reference RL4OMP Extension

When looking at the performance of the scheduling techniques in Tab. 5.3, we can see

that on average the top three performing automated selection methods are Chunk-Learn, Ex-

pertSel and ExhaustiveSel. Even though the Chunk-Learner’s performance degrades under

some configurations (low=1.76%, high=9.27% above GT), it can compete with or outper-

form state-of-practice scheduling algorithms likeAuto (LLVM) orAWF for the time-stepping

Mandelbrot application. This is certainly the case with the default configuration. The other

learning agents from the RL4OMP extension cannot replicate the same performance and on

average perform ∼20% above ground-truth. In comparison: Auto4OMP automated selec-

tion methods perform at best 14.14% above GT, while the worst case lies at 51.93%. When

Benchmark & Results 26

analysing the performance of RL4OMP beyond the default configuration, it is apparent that

most of the methods are able to slightly profit from the random initialization feature, but

Q-Learn’s performance takes a hit. This can be explained due to Q-Learning’s tendency to

find a less optimal policy faster and therefore not being able to counteract an unfavourable

random initialisation. While all the methods do not really gain any significant performance

with the Looptime Inverse reward configuration, the Q-Learn agent shows an above average

improvement in this configuration. The performance could eventually be further improved

by adjusting the scale factor c = 10. When looking at the two average reward configurations

(Looptime Average and Looptime Rolling Average), the SARSA agent’s performance could

be improved significantly over its default configuration. An explanation for this behaviour

is not easy to give - as SARSA is described to be more “conservative” than Q-Learning, the

average reward might actually play well together with the learning behaviour of this agent.

Offsetting the reward range (from mostly negative to mostly positive values) plays well

together with the Q-Learn and QV-Learn agents, but the best performing agent (Chunk-

Learn) so far does not benefit from this configuration. The Loadimbalance and Robustness

reward configurations are a mixed bag. The two best performing methods from RL4OMP

(Q-Learn and Chunk-Learn) show either no improvement over its base performance or con-

tradictory reaction to the Robustness reward metric. Which is especially confusing when

we consider that Chunk-Learn uses Q-Learning under the hood. The Epsilon Greedy and

Softmax configuration do not have a huge positive or negative influence on the performance

of the Mandelbrot application.

Benchmark & Results 27

All D
efa

ult
s

Ra
nd

om

Loo
pti

me I
nv

ers
e

Loo
pti

me A
ve

rag
e

Loo
pti

me R
olli

ng
 Av

era
ge

Neu
tra

l R
ew

ard

Pos
itiv

e R
ew

ard

Loa
dim

ba
lan

ce

Ro
bu

stn
ess

Ep
silo

n G
ree

dy

So
ftm

ax

Reinforcement Learning Agent Configuration

1.0

1.1

1.2

1.3

1.4

Pa
ra

lle
l E

xe
cu

tio
n

Ti
m

e
(m

s)

1e5
Comparison of Application Performance with Different Configurations

Mandelbrot

Static
SS

AWF
DoubleQ

Q-Learn
ExpertSel

BinarySel
ExhaustiveSel

RandomSel
Chunk-Learn

QV-Learn
ESARSA

SARSA
Auto (LLVM)

Figure 5.2: We show the results of the Mandelbrot application runs with t = 500 time-steps
on the miniHPC-Broadwell cluster. The continuous lines with the markers represent
results for the automated selection techniques implemented in RL4OMP. The dash-dotted
lines with the ♦markers depict the results for the automated selection methods from previous
work (Auto4OMP), and the dashed lines with the ■ markers present the results for selected
scheduling algorithms as a reference. The x axis lists the different configuration from table
5.2 while the y axis denotes the parallel execution time in milliseconds.

Benchmark & Results 28

Fig. 5.3 lists the results from the All Defaults configuration in more detail. On the x

axis the different scheduling methods are listed, on the y axis the parallel execution time in

milliseconds is shown.

We observe that the four methods from Auto4OMP (RandomSel, ExhaustiveSel, Bina-

rySel and ExpertSel) perform between 13.72% and 52.61% slower than ground-truth. Our

automated DLS selection methods based on Reinforcement Learning perform between 2.21%

and 22.75% slower than GT - with Chunk-Learn being the most effective method. As the

performance of these 5 agents (Q-Learn, DoubleQ, SARSA, ESARSA and QV-Learn) lie

close together, it confirms our initial assumption that the learning method is not the most

important factor for optimizing the parallel execution time. Rather the configuration of the

agent (i.e. initialization, reward function and policy) plays a much more significant role.

The best result is achieved by the Chunk-Learn selection method. It makes intuitive sense

that this method is able to perform better than the other automated selection methods.

Instead of having the to interact with a black-box that selects the chunk-size, the agent can

directly select and learn the best chunk-size on its own. A more detailed explanation is

given in the next section.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e5

+
23

.3
0%

+
16

.1
1%

+
52

.6
1%

+
13

.7
2%

+
20

.4
0%

+
22

.0
5%

+
22

.7
5%

+
21

.6
3%

+
21

.2
3%

+
2.

21
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - All Defaults

Figure 5.3: Shows the parallel execution time for each modified application loop on the y
axis and the different scheduling methods on the x axis. Considering RL4OMP, Chunk-
Learn is the only method that is close to in terms of performance (2.21%).

As a next step after looking at the performance results for the Reinforcement Learning

Benchmark & Results 29

extension, it is interesting to inspect the agent’s behaviour to be able to explain the results

better and also understand the differences between the automated DLS selection methods.

Figure 5.4 shows different aspects of the agent’s behaviour.

The following figure (Fig. 5.4 on the next page) shows plots for every application loop

(L0, L1, ...) and every automated DLS selection method benchmarked plus the ground-truth.

A single sub-plot shows the time-steps on the x axis and the loop time in milliseconds on

the y axis. The different colored bars represent the individual time-steps. The color of the

bar indicates (in accordance with the legend on top of the plot) which scheduling algorithm

from the portfolio the automated method chose for that particular time-step. Lastly in the

top right of each sub-plot we listed the top 3 most selected scheduling algorithms for that

particular selection method along with its percentage from the total time-steps.

Comparing the ground-truth for each loop for the Mandelbrot application to the au-

tomated selection methods, we see that only ExhaustiveSel from Auto4OMP has correctly

identified the best performing scheduling algorithm TSS in their selection in two out of three

loops. Even though ExhaustiveSel (15.89% above GT) took actions that are more in line

with the ground-truth, ExpertSel is the automated selection from Aut4OMP with the best

average performance of 14.14% above GT. Our Reinforcement Learning methods perform

on average 19.48% to 20.76% above GT, with the low at 10.04% and the high at 52.01%

(excluding Chunk-Learn). Considering ExpertSel for the three independent loops, we note

that the most selected scheduling algorithm for L0 is mAF (78.2%), for L1 STATIC (24.2%)

and for L2 mAF (31.6%) again. From the results we can gather that SARSA selected mAF

in L0, Q-Learn STATIC in L1 and DoubleQ and SARSA mAF in L2 most of time as well.

For the rest of the automated selection methods there is no similarity in the sequence of

scheduling algorithms. The results for L0 need to be mentioned especially, since no matter

what scheduling algorithm was applied, the loop time was only affected marginally (this is

a property of the application and not the automated selection methods).

When looking at Q-Learn in more detail, we recognize that the agent learned to choose

the same three scheduling algorithms (STATIC, SS, TSS) for the exact same amount of

times for every loop. This is indeed not the expected behaviour, since we know there are

better algorithms available (which have also been learned by the ExploreFirstPolicy).

Notable as well is that the chosen algorithms by Q-Learn are the ones at the very start of the

portfolio which leads to the conclusion that for Q-Learn, the first learning experience is the

most defining one. The other Reinforcement Learning agents suffer from indecisiveness when

selecting scheduling algorithms. Even late in the learning process, the agents keep selecting

bad actions, which leads to an overall high parallel execution time. Looking at Figs. A.15

(SARSA), A.16 (SARSA) and A.17 (QV-Learn) we can see that the indecisiveness can be

overcome with the right reward incentive.

Benchmark & Results 30

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. AWF-B (10.0%)
2. Static Steal (10.0%)

3. GSS (9.0%)

RandomSel

L0

1. TSS (47.2%)
2. STATIC (4.8%)

3. SS (4.8%)

ExhaustiveSel

L0

1. Auto(LLVM) (20.4%)
2. AWF-B (19.0%)

3. SS (16.2%)

BinarySel

L0

1. mAF (78.2%)
2. AWF-E (8.4%)
3. AWF-D (4.2%)

ExpertSel

L0

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. AWF-D (10.0%)
2. Static Steal (9.8%)

3. AWF-E (9.8%)

DoubleQ

L0

1. mAF (10.2%)
2. AWF-B (10.0%)
3. AWF-C (9.8%)

SARSA

L0

1. AWF-D (10.2%)
2. Static Steal (10.0%)

3. AWF-E (10.0%)

ESARSA

L0

1. AWF-D (9.6%)
2. AWF-E (9.6%)

3. mAF (9.6%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. AWF-D (11.4%)
2. AWF-C (9.8%)

3. mAF (9.4%)

RandomSel

L1

1. mFac2 (14.6%)
2. TSS (13.8%)

3. AWF-E (8.8%)

ExhaustiveSel

L1

1. AWF-D (32.2%)
2. AWF-B (18.0%)

3. mAF (14.2%)

BinarySel

L1

1. STATIC (24.2%)
2. mAF (15.0%)
3. GSS (14.6%)

ExpertSel

L1

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. mAF (11.4%)
2. AWF-D (11.0%)
3. AWF-E (10.0%)

DoubleQ

L1

1. AWF-C (10.2%)
2. AWF-E (10.2%)

3. Static Steal (10.0%)

SARSA

L1

1. mFac2 (10.2%)
2. AWF-E (10.0%)

3. mAF (10.0%)

ESARSA

L1

1. AWF-C (9.8%)
2. AWF-E (9.8%)
3. AWF-B (9.6%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. Static Steal (10.0%)
2. Auto(LLVM) (10.0%)

3. GSS (8.6%)

RandomSel

L2

1. TSS (22.0%)
2. AWF-C (11.2%)
3. mFac2 (10.2%)

ExhaustiveSel

L2

1. AWF-B (26.8%)
2. AWF-D (19.8%)

3. mAF (13.0%)

BinarySel

L2

1. mAF (31.6%)
2. STATIC (17.6%)

3. Auto(LLVM) (12.2%)

ExpertSel

L2

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. mAF (11.0%)
2. AWF-E (10.8%)
3. AWF-D (10.4%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. mAF (10.2%)
2. AWF-E (10.0%)
3. mFac2 (9.8%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. mFac2 (10.2%)
2. AWF-E (10.0%)
3. AWF-C (9.8%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. AWF-C (10.4%)
2. AWF-E (10.4%)
3. mFac2 (9.6%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - All Defaults

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure 5.4: Sequence of selected scheduling algorithms for every time-step t during the
execution of the application. The time-steps are shown on the x axis while the resulting
loop time in milliseconds are shown on the y axis. The top 3 selected scheduling algorithms
are listed in the top right of each plot together with its percentage.

Benchmark & Results 31

5.2 SPHYNX Evrard Collapse
This section describes the properties and results for the benchmarks of the modified

SPHYNX Evrard Collapse application. The application is launched without any input

parameters. The version of SPHYNX used in this benchmark, starts the hydrodynamics

simulation code at time-step t = 2′000 which changes the load-imbalance profile. We mod-

ified the parameters.f90 file to end the application run at time-step t = 2′400 instead

of t = 2′200 in order to increase the applications runtime and test automated method DLS

algorithm selection capabilities over a longer duration. Every experiments was run 5 times

with the same configuration on the miniHPC-Broadwell of the university, to make sure the

variance of the results is in an acceptable range

5.2.1 Ground-truth
The ground-truth (GT) is the theoretical best scheduling method and serves as a base for

comparison for the other scheduling algorithms. We construct the ground-truth by running

the chosen scientific application 5-times with every scheduling algorithm from the portfolio

defined in section 4.2. We then take the mean of the 5 runs and look for smallest parallel

execution time amongst all the methods in the portfolio for every time-step. The sum of the

smallest means over all the time-steps is the new theoretical best parallel execution time for

any automated DLS algorithm method. The ground-truth should only be used to compare

scheduling methods that use the same portfolio of algorithms.

AF
mAF

Auto
 (L

LVM)
AW

F
AW

F-B
AW

F-C
AW

F-D
AW

F-E SS Fac
2

mFac
2

GSS
Sta

tic

Sta
tic

 St
ea

l
TS

S

Loop scheduling technique / Selection method

0.0

0.5

1.0

1.5

2.0

2.5

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e7

Be
st

+
0.

03
%

+
15

.0
7%

+
22

.3
6%

+
33

.3
0%

+
21

.1
4%

+
33

.9
8%

+
22

.9
1%

+
42

5.
59

%

+
27

.0
2%

+
23

.2
2%

+
17

.6
2%

+
79

.4
5%

+
37

.1
3%

+
25

.0
0%

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Ground-truth

Figure 5.5: Results for the ground-truth for the SPHYNX Evrard Collapse application.
The numbers presented in the graph are the mean collected over 5 runs for every scheduling
algorithm in the portfolio. Labels in red on the x axis represent scheduling algorithms not
in the portfolio serving as comparison.

Benchmark & Results 32

From Fig. 5.5 we observe that the two scheduling algorithm AF and mAF achieve the

best performance when selected manually. We expect the automated selection methods to

ideally choose the same algorithms as well. The dynamic schedule (SS) was not able to

provide adequate scheduling for the application to finish the 400 time-steps within the 6

hour time limit set for the individual jobs.

Possible bug: The SPHYNX Evrard Collapse particle simulation has two modified loops

called findneighbours and treewalk. In a single time-step the findneighbours

loop is called twice by the application. The two calls are executed with different arguments,

which results in drastically different loop execution times. The problem we encountered

stems from the underlying mechanism by the LLVM OpenMP runtime which derives the

loop names. In this process the call location is not taken into account, only the definition

of the called function. This might be fine for some logging purposes, but the implemented

Reinforcement Learning agent has no other mechanism of distinguishing between functions

calls with varying arguments. As a consequence the agent tracks twice as many time-steps

for findneighbours as for the rest of the loops. On top, the agent’s learning process

is very sensitive to the reward input (in most cases the loop execution time). As a result

the learning process is skewed by the big difference in execution time from two calls to

findneighbours. This lead to the decision to ignore the findneighbours loop in the

evaluation process.

5.2.2 Results
The following section explains the results for the SPHYNX Evrard Collapse experiments.

Fig. 5.6 and Tab. 5.4 show an overview of the all benchmarked methods and configurations.

As before, we want to show how the different configurations influence the automated DLS

selection methods from RL4OMP and through that deduce what the best configuration is for

the agent is. Additionally we compare them to other methods and algorithms. We expect

the outcome to be different to the Mandelbrot experiment, since SPHYNX has a different

load-imbalance profile. These results are presented in Tab. 5.4 and as a line chart in Fig.

5.6, as well as in bar plots for every single configuration are available. The graph for the

All Defaults configuration is included in this section in Fig. 5.7 and the remaining plots are

included in section A.3 in the appendix.

Benchmark & Results 33

Table 5.4: Results for the benchmarks with the SPHYNX Evrard Collapse application. The
table shows the percentage difference in runtime against the ground-truth for different ex-
periment configurations. Configurations are listed as rows and selected scheduling methods
are shown as columns. A green cell-color indicates a performance closer to ground-truth,
while a red cell-color indicates an overall bad application performance result. The graphs
for all the results are located in the appendix in section A.3.

R
an
d
o
m
Se
l

Ex
h
au
st
iv
eS
el

B
in
ar
yS
el

Ex
p
er
tS
el

Q
-L
ea
rn

D
o
u
b
le
Q

SA
R
SA

ES
A
R
SA

Q
V
-L
ea
rn

C
h
u
n
k-
Le
ar
n

G
ro
u
n
d
-t
ru
th

All Defaults 397.53 % 5.04 % 14.05 % 80.76 % 278.62 % 65.80 % 63.80 % 66.35 % 67.93 % 25.75 % 0.00 %

Random 415.65 % 4.31 % 23.16 % 91.48 % 49.24 % 67.67 % 86.96 % 94.00 % 83.02 % 26.36 % 0.00 %

Looptime Inverse 420.96 % 4.38 % 13.56 % 72.21 % 30.42 % 82.92 % 82.47 % 83.27 % 88.40 % 79.45 % 0.00 %

Looptime Average 419.58 % 4.74 % 21.79 % 74.10 % 284.52 % 63.65 % 67.06 % 67.14 % 70.16 % 28.29 % 0.00 %

Looptime Rolling 261.00 % 10.42 % 32.45 % 55.14 % 277.83 % 214.49 % 80.80 % 88.83 % 65.81 % 27.18 % 0.00 %

Neutral Reward 427.83 % 2.29 % 22.42 % 78.98 % 278.01 % 77.33 % 79.24 % 63.73 % 76.67 % 27.78 % 0.00 %

Positive Reward 236.29 % 5.07 % 12.78 % 52.23 % 30.60 % 83.34 % 83.66 % 83.42 % 83.00 % 79.38 % 0.00 %

Loadimbalance 146.14 % 6.50 % 24.67 % 68.22 % 279.71 % 67.08 % 66.36 % 72.38 % 66.74 % 28.57 % 0.00 %

Robustness 419.47 % 2.39 % 15.49 % 73.20 % 278.17 % 63.95 % 63.07 % 63.83 % 63.71 % 27.28 % 0.00 %

Epsilon Greedy 135.59 % 2.99 % 22.45 % 75.27 % 304.28 % 78.51 % 74.80 % 81.93 % 69.84 % 44.65 % 0.00 %

Softmax 420.59 % 2.73 % 13.95 % 66.87 % 69.56 % 107.76 % 85.03 % 91.88 % 82.10 % 14.98 % 0.00 %

Average 336.42 % 4.62 % 19.71 % 71.68 % 196.45 % 88.41 % 75.75 % 77.89 % 74.31 % 37.24 % 0.00 %

 Selection

 Method

Configuration Auto4OMP Reference RL4OMP Extension

The performance results in Tab. 5.4 show that the best performance for the SPHYNX

Evrard Collapse application was achieved by ExhaustiveSel, BinarySel and Chunk-Learn.

This stands in contrast with the results for the Mandelbrot application. Here Chunk-Learn

is only the third best option in terms of automated DLS selection methods, performing

37.24% above ground-truth on average. ExhaustiveSel and BinarySel from Auto4OMP im-

press with a performance of 4.62% and 19.71% above GT respectively. While Chunk-Learn

shows good performance across the board of all configurations, it performs best with the

Softmax configuration (14.98% above GT) and has two bad performance results with the

Looptime Inverse and Positive Reward configuration. The performance results for the SPH-

YNX Evrard Collapse application emphasize the importance and feasibility of automated

scheduling algorithm selection, especially for longer running scientific applications. In Fig.

5.6 we see that the best performing method is still an automated selection method and

not a fixed scheduling algorithm, even though Auto (LLVM) and AWF still perform well.

The results for the Q-Learn agent really highlight the difference in performance when it

comes to the the configurations for the sub-components. While on average the Q-Learner

achieves a bad performance result, 196.45% above ground-truth, three configurations show

a good overall performance compared to ground-truth: Random 49.24%, Looptime Inverse

30.42% and Positive Reward 30.60%. Interestingly although Chunk-Learn is configured to

use Q-Learning as its agent, the configurations where Q-Learning has a performance ad-

vantage, do not overlap with those of Chunk-Learn’s well performing configurations (expect

for Random). Compared to Mandelbrot, the performance of the other agents (DoubleQ,

SARSA, ESARSA and QV-Learn) during the execution of the SPHYNX Evrard Collapse

application is more consistent - which means the configurations did not have a big impact

on the individual performance results. A notable exception is the DoubleQ agent, which

Benchmark & Results 34

performed comparatively poorly with the Looptime Rolling configuration (214.49%). On av-

erage these agents’ performance is rated at 74.31% to 88.41% around GT (disregarding the

results for Q-Learn). For comparison, the automated selection methods from Auto4OMP

achieved results ranging from 4.62% up to 336.42% above ground-truth. It is worth men-

tioning that the best performing method from Auto4OMP for Mandelbrot was ExpertSel

(with ExhaustiveSel performing only slightly worse), for SPHYNX the better performing

method was ExhaustiveSel, with ExpertSel’s performance not being comparable at all. In

contrast, Chunk-Learn seems to offer a more consistent performance over the two selected

applications.

All D
efa

ult
s

Ra
nd

om

Loo
pti

me I
nv

ers
e

Loo
pti

me A
ve

rag
e

Loo
pti

me R
olli

ng
 Av

era
ge

Neu
tra

l R
ew

ard

Pos
itiv

e R
ew

ard

Loa
dim

ba
lan

ce

Ro
bu

stn
ess

Ep
silo

n G
ree

dy

So
ftm

ax

Reinforcement Learning Agent Configuration

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Pa
ra

lle
l E

xe
cu

tio
n

Ti
m

e
(m

s)

1e7
Comparison of Application Performance with Different Configurations

SPHYNX Evrard Collapse 2000

Static
SS

AWF
DoubleQ

Q-Learn
ExpertSel

BinarySel
ExhaustiveSel

RandomSel
Chunk-Learn

QV-Learn
ESARSA

SARSA
Auto (LLVM)

Figure 5.6: We show the results of the SPHYNX Evrard Collapse application runs with t =
400 time-steps on the miniHPC-Broadwell cluster. The continuous lines with the markers
represent results for the automated selection techniques implemented in RL4OMP. The dash-
dotted lines with the ♦ markers depict the results for the automated selection methods from
previous work (Auto4OMP), and the dashed lines with the ■ markers present the results
for selected scheduling algorithms as a reference. The x axis lists the different configuration
from table 5.2 while the y axis denotes the parallel execution time in milliseconds.

Fig. 5.7 lists the results from the All Defaults configuration in more detail. On the x

axis the different scheduling methods are listed, on the y axis the parallel execution time

in milliseconds is shown. Contrary to the Mandelbrot application, from the two modified

loops, only L0 is shown in the performance evaluation due to the aforementioned “bug” in

the LLVM OpenMP runtime’s assignment of loop identifiers.

Benchmark & Results 35

While Auto4OMP presents the two best performing automated DLS selection methods,

ExhaustiveSel with 5.04% and BinarySel with 14.05% around ground-truth, it also provides

the method with the slowest performance (397.53% above GT), which did not let the appli-

cation finish within the 6 hour time limit. Also the ExpertSel method which performed best

on the Mandelbrot application, fell behind in the SPHYNX Evrard Collapse application.

The default configuration derived from the Mandelbrot application experiments could not

provide the same promising results here. This is especially apparent when looking at the

Q-Learn agent (278.62% within GT) but also at the rest of the agents. Chunk-Learn delivers

an acceptable performance result with 25.75% above ground-truth. The best performance

for Q-Learn could be observed with the Looptime Inverse (see Fig A.25) and the Positive

Reward (see Fig A.29) configuration. For Chunk-Learn the best configuration is by far

Softmax (see Fig A.33).

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e7

+
39

7.
53

%

+
5.

04
%

+
14

.0
5%

+
80

.7
6%

+
27

8.
62

%

+
65

.8
0%

+
63

.8
0%

+
66

.3
5%

+
67

.9
3%

+
25

.7
5% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - All Defaults

Figure 5.7: Shows the parallel execution time for each modified application loop on the y axis
and the different scheduling methods on the x axis. The 4 automated selection methods from
Auto4OMP show big differences in the performance achievable. While RL4OMP has a more
consistent performance envelope, Q-Learn is not a valid contender for the best performance
in the default configuration.

Fig 5.8 shows plots for application loop L0 of SPHYNX for every automated DLS se-

lection method benchmarked in addition to the ground-truth. A single sub-plot shows the

time-steps on the x axis and the loop time in milliseconds on the y axis. The different col-

ored bars represent the individual time-steps. The color of the bar indicates (in accordance

with the legend on top of the plot) which scheduling algorithm from the portfolio the auto-

Benchmark & Results 36

mated method chose for that particular time-step. Lastly in the top right of each sub-plot

we listed the top 3 most selected scheduling algorithms for that particular selection method

along with its percentage from the total time-steps.

Comparing the ground-truth for loop L0 for the SPHYNX Evrard Collapse applica-

tion to the automated selection methods, we see that only ExhaustiveSel from Auto4OMP

has correctly identified the best performing scheduling algorithm mAF from almost the

start of the application run. This is in line with the observations seen in the evaluation of

the Mandelbrot experiments. This also explains the excellent performance of this method.

Analysing the sequence of DLS algorithm selection for Q-Learn, we can see that the Ex-

ploreFirstPolicy forces the agent to select the same three scheduling algorithms (STATIC,

SS, TSS) again. This confirms our suspicion that under the All Defaults configuration, the

algorithms explored at the start under this policy will be seen favourably by the agent, even

when the performance does not reflect this fact. Interestingly with the Looptime inverse

(see Fig. A.36) and Positive Reward (see Fig. A.40) configurations, Q-Learn was able to

identify mAF as the best scheduling algorithm after the initial exploration phase. As with

Mandelbrot, the other Reinforcement Learning agents suffer from indecisiveness under every

configuration when selecting scheduling algorithms. Even late in the learning process, the

agents keep selecting bad actions, which leads to an overall high parallel execution time.

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (58.2%)
2. Auto(LLVM) (14.1%)

3. GSS (13.8%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. GSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (42.8%)
2. GSS (21.5%)

3. STATIC (14.2%)

ExpertSel

L0

1. STATIC (35.0%)
2. SS (35.0%)
3. TSS (3.0%)

Q-Learn

0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. AWF-D (10.0%)
2. AWF-B (9.8%)

3. mAF (9.8%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-C (10.0%)
2. AWF-B (9.8%)

3. mAF (9.8%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-E (9.8%)
2. mFac2 (9.5%)

3. Static Steal (9.5%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-D (9.8%)
2. mAF (9.8%)

3. mFac2 (9.5%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - All Defaults

Auto(LLVM)
STATIC

SS
TSS

GSS
mAF

AWF-E
Static Steal

mFac2
AWF-B

AWF-C
AWF-D

Figure 5.8: Sequence of selected scheduling algorithms for every time-step t during the
execution of the application in the All Defaults configuration. The time-steps are shown on
the x axis while the resulting loop time in milliseconds are shown on the y axis. The top
3 selected scheduling algorithms are listed in the top right of each plot together with its
percentage.

6
Conclusion & Future Work

This work introduced RL4OMP, an automated approach for scheduling algorithm selection

and load balancing based on Reinforcement Learning in OpenMP. RL4OMP provides six

configurable agents, three action selection policies and six reward functions for an automatic

selection of scheduling algorithms. We further propose a seventh meta-agent, Chunk-Learn,

which can be viewed as a scheduling algorithm since it estimates the chunk-size for the

next scheduling round directly. We evaluated the performance of RL4OMP for two applica-

tions, executing them on one multi-core system. We compared the performance achieved by

RL4OMP with state-of-the-practice solutions and against ground-truth (the highest achiev-

able performance which selects the highest performing scheduling algorithm for each loop,

time-step and system). The proposed automated algorithm selection methods learn during

the execution of the application, refine their selection policy over time, thereby minimizing

load-imbalance and achieving performance that is closer to the ground-truth.

For the workload of the Mandelbrot application the SARSA agent with the Looptime

Rolling configuration achieves the highest performance with 10.04% above GT. The

worst case scenario for the Reinforcement Learning extension is observed with the Q-Learn

agent under the Random configuration, 50.01% above GT. The special agent Chunk-Learn

(using Q-Learn behind the scenes) achieved an even better performance result than SARSA.

With the best performance stemming from the Epsilon Greedy configuration 1.76% within

GT. The results from the SPHYNX Evrard Collapse experiments paint a different picture

about the performance of the Reinforcement Learning extension. Q-Learn can obtain a good

performance only with two configurations (Looptime Inverse 30.42% and Positive Reward

30.60%), but has overall a bad impact on performance - worst case 304.28%. But again

Chunk-Learn achieved a solid performance with the Softmax configuration that lies within

14.98% of GT.

On average, RL4OMP cannot outperform the best candidates of other automated DLS

selection methods we compared against (e.g. Auto4OMP). Our performance however is still

in line with other dynamic and adaptive scheduling algorithms. With the Chunk-Learn

special agent, we presented a method that shows reliable performance with regard to the

ground-truth and other automated selection methods. The direct estimation of the chunk-

size is advantageous for the agent’s learning process, since it can bypass any scheduling

Conclusion & Future Work 38

algorithm which it interacts with as a black-box and might only distort the agent’s percep-

tion of the environment. The downside to this approach is, that we cannot reason about the

selection of the chunk-size anymore - since the learning agent has become a black-box itself.

Additionally we also show that this method still benefits from hyper-parameter tuning and

that to date there is no one-size-fits-all solution.

The benchmark results for the two chosen applications clearly show, that extensions

like DoubleQ-Learning, Expected-SARSA or QV-Learning to the well known Reinforcement

Learning methods Q-Learning and SARSA do not perform better in estimating the best ac-

tion when it comes to scheduling algorithm selection. Rather they also suffer from decision

paralysis like a human user selecting DLS algorithms manually. More impact on the perfor-

mance has been observed through the design of the reward function or the action selection

policy. DeepQ-Learning has not been implemented in RL4OMP, because the technical chal-

lenges (lightweight and standalone implementation of neural networks in C++) outweigh

the theoretical benefits. DeepQ-Learning would lend itself if the state-action space that

needed to be encoded as the agent’s knowledge was massive and the action to estimate was

more of continuous nature (e.g. how much to press a gas pedal) and not a discrete set of

actions.

Seeing the promising results of the Chunk-Learn method, in future work this approach

could be extended and improved upon. Here DeepQ-Learning could be applied by increasing

the search space of chunk-sizes for more granular control over the load-imbalance (beyond the

12 chunk-sizes we calculated) without worrying about the increasing memory requirements

as with tabular data-structures. Further, a neural network would simplify the use of more

than one reward metric as the input for the learning process. Additionally it would be

interesting to train a machine-learning model on one or multiple time-stepping applications

and train it for many applications runs, then export the model and evaluate the performance

on an unseen time-stepping application.

Lastly the Reinforcement Learning extension could be re-implemented in MPI (with the

LB4MPI portfolio) for automated algorithm selection in order to achieve cross-node load

balancing and multi-level scheduling for hybrid MPI+OpenMP applications.

Bibliography

[1] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexan-

dre Frechette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and

Joaquin Vanschoren. ASlib: A benchmark library for algorithm selection. 237. doi:

10.1016/j.artint.2016.04.003.

[2] Anthony Boulmier, Ioana Banicescu, Florina M. Ciorba, and Nabil Abdennadher. An

autonomic approach for the selection of robust dynamic loop scheduling techniques. In

2017 16th International Symposium on Parallel and Distributed Computing (ISPDC),

pages 9–17. doi: 10.1109/ISPDC.2017.9.

[3] Si-An Chen, Voot Tangkaratt, Hsuan-Tien Lin, and Masashi Sugiyama. Active deep

q-learning with demonstration. 109. doi: 10.1007/s10994-019-05849-4.

[4] Florina M. Ciorba, Christian Iwainsky, and Patrick Buder. OpenMP loop scheduling

revisited: Making a case for more schedules. URL http://arxiv.org/abs/1809.03188.

[5] Sumithra Dhandayuthapani. Automatic Selection of Dynamic Loop Scheduling Algo-

rithms for Load Balancing Using Reinforcement Learning. Mississippi State University.

Google-Books-ID: hrnVjwEACAAJ.

[6] Alla Evseenko and Dmitrii Romannikov. Application of deep q-learning and double

deep q-learning algorithms to the task of control an inverted pendulum. pages 7–25.

doi: 10.17212/2307-6879-2020-1-2-7-25.

[7] Milind Girkar, A. Kejariwal, Tian Xinmin, Hideki Saito, Alexandru Nicolau, Alexander

Veidenbaum, and Constantine Polychronopoulos. Probablistic self-scheduling. pages

253–264. ISBN 978-3-540-37783-2. doi: 10.1007/11823285 26.

[8] Jahanzeb Hashmi, Shulei Xu, Bharath Ramesh, Mohammadreza Bayatpour, Hari Sub-

ramoni, and Dhabaleswar Panda. Machine-agnostic and communication-aware designs

for MPI on emerging architectures. pages 32–41. doi: 10.1109/IPDPS47924.2020.00014.

[9] Hado V Hasselt. Double q-learning. page 9.

[10] A. Kejariwal and A. Nicolau. Reading list of self-scheduling of parallel loops.

[11] Kyurae Kim, Kim Youngjae, and Sungyong Park. A probabilistic machine learning

approach to scheduling parallel loops with bayesian optimization. doi: 10.1109/TPDS

.2020.3046461.

http://arxiv.org/abs/1809.03188

Bibliography 40

[12] Jonas H. Müller Korndörfer, Ahmed Eleliemy, Ali Mohammed, and Florina M. Ciorba.

LB4omp: A dynamic load balancing library for multithreaded applications. 33(4):830–

841. ISSN 1558-2183. doi: 10.1109/TPDS.2021.3107775. Conference Name: IEEE

Transactions on Parallel and Distributed Systems.

[13] Michail Lagoudakis and Michael Littman. Algorithm selection using reinforcement

learning.

[14] Marlos C Machado, Sriram Srinivasan, and Michael Bowling. Domain-independent

optimistic initialization for reinforcement learning. page 2.

[15] Hongzi Mao, Malte Schwarzkopf, Shaileshh Venkatakrishnan, Zili Meng, and Moham-

mad Alizadeh. Learning scheduling algorithms for data processing clusters. pages

270–288. ISBN 978-1-4503-5956-6. doi: 10.1145/3341302.3342080.

[16] Michael Melnik and Denis Nasonov. Workflow scheduling using neural networks and

reinforcement learning. 156:29–36. doi: 10.1016/j.procs.2019.08.126.

[17] Ali Mohammed and Florina Ciorba. SiL: An Approach for Adjusting Applications to

Heterogeneous Systems Under Perturbations. .

[18] Ali Mohammed and Florina Ciorba. SimAS: A simulation-assisted approach for the

scheduling algorithm selection under perturbations. 32, . doi: 10.1002/cpe.5648.

[19] C. Oikawa, Vinicius Freitas, Marcio Castro, and Laércio Lima Pilla. Adaptive load

balancing based on machine learning for iterative parallel applications. pages 94–101.

doi: 10.1109/PDP50117.2020.00021.

[20] Mahbubur Rashid, Ioana Banicescu, and Ricolindo Carino. Investigating a dynamic

loop scheduling with reinforcement learning approach to load balancing in scientific

applications. pages 123–130. doi: 10.1109/ISPDC.2008.25.

[21] Km Vaishali Rastogi, Anand Prakash Shukla, Anubhav Patrick, and Navin Kumar

Mittal. DEEP q LEARNING AND ITS VARIANTS: A CONCISE REVIEW. 7(18):

11.

[22] Nimish Sanghi. Deep q-learning. pages 155–206. ISBN 978-1-4842-6808-7. doi: 10.100

7/978-1-4842-6809-4 6.

[23] Shahaf S. Shperberg, Solomon Eyal Shimony, and Avinoam Yehezkel. Algorithm selec-

tion in optimization and application to angry birds. 29:437–445. ISSN 2334-0843. URL

https://ojs.aaai.org/index.php/ICAPS/article/view/3508.

[24] Vinu Sreenivasan, Rajath Javali, Mary Hall, Prasanna Balaprakash, Thomas Scogland,

and Bronis Supinski. A framework for enabling OpenMP autotuning. pages 50–60.

ISBN 978-3-030-28595-1. doi: 10.1007/978-3-030-28596-8 4.

[25] Nitin Sukhija. Portfolio-based selection of robust dynamic loop scheduling algorithms

using machine learning. doi: 10.1109/IPDPSW.2014.183.

https://ojs.aaai.org/index.php/ICAPS/article/view/3508

Bibliography 41

[26] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

Adaptive Computation and Machine Learning series. A Bradford Book, . ISBN 978-0-

262-19398-6.

[27] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction.

Adaptive computation and machine learning series. The MIT Press, second edition

edition, . ISBN 978-0-262-03924-6.

[28] Peter Thoman, Herbert Jordan, Simone Pellegrini, and Thomas Fahringer. Automatic

OpenMP loop scheduling: A combined compiler and runtime approach. volume 7312,

pages 88–101. ISBN 978-3-642-30960-1. doi: 10.1007/978-3-642-30961-8 7.

[29] Marco A Wiering. QV(λ)-learning: A new on-policy reinforcement learning algorithm.

page 2.

[30] Yun Zhang and M. Voss. Runtime empirical selection of loop schedulers on hyper-

threaded SMPs. pages 44b–44b. ISBN 978-0-7695-2312-5. doi: 10.1109/IPDPS.2005.3

86.

[31] S. Peer Mohamed Ziyath and Senthilkumar Subramaniyan. An improved q-learning-

based scheduling strategy with load balancing for infrastructure-based cloud services.

ISSN 2191-4281. doi: 10.1007/s13369-021-06279-y. URL https://doi.org/10.1007/s133

69-021-06279-y.

https://doi.org/10.1007/s13369-021-06279-y
https://doi.org/10.1007/s13369-021-06279-y

A
Appendix

In the appendix we show all the additional plots for reference and completeness. These

plots should aid in the understand of the effects the varying configuration have on the

Reinforcement Learning agents and the application’s performance.

A.1 Environment Variables

1 export KMP_RL_ALPHA=0.85
2 export KMP_RL_ALPHA_DECAY=0.01
3 export KMP_RL_GAMMA=0.95
4 export KMP_RL_EPSILON=0.9
5 export KMP_RL_EPS_DECAY=0.01
6 # Reward Options: looptime, looptime-average, looptime-rolling-average,

looptime-inverse, loadimbalance, robustness↪→
7 # Default: looptime
8 export KMP_RL_REWARD=looptime
9 # Initializer Options: zero, random, optimistic

10 # Default: zero
11 export KMP_RL_INIT=zero
12 # Policy Options: explore-first, epsilon-greedy, softmax
13 # Default: explore-first
14 export KMP_RL_POLICY=explore-first
15 # Chunk Learner Type Options: Range [8-14] inclusive
16 # Default: 8
17 export KMP_RL_CHUNK_TYPE=8
18 # Reward Number Options: Comma separated triple of doubles
19 #Default: 0.0,-2.0,-4.0
20 export KMP_RL_REWARD_NUM=0.0,-2.0,-4.0

Listing 2: Supported environment variables by the reinforcement learning extension.

Appendix 43

A.2 Mandelbrot - Extended Results
A.2.1 Overall Application Performance

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e5

+
23

.3
0%

+
16

.1
1%

+
52

.6
1%

+
13

.7
2%

+
20

.4
0%

+
22

.0
5%

+
22

.7
5%

+
21

.6
3%

+
21

.2
3%

+
2.

21
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - All Defaults

Figure A.1: Mandelbrot Overall Application Performance with All Defaults configuration.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e5

+
24

.3
9%

+
15

.8
5%

+
47

.3
2%

+
15

.0
9%

+
52

.0
1%

+
16

.4
1%

+
20

.7
7%

+
19

.9
7%

+
19

.7
2%

+
4.

71
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Random

Figure A.2: Mandelbrot Overall Application Performance with Random configuration.

Appendix 44

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Pa

ra
lle

l e
xe

cu
tio

n
tim

e
(m

s)
1e5

+
22

.1
4%

+
15

.3
4%

+
48

.3
7%

+
14

.4
4%

+
13

.0
6%

+
21

.3
7%

+
20

.1
2%

+
20

.6
7%

+
20

.7
3%

+
8.

67
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Looptime Inverse

Figure A.3: Mandelbrot Overall Application Performance with Looptime Inverse
configuration.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e5

+
24

.0
4%

+
15

.1
5%

+
56

.4
5%

+
13

.8
0%

+
17

.8
2%

+
16

.1
3%

+
13

.8
7%

+
16

.3
8%

+
19

.7
9%

+
2.

02
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Looptime Average

Figure A.4: Mandelbrot Overall Application Performance with Looptime Average
configuration.

Appendix 45

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Pa

ra
lle

l e
xe

cu
tio

n
tim

e
(m

s)
1e5

+
24

.2
0%

+
16

.0
3%

+
49

.3
3%

+
15

.4
4%

+
20

.3
0%

+
21

.6
2%

+
10

.0
4%

+
16

.0
6%

+
19

.8
7%

+
2.

03
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Looptime Rolling Average

Figure A.5: Mandelbrot Overall Application Performance with Looptime Rolling
configuration.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e5

+
22

.2
6%

+
16

.1
4%

+
50

.9
1%

+
12

.6
9%

+
12

.5
0%

+
19

.6
4%

+
20

.0
5%

+
19

.5
8%

+
14

.3
8%

+
8.

33
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Neutral Reward

Figure A.6: Mandelbrot Overall Application Performance with Neutral Reward
configuration.

Appendix 46

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Pa

ra
lle

l e
xe

cu
tio

n
tim

e
(m

s)
1e5

+
22

.2
2%

+
15

.7
6%

+
47

.8
9%

+
14

.4
2%

+
13

.2
2%

+
21

.1
5%

+
20

.9
7%

+
21

.5
3%

+
21

.0
0%

+
9.

27
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Positive Reward

Figure A.7: Mandelbrot Overall Application Performance with Positive Reward
configuration.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e5

+
24

.4
4%

+
16

.7
4%

+
51

.3
8%

+
14

.8
4%

+
20

.5
0%

+
23

.0
5%

+
22

.7
8%

+
22

.8
0%

+
22

.4
1%

+
2.

09
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Loadimbalance

Figure A.8: Mandelbrot Overall Application Performance with Loadimbalance
configuration.

Appendix 47

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Pa

ra
lle

l e
xe

cu
tio

n
tim

e
(m

s)
1e5

+
26

.5
0%

+
14

.9
8%

+
55

.8
5%

+
13

.7
7%

+
12

.9
7%

+
20

.5
5%

+
21

.5
1%

+
20

.8
5%

+
20

.1
5%

+
8.

95
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Robustness

Figure A.9: Mandelbrot Overall Application Performance with Robustness configuration.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e5

+
24

.0
4%

+
16

.7
4%

+
54

.9
2%

+
13

.1
2%

+
20

.5
5%

+
22

.2
2%

+
22

.0
7%

+
21

.7
9%

+
21

.2
7%

+
1.

76
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Epsilon Greedy

Figure A.10: Mandelbrot Overall Application Performance with Epsilon Greedy
configuration.

Appendix 48

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Pa

ra
lle

l e
xe

cu
tio

n
tim

e
(m

s)
1e5

+
21

.6
6%

+
15

.9
4%

+
56

.1
7%

+
14

.2
6%

+
21

.0
5%

+
24

.1
2%

+
19

.4
0%

+
19

.9
8%

+
20

.1
4%

+
4.

69
%

Be
st

L0 L1 L2

Overall Application Performance
Mandelbrot - Softmax

Figure A.11: Mandelbrot Overall Application Performance with Softmax configuration.

Appendix 49

A.2.2 DLS Selection Sequence

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. AWF-B (10.0%)
2. Static Steal (10.0%)

3. GSS (9.0%)

RandomSel

L0

1. TSS (47.2%)
2. STATIC (4.8%)

3. SS (4.8%)

ExhaustiveSel

L0

1. Auto(LLVM) (20.4%)
2. AWF-B (19.0%)

3. SS (16.2%)

BinarySel

L0

1. mAF (78.2%)
2. AWF-E (8.4%)
3. AWF-D (4.2%)

ExpertSel

L0

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. AWF-D (10.0%)
2. Static Steal (9.8%)

3. AWF-E (9.8%)

DoubleQ

L0

1. mAF (10.2%)
2. AWF-B (10.0%)
3. AWF-C (9.8%)

SARSA

L0

1. AWF-D (10.2%)
2. Static Steal (10.0%)

3. AWF-E (10.0%)

ESARSA

L0

1. AWF-D (9.6%)
2. AWF-E (9.6%)

3. mAF (9.6%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. AWF-D (11.4%)
2. AWF-C (9.8%)

3. mAF (9.4%)

RandomSel

L1

1. mFac2 (14.6%)
2. TSS (13.8%)

3. AWF-E (8.8%)

ExhaustiveSel

L1

1. AWF-D (32.2%)
2. AWF-B (18.0%)

3. mAF (14.2%)

BinarySel

L1

1. STATIC (24.2%)
2. mAF (15.0%)
3. GSS (14.6%)

ExpertSel

L1

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. mAF (11.4%)
2. AWF-D (11.0%)
3. AWF-E (10.0%)

DoubleQ

L1

1. AWF-C (10.2%)
2. AWF-E (10.2%)

3. Static Steal (10.0%)

SARSA

L1

1. mFac2 (10.2%)
2. AWF-E (10.0%)

3. mAF (10.0%)

ESARSA

L1

1. AWF-C (9.8%)
2. AWF-E (9.8%)
3. AWF-B (9.6%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. Static Steal (10.0%)
2. Auto(LLVM) (10.0%)

3. GSS (8.6%)

RandomSel

L2

1. TSS (22.0%)
2. AWF-C (11.2%)
3. mFac2 (10.2%)

ExhaustiveSel

L2

1. AWF-B (26.8%)
2. AWF-D (19.8%)

3. mAF (13.0%)

BinarySel

L2

1. mAF (31.6%)
2. STATIC (17.6%)

3. Auto(LLVM) (12.2%)

ExpertSel

L2

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. mAF (11.0%)
2. AWF-E (10.8%)
3. AWF-D (10.4%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. mAF (10.2%)
2. AWF-E (10.0%)
3. mFac2 (9.8%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. mFac2 (10.2%)
2. AWF-E (10.0%)
3. AWF-C (9.8%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. AWF-C (10.4%)
2. AWF-E (10.4%)
3. mFac2 (9.6%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - All Defaults

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.12: Mandelbrot DLS Selection Sequence with All Defaults configuration.

Appendix 50

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. AWF-C (11.8%)
2. AWF-D (9.2%)

3. mAF (8.8%)

RandomSel

L0

1. TSS (36.8%)
2. STATIC (6.2%)
3. AWF-C (6.2%)

ExhaustiveSel

L0

1. AWF-D (26.8%)
2. Auto(LLVM) (21.0%)

3. AWF-B (16.8%)

BinarySel

L0

1. mAF (81.6%)
2. AWF-D (5.6%)
3. AWF-E (4.6%)

ExpertSel

L0

1. STATIC (14.4%)
2. Auto(LLVM) (14.4%)

3. SS (14.2%)

Q-Learn

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. AWF-C (26.4%)
2. mFac2 (21.6%)

3. GSS (17.2%)

DoubleQ

L0

1. SS (10.2%)
2. AWF-C (10.0%)

3. mFac2 (9.8%)

SARSA

L0

1. AWF-E (9.6%)
2. mFac2 (9.0%)
3. AWF-B (8.8%)

ESARSA

L0

1. SS (9.0%)
2. AWF-C (9.0%)
3. AWF-E (8.8%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. AWF-B (12.0%)
2. Static Steal (9.0%)

3. AWF-D (8.8%)

RandomSel

L1

1. TSS (22.8%)
2. AWF-C (11.2%)
3. mFac2 (11.0%)

ExhaustiveSel

L1

1. AWF-B (29.8%)
2. mAF (21.0%)

3. AWF-D (17.6%)

BinarySel

L1

1. STATIC (19.4%)
2. Auto(LLVM) (17.6%)

3. GSS (12.8%)

ExpertSel

L1

1. AWF-C (17.4%)
2. Auto(LLVM) (16.6%)

3. STATIC (16.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. Static Steal (22.8%)
2. STATIC (22.0%)

3. TSS (22.0%)

DoubleQ

L1

1. Static Steal (9.6%)
2. AWF-B (9.6%)

3. GSS (9.4%)

SARSA

L1

1. mFac2 (9.6%)
2. Static Steal (9.6%)

3. SS (9.4%)

ESARSA

L1

1. Auto(LLVM) (9.6%)
2. AWF-E (9.2%)

3. TSS (9.0%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. Static Steal (10.4%)
2. GSS (10.0%)

3. STATIC (9.6%)

RandomSel

L2

1. TSS (25.2%)
2. AWF-C (8.8%)
3. mFac2 (7.6%)

ExhaustiveSel

L2

1. AWF-D (26.4%)
2. AWF-B (20.6%)

3. mAF (11.6%)

BinarySel

L2

1. mAF (32.2%)
2. GSS (12.4%)

3. Auto(LLVM) (12.0%)

ExpertSel

L2

1. AWF-B (37.4%)
2. AWF-D (37.2%)

3. TSS (3.2%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. GSS (44.6%)
2. STATIC (8.0%)
3. AWF-B (6.4%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. AWF-E (10.6%)
2. AWF-C (9.8%)
3. mFac2 (9.6%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. Static Steal (10.0%)
2. mFac2 (9.8%)

3. SS (9.4%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. GSS (9.6%)
2. TSS (9.4%)

3. Auto(LLVM) (8.8%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - Random

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.13: Mandelbrot DLS Selection Sequence with Random configuration.

Appendix 51

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. Auto(LLVM) (9.6%)
2. TSS (9.6%)

3. mAF (9.2%)

RandomSel

L0

1. TSS (38.2%)
2. Auto(LLVM) (11.2%)

3. GSS (5.2%)

ExhaustiveSel

L0

1. Auto(LLVM) (26.0%)
2. AWF-B (21.6%)

3. mAF (8.6%)

BinarySel

L0

1. mAF (83.0%)
2. AWF-E (8.0%)
3. AWF-C (3.8%)

ExpertSel

L0

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

DoubleQ

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

SARSA

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

ESARSA

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

100

200

300

Lo
op

 T
im

e
(m

s)

L1

1. AWF-D (10.2%)
2. Static Steal (9.8%)

3. AWF-C (9.6%)

RandomSel

L1

1. TSS (18.8%)
2. mFac2 (11.6%)

3. GSS (9.6%)

ExhaustiveSel

L1

1. AWF-D (37.6%)
2. mAF (17.6%)

3. AWF-B (13.8%)

BinarySel

L1

1. STATIC (22.6%)
2. GSS (14.2%)
3. mAF (12.2%)

ExpertSel

L1

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0

100

200

Lo
op

 T
im

e
(m

s)

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

DoubleQ

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

SARSA

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

ESARSA

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. GSS (10.8%)
2. mFac2 (9.6%)

3. Static Steal (9.0%)

RandomSel

L2

1. TSS (21.4%)
2. mFac2 (10.8%)
3. STATIC (10.4%)

ExhaustiveSel

L2

1. AWF-B (23.6%)
2. AWF-D (19.2%)

3. mAF (13.6%)

BinarySel

L2

1. mAF (26.8%)
2. STATIC (16.8%)

3. GSS (12.8%)

ExpertSel

L2

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - Looptime Inverse

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.14: Mandelbrot DLS Selection Sequence with Looptime Inverse configuration.

Appendix 52

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. GSS (12.0%)
2. mFac2 (10.6%)
3. STATIC (9.4%)

RandomSel

L0

1. TSS (41.8%)
2. AWF-E (8.2%)
3. STATIC (5.0%)

ExhaustiveSel

L0

1. AWF-D (23.0%)
2. Auto(LLVM) (22.2%)

3. AWF-B (14.8%)

BinarySel

L0

1. mAF (66.2%)
2. AWF-E (8.2%)
3. AWF-C (6.6%)

ExpertSel

L0

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. AWF-D (10.2%)
2. Static Steal (10.0%)

3. AWF-E (10.0%)

DoubleQ

L0

1. mAF (10.4%)
2. AWF-D (10.0%)

3. AWF-B (9.8%)

SARSA

L0

1. AWF-E (10.0%)
2. mAF (9.8%)

3. Static Steal (9.6%)

ESARSA

L0

1. AWF-D (9.8%)
2. AWF-E (9.8%)
3. AWF-C (9.6%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. AWF-B (11.0%)
2. Static Steal (10.6%)

3. GSS (10.4%)

RandomSel

L1

1. TSS (13.6%)
2. mFac2 (12.2%)
3. AWF-C (11.8%)

ExhaustiveSel

L1

1. AWF-D (33.2%)
2. AWF-B (21.4%)

3. mAF (16.2%)

BinarySel

L1

1. STATIC (24.8%)
2. GSS (16.0%)
3. TSS (12.8%)

ExpertSel

L1

1. STATIC (73.6%)
2. SS (2.4%)

3. TSS (2.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. STATIC (51.6%)
2. SS (19.4%)

3. Auto(LLVM) (5.2%)

DoubleQ

L1

1. STATIC (54.2%)
2. SS (13.8%)

3. TSS (10.4%)

SARSA

L1

1. mAF (13.2%)
2. mFac2 (11.4%)

3. GSS (11.2%)

ESARSA

L1

1. SS (13.4%)
2. STATIC (13.0%)

3. mAF (12.4%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. AWF-D (10.6%)
2. Auto(LLVM) (10.4%)

3. TSS (10.0%)

RandomSel

L2

1. TSS (35.8%)
2. mFac2 (9.6%)

3. mAF (6.0%)

ExhaustiveSel

L2

1. AWF-D (29.8%)
2. AWF-B (15.8%)

3. mAF (14.6%)

BinarySel

L2

1. mAF (21.4%)
2. STATIC (16.0%)

3. GSS (12.6%)

ExpertSel

L2

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. STATIC (38.2%)
2. Static Steal (27.6%)

3. GSS (9.4%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. Auto(LLVM) (22.0%)
2. SS (15.4%)

3. TSS (15.4%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. mAF (18.0%)
2. TSS (11.0%)

3. mFac2 (9.6%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. AWF-C (11.2%)
2. Static Steal (10.8%)

3. mAF (10.4%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - Looptime Average

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.15: Mandelbrot DLS Selection Sequence with Looptime Average configuration.

Appendix 53

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L0

1. TSS (10.8%)
2. GSS (10.2%)

3. Static Steal (9.6%)

RandomSel

L0

1. TSS (39.2%)
2. mFac2 (8.8%)
3. STATIC (5.2%)

ExhaustiveSel

L0

1. Auto(LLVM) (25.6%)
2. AWF-D (16.6%)
3. AWF-B (15.8%)

BinarySel

L0

1. mAF (85.2%)
2. AWF-D (5.2%)
3. AWF-E (5.0%)

ExpertSel

L0

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L0

1. AWF-E (10.2%)
2. mAF (10.2%)

3. AWF-B (10.0%)

DoubleQ

L0

1. AWF-E (10.4%)
2. mAF (10.4%)

3. AWF-D (10.0%)

SARSA

L0

1. AWF-D (10.0%)
2. mAF (9.8%)

3. Static Steal (9.6%)

ESARSA

L0

1. AWF-E (9.8%)
2. Static Steal (9.6%)

3. mAF (9.6%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. AWF-D (10.8%)
2. TSS (9.0%)

3. AWF-E (8.8%)

RandomSel

L1

1. TSS (22.0%)
2. AWF-E (8.8%)

3. GSS (8.2%)

ExhaustiveSel

L1

1. AWF-D (25.2%)
2. AWF-B (20.2%)

3. mAF (15.4%)

BinarySel

L1

1. STATIC (19.6%)
2. Auto(LLVM) (16.2%)

3. mAF (16.0%)

ExpertSel

L1

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. STATIC (44.2%)
2. TSS (20.4%)

3. SS (9.6%)

DoubleQ

L1

1. Auto(LLVM) (31.0%)
2. STATIC (13.2%)

3. TSS (13.0%)

SARSA

L1

1. mFac2 (14.8%)
2. AWF-E (11.4%)

3. TSS (11.2%)

ESARSA

L1

1. mAF (12.2%)
2. AWF-E (11.2%)

3. SS (10.8%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. AWF-D (11.0%)
2. SS (10.4%)

3. Auto(LLVM) (9.4%)

RandomSel

L2

1. TSS (27.8%)
2. GSS (9.6%)

3. mFac2 (8.0%)

ExhaustiveSel

L2

1. AWF-D (32.0%)
2. AWF-B (22.6%)

3. mAF (13.2%)

BinarySel

L2

1. mAF (28.0%)
2. Auto(LLVM) (15.4%)

3. STATIC (13.8%)

ExpertSel

L2

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. STATIC (21.4%)
2. SS (12.6%)

3. AWF-D (9.2%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. mFac2 (21.4%)
2. Static Steal (16.4%)

3. GSS (15.6%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. AWF-C (17.4%)
2. mAF (13.8%)

3. Auto(LLVM) (13.0%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. AWF-C (11.4%)
2. Static Steal (11.0%)

3. AWF-E (10.4%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - Looptime Rolling Average

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.16: Mandelbrot DLS Selection Sequence with Looptime Rolling configuration.

Appendix 54

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. TSS (11.4%)
2. Static Steal (9.6%)
3. Auto(LLVM) (9.2%)

RandomSel

L0

1. TSS (44.6%)
2. Auto(LLVM) (5.2%)

3. GSS (5.2%)

ExhaustiveSel

L0

1. AWF-B (28.0%)
2. Auto(LLVM) (18.0%)

3. AWF-D (13.6%)

BinarySel

L0

1. mAF (74.2%)
2. AWF-E (6.6%)
3. AWF-D (6.0%)

ExpertSel

L0

1. STATIC (53.8%)
2. mAF (22.2%)

3. SS (2.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L0

1. SS (64.8%)
2. STATIC (11.2%)

3. TSS (2.4%)

DoubleQ

L0

1. SS (33.4%)
2. STATIC (32.6%)

3. TSS (7.4%)

SARSA

L0

1. TSS (24.8%)
2. mAF (24.4%)

3. STATIC (7.0%)

ESARSA

L0

1. STATIC (30.6%)
2. GSS (30.0%)

3. Auto(LLVM) (9.0%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. AWF-D (10.4%)
2. TSS (10.4%)
3. GSS (9.4%)

RandomSel

L1

1. mFac2 (19.2%)
2. TSS (12.0%)

3. AWF-E (9.2%)

ExhaustiveSel

L1

1. AWF-D (30.8%)
2. AWF-B (20.0%)

3. mAF (16.0%)

BinarySel

L1

1. STATIC (22.6%)
2. GSS (14.0%)
3. TSS (13.6%)

ExpertSel

L1

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. STATIC (11.4%)
2. SS (11.4%)

3. TSS (11.4%)

DoubleQ

L1

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

SARSA

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

ESARSA

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

100

200

Lo
op

 T
im

e
(m

s)

L2

1. Static Steal (11.2%)
2. AWF-C (9.2%)
3. AWF-E (9.0%)

RandomSel

L2

1. STATIC (17.0%)
2. TSS (14.4%)

3. AWF-E (8.8%)

ExhaustiveSel

L2

1. AWF-D (24.0%)
2. AWF-B (18.0%)

3. mAF (15.0%)

BinarySel

L2

1. mAF (31.8%)
2. Auto(LLVM) (13.2%)

3. STATIC (12.0%)

ExpertSel

L2

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (12.6%)
2. Auto(LLVM) (12.6%)

3. GSS (12.6%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (20.2%)
2. TSS (20.2%)

3. Auto(LLVM) (20.0%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - Neutral Reward

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.17: Mandelbrot DLS Selection Sequence with Neutral Reward configuration.

Appendix 55

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. Static Steal (11.0%)
2. Auto(LLVM) (10.4%)

3. AWF-E (9.0%)

RandomSel

L0

1. TSS (33.0%)
2. mFac2 (8.6%)

3. Auto(LLVM) (6.4%)

ExhaustiveSel

L0

1. AWF-B (26.2%)
2. Auto(LLVM) (20.0%)

3. AWF-D (13.0%)

BinarySel

L0

1. mAF (82.2%)
2. AWF-E (5.6%)
3. AWF-C (5.0%)

ExpertSel

L0

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

DoubleQ

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

SARSA

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

ESARSA

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. GSS (10.0%)
2. AWF-D (9.4%)

3. Auto(LLVM) (9.4%)

RandomSel

L1

1. TSS (16.6%)
2. mFac2 (12.6%)

3. AWF-E (9.6%)

ExhaustiveSel

L1

1. AWF-D (36.0%)
2. mAF (15.0%)

3. AWF-B (14.2%)

BinarySel

L1

1. STATIC (21.2%)
2. GSS (16.4%)

3. Auto(LLVM) (15.0%)

ExpertSel

L1

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

DoubleQ

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

SARSA

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

ESARSA

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. Static Steal (10.2%)
2. mFac2 (9.4%)

3. GSS (8.8%)

RandomSel

L2

1. TSS (18.2%)
2. mFac2 (9.8%)
3. AWF-E (9.8%)

ExhaustiveSel

L2

1. AWF-D (21.0%)
2. mAF (16.6%)

3. AWF-B (16.0%)

BinarySel

L2

1. mAF (28.2%)
2. Auto(LLVM) (17.0%)

3. STATIC (15.4%)

ExpertSel

L2

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - Positive Reward

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.18: Mandelbrot DLS Selection Sequence with Positive Reward configuration.

Appendix 56

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. TSS (10.6%)
2. AWF-E (10.2%)

3. Static Steal (10.2%)

RandomSel

L0

1. TSS (29.2%)
2. AWF-C (14.2%)

3. Auto(LLVM) (5.8%)

ExhaustiveSel

L0

1. AWF-B (27.8%)
2. AWF-D (22.0%)

3. mAF (10.2%)

BinarySel

L0

1. mAF (79.4%)
2. AWF-E (7.0%)
3. AWF-D (6.2%)

ExpertSel

L0

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. AWF-D (10.0%)
2. AWF-E (10.0%)

3. Static Steal (9.8%)

DoubleQ

L0

1. mAF (10.4%)
2. AWF-D (10.0%)

3. AWF-B (9.8%)

SARSA

L0

1. AWF-B (9.8%)
2. AWF-D (9.8%)
3. AWF-C (9.6%)

ESARSA

L0

1. mAF (9.8%)
2. AWF-D (9.6%)
3. AWF-E (9.6%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. AWF-B (11.0%)
2. TSS (10.0%)

3. AWF-D (9.8%)

RandomSel

L1

1. TSS (21.8%)
2. AWF-C (11.2%)

3. mFac2 (7.6%)

ExhaustiveSel

L1

1. AWF-D (31.0%)
2. AWF-B (19.2%)

3. mAF (15.8%)

BinarySel

L1

1. STATIC (20.6%)
2. GSS (14.2%)

3. mFac2 (12.2%)

ExpertSel

L1

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. Static Steal (10.0%)
2. AWF-C (10.0%)
3. AWF-D (10.0%)

DoubleQ

L1

1. mAF (10.4%)
2. AWF-D (10.2%)

3. AWF-B (9.8%)

SARSA

L1

1. AWF-E (10.0%)
2. AWF-D (9.8%)
3. mFac2 (9.4%)

ESARSA

L1

1. AWF-E (10.0%)
2. AWF-D (9.8%)

3. mAF (9.8%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. Auto(LLVM) (10.6%)
2. AWF-E (9.8%)
3. AWF-C (9.6%)

RandomSel

L2

1. TSS (20.4%)
2. mFac2 (10.0%)

3. Auto(LLVM) (9.0%)

ExhaustiveSel

L2

1. AWF-D (28.4%)
2. mAF (13.0%)

3. AWF-B (10.8%)

BinarySel

L2

1. mAF (26.4%)
2. Auto(LLVM) (13.8%)

3. STATIC (12.8%)

ExpertSel

L2

1. STATIC (38.0%)
2. SS (38.0%)
3. TSS (2.4%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. AWF-D (10.4%)
2. AWF-E (10.2%)

3. mAF (10.2%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. AWF-D (10.2%)
2. mAF (10.0%)

3. AWF-B (9.8%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. AWF-B (9.8%)
2. AWF-D (9.8%)

3. mAF (9.8%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. AWF-D (9.8%)
2. AWF-E (9.8%)

3. mAF (9.6%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - Loadimbalance

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.19: Mandelbrot DLS Selection Sequence with Loadimbalance configuration.

Appendix 57

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. Static Steal (12.4%)
2. AWF-C (10.0%)

3. TSS (9.8%)

RandomSel

L0

1. TSS (39.8%)
2. GSS (7.4%)

3. Auto(LLVM) (5.4%)

ExhaustiveSel

L0

1. AWF-D (25.2%)
2. AWF-B (22.2%)

3. Auto(LLVM) (10.2%)

BinarySel

L0

1. mAF (71.0%)
2. AWF-E (11.2%)
3. AWF-D (6.0%)

ExpertSel

L0

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

DoubleQ

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

SARSA

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

ESARSA

L0

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. AWF-D (11.0%)
2. mAF (9.6%)
3. TSS (8.8%)

RandomSel

L1

1. TSS (22.0%)
2. GSS (11.6%)

3. mFac2 (9.6%)

ExhaustiveSel

L1

1. AWF-D (49.4%)
2. AWF-B (12.4%)

3. mAF (9.4%)

BinarySel

L1

1. STATIC (21.0%)
2. Auto(LLVM) (18.4%)

3. GSS (11.8%)

ExpertSel

L1

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

DoubleQ

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

SARSA

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

ESARSA

L1

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

100

200

Lo
op

 T
im

e
(m

s)

L2

1. AWF-B (12.4%)
2. AWF-D (10.8%)

3. mFac2 (9.8%)

RandomSel

L2

1. TSS (29.0%)
2. GSS (8.0%)

3. AWF-E (7.8%)

ExhaustiveSel

L2

1. AWF-D (27.0%)
2. AWF-B (19.6%)

3. mAF (17.0%)

BinarySel

L2

1. mAF (31.2%)
2. STATIC (15.0%)

3. GSS (10.6%)

ExpertSel

L2

1. mAF (73.6%)
2. STATIC (2.4%)

3. SS (2.4%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (8.4%)
2. SS (8.4%)

3. TSS (8.4%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - Robustness

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.20: Mandelbrot DLS Selection Sequence with Robustness configuration.

Appendix 58

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. TSS (10.8%)
2. AWF-E (9.6%)
3. mFac2 (9.4%)

RandomSel

L0

1. TSS (36.2%)
2. GSS (7.6%)

3. Auto(LLVM) (5.8%)

ExhaustiveSel

L0

1. Auto(LLVM) (27.4%)
2. AWF-B (22.4%)

3. mAF (10.0%)

BinarySel

L0

1. mAF (76.8%)
2. AWF-E (7.2%)
3. AWF-D (7.0%)

ExpertSel

L0

1. STATIC (63.0%)
2. SS (37.0%)

Q-Learn

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. STATIC (30.0%)
2. AWF-B (6.8%)
3. AWF-E (6.8%)

DoubleQ

L0

1. STATIC (28.4%)
2. AWF-D (7.2%)
3. AWF-E (7.2%)

SARSA

L0

1. STATIC (30.8%)
2. AWF-B (6.8%)
3. AWF-E (6.8%)

ESARSA

L0

1. STATIC (29.2%)
2. AWF-C (7.0%)
3. AWF-D (7.0%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. Static Steal (11.2%)
2. AWF-B (9.2%)
3. AWF-D (9.0%)

RandomSel

L1

1. TSS (21.8%)
2. GSS (10.0%)

3. mFac2 (8.6%)

ExhaustiveSel

L1

1. AWF-D (23.2%)
2. AWF-B (21.8%)

3. mAF (16.0%)

BinarySel

L1

1. STATIC (23.8%)
2. GSS (14.0%)
3. TSS (13.8%)

ExpertSel

L1

1. STATIC (63.0%)
2. SS (37.0%)

Q-Learn

0

50

100

150

Lo
op

 T
im

e
(m

s)

L1

1. STATIC (30.4%)
2. AWF-B (7.8%)

3. Static Steal (7.0%)

DoubleQ

L1

1. STATIC (28.4%)
2. AWF-C (7.2%)
3. AWF-D (7.2%)

SARSA

L1

1. STATIC (30.8%)
2. mAF (7.4%)

3. AWF-E (7.0%)

ESARSA

L1

1. STATIC (29.2%)
2. AWF-C (7.0%)
3. AWF-D (7.0%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. AWF-D (10.4%)
2. mFac2 (9.8%)

3. Static Steal (9.6%)

RandomSel

L2

1. TSS (20.4%)
2. AWF-E (10.8%)
3. AWF-C (9.2%)

ExhaustiveSel

L2

1. AWF-D (35.2%)
2. AWF-B (16.8%)

3. mAF (14.6%)

BinarySel

L2

1. mAF (30.2%)
2. STATIC (16.6%)

3. GSS (11.8%)

ExpertSel

L2

1. STATIC (63.0%)
2. SS (37.0%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. STATIC (29.6%)
2. Static Steal (7.2%)

3. AWF-B (7.2%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (28.4%)
2. AWF-D (7.2%)

3. mAF (7.2%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (30.6%)
2. AWF-E (7.4%)
3. AWF-C (7.2%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (29.0%)
2. AWF-C (7.4%)

3. mAF (7.2%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - Epsilon Greedy

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.21: Mandelbrot DLS Selection Sequence with Epsilon Greedy configuration.

Appendix 59

0

50

100

150

Lo
op

 T
im

e
(m

s)

L0

1. TSS (10.2%)
2. AWF-D (10.0%)

3. AWF-C (9.4%)

RandomSel

L0

1. TSS (31.8%)
2. mFac2 (7.0%)
3. STATIC (6.4%)

ExhaustiveSel

L0

1. AWF-D (21.4%)
2. AWF-B (20.0%)

3. Auto(LLVM) (18.2%)

BinarySel

L0

1. mAF (78.8%)
2. AWF-E (7.0%)
3. AWF-D (5.6%)

ExpertSel

L0

1. SS (10.4%)
2. AWF-E (9.6%)

3. TSS (9.6%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L0

1. STATIC (11.8%)
2. Static Steal (10.2%)

3. AWF-B (9.2%)

DoubleQ

L0

1. TSS (10.8%)
2. Static Steal (10.0%)

3. mFac2 (9.8%)

SARSA

L0

1. SS (10.4%)
2. TSS (9.4%)

3. mFac2 (9.0%)

ESARSA

L0

1. AWF-D (10.0%)
2. mAF (9.6%)

3. mFac2 (9.0%)

QV-Learn

L0

1. TSS (100.0%)
Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. AWF-B (10.4%)
2. TSS (9.8%)
3. GSS (9.8%)

RandomSel

L1

1. TSS (16.4%)
2. mFac2 (15.0%)
3. AWF-C (10.0%)

ExhaustiveSel

L1

1. AWF-B (30.6%)
2. mAF (17.8%)

3. AWF-D (17.2%)

BinarySel

L1

1. STATIC (25.6%)
2. Auto(LLVM) (18.4%)

3. GSS (14.2%)

ExpertSel

L1

1. AWF-C (9.4%)
2. mFac2 (9.2%)

3. Auto(LLVM) (9.2%)

Q-Learn

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L1

1. AWF-B (9.8%)
2. Auto(LLVM) (9.0%)

3. STATIC (8.8%)

DoubleQ

L1

1. Auto(LLVM) (11.2%)
2. GSS (9.8%)

3. STATIC (9.0%)

SARSA

L1

1. Auto(LLVM) (10.2%)
2. AWF-E (9.4%)

3. TSS (9.0%)

ESARSA

L1

1. AWF-C (9.6%)
2. TSS (9.2%)

3. mAF (9.2%)

QV-Learn

L1

1. TSS (67.8%)
2. mFac2 (29.8%)

3. GSS (1.8%)

Ground-truth

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. Static Steal (11.2%)
2. GSS (9.8%)

3. AWF-C (9.4%)

RandomSel

L2

1. TSS (22.8%)
2. mFac2 (9.0%)
3. AWF-E (8.2%)

ExhaustiveSel

L2

1. AWF-D (40.4%)
2. AWF-B (14.6%)

3. mAF (13.2%)

BinarySel

L2

1. mAF (25.0%)
2. STATIC (16.4%)

3. Auto(LLVM) (12.6%)

ExpertSel

L2

1. mFac2 (9.8%)
2. TSS (9.2%)

3. Static Steal (9.2%)

Q-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

0

50

100

150

200

Lo
op

 T
im

e
(m

s)

L2

1. AWF-D (11.0%)
2. TSS (10.0%)

3. SS (9.6%)

DoubleQ

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. Auto(LLVM) (10.6%)
2. TSS (10.2%)

3. AWF-C (10.2%)

SARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. STATIC (10.0%)
2. GSS (9.8%)

3. AWF-D (9.0%)

ESARSA

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. AWF-E (9.8%)
2. AWF-B (9.4%)
3. STATIC (9.0%)

QV-Learn

0
10

0
20

0
30

0
40

0
50

0

Time-step t

L2

1. TSS (81.4%)
2. mFac2 (18.2%)

3. AWF-E (0.4%)

Ground-truth

DLS Selection Sequence
Mandelbrot - Softmax

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.22: Mandelbrot DLS Selection Sequence with Softmax configuration.

Appendix 60

A.3 SPHYNX - Extended Results
A.3.1 Overall Application Performance

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e7

+
39

7.
53

%

+
5.

04
%

+
14

.0
5%

+
80

.7
6%

+
27

8.
62

%

+
65

.8
0%

+
63

.8
0%

+
66

.3
5%

+
67

.9
3%

+
25

.7
5% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - All Defaults

Figure A.23: SPHYNX Evrard Collapse 2000 Overall Application Performance with All
Defaults configuration.

Appendix 61

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e7

+
41

5.
65

%

+
4.

31
%

+
23

.1
6%

+
91

.4
8%

+
49

.2
4%

+
67

.6
7%

+
86

.9
6%

+
94

.0
0%

+
83

.0
2%

+
26

.3
6% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Random

Figure A.24: SPHYNX Evrard Collapse 2000 Overall Application Performance with
Random configuration.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.0

0.5

1.0

1.5

2.0

2.5

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e7

+
42

0.
96

%

+
4.

38
%

+
13

.5
6%

+
72

.2
1%

+
30

.4
2%

+
82

.9
2%

+
82

.4
7%

+
83

.2
7%

+
88

.4
0%

+
79

.4
5% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Looptime Inverse

Figure A.25: SPHYNX Evrard Collapse 2000 Overall Application Performance with
Looptime Inverse configuration.

Appendix 62

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e7

+
41

9.
58

%

+
4.

74
%

+
21

.7
9%

+
74

.1
0%

+
28

4.
52

%

+
63

.6
5%

+
67

.0
6%

+
67

.1
4%

+
70

.1
6%

+
28

.2
9% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Looptime Average

Figure A.26: SPHYNX Evrard Collapse 2000 Overall Application Performance with
Looptime Average configuration.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e7

+
26

1.
00

%

+
10

.4
2%

+
32

.4
5%

+
55

.1
4%

+
27

7.
83

%

+
21

4.
49

%

+
80

.8
0%

+
88

.8
3%

+
65

.8
1%

+
27

.1
8% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Looptime Rolling Average

Figure A.27: SPHYNX Evrard Collapse 2000 Overall Application Performance with
Looptime Rolling configuration.

Appendix 63

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.0

0.5

1.0

1.5

2.0

2.5
Pa

ra
lle

l e
xe

cu
tio

n
tim

e
(m

s)

1e7

+
42

7.
83

%

+
2.

29
%

+
22

.4
2%

+
78

.9
8%

+
27

8.
01

%

+
77

.3
3%

+
79

.2
4%

+
63

.7
3%

+
76

.6
7%

+
27

.7
8% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Neutral Reward

Figure A.28: SPHYNX Evrard Collapse 2000 Overall Application Performance with
Neutral Reward configuration.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e7

+
23

6.
29

%

+
5.

07
%

+
12

.7
8%

+
52

.2
3%

+
30

.6
0%

+
83

.3
4%

+
83

.6
6%

+
83

.4
2%

+
83

.0
0%

+
79

.3
8% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Positive Reward

Figure A.29: SPHYNX Evrard Collapse 2000 Overall Application Performance with
Positive Reward configuration.

Appendix 64

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Pa

ra
lle

l e
xe

cu
tio

n
tim

e
(m

s)
1e7

+
14

6.
14

%

+
6.

50
%

+
24

.6
7%

+
68

.2
2%

+
27

9.
71

%

+
67

.0
8%

+
66

.3
6%

+
72

.3
8%

+
66

.7
4%

+
28

.5
7% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Loadimbalance

Figure A.30: SPHYNX Evrard Collapse 2000 Overall Application Performance with
Loadimbalance configuration.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e7

+
41

9.
47

%

+
2.

39
%

+
15

.4
9%

+
73

.2
0%

+
27

8.
17

%

+
63

.9
5%

+
63

.0
7%

+
63

.8
3%

+
63

.7
1%

+
27

.2
8% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Robustness

Figure A.31: SPHYNX Evrard Collapse 2000 Overall Application Performance with
Robustness configuration.

Appendix 65

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Pa

ra
lle

l e
xe

cu
tio

n
tim

e
(m

s)
1e7

+
13

5.
59

%

+
2.

99
%

+
22

.4
5%

+
75

.2
7%

+
30

4.
28

%

+
78

.5
1%

+
74

.8
0%

+
81

.9
3%

+
69

.8
4%

+
44

.6
5% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Epsilon Greedy

Figure A.32: SPHYNX Evrard Collapse 2000 Overall Application Performance with
Epsilon Greedy configuration.

Ra
nd

om
Se

l

Ex
ha

ust
ive

Se
l

Bina
ryS

el

Ex
pe

rtS
el

Q-Le
arn

Dou
ble

Q
SA

RSA

ES
ARSA

QV-L
ea

rn

Chu
nk

-Le
arn

Grou
nd

-tru
th

Loop scheduling technique / Selection method

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

(m
s)

1e7

+
42

0.
59

%

+
2.

73
%

+
13

.9
5%

+
66

.8
7%

+
69

.5
6%

+
10

7.
76

%

+
85

.0
3%

+
91

.8
8%

+
82

.1
0%

+
14

.9
8% Be

st

L0

Overall Application Performance
SPHYNX Evrard Collapse 2000 - Softmax

Figure A.33: SPHYNX Evrard Collapse 2000 Overall Application Performance with
Softmax configuration.

Appendix 66

A.3.2 DLS Selection Sequence

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (58.2%)
2. Auto(LLVM) (14.1%)

3. GSS (13.8%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. GSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (42.8%)
2. GSS (21.5%)

3. STATIC (14.2%)

ExpertSel

L0

1. STATIC (35.0%)
2. SS (35.0%)
3. TSS (3.0%)

Q-Learn

0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. AWF-D (10.0%)
2. AWF-B (9.8%)

3. mAF (9.8%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-C (10.0%)
2. AWF-B (9.8%)

3. mAF (9.8%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-E (9.8%)
2. mFac2 (9.5%)

3. Static Steal (9.5%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-D (9.8%)
2. mAF (9.8%)

3. mFac2 (9.5%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - All Defaults

Auto(LLVM)
STATIC

SS
TSS

GSS
mAF

AWF-E
Static Steal

mFac2
AWF-B

AWF-C
AWF-D

Figure A.34: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with All Defaults
configuration.

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (72.6%)
2. AWF-E (19.8%)
3. AWF-C (4.7%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. TSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (42.0%)
2. GSS (25.5%)

3. STATIC (15.8%)

ExpertSel

L0

1. Auto(LLVM) (16.0%)
2. STATIC (15.8%)
3. AWF-B (15.8%)

Q-Learn

0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. Static Steal (20.0%)
2. TSS (19.2%)

3. STATIC (19.0%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. Static Steal (10.5%)
2. GSS (10.2%)

3. AWF-B (9.8%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. SS (10.0%)
2. Static Steal (9.8%)

3. mFac2 (9.2%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. Auto(LLVM) (9.2%)
2. AWF-C (9.2%)
3. AWF-E (9.0%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - Random

STATIC
SS

TSS
AWF-C

AWF-E
Auto(LLVM)

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-D

Figure A.35: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with Random
configuration.

Appendix 67

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (78.8%)
2. GSS (16.5%)

3. AWF-C (2.8%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. GSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (45.5%)
2. GSS (23.0%)

3. STATIC (14.0%)

ExpertSel

L0

1. mAF (67.0%)
2. STATIC (3.0%)

3. SS (3.0%)

Q-Learn
0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. STATIC (8.5%)
2. SS (8.5%)

3. TSS (8.5%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (8.5%)
2. SS (8.5%)

3. TSS (8.5%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (8.5%)
2. SS (8.5%)

3. TSS (8.5%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (8.5%)
2. SS (8.5%)

3. TSS (8.5%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - Looptime Inverse

SS
TSS

GSS
AWF-C

AWF-E
Auto(LLVM)

STATIC
Static Steal

mAF
mFac2

AWF-B
AWF-D

Figure A.36: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with Looptime
Inverse configuration.

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (79.0%)
2. AWF-C (19.4%)

3. AWF-E (1.6%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. GSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (42.5%)
2. GSS (21.5%)

3. STATIC (13.8%)

ExpertSel

L0

1. STATIC (35.0%)
2. SS (35.0%)
3. TSS (3.0%)

Q-Learn

0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. AWF-D (10.0%)
2. AWF-B (9.8%)

3. mAF (9.8%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-C (10.0%)
2. AWF-B (9.8%)

3. mAF (9.8%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-E (9.8%)
2. mFac2 (9.5%)

3. Static Steal (9.5%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-D (9.8%)
2. mAF (9.8%)

3. mFac2 (9.5%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - Looptime Average

SS
AWF-C

AWF-E
Auto(LLVM)

STATIC
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-D

Figure A.37: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with Looptime
Average configuration.

Appendix 68

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (35.5%)
2. AWF-D (15.5%)

3. Auto(LLVM) (15.5%)

RandomSel

L0

1. mAF (91.8%)
2. STATIC (0.8%)

3. SS (0.8%)

ExhaustiveSel

L0

1. AWF-B (85.5%)
2. GSS (12.8%)
3. mAF (0.5%)

BinarySel

L0

1. Auto(LLVM) (35.8%)
2. GSS (20.8%)
3. TSS (14.5%)

ExpertSel

L0

1. STATIC (35.0%)
2. SS (35.0%)
3. TSS (3.0%)

Q-Learn
0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (27.8%)
2. TSS (10.2%)
3. GSS (7.8%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-C (10.5%)
2. AWF-D (10.0%)

3. AWF-B (9.2%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (10.5%)
2. AWF-E (10.0%)
3. AWF-D (9.0%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (10.0%)
2. Static Steal (9.2%)

3. AWF-C (9.2%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - Looptime Rolling Average

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.38: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with Looptime
Rolling configuration.

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (88.2%)
2. AWF-D (8.4%)
3. AWF-E (1.7%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. TSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (46.2%)
2. GSS (20.8%)

3. STATIC (13.2%)

ExpertSel

L0

1. STATIC (35.0%)
2. SS (35.0%)
3. TSS (3.0%)

Q-Learn

0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. STATIC (67.0%)
2. SS (3.0%)

3. TSS (3.0%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (67.0%)
2. SS (3.0%)

3. TSS (3.0%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. GSS (13.8%)
2. Auto(LLVM) (13.5%)

3. mFac2 (13.0%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-D (11.5%)
2. AWF-C (11.0%)
3. AWF-E (11.0%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - Neutral Reward

Auto(LLVM)
SS

TSS
AWF-D

AWF-E
STATIC

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

Figure A.39: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with Neutral
Reward configuration.

Appendix 69

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. AWF-E (52.8%)
2. SS (31.8%)

3. AWF-B (11.0%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. GSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (49.0%)
2. GSS (29.2%)

3. STATIC (8.5%)

ExpertSel

L0

1. mAF (67.0%)
2. STATIC (3.0%)

3. SS (3.0%)

Q-Learn
0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. STATIC (8.5%)
2. SS (8.5%)

3. TSS (8.5%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (8.5%)
2. SS (8.5%)

3. TSS (8.5%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (8.5%)
2. SS (8.5%)

3. TSS (8.5%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (8.5%)
2. SS (8.5%)

3. TSS (8.5%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - Positive Reward

STATIC
SS

TSS
mAF

AWF-B
AWF-D

AWF-E
Auto(LLVM)

GSS
Static Steal

mFac2
AWF-C

Figure A.40: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with Positive
Reward configuration.

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. AWF-B (30.5%)
2. AWF-D (18.8%)

3. SS (17.0%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. TSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (33.5%)
2. GSS (26.0%)

3. STATIC (13.2%)

ExpertSel

L0

1. STATIC (35.0%)
2. SS (35.0%)
3. TSS (3.0%)

Q-Learn

0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. AWF-D (10.2%)
2. AWF-B (9.8%)

3. mAF (9.8%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-C (10.0%)
2. AWF-E (10.0%)
3. AWF-B (9.8%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. Static Steal (10.0%)
2. AWF-E (10.0%)
3. AWF-D (9.5%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (9.8%)
2. mFac2 (9.5%)
3. AWF-D (9.5%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - Loadimbalance

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.41: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with Loadimbalance
configuration.

Appendix 70

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (78.8%)
2. AWF-C (19.7%)

3. AWF-E (1.6%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. GSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (45.0%)
2. GSS (18.8%)

3. STATIC (11.8%)

ExpertSel

L0

1. STATIC (35.0%)
2. SS (35.0%)
3. TSS (3.0%)

Q-Learn
0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. AWF-D (10.0%)
2. AWF-B (9.8%)

3. mAF (9.8%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-C (10.0%)
2. AWF-B (9.8%)

3. mAF (9.8%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-E (9.8%)
2. mFac2 (9.5%)

3. Static Steal (9.5%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. AWF-D (9.8%)
2. mAF (9.8%)

3. mFac2 (9.5%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - Robustness

SS
AWF-C

AWF-E
Auto(LLVM)

STATIC
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-D

Figure A.42: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with Robustness
configuration.

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (16.2%)
2. AWF-C (16.0%)
3. AWF-B (11.5%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. TSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (31.8%)
2. GSS (29.2%)

3. STATIC (14.8%)

ExpertSel

L0

1. STATIC (66.2%)
2. SS (33.8%)

Q-Learn

0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. STATIC (35.8%)
2. GSS (6.8%)

3. mFac2 (6.2%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (35.5%)
2. mAF (7.2%)
3. GSS (6.5%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (35.5%)
2. AWF-E (7.0%)
3. AWF-B (6.2%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (36.0%)
2. AWF-D (7.2%)
3. AWF-E (7.2%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - Epsilon Greedy

Auto(LLVM)
STATIC

SS
TSS

GSS
Static Steal

mAF
mFac2

AWF-B
AWF-C

AWF-D
AWF-E

Figure A.43: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with Epsilon Greedy
configuration.

Appendix 71

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (79.1%)
2. GSS (14.1%)

3. AWF-C (2.8%)

RandomSel

L0

1. mAF (97.2%)
2. STATIC (0.2%)

3. SS (0.2%)

ExhaustiveSel

L0

1. GSS (99.0%)
2. mAF (0.2%)

3. STATIC (0.2%)

BinarySel

L0

1. Auto(LLVM) (41.8%)
2. GSS (21.0%)

3. STATIC (11.8%)

ExpertSel

L0

1. AWF-C (10.8%)
2. AWF-E (10.2%)

3. Auto(LLVM) (9.2%)

Q-Learn
0

10
0

20
0

30
0

40
0

Time-step t

0

20000

40000

60000

Lo
op

 T
im

e
(m

s)

L0

1. SS (12.0%)
2. STATIC (9.0%)
3. AWF-D (8.8%)

DoubleQ

0

10
0

20
0

30
0

40
0

Time-step tL0

1. GSS (10.5%)
2. AWF-D (9.5%)
3. AWF-B (9.0%)

SARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. Auto(LLVM) (9.8%)
2. SS (9.5%)

3. AWF-B (9.2%)

ESARSA

0

10
0

20
0

30
0

40
0

Time-step tL0

1. STATIC (10.0%)
2. mAF (9.8%)

3. mFac2 (9.2%)

QV-Learn

0

10
0

20
0

30
0

40
0

Time-step tL0

1. mAF (100.0%)
Ground-truth

DLS Selection Sequence
SPHYNX Evrard Collapse 2000 - Softmax

STATIC
SS

TSS
GSS

AWF-C
AWF-E

Auto(LLVM)
Static Steal

mAF
mFac2

AWF-B
AWF-D

Figure A.44: SPHYNX Evrard Collapse 2000 DLS Selection Sequence with Softmax
configuration.

August 2021

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)
Translation from German original

Title of Thesis:

Name Assesor: __

Name Student: __

Matriculation No.: __

With my signature I declare that this submission is my own work and that I have fully
acknowledged the assistance received in completing this work and that it contains no
material that has not been formally acknowledged. I have mentioned all source materials
used and have cited these in accordance with recognised scientific rules.

Place, Date: _______________________ Student: ____________________________

Will this work be published?

� No

� Yes. With my signature I confirm that I agree to a publication of the work (print/digital)
in the library, on the research database of the University of Basel and/or on the
document server of the department. Likewise, I agree to the bibliographic reference in
the catalog SLSP (Swiss Library Service Platform). (cross out as applicable)

Publication as of: ___

Place, Date: _______________________ Student: ____________________________

Place, Date: _______________________ Assessor: ____________________________

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis .

Automated Selection of Scheduling Algorithms for Parallel Scientific
Applications using Reinforcement Learning with OpenMP

	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Machine Learning
	2.2 Reinforcement Learning
	2.2.1 Basic Principles
	2.2.2 On-Policy v.s. Off-Policy Learning
	2.2.3 Reward Function Design
	2.2.4 Learning Methods

	3 Related Work
	4 Implementation
	4.1 The LB4OMP Library
	4.2 The Auto4OMP Extension
	4.3 The RL4OMP Extension
	4.4 Usage

	5 Benchmark & Results
	5.1 Mandelbrot
	5.1.1 Ground-truth
	5.1.2 Results

	5.2 SPHYNX Evrard Collapse
	5.2.1 Ground-truth
	5.2.2 Results

	6 Conclusion & Future Work
	Bibliography
	A Appendix
	A.1 Environment Variables
	A.2 Mandelbrot - Extended Results
	A.2.1 Overall Application Performance
	A.2.2 DLS Selection Sequence

	A.3 SPHYNX - Extended Results
	A.3.1 Overall Application Performance
	A.3.2 DLS Selection Sequence

