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Abstract

Modern research relies on the processing of large datasets using High Performance Com-

puting, Big Data, and Machine Learning operations. DAPHNE is a system infrastructure

for such integrated data analysis pipelines that provides language abstractions, compilation

and runtime techniques, and built-in parallelization features for researchers to process such

datasets seamlessly. In order to o↵er parallelization features that are nearly transparent

to the researcher while still delivering high performance, versatile scheduling techniques

with proven track records must be evaluated and implemented. As computing hardware is

constantly evolving, often becoming more heterogeneous, scheduling heuristics are becoming

more complex and new factors must be taken into account. This Thesis surveys task schedul-

ing techniques and work-stealing mechanisms from previous research on runtime systems in

the High Performance Computing field. The advantages of each technique are interpreted

with respect to various application types and hardware systems that may be employed by

a researcher using DAPHNE to process data. Locality-aware task scheduling techniques for

integrated data analysis pipelines are then implemented in DAPHNE and the performance

is evaluated using publicly available datasets.
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1
Introduction

The scientific community relies on data processing now more than ever before. The demand

for data processing comes in many shapes and sizes. There are Big Data applications

which rely heavily on disk I/O while having relatively simple computational steps, there

are Machine Learning applications which have heavy computational requirements but often

result in small output datasets, and there are also High Performance Computing applications

which usually rely on the applications being parallelizable in nature. These computational

tasks, which when combined with the data to be processed are referred to as pipelines and

are similar in all of these scenarios, yet still di↵er in their requirements enough that there

has not yet been a full convergence on the software infrastructure to handle them. While

all three of these domains are heavily researched in their own fields, a single unified system

combine all three into a single system infrastructure for data analysis is an open research

topic.

While datasets are becoming larger and computing clusters are becoming more pow-

erful, research and development communities are striving to create an system infrastructure

that can handle integrated data analysis pipelines with a wide range of input data, perfor-

mance, and computational requirements. Input data requirements often restrict the data

types that software frameworks support. Performance requirements are usually met by both

programming solutions that bring the code closer to the bare-metal, and also supporting

the distributed execution of code across multiple computing nodes. These computing nodes

are in turn often becoming more heterogeneous, especially in large clusters that contain

specialized hardware such as FPGAs and other hardware accelerators. The hardware itself

is also becoming increasingly more complex, with shared-memory systems that do not have

uniform access to memory becoming more common.

There has always been a convergence on the hardware level between Machine Learning,

Big Data, and High Performance Computing applications, since all of these use cases are

applied using Data Centers with similar computing units. However, an integrated system

infrastructure that creates a convergence on the software level is still in the early stages

of research and development. One such project that aims to create this convergence is

DAPHNE, an integrated Data Analysis Pipelines for large-scale data management, High-
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performance computing, and machiNE learning 1.

The DAPHNE project is a system architecture built from scratch in C++ to pro-

cess workloads that contain integrated data analysis pipelines. It is designed to be open

and extensible which allows users to implement their own use cases through use of the Do-

main Specific Language, DaphneDSL. The user’s code is then passed through the DAPHNE

compiler and is optimized to improve utilization of the hardware cluster’s resources. This

process takes advantage of techniques such as reordering, reducing redundancy, and taking

advantage of matrix sparsity. The modular use of kernels in the DAPHNE backend also

allows for easy extensibility by adding new kernels or adjusting scheduling knobs.

Use cases such as earth observation, semiconductor manufacturing, and automotive

vehicle development have shown the potential of this convergence on the software level in

real-world applications. These real-world use cases consist of a combination of Big Data,

Machine Learning, and High Performance Computing characteristics that have since not

been solved on a single system in an e�cient manner. Consolidating these tasks into a

single integrated system not only simplifies the development of these applications for the

programmer, but also allows for clever optimizations to be made when consolidating certain

operations. In the context of DAPHNE, the vectorized execution engine splits datasets into

chunks which can be independently executed, while combining adjacent operations when

applicable in order to optimize the transport of data.

Computing Networking Storage

CPU

GPU

FPGA

Switch

Interface

Disk

SAN

Resource allocation and management

SLURM Mesos

HPC Big Data Machine Learning

Computation Processing ML Training

Hardware Layer

Cluster Layer

Application Layer

Figure 1.1: Ecosystem for integrated data analysis pipelines, adapted from [14]

The goal of a integrated system infrastructure for data analysis pipelines is not just to

be able to output the correct result, but also to minimize the execution time needed on the

computing cluster, freeing up computing resources for other jobs and saving energy. One

factor that a↵ects a programs execution time is the scheduling of the program’s instructions.

When scheduling a program’s instructions, the order, size, and distribution of the instruc-

tions must be carefully optimized. This can be done by taking into account heterogeneous

1 https://daphne-eu.eu/

https://daphne-eu.eu/
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hardware, natural variance in code execution time, and sparseness properties of the input

dataset. When developing a scheduler for such a versatile and extensible system it is im-

portant to weigh many factors such as data locality, load imbalance, and overhead in order

to achieve an optimal balance that is e�cient for the given use case.

Another dimension of complexity emerges when taking into account systems with Non-

Uniform Memory Access (NUMA) which brings another layer of possible optimizations when

designing a scheduler for such a system infrastructure. This scenario opens the possibility

of being able to access an address in memory, but the delay in accessing the memory can

vary depending on where it is being accessed from. This requires not only being aware of

where data is stored in memory, but also anticipating when in the program’s execution it will

be called and adjusting the scheduling behavior accordingly. Research in this area exists

and di↵erent approaches to handling this complexity already exist in High Performance

Computing libraries such as OpenMP and in implementations of this library such as the

LLVM libomp runtime library.

1.1 Motivation
While scheduling is a comprehensive field of research, the methods used are tightly con-

nected to their context. A scheduling technique that is e↵ective for small shared-memory

system will not necessarily be e↵ective for a large distributed-memory computing cluster

with heterogeneous hardware. This makes the case for a highly customizable system in-

frastructure that is versatile enough to be used in all distributed computing contexts. The

dimensions in the design of a scheduler include the partitioning of the load, order of execu-

tion, design of the queues, work stealing, and additional optimizations which can be made

during runtime. In order to design an e↵ective scheduler, the runtime system must take

into account factors such as the size of the individual computation chunks, which end of the

queue to dequeue from, if the layout of the queues should reflect the NUMA architecture,

how nodes should behave at the end of their respective queue, and what strategies to use

to split the input data. All of these factors can be corroborated to maximize data locality

and minimize scheduling overhead to the best extent possible for each use case. This thesis

will explore the use of state of the art scheduling techniques and identify which of these

techniques are best suited for scheduling integrated data analysis pipelines on large scale

heterogeneous systems.

The varying sparsity of data, complex interconnections of dependencies in operations,

and heterogeneous hardware used in the processing of data analysis pipelines demands a

comprehensive scheduling solution that takes all of these factoring into account. Highly

sparse input data requires larger chunk sizes to account for the sections of data that gets

processed quickly because they are empty. A complex series of operations can often be

executed by various combinations of kernels, some of which can be parallelized more e↵ective

than others. The homogeneity of the hardware used to process this data can also cause

scheduling abnormalities that can often be accounted for beforehand. This Thesis will

analyse these aspects of scheduling and possible in the context of DAPHNE.
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1.2 Contribution
The contribution of this Thesis is a modification to the load partitioner and the allo-

cation of queues in the DAPHNE work scheduler. In order to implement a work-stealing

scheduler, we first allow for multiple queues to be created to hold work planned for execu-

tion. Then we modify the work allocation function to distribute work to these queues using

block, cyclic, and a combination technique. Finally, a hierarchical implementation in which

restricts work stealing to only certain appointed foreman workers is applied and evaluated.

1.3 Outline
The following chapters of this Thesis will provide a summary of the background, im-

plementation, and evaluation of the implementations for this Thesis. In Chapter 2 the

Terminology used in this Thesis is introduced and background on the test system, software

environment, and evaluation applications are provided. Then in Chapter 3 work related to

task scheduling and work stealing is summarized and the interesting concepts in the context

of this Thesis are highlighted. Chapter 4 provides the methodology of the implementation

and hypothesizes what the result might be. In Chapter 5 the results are presented and

interpreted. Chapter 6 then summarized what can be learned from this Thesis. Finally,

Chapter 7 speculates on possible future extensions of this work and provides insight to what

could be achieved.



2
Terminology and Background

In the context of scheduling many algorithms from other work are used and many concepts

are referred to by abbreviations. This list encompasses most abbreviations and technical

terms that are used in this Thesis. Some terms can have multiple definitions depending on

the context they are used in. Since the concept of work-stealing schedulers is an evolving

field of research, the definitions of these terms may also become more loosely interpreted

over time.

2.1 Terminology
Self-scheduling - A work assignment principle in which a worker obtains a task to

execute once it completed the previous task.

Work-sharing - A scheduling approach following the self-scheduling principle with a

centralized work queue from which workers obtain tasks.

Work-stealing - Another scheduling approach which uses distributed work queues in

which workers dequeue tasks from following the self-scheduling principle.

Worker - Refers to individual software processing units that execute tasks.

Foreman - A type of worker that executes tasks and also coordinates the scheduling

for other workers. (Also referred to as a Shepherd [23])

Cluster - Multiple nodes connected by a fast interconnect network.

Node - One physical server with shared-memory.

Thread - Can refer to software threads in a programming context or hardware threads

in a system architecture context.

Split - A unit representing the smallest chunk that work can be divided into, in

DAPHNE either rows, columns, or scalars. Somewhat interchangeable with iterations in

other scheduling contexts.

Work Partitioning - The scheduling step in which input work is grouped into tasks of

various size, often exploiting data and/or functional parallelism. [7]

Work Assignment - Refers to both the mapping of tasks to workers on the software

level, and also the mapping of workers to hardware execution units (CPUs, GPUs, FPGAs)

on the hardware level.
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DSL - Domain Specific Language

DAPHNE - System infrastructure for large-scale integrated data analysis pipelines.

IR - Intermediate Representation

DAPHNE IR - DAPHNE Intermediate Representation (Dialect of MLIR)

Runtime system - An engine that translates a DSL into machine code for execution. [8]

Operator - A mapping or function in mathematics that on elements to produce other

elements.

Workflow - A series of repeatable steps performed on a dataset.

Static Scheduling - Scheduling algorithms in which the size of the chunks are known

before the program is executed.

Dynamic Scheduling - Scheduling algorithms where the size of the chunks are known

once the size of the input data is known.

Adaptive dynamic scheduling - Scheduling algorithms where the size of the chunks are

decided during the program’s runtime.

DLS - Dynamic Loop Self-Scheduling

Task - An object containing the functions to be executed, packaged in way that can

be scheduled.

Pipeline - A term referring to a task being executed on input data.

x y

1 2

(a) Input Data

x2 + y2

(b) Task

12 + 22

(c) Pipeline

Figure 2.1: Visual representation of a Data Analysis Pipeline made up of a task and data

Vectorized pipeline - Refers to multiple pipelines executed in parallel.

Sparsity - The number of non-zero elements divided by the number of elements in a

matrix (also referred to as density)

I/O - Input / Output (Usually from or to a Disk)

2.2 Background
This Thesis analyses the e↵ectiveness of works stealing schedulers in the context of

Data Analysis Pipelines. The experiments will be performed on the DAPHNE infrastructure

in order to provide a realistic estimation of the performance of work-stealing scheduling

concepts for real data analysis tasks.

2.2.1 DAPHNE Infrastructure and Applications
DAPHNE is designed to be open and extensible. Since mathematical operations are

implemented as kernels, new operations can be added or modified by simply adding or modi-

fying the relevant kernel file. When a kernel is implemented, the vectorization of the pipeline

operation is handled by the DAPHNE IR using another kernel named vectorized pipeline.

This vectorizing kernel acts as an operation which can be used with other operations, and

sends its input to the multi-threaded wrapper whose implementation will be discussed in
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more detail in Chapter 4.

2.2.1.1 Built-in Kernels
One of the key building blocks of DAPHNE is that operations in the IR (Intermediate

Representation) can be implemented by kernels, which in themselves are highly extensible

and versatile. The DAPHNE IR has a set of common built-in kernels, however the user

can also add their own kernels as needed. These kernels are highly type flexible and allow

for great functionality while minimizing code duplication. Each kernel has input sand out-

puts, and can have multiple multiple implementations to handle di↵erent input and output

combinations that the kernel will support.

2.2.1.2 Dense and Sparse Matrix Representation
Since some datasets are made up of matrices that are excessively large, but have very

few non-zero values, it can become feasible to represent these matrices using a separate

notation. Matrices that have many non-zero values which contain any given data format

can be represented by a combination of three columns, one for the row location of a value,

one for the column location of a value, and one for the value itself. This is referred to

as the COO matrix format. While file input in DAPHNE uses the COO matrix format,

the representation inside the DAPHNE IR for sparse matrices is the CSR format, which is

similar to COO format, but the row indexes are compressed.
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Figure 2.2: Dense and Sparse representations of an undirected graph

Using sparse matrix representations allows for computations with much larger matrices

than would otherwise be possible with just a dense representation. Since only the elements

that contain non-zero values have to be stored in memory the amount of memory needed to

store a matrix using sparse representation in memory would scale linearly with the amount

of non-zero values in the matrix. Currently, the use of sparse representations in DAPHNE

can be enabled with the select-matrix-representation argument, which will automatically

use the sparse representation when less than 10% of the values in a matrix contain non-zero

values.

Sparse matrices also result in much fast computations than their dense counterparts.

Rows that do not contains any non-zero values do not add any computational e↵ect when

performing the calculations instructed by the kernel. Due to this di↵erent in implementa-
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tion, kernels must be implemented multiple times. Since some kernels can have more than

one input, every possible combination of dense and sparse inputs to the kernel must be

implemented separately.

2.2.1.3 Connected Components Algorithm
The connected components algorithm, also referred to as blob extraction or region

labeling, is a graph theory application that finds the largest subsets of a given set are found

and labels them uniquely. The input of this application is a list of connected vertexes of a

graph, and the output will be a list of all vertexes with their respective subset label.

6
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7
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5

2

(a) Input Graph
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5
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7 8

(b) Output Graph

Figure 2.3: Input and result of the connected components algorithm

This algorithm is an ideal test case for scheduling performance in DAPHNE as it

includes a loop, multiple operators that can be used in a vectorized pipeline, and intermediate

sparse outputs. The input to this algorithm is a CSV file that contains a list of all the edges in

the graph, and a metadata file that contains the total number of nodes in the graph, which in

this case will also be the number of rows and columns of the input matrix. This input matrix

then undergoes a serious of transpose, element-wise multiplication, aggregation, maximum,

comparison, and summation operations which will label the beginning and end point of each

edge with the number of the largest connected component that the corresponding node is

part of.

2.2.1.4 Slurm Integration
High performance computing clusters are usually shared with a number of users and

run a variety of di↵erent computation jobs. Slurm is a workload manager that can coordi-

nate jobs from several users on a cluster and relieve contention on computing resources by

managing a queue of pending work. A cluster that uses Slurm to manage workloads can

be configured in one of two ways, exclusive allocation and non-exclusive allocation. When

using exclusive allocation an entire computing node is reserved for one job, regardless of

how many CPU threads are requested or required by the job. However in a non-exclusive

configuration, a computing node can be allocated to more than one job at a time. In this

case Slurm employs thread pinning which locks processes to a specific set of CPU threads in

order to divide the resources of that computing node in fair manner. DAPHNE applications

can also be run on clusters using Slurm, however certain precautions must be taken to pre-
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vent the non-exclusive provisioning of resources from a↵ecting the results of the experiments

in this Thesis.

When the Slurm Task/A�nity plug is enabled, multiple jobs can be executed on a

single node concurrently. Each job is assigned a set number of CPU cores to utilize and

Slurm then schedules jobs to nodes based on the number of available CPU cores on that

node. This limiting of CPU resources is achieved through either the seta�nity function,

UNIX cgroups, or both. How both of these systems exactly function may vary by operating

system, however the definitions in this Thesis pertain to Linux.

2.2.1.5 Vectorized Execution Engine
Matrices can be split by rows, columns, or scalars. This versatile approach allows

for e�cient scheduling of ”tall” and ”wide” matrices, especially when they are sparse. In

some applications such as linear regression there could be large datasets encoded into a

matrix which only has a handful of columns, these would not result in balanced schedules

if split by columns as there may not even be enough rows for the number of CPU cores

in the system. Even if there are su�cient rows to create at least one task per CPU, the

eleven other scheduling schemes described in this Thesis may not have enough input splits

to produce meaningful chunk sizes.
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Figure 2.4: Vectorizable splits of a dense matrix

2.2.2 Scheduling Schemes
The simplest scheduling technique is a simple static partitioner. With the technique the

total units of work to be done is divided into P tasks, where P is the number of processing

units. This scheduler very common due to its ease of implementation and low overhead.

Any variation in execution time of a single task will cause load imbalance when using this

scheduler.

In order to prevent this load imbalance from taking place, a strategy with fine-grained

tasks which allow the scheduler to allocate the tasks at runtime, referred to as self-scheduling

(SS) was suggested. This technique results in the most fine-grained distribution of work

among the processing units, as the work can be split and reallocated by the smallest possible

chunk size. While this technique theoretically results in the lowest possible amount of load

imbalance, the cost of the scheduling overhead can far outweigh the benefits. A minimum
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chunk size parameter passed from the user could optimize this trade o↵.

In order to balance the low overhead of large chunk sizes and low load imbalance of

small chunk sizes, there are a number of scheduling schemes that dynamically calculate

chunk sizes mathematically based on the size of the input work, the number of workers,

and some other factors that may even be specific to the system that the application will be

running on. In Guided self-scheduling (GSS), the load partitioner aims to find a balance

between load imbalance and scheduling overhead by creating tasks with a large chunk size

for the beginning of the programs execution and then tasks with a small chunk size at

the end of the execution. This technique still falls under the category of self-scheduling

since the determination of which processing units each task is execution on still occurs at

runtime. Similar to Guided self-scheduling, Trapezoid self-scheduling (TSS) also utilizes the

advantages of small and large chunks by decreasing the chunk size at run time. In this case

the chunk size is decreased linearly, as opposed to guided where the chunk size is decreased

according to a division function. The main advantage of TSS is that the function to calculate

the chunk size requires very little computational resources.

In contrast to the previous methods which simply calculate the chunk size of a given

task using a continuous function, the chunk sizes can be computed in batches which com-

plements the symmetrical nature of processing units on a computing node. The factoring

scheme (FAC) has a “step” variable, which only gets increased once the chunk sizes for one

batch of tasks have been computed, meaning one task per processing unit. The factoring

technique can be further customized by dividing the chunk size by a variable x, a variable

which can be set by the user and further reduces the chunk size. For practical use, a value of

2 is used for this variable, and this variation referred to as FAC2. A combination of factor-

ing and trapezoid self-scheduling exists with the name Trapezoid Factoring Self-Scheduling

(TFSS). According to this technique, chunk sizes are calculated in a linearly decreasing

manner, however the the computations are done in batches.

While all of the previous technique that have variable chunk sizes up until now have

had a decreasing chunk size as the program executes, there are also techniques that increase

the chunk size. Fixed Increase Self-Scheduling (FISS) uses a calculation similar to factoring,

however the chunk size is increase instead of decreasing [26]. Similar to FISS, Variable

Increase self-scheduling (VISS) also increments the chunk size, however amount of the chunk

size increase is reduced as the program is executing.

In addition to simply computing the chunk size using a mathematical formula, more

advanced techniques exist which calculate the size of a chunk at run time using information

from the previously executed chunks to influence the calculation. In Performance-based

Loop self-scheduling (PLS) the size of a chunk is calculated based on a workload ratio that

is computed during run time. A variation of the above adaptive scheduling technique is

Probabilistic self-scheduling (PSS). With this technique the size of a chunk is calculated

using the number of currently idle processors.

The last scheduling technique that is explored in this Thesis is Modified Fixed-Size

Chunk self-scheduling (MFSC). This is a simple technique which is an implementation of

self-scheduling that uses one chunk size for all tasks in the application. This single chunk

size is calculated using a logarithmic function with the number of workers and the total
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number of work units. The goal of the mathematical function to compute the chunk size,

is to end up with the same resulting number of chunks as when using the factoring (FAC)

technique.



3
Related Work

The book [6] provides a comprehensive overview of task scheduling on shared-memory ar-

chitecture. The book separates parallel environments into two sections, task parallelism

and data parallelism. In data parallelism, the focus is on distributing data across process-

ing units, as opposed to in task parallelism where the focus is on distributing tasks among

processing units which will be executing on the same data. The book then focused on task

scheduling, outlines the major obstacles to performance in current task scheduling schemes,

and o↵ers solutions which for the most part involve di↵erent work stealing scheduling tech-

niques.

When designing a scheduler one of the most important functions of the scheduler

is the work partitioner. For any given length of work N, a mathematical function must

compute the sizes of the individual chunks to schedule to the work queue. The most simple

implementation of a scheduler is the static scheduler, this will simply divide the total work

units evenly into the number of processing units and result in one task per processing unit.

This results in perfect data locality as data stays exactly where it is at first assigned, however

this method is not suited for unbalanced loads as there is no balancing mechanism when

one processing unit completes a task before another. In the High Performance Computing

field, many other techniques have been researched to provide balance between these three

dimensions to create a versatile scheduler.

Research on work scheduling techniques can be found in the context of loop scheduling

techniques and task scheduling techniques. The main di↵erence being that in a task-based

technique, any task can depend on any number of other tasks, while in a loop-based technique

the current loop iterations can only depend on previous loop iterations. The taxonomy in

[33] provides an overview of the current task-based scheduling techniques. Several task-based

scheduling techniques are compared in various dimensions including the distribution of the

data, fault tolerance, and the memory architecture of the hardware. What is noteworthy

from this comparison is that all task-based technique surveyed support work stealing. The

main di↵erences between these task-based schedulers fall into the following categories listed

below.
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3.1 Data Locality
A simple work stealing scheduler allocates a separate queue for each processing unit.

When a queue is empty, additional work is stolen from other queues. In order to optimize the

data locality of the input data that this work is performed on, strategies are used to increase

the likelihood that work is executed where the data is located. In [1] a mailbox concept

is used, where each process has a FIFO queue of threads that have a�nity to the current

process. This mailbox concept may have had an influence on modern tasking schedulers,

also use a FIFO queue for storing tasks, which in this context are e↵ectively an abstraction

of how software threads were used at the time. The mailbox in this case is similar to double-

ended queue used in modern work stealing schedulers, which act as a standard FIFO queue

from the perspective of the Worker, but also allow for other workers to steal tasks from the

front of the queue.

The simplest way to improve data locality is it reuse tasks on the same core as much

as possible on the same core. This idea was implemented in [17] with a new scheduler

named constrained locality-sensitivity, or shortened cla. This scheduler supports multiple

queues, still has one shared queue, and has an adjustable parameter which can be set from

0.0 to 1.0 which determines the probability that a task will be chosen according to it’s origin

domain. The adjustable parameter allows the user to tune the schedulers load balance and

data locality.

Distributed-memory systems are understood to cause a memory access overhead when-

ever remote memory is access, however this cost also exists on shared-memory systems with

non-uniform memory access. This cost can be measured and is reported in [9] as both

latency and bandwidth measurements. To achieve this, the authors create a tool which

reads OMPT trace files and creates a SimGrid simulation of the tasks being executed while

taking into account task dependencies, data locality, and memory e↵ects. SimGrid, which

is a framework for simulating application running on a network, proved to be suited for the

task as the estimation for the bandwidth available on over a Intel Ultra Path Interconnect

system was estimated to be 45 GB/s, which is close to the 41.6 GB/s (or respectively 62.4

GB/s if using 3 UPI links) specification from Intel for this interconnect.

3.2 Task Granularity
When designing a task scheduler, determining the chunk size of a task is one of the

most important decisions to make. Task granularity, also referred to as chunk size, is the

deciding factor when optimizing between load imbalance and scheduling overhead. When

the chunk size is too small, the overhead from all the additional context switches and lock

contention rises. On the other hand, when the chunk size is too large, computing power

may needlessly sit idle due to load imbalance near the end of a program’s execution. In [2]

comprehensive experiments on program execution time are conducted using several di↵erent

task granularity values for several applications using the Cilk runtime library. They also

propose a solution to this problem is proposed in which batches of tasks that will be executed

sequentially anyway are aggregated into larger tasks when appropriate. The authors also

make the case for using two schedulers, one local and another remote to handle work-sharing



Related Work 14

requests. Another solution is presented in [34] where tasks are split into smaller tasks while

the application is running. In [24] Olivier, Porterfield, and Wheeler implemented several

of the above queue allocation and work placement schemes in Qthreads and compare the

results quantitatively. The evaluation criteria includes serial and parallel execution times,

the number of failed steals, number of successful steals, L3 cache misses, bytes read from

memory, and the total number of L3 cache misses. After an analysis of the results, this

paper makes the case for a Multi-Threaded Shepherd approach where each NUMA domain

is assigned a specific worker to steal tasks, with the option to steal a fixed number of tasks

at once. The experiments are repeated with chunk sizes varying from 1 to 64. The authors

also stress the importance of using schedulers that take into account the system topology,

especially when using server chips that have more than 12 cores. Finally, the overhead

caused by locking and unlocking queues is emphasized and the potential for an array-based

lock-free deque is hinted at.

3.3 Task Dependencies
While work stealing is viable for both shared-memory and distributed-memory sys-

tems, the advantages and disadvantages of using work stealing schedulers are most apparent

on distributed memory systems. In [35] a hierarchical system is proposed that takes advan-

tage of the improved data locality of work stealing on the intra-node and inter-node level,

while using a global scheduler to handle the victim selection for inter-node task stealing.

This removes relatively large cost of failed steals, which are particularly apparent on dis-

tributed memory systems. As a followup to this paper, [36] then adds six algorithms to

determine how many tasks to steal for a given steal request. Both [35] and [36] also identify

three patterns in task parallelism, which are flat parallelism (also referred to as iterative

parallelism), recursive parallelism, and irregular parallelism.

(a) Iterative (b) Recursive (c) Irregular

Figure 3.1: Types of Parallelism, adapted from [36]

In contrast to the previous practical evaluation of task stealing, Sonenberg et al. eval-

uate task stealing mathematically in [32] and found that the decision whether to steal

parent or child tasks first can have a large impact on performance. Both parent-stealing

and child-stealing were simulated in applications that have various load and probe rates.

Child job stealing was found to perform better when there is high load and a low probe rate,

while parent job stealing was better with low loads and high probe rates.

When designing a work stealing scheduler, it may seem logical to have idle processing

units steal work from other queues in a greedy fashion. In [12], Halpern points out ”In
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applications where processor a�nity is important, a non-greedy scheduler can perform better

than a greedy scheduler.” This is due to data locality e↵ects on NUMA architectures. Since

the memory access times can vary based on which processing unit the code is executed on,

and the queue that a task is on is generally the best place for it to be executed, there are

situations where the program execution would be faster if said task is not stolen, but rather

executed locally, even if it would result in another processing unit being idle. Given that a

task trace profile shows load imbalance but does not show additional execution time due to

cache misses or suboptimal memory access, this may not seem logical at first glance.

Since the addition of promises and futures in C++11, there has been research on

incorporating futures into tasking schedulers. Both [29, 31] provide examples of where

wrapping tasks into promises and futures can provide advantages of traditional tasking. An

especially interesting use-case was found in the context of blocking system calls.

Earlier research on scheduling techniques refer to computation units as threads [3], in

this case referring to software threads in a multi-threaded application. To avoid confusion

between software threads and hardware threads, modern research in this area refers to units

of work as tasks. A collection of software threads in a waiting list was often referred to

as a thread pool, however when referring to task-based scheduling a queue is usually used.

While software threads and tasks are conceptually di↵erent, the scheduling techniques can

be transferred seamlessly. A similar concept is explained in [5] with a focus on tasking and

work stealing.

The main compromise made between work-sharing (central queue) and work-stealing

(multiple queue) techniques is the balance between data locality being preserved and load

imbalance. A technique created to maximize both of these dimensions is Hierarchical Work

Stealing. In hierarchical work stealing each task is assigned a ”level” in a tree and a threshold

is set to limit task stealing. Tasks with a level below the threshold are considered global

tasks, while tasks with a level above the threshold are local and cannot be stolen [28].

When designing a work stealing scheduler another important aspect to reflect is the

victim selection algorithm. When a worker is idle and executes a steal, there are usually

multiple task queues that can be stolen from. When deciding which queue to execute the

steal on, there are several factors that can be taken into account including the freshness of the

task, the memory access time of where the queue (and the respective task data) is located,

and the architecture of the system. In [25] benchmarks are performed using random victim

selection and random victim selection with a skewed distribution. The impact of search time

and failed steals, as well as the impact of chunk sizes are also discussed.
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Methodology

In order to improve the performance of vectorized data analytics pipelines in DAPHNE, this

Thesis hypothesises changes to the work partitioning, work assignment, and task execution

order in order to balance scheduling overhead, data locality, and load imbalance. In the

load partitioning section, the distribution of

4.1 Load Partitioning
Since the load partitioning object in DAPHNE is takes one input size and outputs

chunk sizes for chunks that are intended to be enqueued into a single queue. The architecture

must be adjusted in order to support multiple queues. One solution would be to assign each

chunk to a respective queue in a block fashion given where the starting split would land

relative to the total input. Another solution would be to generate chunks and distribute

them into separate queues in a cyclic fashion.

LP

(a) Block Distribution

LP

(b) Cyclic Distribution

Figure 4.1: Block and Cyclic distribution, adapted from [4]

In this case, a block distribution would result in a better data a�nity as consecutive

chunks of data would be accessed in order by the same worker. There is however a downside

that arises when using a scheduler that results in changing chunk sizes. When a scheduler

starts allocating large or small chunks at the beginning of the programs execution, those

chunks would be unevenly allocated to the first workers in line, thus causing an asymmetrical

distribution of work which can result in a load imbalance at the end of the execution.

Especially when using schedulers with large chunk sizes, this load imbalance can have a

significant impact on the applications performance. In order to counteract this, the input
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work can first be divided into even chunks, then a separate load partitioning object can be

created for each of these chunks separately. This results in chunks of di↵erent size while still

having symmetrical queues.

LP LP LP LP

Figure 4.2: Tiled Partitioning

4.2 Scheduling Schemes
A crucial component of any scheduler is the scheme that calculates the chunk sizes that

the work is partitioned into. There are varying strategies when it comes to work partitioning

ranging from starting with small chunks, ending with small chunks, partitioning in batches,

probabilistic, and performance based heuristics. In this Thesis 11 scheduling schemes that

are implemented in DAPHNE will be analysed. Plots with visualizations of the below

mentioned scheduling schemes are shown in Figure 4.3 and all equations are adapted from

[10].

Table 4.1: Table of Symbols

Symbol Description
K Output chunk size
N Total size of input data
P Number of Workers
i Scheduling iteration
Ri Size of data that has not been partitioned at step i
Tmin Minimum task execution time
Tmax Maximum task execution time

4.2.1 Static
Using a static scheduler is the simplest way to distribute work in a multithreaded

application. The total work to be done is simply divide evenly into among each worker into

a single task for each worker. This technique results in optimal data locality, as the worker

that executes each task is deterministic, assuming that the tasks are distributed to the same

workers each time the program is executed. The downside of the static technique is that it

results in the highest average load imbalance from all the techniques covered in this Thesis.

Once a worker completes its task, is simply remains idle until all other workers complete

their work and reach the barrier. Even if the runtime system supports work stealing, there

would be no tasks to steal as all the tasks that are created would by either executing with

another worker or already completed as well. The chunk size S is calculated below by simply

dividing the input iterations N among the workers P .
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KStatic
i =

N

P
(4.1)

4.2.2 Self-Scheduling
A possible solution to the load imbalance problem that a static scheduler has is to

create tasks with a size of one, meaning with the smallest indivisible unit of work that

the input data allows. Throughout this Thesis, Self-Scheduling refers to any method that

results in more than one task per worker, as this allows for work stealing, which means that

the works are e↵ectively scheduling themselves by stealing remaining tasks. This technique

would theoretically result in the best possible load balance, since upon any load imbalance

a worker can steal very fine-grained units of work that have not been executed yet from

other workers. The downside of this method is that tasks are not executed on the worker

that the task was originally assigned to. Especially on NUMA systems, this can result

in performance degradation since the increased memory access times result in the same

task taking longer than it would have if it here executed by the originally assigned worker.

Logically, one would assume that a task being executed on another worker is better than the

task not being executed at all until the assigned worker becomes available again, however

there are situations were the original worker would have quickly become available again and

the stealing worker being idle would have been worth the time penalty of executing the task

on a di↵erent worker. Since it is costly to determine how long a task will take to execute

without executing it, this is very di�cult to predict ahead of time. This work partitioning

technique is implemented by simply settings the size of each chunk to 1.

KSS
i = 1 (4.2)

Another downside to self-scheduling is the higher scheduling overhead resulting from

the multithreading wrapper having the create the task objects, the victim selection stage

during task stealing, and the excess context switches from a worker switching between

executing tasks and stealing tasks.

4.2.3 Guided Self-Scheduling
A reasonable compromise to the problems mentioned above would be the compromise

and create multiple tasks with varying chunk sizes. Guided Self-Scheduling is one of the

oldest and most researched techniques to pick chunk sizes in the HPC industry. Since the

issue of load imbalance only arises once a worker has completed their assigned tasks, it can

be stated that there is no load imbalance until the first task in the application’s execution is

completed. On this basis larger tasks can be created at the beginning of the task queue in

order to maximize data locality and minimize overhead, then later on in the queue the task

can become more fine-grained to optimize load imbalance. The chunk size S is calculated

by dividing the remaining iterations Ri by the numbers of workers P . [27]

KGSS
i = dRi

P
e (4.3)
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4.2.4 Trapezoid Self-Scheduling
Similar to GSS, Trapezoid Self-Scheduling (TSS) assigns decreasing chunk sizes how-

ever in this case the first chunk is half the size of that of GSS. The goal of TSS is similar to

GSS however the computational cost of computing each iteration is lower which results in a

lower scheduling overhead.

KTSS
i = KTSS

i�1 � b
KTSS

0 �KTSS
S�1

S � 1
c (4.4)

S =
2⇥N

KTSS
0 +KTSS

S�1

(4.5)

KTSS
0 = d N

2⇥ P
e,KTSS

S�1 = 1 (4.6)

4.2.5 Factoring
While GSS does generate decreasing chunk sizes, the consistently decreasing chunk size

results in di↵erent chunk sizes for di↵erent workers. In order to create more symmetrical

tasks among the workers, the factoring [13] scheme generates chunk sizes in batches. This

way if there are P workers, there will be P tasks generated with the same size every batch.

this consistent chunk size within the same batch of tasks removes a large source of load

imbalance between workers as opposed to a scheduling scheme that does not use batches. In

this Thesis, the FAC2 scheme is used, which results in chunks with half the size of factoring.

KFAC2
i = d Ri

2⇥ P
eifimodP = 0 (4.7)

KFAC2
0 = KFAC2

i�1 otherwise (4.8)

Ri = N � ⌃i�1
j=0k

FAC2
j (4.9)

4.2.6 Trapezoid Factoring Self-Scheduling
In order to benefit from calculating batches of equal sizes as seen in factoring, but at

the same have a consistently decreasing chunk size, Trapezoid Factoring Self-Scheduling

(TFSS) combines both the concepts of factoring and trapezoidal self-scheduling to result in

chunk sizes in batches that also decrease at a constant rate.

KTFSS
i =

⌃i+P
j=i K

TSS
j�1

P
ifimodP = 0 (4.10)

KTFSS
i = KTSS

i�1 otherwise (4.11)

4.2.7 Fixed Increase Self-Scheduling
All of the scheduling schemes mentioned up to this point operate on the principle of

decreasing chunk sizes. When using Fixed Increase Self-Scheduling the opposite concept is

applied. Chunk sizes start at a relatively small point and increase as the program executes.

The goal of the increasing chunk size is to avoid the large scheduling overhead at the end

of a programs execution due to the excessively small chunk sizes generated when using a
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decreasing chunk size. This scheduling scheme is designed for distributed-memory systems

which su↵er from greater scheduling overhead due to the fact that task stealing happens

over the network. Even though the scheme is designed with distributed-memory systems in

mind, it is included in this Thesis in order uncover a possible benefit on NUMA systems.

KFISS
i = KFISS

i�1 + d
2⇥N ⇥ (1� B

2+B )

P ⇥B ⇥ (B � 1)
e, where (4.12)

KFISS
0 =

N

(2 +B)⇥ P
(4.13)

4.2.8 Variable Increase Self-Scheduling
Similar to how factoring decreases the chunk size in batches, VISS is a scheduler with

increasing chunk sizes that schedules chunks in batches. This combines the advantage of

more symmetrical queues from factoring, with the potential idea of increasing chunk sizes

from FISS.

KV ISS
i = KV ISS

i�1 +
KV ISS

i�1

2
ifimodP = 0 (4.14)

KV ISS
i = KV ISS

i�1 otherwise (4.15)

KV ISS
0 =

N

(2 +B)⇥ P
(4.16)

4.2.9 Performance-Based Loop Self-Scheduling
Since DAPHNE runs on many di↵erent systems with di↵erent characteristics, it is

beneficial to also o↵er scheduling techniques that can dynamically adjust to system and

application characteristics. In Performance-based Loop Self-scheduling, the work is divided

into two parts, with the first being scheduling with a static chunk size, and the second

scheduled with GSS. The size of the first part relative to the second is based on a Static

Workload Ratio, which is unique to each system and is computed beforehand in a separate

execution of the application.

KPLS
i =

N ⇥ SWR

P
ifRi > N � (N ⇥ SWR) (4.17)

KPLS
i = KGSS

i otherwise (4.18)

SWR =
Tmin

Tmax
(4.19)

4.2.10 Probabilistic Self-Scheduling
While all of the previous scheduling schemes have precise input data, there may be

utility to using approximations of data such as the number of idle workers. In Probabilistic

Self-scheduling the average number of idle workers over a given time period is used to

determine the chunk size. The calculation for the chunk size used in this case is similar to

GSS, however in this case only the number of idle workers is counted, instead of the total

workers.



Methodology 21

KPSS
i = d Ri

1.5⇥ Px
e (4.20)

4.2.11 Modified Fixed-Size Chunk
The Modified Fixed-Sized Chunk scheduler is very simple to implement, as the chunk

size only needs to be calculated once and then chunks can easily be scheduled with said chunk

size. In MFSC, the a chunk size is calculated where the number of chunks will be equal to

the number of chunks generated when using factoring. In the DAPHNE load partitioner,

this chunk size is calculated using the formula below, where N is the input size and P is the

number of Workers.

S = d ln(2)⇥ (N + P � 1)

P ⇥ ln(N+P�1
P )

e (4.21)
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Figure 4.3: Visual overview of scheduling techniques and the respective chunk sizes
(Chunk sizes approximated for visual e↵ect)
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4.3 Fused Kernels
In the DAPHNE vectorized execution engine, when the output of one operation is di-

rectly input into another operation, the two operations can be fused together and vectorized

as if it were a single operation. This improves performance by reducing the overhead needed

to accumulate the outputs of one operation and the setup needed for the second operation.
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Figure 4.4: Multiple kernels fused and vectorized by row (Chunk size of 2)

4.4 Work-Sharing
A work-sharing scheduler is a scheduler in which a central entity assigns tasks to

workers. In practice, this is generally implemented by a single-queue with a shared lock

that all workers and dequeue tasks from. This is generally the simplest shared-memory

scheduler to implement as it does not involve any work-stealing or victim selection logic.

The downside of work-sharing scheduler is that it is more di�cult to implement locality-

aware schedulers.

4.5 System Architecture
Historically computing systems have been improving via an increase processor clock

speeds. According to Moore’s Law, these clock speed were expected to increase linearly

with respect to time. Since the time it takes for an electric signal to reach it’s destination is

limited by the speed of light, there is a limit to how large a CPU can be built before delays

are introduced in the internal connections. Due to the fact that higher clock rates generally

require higher voltages, and there is a limit to how much thermal density can be packed into

a limited space, the improvement in clock rate has largely plateaued. In order to improve

performance, applications must now be parallelized and executed on shared-memory multi-

processor systems and distributed-memory multi-node systems. While a multi-processor

system has the advantage of o↵ering more computing power without the need to coordinate

the sending of data in memory, the fact that the memory is not longer accessed uniformly

creates new challenges that scheduling systems must take into account. Systems that have

more than one path to access memory are referred to as Non-Uniform Memory Access

(NUMA) systems. An example of a possible NUMA system architecture is depicted in

Figure 4.5 below.
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4.5.1 NUMA System Topology
Both test systems are configured with Intel CPUs from the Broadwell and Casecade

Lake family, respectively. The system topologies are similar, apart from the di↵erence in

generation. While the Broadwell architecture uses a “ring” bus to access the L3 cache and

memory interfaces, the Casecade Lake family has a “mesh” architecture which allows for

a quicker route with less hops to get to the destination cache line or memory address. In

addition, the Cascade Lake architecture has three interconnect links as opposed to two in

the Broadwell architecture. These factors would theoretically result in a larger performance

improvement in the Per-Core results for the Cascade lake test system over the Broadwell

test system.

Even though these are shared-memory systems in which every memory page is available

to every processor, the access times are not uniform. The latency of a memory access to

a remote memory node is generally considered to be twice as high as a local memory node

access. In interesting e↵ect that occurs due to the fact that the interconnect bus is separate

from the memory controller for local memory is that there are situations where accessing

local memory and remote memory at the same time results in a higher memory bandwidth

than only accessing local memory, since the bandwidth of the local memory controller and

the interconnect link can both be fully saturated simultaneously. However, since all the tests

performed in this Thesis utilize all of the available CPUs on the system, this e↵ect would

not become apparent in this Thesis.
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Memory Controller Memory Controller

Node 0 Local Memory Node 1 Local Memory

L3 Cache L3 Cache

Interconnect Interconnect
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Thread
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Figure 4.5: System Topology

Memory pages that are requested and reside on the local memory connected to the

requesting processor are referred to as local requests. Memory pages requested from any

other memory node are referred to as remote requests. Remote requests are more costly

in terms of performance since the requests but first be directed to the respective CPU,

and the other CPU must then handle that memory access request. Essentially, the request

must be handling anyway, but if it is a remote request then the inter-socket communication
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overhead is adds to the access time in addition to the standard memory access time. The

exact amount of this additional overhead can be interred by the memory interconnects speed

and latency. The two infrastructures used in this Thesis, Intel Broadwell and Intel Cascade

Lake, which use Intel QuickPath [16] and Intel Ultra Path [21] interconnects, are listed in

Table 4.1 with their respective bandwidth specifications.

Table 4.2: Test hardware memory interconnect specifications

Test System Broadwell Cascade Lake
Interconnect Intel QuickPath Interconnect Intel Ultra Path Interconnect
Clock Rate 4 GHz 5.8 GHz

Transfers/Hz 2
Transfer Rate 8 GT/s [15] 10.4 GT/s [22]

Link Width in Bits 20 [16]
Interconnect Links 2 [15]

Payload/Link width 16/20 [16]
Bits/Byte 1/8

Total Bandwidth 32 GB/s 41.6 GB/s

These values should provide an upper-bound on the performance improvement that

can be achieved by optimizing the data locality of tasks on the above mentioned shared-

memory systems. With regards to the bandwidth specifications above, overhead caused by

the ”Home Snoop” procedure and the fact that an memory line with a minimum size of 64

bytes must be retrieved each time would further reduce the practical link bandwidth, so a

lower performance improvement than this upper-bound is to be expected. More complex

topologies such as the 2-socket/4-chip AMD Magny Cours [24] are also used in this context,

but will not be analysed in this Thesis.

4.5.1.1 First-Touch policy
On a system with non-uniform memory access, the operating system makes decisions

on how to best utilize the memory topology available. Possible strategies to maximize the

e↵ectiveness of non-uniformly accessed memory is to either ignore it’s existence altogether

and treat it as a normal uniform memory system, stripe the memory addresses between the

NUMA domains so that consecutive data is forced to be distributed evenly among the NUMA

nodes, or to manage the memory in a NUMA-aware manner. The Linux operating system

uses the first-touch policy to decide where to allocate memory for a virtual address [18]. It

is important to note that it is this policy only takes e↵ect when the memory in question is

”touched” or written to. Not all programming instructions that are intuitively thought to

allocate memory actually touch the page of memory in question upon invocation.

For a single-threaded application this concept is quite simple, as it is clear in which

NUMA domain the memory address will be allocated in. However in an application where

multiple threads located in di↵erent NUMA domains access the same memory address, am-

biguity is introduced and it can often not be predicted where the memory will be allocated to

before the program executes. In Linux 3.8 there was development on a framework that au-

tomatically migrates memory pages from one NUMA node to another when the appropriate

opportunity arises [18].
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4.5.2 Simultaneous Multithreading
Simultaneous Multithreading, also commonly referred to as hyperthreading by Intel,

is a technique that some hardware supports in order to improve performance in certain

situations. As clock speeds have reached physical limitations, this technique allows for

multiple hardware contexts to be to run in parallel on a single core without having to

duplicate all of the hardware on the core. The concept is to duplicate certain elements of

processing units, namely the computing elements, while still sharing functional units of the

processor cores. This is a clever method of increasing the logical throughput of computing

hardware without having to duplicate entire processor cores.

Due to the additional functional units, many small operations can be executed in

parallel and it can be beneficial to utilize these additional functional units, as they essentially

result in a latency-hiding technique [30], however the increased usage of the L2 and L3 cache

may outweigh these benefits and result in a performance regression. It can be di�cult to

determine if utilizing these threads is a net gain or loss in performance before a program

is executed, which is why most computing resource providers recommend benchmarking

the application in question with both configurations first [11]. Generally applications that

su↵er from memory stalls, wrong branch predictions, or unbu↵ered file I/O benefit from

simultaneous multithreading. Since implementation of multiple task queues in this Thesis

queries the system topology anyway to allow for the prioritized work stealing, the option to

utilize simultaneous multithreading is exposed to the user.

4.6 Work-Stealing
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Worker
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(a) Central Queue
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Worker

Worker

(b) Per-Group Queues
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Queue

Queue

Queue

Worker

Worker

Worker

Worker

(c) Per-Core Queues

Figure 4.6: Queue Allocation Schemes

4.6.1 Serializing Work Stealing
Dequeue and enqueue from bottom of deque, steal from top of other deques.

Since a task that is added to a queue is fresh in in the cache of the worker that added

it to the queue, it would be advantageous for that same worker to dequeue and execute it.

For this reason, worker enqueue and deque to the bottom of the double-ended queues. Since

this advantage does not apply to other workers due to their cache being separate, other

workers will dequeue tasks from the top of the queue in order to leave more fresh tasks for

the enqueueing worker that can claim an advantage from them.
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TQ TQ TQ TQ

Worker Worker Worker Worker

Figure 4.7: Serializing Work Stealing

4.6.2 Eager Binary Splitting
When partitioning work using a tasking scheduler, the load partitioner must determine

the upper and lower bound indexes of the input data that each task will represent. In

serializing work stealing, one large task with a upper and lower bound encompassing all

of the input data is created, and workers ”split” o↵ a single iteration at a time when task

stealing. Instead of splitting one unit of work at a time, Eager Binary Splitting splits the

stolen task into two equal halves, with one half remaining as a task on the victim’s deque,

and the other half executed by the initiator as a new task.

New Task New Task New Task New Task

New Task New Task

Original Task

sst

Figure 4.8: Eager Binary Splitting

In order to prevent task from being continuously split until the task size is 1, e↵ectively

resulting in serializing work stealing, a stop splitting threashold is set which sets a minimum

task size after which tasks will no longer be split [34]. In addition to the static partitioner

method with a set sst there is also an auto partitioner concept in which the sst is dynamic

depending on the number of workers.

Eager Binary Splitting is an e↵ective concept to quickly partition load among any num-

ber of queues in a work stealing system. However, since in DAPHNE the load partitioning

is centralized by the Multi-threading wrapper, the input work can directly be split among

the queues without the need for stealing. In addition, since the number of queues is known

by the multi-threading wrapper at the time of load partitioning, the work can directly be

split according to the scheduling scheme selected by the user in the program arguments.

When using the pre-partitioning argument the segments can then be split again, all within

the wrapper.
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4.6.3 Hierarchical Work Stealing
While Serializing Work Stealing and Eager Binary Splitting determine how many tasks

to steal, or respectively what to do with a task while it is stolen, it is also important to

take into account the architecture of the system that the parallel application is running

on. Whether it is the network structure on a distributed memory system, or the memory

architecture of a NUMA system, the additional time that it takes a task to run due to

the system hierarchy can be minimized when deciding victim queue to steal from. One

implementation of a hierarchical system is Multi-Threaded Shepherds, where one workers

from every domain is a selected to be the Shepherd who is responsible for stealing tasks for

all workers in its domain.

4.6.4 Victim Selection
Work stealing schedulers have to make a decision on which victim queue to steal a task

from. Research in this area generally points to two strategies, sequential and random victim

selection. Although many papers make the case for sequential or random victim selection

in distributed memory environments, the same arguments can also be made for a shared

memory environments.

The logic that a worker follows to execute tasks without work stealing is very simple.

The worker simply dequeues a task and executes it, if the task that is returned from the

queue is blank (referred to as EOFTask in this Thesis and in the DAPHNE source code)

then that worker is completed and can join the barrier. The logic workflows described in

this Thesis are in part inspired by the task stealing logic from the LLVM OpenMP Runtime

System [20].

Another decision that work-stealing schedulers make is whether to stick with the same

victim after a successful steal, or to select a new victim each time, regardless of whether the

previous steal was successful or not. In (citation) the implementation changed the victim

each time in order in attempt to balance the load more evenly, however the authors noted

there a potential where sticking to the same victim after a successful steal would improve

performance.

Worker w Start

Dequeue task from w

isEOF?Execute task Worker Complete

Figure 4.9: Worker task execution logic without work-stealing
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4.6.4.1 Sequential
In sequential victim selection a worker searches for victim queues in a round-robin

fashion starting at their own position in the system topology. An advantage of this method

is that queues that are close to the initiator, or at least numerically above the initiator,

will naturally have a priority to be chosen as a victim queue. In [25] victims are skipped

regardless of whether the steal is successful or not in order to provide more scheduling

deterministic behavior. In the implementation for this Thesis, victim’s are only skipped

after a failed steal, as it simplifies the implementation of the termination algorithm.

Worker w Start

Dequeue task from w

isEOF?Execute task

i++

i==w

Dequeue task
from w+i%q

isEOF?

Execute task Worker Complete

Figure 4.10: Worker task execution logic with sequential victim selection

In this implementation, the termination is simply after one pass has been made through

all of the possible queues. This simple algorithm does not require any writes to memory to

keep track of which queues are closed or still open, other than the incremented variable i.
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4.6.4.2 Sequential Prioritized
In order to preserve data locality between NUMA domains when possible, and to

prevent inter-socket communication, queues from the same domain can be prioritized [6].

This makes the work stealing logic slightly more complicated, as a comparison needs to be

made to check whether a potential victim queue is in the same domain first, however this

comparison does not require taking the lock of the potential victim’s queue so that extra

overhead added should be minimal. In Figure 4.11 this is done using a simple incrementing

variable i. When i reached its original position again, a steal has been unsuccessful on every

available queue, so the worker is complete and can join the barrier.

Worker w Start

Dequeue task from w

isEOF?Execute task

i++

i==w

Dequeue task
from w+i%q

isEOF?

Execute task Worker Complete

same domain?

i++

i==w

Dequeue task
from w+i%q

isEOF?

Execute task

Figure 4.11: Worker task execution logic with prioritized sequential victim selection
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4.6.4.3 Random
While a sequential victim selection algorithm is already very e�cient, there is research

that indicates that a random victim selection can improve performance even further. In [25]

the random victim selection algorithm is compared to a sequential reference implementation

and a large decrease in the number of failed steal attempts was observed, in some cases this

also translated to an improvement in performance. This can be explained by the sequential

algorithm resulting in a large number of failed steal attempts while traversing from the

initiating worker to the victim that results in a successful steal. If the input data results in

load imbalance that is clustered in regions, then a random victim selection will arrive at the

a victim in the optimal region quicker.

Worker w Start

Dequeue task from w

isEOF?Execute task

i = P t=rand(i)

Dequeue task from t

isEOF?

Execute task

swap(i, t)
i � �

i > 0

Worker Complete

Figure 4.12: Worker task execution logic with random victim selection

As seen in Figure 4.12, the downside of using a random victim selection algorithm is

the additional overhead caused by generating a random number each time a steal attempt

is made, and also the requirement to keep a register of which queues have been completed.

This latter overhead can be minimized by keeping the list local to that worker’s memory,

however it still results in additional reads and writes to memory.



Methodology 32

4.6.4.4 Random Prioritized
Similar to the “Random” implementation, the Random Prioritized implementation

also requires keeping a register of which CPU cores have empty and closed queues and

which ones still have the possibility of having tasks in their queue. However, in this case

two registered must be kept, so in the worst-case the overhead caused by this bookkeeping

could double in comparison to the standard random implementation. In practice the cost

of keeping these registers on a shared-memory system should be minimal.

Worker w Start

Dequeue task from w

isEOF?Execute task

i = P t=rand(i)

Dequeue task from t

isEOF?

Execute task

swap(i, t)
i = i � 1

i > 0

i = P

Execute task isEOF?
swap(i, t)
i = i � 1

t=rand(i)Dequeue i > 0

Worker Complete

Figure 4.13: Worker task execution logic with prioritized random victim selection
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4.6.5 Multi-Threaded Shepherds
While a simple work-sharing architecture with a single queue provides for optimal load

balancing, and a work-stealing architecture with multiple queues provides for optimal data

locality, a compromise can be made between the two by grouping workers utilizing work-

sharing inside the groups while employing work-stealing between the groups. Previously in

this Thesis there are examples of work-stealing with one queue per CPU socket, however in

the the previous examples any worker was able to steal from any other worker. To optimize

communication between the groups, one worker from each group can be assigned as the

Foreman (Also referred to in the literature as Shepherds) of that group. The foreman is

responsible for stealing tasks and enqueueing them onto the queue for that group. This

limits the work stealing activities to only one worker per group and prevents unnecessary

communication overhead.

Queue Queue

Worker

Worker

Worker

Foreman

Worker

Worker

Worker

Foreman Work Stealing

Figure 4.14: Multi-threaded Shepherds Architecture

The downside of this hybrid work-sharing and work-stealing implementation, which is

a type of Hierarchical, is that it adds a new layer of overhead to the application, as tasks now

have to be dequeued from the victim queue, enqueued into the initiating foreman’s queue,

then dequeued and executed by the worker. The new addition overhead can be minimized

by stealing a vector of multiple tasks. The optimal size of this vector is found in [6, p. 35]

to be half of the available tasks on the victim’s queue in the context of distributed memory

systems. Intuitively, on shared memory systems the optimal amount would be slightly lower.

For the purposes of this Thesis, a value of one-half is used in the multi-threaded shepherds

experiments.
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4.7 Multi-threading Wrapper
When one or multiple operators in the DAPHNE DSL can be vectorized, they pass

through one or multiple ”lowering passes” and become instructions in the DAPHNE IR. Here

the corresponding kernels are found and function pointers to the respective apply functions

are created. The function pointers, along with the corresponding splits (rows, columns,

or scalars) are passed to the Multi-threading wrapper. The multi-threading wrapper is an

abstraction that distributes the work without regard to what functions are called, how the

data is split, or how many kernels are called in one vectorized pipeline.

Load Partitioning

Worker

MTWrapper

Task

rl ru

Task Queue
Dequeues tasks from

Total length

Chunk sizes Creates

Enqueues tasks into

Figure 4.15: Architecture of the DAPHNE Multi-threading wrapper

The multi-threading wrapper is the central point that handles all the objects required

to parallelize a vectorized pipeline. When it is called, the function pointers, resulting variable

pointers, input data pointers, number of inputs, and number of outputs are passed to the

multi-threading wrapper. It will then create a load partitioning object which will generate

the chunk sizes used for the lower and upper bound values of tasks. Then one or multiple

queues are created and workers are started with their respective queues. One the workers

are ready tasks are created and added to the respective queues which the workers can deque

from.
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4.8 Vectorized Engine Trace Files
In order to diagnose slow performance in the vectorized execution engine, I added hooks

in the code at the pointers where both the Multithreaded wrapper and tasks start and end.

These hooks record timestamps and save them to a vector in the DAPHNE context, which

can be printed to a file at the end of the program’s execution. When these timestamps are

plotted against time, a trace plot can be generated such as the one below. In this plot, the

dark grey boxes in the background show instances of the Multithreading Wrapper, while the

white rectangles show the executions of individual tasks.
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Figure 4.16: Task trace of a multithreaded vectorized pipeline execution in DAPHNE

The task trace plot shows weak points in the runtime scheduling system. For example,

the grey area on the right side of the plot show how long workers are idle after executing

their tasks, which is the load imbalance. Empty areas in between tasks show the time lost

due to scheduling overheads such as context switching. However one aspect that must be

recognized when designing a scheduler which is now display in this plot is the time lost

due to non-optimal data locality. If a task is executed by an execution unit that does not

have the data ready in cache, which another execution unit theoretically would have had

the relevant data in cache, the task would take longer, but this type of plot does not make

the reason for this longer execution time apparent.
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4.9 Design of Factorial Experiments
All experiments were performed on the University of Basel miniHPC cluster on node001

and node027. Jobs were dispatched using Slurm and the execution times of the core algo-

rithm were measured using the now() function within DAPHNE DSL which is printed to

standard output which is then saved to the filesystem by Slurm. Each experiment configura-

tion is executed 20 times as a Slurm Arrayjob and the mean result is reported in chapter 5.

In order to satisfy various dependencies required by DAPHNE, all experiments are launched

inside a Singularity container built from a Ubuntu 22.04 recipe. The standard deviations of

the runtimes for each experiment are reported in Appendix A.

Table 4.3: Design of Experiments, Resulting in a Total of 11,000 Experiments

Factors Values Properties
Applications Connected Components algorithm Amazon product co-purchasing network

Amazon0601.txt: scale factor 50
20,169,700 Nodes, 8.26% Sparsity

Scheduler Type Work Stealing Any worker can steal from any queue
Multi-threaded Shepherds No further configuration

Task Assignment Queue Layout Centralized Queue One queue for the entire node
Per-group Queues One queue per NUMA-node
Per-thread Queues One queue per processor core

Victim Selection Sequential Workers pick victim queues in sequentially
Sequential Prioritized Sequential prioritizing same group
Random Workers randomly pick victims
Random Random prioritizing same group

Further Arguments Cyclic Assignment Tasks assigned to queues cyclically
Pre-partition Use two levels of load partitioning

Partitioning Scheme Static Entire workload divided evenly into P tasks
Guided Self-scheduling Remaining tasks divided by workers
Trapezoid Self-scheduling Progressively smaller tasks enqueued
Factoring (FAC2) Tasks half the size of Guided self-scheduling
Trapezoid Factoring Self-scheduling Chunks half the size of GSS
Fixed Increase Self-scheduling Chunks of increasing size
Variable Increase Self-scheduling Similar to FISS
Performance-based Self-scheduling Uses a workload ratio to compute chunk
Modified Static Uses chunks one quarter the size of the Static
Modified Fixed-Size Chunk Chunks a fixed size based on an equation
Probabilistic Self-scheduling Uses CPU idle time

Computing Nodes miniHPC-Broadwell Intel E5-2640 v4
P=20 (2x10), hyperthreading disabled

miniHPC-CascadeLake Intel Xeon Gold 6258R
P=56 (2x28), hyperthreading disabled

Repetitions 20
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For the connected componenets application, the Stanford SNAP Amazon product co-purchasing

network dataset is used. This dataset was collected by scraping the ”Customers Who Bought

This Item Also Bought” feature of the Amazon website. According to the SNAP website,

”If a product i is frequently co-purchased with product j, the graph contains a directed edge

from i to j” [19]. This dataset contains 403,394 nodes and 3,387,388 edges, resulting in a

density (sparsity) of 0.002%. The dataset first parsed using a python script that converts

all directional edges into non-directional edges and output the edges in COOFormat, which

is compatible with the sparse matrix reader in DAPHNE. In order to increase the execution

time of the microbenchmark, a scale factor of 50 was also applied to the source dataset,

which resulted in an input matrix of 20,169,700 nodes and 244,340,800 directional edges.

This scale factors resulted in program execution made up of approximately 90 seconds of

file I/O and 10 seconds of parallel computation.

For each test system, the first experiment is a Work-Stealing setup with either per-

Node, per-Group, or per-Core queue allocations. For each of these queue allocation the

victim selection options sequential, sequential prioritized, random, and random prioritized

are tested. Then, for each of these permutations all 11 available load partitioning options

are also tested. Each of these experiments are repeated 20 times and the mean value is

reported in the tables below. There is one unified color scale for the Broadwell test system

and one unified color scale for the Cascade Lake test system.

These experiments are then repeated with the –pre-partitioning option enabled, which

splits the incoming work in to sections for each queue, before applying the load partitioner

to created chunks of various sizes. This option is expected to increase data locality which

would theoretically reduce the number of cache misses and memory accesses through the

socket interconnects. However, this split before the load partitioner is applies also results in

smaller chunk sizes for the same experiment with the option disabled, since the input size as

seen by the load partitioner is smaller, which resutls in smaller chunk sizes being generated.

This additional e↵ect can also a↵ect the resulting runtimes because the smaller chunk sizes

could reduce load imbalance in the program’s execution. It is di�cult to isolate the e↵ects

of the data locality and the e↵ects from load imbalance when only the program runtime is

available and this must be taken into account when interpreting the pre partitioning results.
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5.1 Broadwell
5.1.1 Work-Stealing
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Figure 5.1: Results from Work-Stealing Experiments: Broadwell

In this experiment all possible permutations of scheduling techniques, queue alloca-

tions, and victim selection techniques are measured separately with 20 repetitions each.

Static, FISS, and MSTATIC performed the worst while MFSC and VISS performed the

best. For input dataset of this size Static was expected to perform the worst since it has

the highest load imbalance. The large di↵erence in performance between FISS and VISS is

an interesting result as they result in similar patterns in chunk sizes. The number of queues

had a greater e↵ect when using some scheduling schemes than on others, with the per-Core

option performing better or worse than the other queue allocation schemes depending on

the scheduling scheme. The victim selection algorithm did not have as large of an e↵ect as

the other factors, which can be explained by the input data not having a significant inherent

load imbalance which results in most of the tasks being executed before task stealing takes

e↵ect.
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5.1.2 Tiling
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Figure 5.2: Results from Partitioned Work-Stealing Experiments: Broadwell

Adding the –pre-partitioning option greatly improved the performance when using one

queue per group, which in this case is a CPU socket. This indicates either a large advantage

to having tasks in consecutive order among Cores that share the same L3 cache, or a large

advantage stemming from a smaller chunk size. The central queue per node did not show

any significant di↵erences in this experiment than the previous, which is to be expected as

the pre-partitioning option has no e↵ect in this case.

5.1.3 Hierarchical

Broadwell
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Figure 5.3: Results from Hierarchical Work-Stealing Experiments

In this experiment one queue is allocated for each processor and only one Core on each

processor is assigned to be the Foreman, who is the only worker who is allowed to steal

tasks from other queues. This resulted in similar performance to the per-Node option in the

previous experiment, indicating that it does not add as much overhead due to lock contention

as the other two options in the previous experiment. The best performing techniques in

this experiment are VISS and MFSC, which can be explained by the hierarchical nature

exploiting the benefits of a smaller chunk size while avoiding the excess overhead due to

queue lock contention.
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5.2 Cascade Lake
5.2.1 Work-Stealing
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Figure 5.4: Results from Work-Stealing Experiments: Casecade Lake

Similar to the results from the Broadwell experiment, VISS and MFSC perform the

best and Static performed the worst. However in contrast to the Broadwell experiments,

the per-Core queue allocation option showed a more consistent advantage over the other

queue allocations. This could be explained by a larger L1 and L2 cache relative to the

L3 cache, however the Cascade Lake system has more interconnected cache lines in the

microarchitecture than the Broadwell system so it is surprising that the per-Core option

performed this much better than the per-Group option. As in the Broadwell experiments,

the victim selection algorithm did not have as great of an e↵ect as any other options which

can be explained by the very low cost of a failed steal attempt on a shared-memory system.

The color scale for the Cascade Lake experiments ranges from 15 to 21 second, which

is over a 30% increase from the Broadwell experiment results. This is interesting as the

Cascade Lake system is a newer generation, has more CPU cores, a faster interconnect, and

faster memory. Since only the execution time of the core connected components algorithm

is measured, a possible network or file I/O bottleneck can be ruled out. This indicates that

there may be a regression due to the number of CPU cores in the system.
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5.2.2 Tiling
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Figure 5.5: Results from Partitioned Work-Stealing Experiments: Cascade Lake

Similar to the results from the Broadwell system, the per-group option performed the

best when pre partitioning the work before assigning it to the load partitioners. The per-core

option, however, performed far worse even when the e↵ect is compared to the the per Core

option on the Broadwell experiment results. This would suggest that the per-Core option is

not viable on systems with a large number of cores.

5.2.3 Hierarchical

Cascade Lake
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Figure 5.6: Results from Hierarchical Work-Stealing Experiments

Similar to the Broadwell results, MFSC and MSTATIC, and VISS performed the best

on the hierarchical setup. On the Cascade Lake test system the hierarchical implementation

resulted in slightly better performance than the baseline centralized queue implementation

for certain scheduling schemes which indicates a potential for hierarchical work stealing

architectures for systems with a high number of CPU cores.



6
Conclusion

As seen in the program execution time heatmaps, the choice of scheduling algorithm, the

allocation of the task queues, and the victim selection algorithm all have an e↵ect on the

performance of parallelized operations in DAPHNE. The results also varied depending on

the test system and application, so every use-case should be analysed individually. With a

cyclic distribution of tasks the per-group queue allocation resulted in the lowest performance

on both test systems, which would indicate that either the L1 and L2 cache has a larger e↵ect

than the L3 cache and the cost of an intra-socket memory access, or alternating between

memory sockets for consecutive tasks performs worse than e↵ectively assigning tasks to

workers randomly using a centralized queue. When tiling the input into sections and using

separate load paratitioners for each queue both test systems showed the best performed

with per-socket queues and the worst performance with per-core queues. Since the poor

performance for the per-core queue allocation does not appear in the non-tiling approach, it

must be caused by the resulting smaller chunk sizes, which result in more tasks, which seem

to cause an exponential slowdown when combined with the large number of queues on the

per-core approach. The slightly better performance for the per-socket queues can be caused

by better data locality and cache-awareness across multiple iterations of the components

algorithm, or it can be a propagated e↵ect of the smaller chunk sizes due to there being two

load partitioners instead of one.

The scheduling schemes that are available in the DAPHNE infrastructure seem to

cover a wide variety of situations. The di↵erent test systems showing di↵erent performance

characteristics highlights the importance of exposing scheduling knobs to the user so that

each application and system can be configured for each use-case individually.



7
Future Work

Further analysis could be conducted with experiments on additional systems and more

quantitative measurements such as the number of cache misses, the number of stolen tasks,

and the summation of the size of the stolen tasks. Recording the number of cache misses

would further narrow down the cause of the results in this Thesis, and it would reveal

to which extent the results are caused by better cache-awareness and how much can be

attributed to other e↵ects. Recording the number of stolen tasks would reveal to what

extent the low performance results are caused by the victim selection logic, which can cause

high lock contention when applied ine�ciently. The number of stolen tasks can also be

divided into the number of successful and failed steal attempts. The total cumulative task

size stolen would provide a metric for how much load imbalance an application would have

had if work stealing was not applied, similar to looking at a task trace profile.

In order to evaluate the results of the queue allocation configuration and the results

from the di↵erent chunk sizes calculated using the scheduling scheme separately, further

experiments could be conducted with fixed chunk sizes. Even though there are fixed-sized

chunk scheduling schemes used in this Thesis, the calculation of the chunk size is dependant

on the input parameters. Experiments with globally fixed size chunks can o↵er comparisons

between various queue configurations while eliminating chunk size factors. Since the com-

ponents microbenchmark involved file I/O, which in this case likely occurred in full by one

thread, there can be theoretically be a further reduction in the number of cache misses and in

turn an even larger increase in performance by intelligently distributing the file I/O among

the memory domains. The readMatrix operation could split the file input operations evenly

among threads across the NUMA domains, which can then be respected when assigning the

further tasks to the workers across the NUMA domains. Depending on the implementation,

the file I/O operations could even be fused with the calculation kernels. This would result

in an improvement in memory access throughput and latency as it would reduce the use of

the memory interconnect and it could also result in fewer cache misses, even for the first

computation iteration directly after the file I/O.

As seen in the task trace plots, each operation is vectorized through the multithreaded

wrapper separately. The configured options such as the scheduling technique, minimum

chunk size, and number of threads is only provided once for the entire application. Since some



Future Work 44

operations behave di↵erently than others, it can be profitable to customize the scheduling

behavior depending on the operation at hand. In the examples in this Thesis, the transpose

operation seems to execute the fastest, while the fused operators that execute many kernels

take orders of magnitude longer. A compensation factor for each kernel could be added to

take this discrepancy into account. Another possibility to ease this discrepancy would be

to add scheduling hints on a per function basis directly in the DAPHNE DSL, so that the

programmer can optionally add what they believe would increase performance directly while

writing the DAPHNE application. However, since only function pointers to the compiled

operations are passed to the multithreaded wrapper, this can prove di�cult to implement.

The execution trace plots proved useful to debug slow performance in the vectorized

execution engine, as it shows the number of idle workers caused by load imbalance at the

end of a program’s execution. These plots can be further extended with the names of the

kernels and the data type that each kernel is called with.

Another aspect that was not tested in this Thesis is the e↵ects of simultaneous multi-

threading has on the performance of per-group and per-core queues. Since certain applica-

tions, particularly applications with sporadic file or network I/O can benefit from simulta-

neous multithreading but would in turn su↵er from a busier L2 and L3 cache, the per-core

queue option could become a more viable option to more e↵ectively make use of this busier

cache.

In summary, the DAPHNE infrastructure can greatly benefit from work-stealing task-

based scheduling techniques to improve memory access times, reduce cache misses, and

rearrange work resulting in an increase in performance. Future work parallelizing further

operations and o↵ering more fine-tuned scheduling configurations has the potential to im-

prove performance when processing integrated data analysis pipelines even further.
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A
Result Data

This is a readout of all of the resulting data from the experiments performed that is used

in the results section. In the table below, N refers to the number of repetitions of each

experiment, µ refers to the mean of all the results from the given repetitions, and � refers

to the Standard Deviation of the results for the given repetitions.

Node Branch Application Arguments N µ �
1 work-stealing –pin-workers –STATIC –CENTRALIZED –SEQ 20 13.71 0.90

1 work-stealing –pin-workers –STATIC –CENTRALIZED –SEQPRI 20 13.89 1.06

1 work-stealing –pin-workers –STATIC –CENTRALIZED –RANDOM 20 14.20 1.26

1 work-stealing –pin-workers –STATIC –CENTRALIZED –RANDOMPRI 20 14.20 1.31

1 work-stealing –pin-workers –STATIC –PERGROUP –SEQ 20 13.90 1.07

1 work-stealing –pin-workers –STATIC –PERGROUP –SEQPRI 20 14.24 1.21

1 work-stealing –pin-workers –STATIC –PERGROUP –RANDOM 20 13.63 0.88

1 work-stealing –pin-workers –STATIC –PERGROUP –RANDOMPRI 20 14.30 1.16

1 work-stealing –pin-workers –STATIC –PERCPU –SEQ 20 13.71 1.04

1 work-stealing –pin-workers –STATIC –PERCPU –SEQPRI 20 13.80 1.20

1 work-stealing –pin-workers –STATIC –PERCPU –RANDOM 20 13.11 0.84

1 work-stealing –pin-workers –STATIC –PERCPU –RANDOMPRI 20 13.58 1.08

1 work-stealing –pin-workers –GSS –CENTRALIZED –SEQ 20 13.56 1.24

1 work-stealing –pin-workers –GSS –CENTRALIZED –SEQPRI 20 12.96 0.89

1 work-stealing –pin-workers –GSS –CENTRALIZED –RANDOM 20 13.24 1.07

1 work-stealing –pin-workers –GSS –CENTRALIZED –RANDOMPRI 20 13.36 1.19

1 work-stealing –pin-workers –GSS –PERGROUP –SEQ 20 13.75 1.22

1 work-stealing –pin-workers –GSS –PERGROUP –SEQPRI 20 13.23 0.93

1 work-stealing –pin-workers –GSS –PERGROUP –RANDOM 20 13.27 0.93

1 work-stealing –pin-workers –GSS –PERGROUP –RANDOMPRI 20 13.54 1.08

1 work-stealing –pin-workers –GSS –PERCPU –SEQ 20 13.72 0.98

1 work-stealing –pin-workers –GSS –PERCPU –SEQPRI 20 13.79 0.94

1 work-stealing –pin-workers –GSS –PERCPU –RANDOM 20 13.92 1.13

1 work-stealing –pin-workers –GSS –PERCPU –RANDOMPRI 20 13.51 0.67

1 work-stealing –pin-workers –TSS –CENTRALIZED –SEQ 20 13.35 1.22

1 work-stealing –pin-workers –TSS –CENTRALIZED –SEQPRI 20 12.87 0.90

1 work-stealing –pin-workers –TSS –CENTRALIZED –RANDOM 20 12.63 0.53

1 work-stealing –pin-workers –TSS –CENTRALIZED –RANDOMPRI 20 13.58 1.31

1 work-stealing –pin-workers –TSS –PERGROUP –SEQ 20 13.28 0.70

1 work-stealing –pin-workers –TSS –PERGROUP –SEQPRI 20 13.62 1.10

1 work-stealing –pin-workers –TSS –PERGROUP –RANDOM 20 13.38 0.92

1 work-stealing –pin-workers –TSS –PERGROUP –RANDOMPRI 20 13.52 0.99

1 work-stealing –pin-workers –TSS –PERCPU –SEQ 20 13.52 1.20

1 work-stealing –pin-workers –TSS –PERCPU –SEQPRI 20 13.04 0.83

1 work-stealing –pin-workers –TSS –PERCPU –RANDOM 20 13.65 1.26

1 work-stealing –pin-workers –TSS –PERCPU –RANDOMPRI 20 13.45 1.24

1 work-stealing –pin-workers –FAC2 –CENTRALIZED –SEQ 20 12.68 0.93

1 work-stealing –pin-workers –FAC2 –CENTRALIZED –SEQPRI 20 12.90 1.07

1 work-stealing –pin-workers –FAC2 –CENTRALIZED –RANDOM 20 12.64 0.94

1 work-stealing –pin-workers –FAC2 –CENTRALIZED –RANDOMPRI 20 13.03 1.32

1 work-stealing –pin-workers –FAC2 –PERGROUP –SEQ 20 12.96 0.80

1 work-stealing –pin-workers –FAC2 –PERGROUP –SEQPRI 20 12.93 0.76

1 work-stealing –pin-workers –FAC2 –PERGROUP –RANDOM 20 12.92 0.73

1 work-stealing –pin-workers –FAC2 –PERGROUP –RANDOMPRI 20 13.29 1.09

1 work-stealing –pin-workers –FAC2 –PERCPU –SEQ 20 13.16 1.06

1 work-stealing –pin-workers –FAC2 –PERCPU –SEQPRI 20 13.35 1.16

1 work-stealing –pin-workers –FAC2 –PERCPU –RANDOM 20 13.85 1.24

1 work-stealing –pin-workers –FAC2 –PERCPU –RANDOMPRI 20 13.04 0.91

1 work-stealing –pin-workers –TFSS –CENTRALIZED –SEQ 20 12.54 0.88
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1 work-stealing –pin-workers –TFSS –CENTRALIZED –SEQPRI 20 12.52 0.87

1 work-stealing –pin-workers –TFSS –CENTRALIZED –RANDOM 20 12.20 0.20

1 work-stealing –pin-workers –TFSS –CENTRALIZED –RANDOMPRI 20 12.43 0.76

1 work-stealing –pin-workers –TFSS –PERGROUP –SEQ 20 13.14 0.99

1 work-stealing –pin-workers –TFSS –PERGROUP –SEQPRI 20 13.43 1.08

1 work-stealing –pin-workers –TFSS –PERGROUP –RANDOM 20 13.18 1.01

1 work-stealing –pin-workers –TFSS –PERGROUP –RANDOMPRI 20 13.18 1.02

1 work-stealing –pin-workers –TFSS –PERCPU –SEQ 20 13.57 0.90

1 work-stealing –pin-workers –TFSS –PERCPU –SEQPRI 20 13.85 1.10

1 work-stealing –pin-workers –TFSS –PERCPU –RANDOM 20 13.51 0.87

1 work-stealing –pin-workers –TFSS –PERCPU –RANDOMPRI 20 13.39 0.69

1 work-stealing –pin-workers –FISS –CENTRALIZED –SEQ 20 13.92 1.01

1 work-stealing –pin-workers –FISS –CENTRALIZED –SEQPRI 20 13.80 0.94

1 work-stealing –pin-workers –FISS –CENTRALIZED –RANDOM 20 14.09 1.08

1 work-stealing –pin-workers –FISS –CENTRALIZED –RANDOMPRI 20 14.03 1.09

1 work-stealing –pin-workers –FISS –PERGROUP –SEQ 20 13.98 0.72

1 work-stealing –pin-workers –FISS –PERGROUP –SEQPRI 20 14.39 1.05

1 work-stealing –pin-workers –FISS –PERGROUP –RANDOM 20 14.23 0.98

1 work-stealing –pin-workers –FISS –PERGROUP –RANDOMPRI 20 14.34 0.98

1 work-stealing –pin-workers –FISS –PERCPU –SEQ 20 13.68 1.07

1 work-stealing –pin-workers –FISS –PERCPU –SEQPRI 20 13.75 1.06

1 work-stealing –pin-workers –FISS –PERCPU –RANDOM 20 13.28 0.69

1 work-stealing –pin-workers –FISS –PERCPU –RANDOMPRI 20 13.91 1.11

1 work-stealing –pin-workers –VISS –CENTRALIZED –SEQ 20 12.53 1.18

1 work-stealing –pin-workers –VISS –CENTRALIZED –SEQPRI 20 12.87 1.21

1 work-stealing –pin-workers –VISS –CENTRALIZED –RANDOM 20 12.37 1.09

1 work-stealing –pin-workers –VISS –CENTRALIZED –RANDOMPRI 20 12.28 0.95

1 work-stealing –pin-workers –VISS –PERGROUP –SEQ 20 13.33 1.03

1 work-stealing –pin-workers –VISS –PERGROUP –SEQPRI 20 13.51 1.08

1 work-stealing –pin-workers –VISS –PERGROUP –RANDOM 20 13.08 0.96

1 work-stealing –pin-workers –VISS –PERGROUP –RANDOMPRI 20 13.54 1.16

1 work-stealing –pin-workers –VISS –PERCPU –SEQ 20 12.10 0.86

1 work-stealing –pin-workers –VISS –PERCPU –SEQPRI 20 13.01 1.32

1 work-stealing –pin-workers –VISS –PERCPU –RANDOM 20 12.64 1.17

1 work-stealing –pin-workers –VISS –PERCPU –RANDOMPRI 20 12.17 0.91

1 work-stealing –pin-workers –PLS –CENTRALIZED –SEQ 20 13.32 1.22

1 work-stealing –pin-workers –PLS –CENTRALIZED –SEQPRI 20 12.97 1.00

1 work-stealing –pin-workers –PLS –CENTRALIZED –RANDOM 20 13.15 1.12

1 work-stealing –pin-workers –PLS –CENTRALIZED –RANDOMPRI 20 13.40 1.24

1 work-stealing –pin-workers –PLS –PERGROUP –SEQ 20 13.22 0.95

1 work-stealing –pin-workers –PLS –PERGROUP –SEQPRI 20 13.59 1.15

1 work-stealing –pin-workers –PLS –PERGROUP –RANDOM 20 13.19 0.90

1 work-stealing –pin-workers –PLS –PERGROUP –RANDOMPRI 20 12.82 0.15

1 work-stealing –pin-workers –PLS –PERCPU –SEQ 20 13.24 0.98

1 work-stealing –pin-workers –PLS –PERCPU –SEQPRI 20 13.41 1.06

1 work-stealing –pin-workers –PLS –PERCPU –RANDOM 20 13.41 1.03

1 work-stealing –pin-workers –PLS –PERCPU –RANDOMPRI 20 13.97 1.26

1 work-stealing –pin-workers –MSTATIC –CENTRALIZED –SEQ 20 13.10 0.85

1 work-stealing –pin-workers –MSTATIC –CENTRALIZED –SEQPRI 20 13.31 1.03

1 work-stealing –pin-workers –MSTATIC –CENTRALIZED –RANDOM 20 13.05 0.88

1 work-stealing –pin-workers –MSTATIC –CENTRALIZED –RANDOMPRI 20 13.61 1.14

1 work-stealing –pin-workers –MSTATIC –PERGROUP –SEQ 20 14.17 1.08

1 work-stealing –pin-workers –MSTATIC –PERGROUP –SEQPRI 20 14.15 1.08

1 work-stealing –pin-workers –MSTATIC –PERGROUP –RANDOM 20 14.41 1.24

1 work-stealing –pin-workers –MSTATIC –PERGROUP –RANDOMPRI 20 14.18 1.21

1 work-stealing –pin-workers –MSTATIC –PERCPU –SEQ 20 13.22 1.09

1 work-stealing –pin-workers –MSTATIC –PERCPU –SEQPRI 20 13.42 1.20

1 work-stealing –pin-workers –MSTATIC –PERCPU –RANDOM 20 13.09 0.97

1 work-stealing –pin-workers –MSTATIC –PERCPU –RANDOMPRI 20 13.55 1.15

1 work-stealing –pin-workers –MFSC –CENTRALIZED –SEQ 20 11.83 1.12

1 work-stealing –pin-workers –MFSC –CENTRALIZED –SEQPRI 20 11.84 1.08

1 work-stealing –pin-workers –MFSC –CENTRALIZED –RANDOM 20 11.86 1.12

1 work-stealing –pin-workers –MFSC –CENTRALIZED –RANDOMPRI 20 11.71 1.13

1 work-stealing –pin-workers –MFSC –PERGROUP –SEQ 20 13.16 0.70

1 work-stealing –pin-workers –MFSC –PERGROUP –SEQPRI 20 12.76 0.69

1 work-stealing –pin-workers –MFSC –PERGROUP –RANDOM 20 13.27 0.81

1 work-stealing –pin-workers –MFSC –PERGROUP –RANDOMPRI 20 13.19 0.77

1 work-stealing –pin-workers –MFSC –PERCPU –SEQ 20 12.40 0.99

1 work-stealing –pin-workers –MFSC –PERCPU –SEQPRI 20 12.88 1.20

1 work-stealing –pin-workers –MFSC –PERCPU –RANDOM 20 12.57 1.16

1 work-stealing –pin-workers –MFSC –PERCPU –RANDOMPRI 20 12.25 0.77

1 work-stealing –pin-workers –PSS –CENTRALIZED –SEQ 20 12.72 0.98

1 work-stealing –pin-workers –PSS –CENTRALIZED –SEQPRI 20 13.09 1.15

1 work-stealing –pin-workers –PSS –CENTRALIZED –RANDOM 20 13.25 1.17

1 work-stealing –pin-workers –PSS –CENTRALIZED –RANDOMPRI 20 12.93 1.03

1 work-stealing –pin-workers –PSS –PERGROUP –SEQ 20 13.27 1.06

1 work-stealing –pin-workers –PSS –PERGROUP –SEQPRI 20 13.39 1.09

1 work-stealing –pin-workers –PSS –PERGROUP –RANDOM 20 13.76 1.20

1 work-stealing –pin-workers –PSS –PERGROUP –RANDOMPRI 20 13.49 1.18

1 work-stealing –pin-workers –PSS –PERCPU –SEQ 20 13.83 0.90

1 work-stealing –pin-workers –PSS –PERCPU –SEQPRI 20 13.63 0.93

1 work-stealing –pin-workers –PSS –PERCPU –RANDOM 20 13.84 0.95

1 work-stealing –pin-workers –PSS –PERCPU –RANDOMPRI 20 13.75 0.86

27 work-stealing –pin-workers –STATIC –CENTRALIZED –SEQ 20 17.36 1.55
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27 work-stealing –pin-workers –STATIC –CENTRALIZED –SEQPRI 20 17.83 1.70

27 work-stealing –pin-workers –STATIC –CENTRALIZED –RANDOM 20 17.68 1.46

27 work-stealing –pin-workers –STATIC –CENTRALIZED –RANDOMPRI 20 17.04 1.19

27 work-stealing –pin-workers –STATIC –PERGROUP –SEQ 20 17.59 0.92

27 work-stealing –pin-workers –STATIC –PERGROUP –SEQPRI 20 17.85 0.97

27 work-stealing –pin-workers –STATIC –PERGROUP –RANDOM 20 17.36 0.86

27 work-stealing –pin-workers –STATIC –PERGROUP –RANDOMPRI 20 17.46 0.91

27 work-stealing –pin-workers –STATIC –PERCPU –SEQ 20 17.08 0.69

27 work-stealing –pin-workers –STATIC –PERCPU –SEQPRI 20 17.46 0.91

27 work-stealing –pin-workers –STATIC –PERCPU –RANDOM 20 17.43 1.00

27 work-stealing –pin-workers –STATIC –PERCPU –RANDOMPRI 20 17.36 0.93

27 work-stealing –pin-workers –GSS –CENTRALIZED –SEQ 20 17.27 1.21

27 work-stealing –pin-workers –GSS –CENTRALIZED –SEQPRI 20 17.45 1.40

27 work-stealing –pin-workers –GSS –CENTRALIZED –RANDOM 20 17.31 1.36

27 work-stealing –pin-workers –GSS –CENTRALIZED –RANDOMPRI 20 16.90 1.46

27 work-stealing –pin-workers –GSS –PERGROUP –SEQ 20 17.97 0.91

27 work-stealing –pin-workers –GSS –PERGROUP –SEQPRI 20 17.19 0.67

27 work-stealing –pin-workers –GSS –PERGROUP –RANDOM 20 17.29 0.94

27 work-stealing –pin-workers –GSS –PERGROUP –RANDOMPRI 20 17.80 0.91

27 work-stealing –pin-workers –GSS –PERCPU –SEQ 20 17.33 0.75

27 work-stealing –pin-workers –GSS –PERCPU –SEQPRI 20 16.55 0.97

27 work-stealing –pin-workers –GSS –PERCPU –RANDOM 20 16.98 0.94

27 work-stealing –pin-workers –GSS –PERCPU –RANDOMPRI 20 17.40 0.95

27 work-stealing –pin-workers –TSS –CENTRALIZED –SEQ 20 17.05 1.76

27 work-stealing –pin-workers –TSS –CENTRALIZED –SEQPRI 20 16.58 1.36

27 work-stealing –pin-workers –TSS –CENTRALIZED –RANDOM 20 16.27 1.47

27 work-stealing –pin-workers –TSS –CENTRALIZED –RANDOMPRI 20 16.58 1.32

27 work-stealing –pin-workers –TSS –PERGROUP –SEQ 20 17.34 0.94

27 work-stealing –pin-workers –TSS –PERGROUP –SEQPRI 20 17.19 0.93

27 work-stealing –pin-workers –TSS –PERGROUP –RANDOM 20 17.44 1.02

27 work-stealing –pin-workers –TSS –PERGROUP –RANDOMPRI 20 17.32 0.70

27 work-stealing –pin-workers –TSS –PERCPU –SEQ 20 16.33 1.12

27 work-stealing –pin-workers –TSS –PERCPU –SEQPRI 20 16.22 0.94

27 work-stealing –pin-workers –TSS –PERCPU –RANDOM 20 16.38 0.82

27 work-stealing –pin-workers –TSS –PERCPU –RANDOMPRI 20 16.49 0.89

27 work-stealing –pin-workers –FAC2 –CENTRALIZED –SEQ 20 16.43 1.01

27 work-stealing –pin-workers –FAC2 –CENTRALIZED –SEQPRI 20 16.68 1.53

27 work-stealing –pin-workers –FAC2 –CENTRALIZED –RANDOM 20 17.24 1.48

27 work-stealing –pin-workers –FAC2 –CENTRALIZED –RANDOMPRI 20 16.88 1.70

27 work-stealing –pin-workers –FAC2 –PERGROUP –SEQ 20 17.65 0.87

27 work-stealing –pin-workers –FAC2 –PERGROUP –SEQPRI 20 17.29 0.88

27 work-stealing –pin-workers –FAC2 –PERGROUP –RANDOM 20 17.24 0.72

27 work-stealing –pin-workers –FAC2 –PERGROUP –RANDOMPRI 20 17.41 0.88

27 work-stealing –pin-workers –FAC2 –PERCPU –SEQ 20 16.05 0.93

27 work-stealing –pin-workers –FAC2 –PERCPU –SEQPRI 20 16.54 0.88

27 work-stealing –pin-workers –FAC2 –PERCPU –RANDOM 20 16.59 0.82

27 work-stealing –pin-workers –FAC2 –PERCPU –RANDOMPRI 20 16.80 0.78

27 work-stealing –pin-workers –TFSS –CENTRALIZED –SEQ 20 16.51 1.15

27 work-stealing –pin-workers –TFSS –CENTRALIZED –SEQPRI 20 16.72 1.35

27 work-stealing –pin-workers –TFSS –CENTRALIZED –RANDOM 20 16.64 1.39

27 work-stealing –pin-workers –TFSS –CENTRALIZED –RANDOMPRI 20 16.66 1.17

27 work-stealing –pin-workers –TFSS –PERGROUP –SEQ 20 17.44 0.92

27 work-stealing –pin-workers –TFSS –PERGROUP –SEQPRI 20 16.89 0.91

27 work-stealing –pin-workers –TFSS –PERGROUP –RANDOM 20 17.11 0.78

27 work-stealing –pin-workers –TFSS –PERGROUP –RANDOMPRI 20 17.45 0.95

27 work-stealing –pin-workers –TFSS –PERCPU –SEQ 20 16.53 0.93

27 work-stealing –pin-workers –TFSS –PERCPU –SEQPRI 20 16.53 1.06

27 work-stealing –pin-workers –TFSS –PERCPU –RANDOM 20 16.84 1.13

27 work-stealing –pin-workers –TFSS –PERCPU –RANDOMPRI 20 17.06 0.97

27 work-stealing –pin-workers –FISS –CENTRALIZED –SEQ 20 16.48 1.22

27 work-stealing –pin-workers –FISS –CENTRALIZED –SEQPRI 20 16.90 1.07

27 work-stealing –pin-workers –FISS –CENTRALIZED –RANDOM 20 16.81 1.33

27 work-stealing –pin-workers –FISS –CENTRALIZED –RANDOMPRI 20 17.04 1.21

27 work-stealing –pin-workers –FISS –PERGROUP –SEQ 20 16.91 0.65

27 work-stealing –pin-workers –FISS –PERGROUP –SEQPRI 20 17.32 0.89

27 work-stealing –pin-workers –FISS –PERGROUP –RANDOM 20 17.26 0.83

27 work-stealing –pin-workers –FISS –PERGROUP –RANDOMPRI 20 17.37 0.81

27 work-stealing –pin-workers –FISS –PERCPU –SEQ 20 16.41 0.69

27 work-stealing –pin-workers –FISS –PERCPU –SEQPRI 20 16.78 1.06

27 work-stealing –pin-workers –FISS –PERCPU –RANDOM 20 16.41 1.06

27 work-stealing –pin-workers –FISS –PERCPU –RANDOMPRI 20 16.90 1.19

27 work-stealing –pin-workers –VISS –CENTRALIZED –SEQ 20 16.47 1.26

27 work-stealing –pin-workers –VISS –CENTRALIZED –SEQPRI 20 16.32 1.37

27 work-stealing –pin-workers –VISS –CENTRALIZED –RANDOM 20 15.78 1.23

27 work-stealing –pin-workers –VISS –CENTRALIZED –RANDOMPRI 20 15.81 1.38

27 work-stealing –pin-workers –VISS –PERGROUP –SEQ 20 16.03 0.98

27 work-stealing –pin-workers –VISS –PERGROUP –SEQPRI 20 16.25 0.79

27 work-stealing –pin-workers –VISS –PERGROUP –RANDOM 20 16.20 0.79

27 work-stealing –pin-workers –VISS –PERGROUP –RANDOMPRI 20 16.30 0.92

27 work-stealing –pin-workers –VISS –PERCPU –SEQ 20 15.98 0.96

27 work-stealing –pin-workers –VISS –PERCPU –SEQPRI 20 16.00 0.95

27 work-stealing –pin-workers –VISS –PERCPU –RANDOM 20 16.48 0.98

27 work-stealing –pin-workers –VISS –PERCPU –RANDOMPRI 20 16.55 1.36

27 work-stealing –pin-workers –PLS –CENTRALIZED –SEQ 20 16.84 1.60



Result Data 52

27 work-stealing –pin-workers –PLS –CENTRALIZED –SEQPRI 20 17.44 1.57

27 work-stealing –pin-workers –PLS –CENTRALIZED –RANDOM 20 17.39 1.55

27 work-stealing –pin-workers –PLS –CENTRALIZED –RANDOMPRI 20 16.74 1.24

27 work-stealing –pin-workers –PLS –PERGROUP –SEQ 20 17.28 0.96

27 work-stealing –pin-workers –PLS –PERGROUP –SEQPRI 20 17.80 1.09

27 work-stealing –pin-workers –PLS –PERGROUP –RANDOM 20 17.82 0.81

27 work-stealing –pin-workers –PLS –PERGROUP –RANDOMPRI 20 17.67 0.80

27 work-stealing –pin-workers –PLS –PERCPU –SEQ 20 17.21 0.95

27 work-stealing –pin-workers –PLS –PERCPU –SEQPRI 20 16.84 1.02

27 work-stealing –pin-workers –PLS –PERCPU –RANDOM 20 17.08 1.04

27 work-stealing –pin-workers –PLS –PERCPU –RANDOMPRI 20 17.25 0.92

27 work-stealing –pin-workers –MSTATIC –CENTRALIZED –SEQ 20 16.56 1.21

27 work-stealing –pin-workers –MSTATIC –CENTRALIZED –SEQPRI 20 16.81 1.44

27 work-stealing –pin-workers –MSTATIC –CENTRALIZED –RANDOM 20 16.88 1.32

27 work-stealing –pin-workers –MSTATIC –CENTRALIZED –RANDOMPRI 20 16.74 1.45

27 work-stealing –pin-workers –MSTATIC –PERGROUP –SEQ 20 17.70 0.63

27 work-stealing –pin-workers –MSTATIC –PERGROUP –SEQPRI 20 17.55 0.68

27 work-stealing –pin-workers –MSTATIC –PERGROUP –RANDOM 20 17.34 0.79

27 work-stealing –pin-workers –MSTATIC –PERGROUP –RANDOMPRI 20 17.13 0.80

27 work-stealing –pin-workers –MSTATIC –PERCPU –SEQ 20 16.35 0.69

27 work-stealing –pin-workers –MSTATIC –PERCPU –SEQPRI 20 16.02 0.83

27 work-stealing –pin-workers –MSTATIC –PERCPU –RANDOM 20 16.49 0.94

27 work-stealing –pin-workers –MSTATIC –PERCPU –RANDOMPRI 20 16.64 0.74

27 work-stealing –pin-workers –MFSC –CENTRALIZED –SEQ 20 17.18 1.21

27 work-stealing –pin-workers –MFSC –CENTRALIZED –SEQPRI 20 16.34 1.23

27 work-stealing –pin-workers –MFSC –CENTRALIZED –RANDOM 20 16.59 1.40

27 work-stealing –pin-workers –MFSC –CENTRALIZED –RANDOMPRI 20 16.66 1.60

27 work-stealing –pin-workers –MFSC –PERGROUP –SEQ 20 16.37 0.91

27 work-stealing –pin-workers –MFSC –PERGROUP –SEQPRI 20 16.48 0.84

27 work-stealing –pin-workers –MFSC –PERGROUP –RANDOM 20 16.71 0.62

27 work-stealing –pin-workers –MFSC –PERGROUP –RANDOMPRI 20 16.24 0.48

27 work-stealing –pin-workers –MFSC –PERCPU –SEQ 20 16.10 1.15

27 work-stealing –pin-workers –MFSC –PERCPU –SEQPRI 20 16.11 0.98

27 work-stealing –pin-workers –MFSC –PERCPU –RANDOM 20 16.44 0.96

27 work-stealing –pin-workers –MFSC –PERCPU –RANDOMPRI 20 16.32 1.21

27 work-stealing –pin-workers –PSS –CENTRALIZED –SEQ 20 17.01 1.35

27 work-stealing –pin-workers –PSS –CENTRALIZED –SEQPRI 20 17.08 1.24

27 work-stealing –pin-workers –PSS –CENTRALIZED –RANDOM 20 17.79 1.51

27 work-stealing –pin-workers –PSS –CENTRALIZED –RANDOMPRI 20 17.72 1.60

27 work-stealing –pin-workers –PSS –PERGROUP –SEQ 20 17.89 0.88

27 work-stealing –pin-workers –PSS –PERGROUP –SEQPRI 20 17.99 1.02

27 work-stealing –pin-workers –PSS –PERGROUP –RANDOM 20 17.80 1.12

27 work-stealing –pin-workers –PSS –PERGROUP –RANDOMPRI 20 18.03 0.76

27 work-stealing –pin-workers –PSS –PERCPU –SEQ 20 16.98 0.96

27 work-stealing –pin-workers –PSS –PERCPU –SEQPRI 20 16.53 0.88

27 work-stealing –pin-workers –PSS –PERCPU –RANDOM 20 17.43 0.86

27 work-stealing –pin-workers –PSS –PERCPU –RANDOMPRI 20 17.21 0.72

1 hierarchical –pin-workers –PERGROUP –STATIC 20 13.86 1.11

1 hierarchical –pin-workers –PERGROUP –GSS 20 13.40 1.16

1 hierarchical –pin-workers –PERGROUP –TSS 20 12.72 1.20

1 hierarchical –pin-workers –PERGROUP –FAC2 20 13.33 1.16

1 hierarchical –pin-workers –PERGROUP –TFSS 20 13.15 1.18

1 hierarchical –pin-workers –PERGROUP –FISS 20 13.14 1.16

1 hierarchical –pin-workers –PERGROUP –VISS 20 11.89 1.11

1 hierarchical –pin-workers –PERGROUP –PLS 20 12.78 1.00

1 hierarchical –pin-workers –PERGROUP –MSTATIC 20 12.17 1.00

1 hierarchical –pin-workers –PERGROUP –MFSC 20 11.73 1.05

1 hierarchical –pin-workers –PERGROUP –PSS 20 12.93 1.22

27 hierarchical –pin-workers –PERGROUP –STATIC 20 17.27 0.77

27 hierarchical –pin-workers –PERGROUP –GSS 20 16.72 0.66

27 hierarchical –pin-workers –PERGROUP –TSS 20 16.57 0.82

27 hierarchical –pin-workers –PERGROUP –FAC2 20 16.48 0.61

27 hierarchical –pin-workers –PERGROUP –TFSS 20 16.56 0.68

27 hierarchical –pin-workers –PERGROUP –FISS 20 16.74 0.85

27 hierarchical –pin-workers –PERGROUP –VISS 20 16.19 0.85

27 hierarchical –pin-workers –PERGROUP –PLS 20 16.44 1.10

27 hierarchical –pin-workers –PERGROUP –MSTATIC 20 15.91 0.74

27 hierarchical –pin-workers –PERGROUP –MFSC 20 15.95 0.64

27 hierarchical –pin-workers –PERGROUP –PSS 20 16.70 0.76

27 work-stealing –pin-workers –pre-partition –STATIC –CENTRALIZED –SEQ 20 18.25 1.62

27 work-stealing –pin-workers –pre-partition –STATIC –CENTRALIZED –SEQPRI 20 18.66 1.15

27 work-stealing –pin-workers –pre-partition –STATIC –CENTRALIZED –RANDOM 20 18.46 1.98

27 work-stealing –pin-workers –pre-partition –STATIC –CENTRALIZED –RANDOMPRI 20 18.22 1.59

27 work-stealing –pin-workers –pre-partition –STATIC –PERGROUP –SEQ 20 16.92 0.84

27 work-stealing –pin-workers –pre-partition –STATIC –PERGROUP –SEQPRI 20 17.52 0.84

27 work-stealing –pin-workers –pre-partition –STATIC –PERGROUP –RANDOM 20 17.33 0.74

27 work-stealing –pin-workers –pre-partition –STATIC –PERGROUP –RANDOMPRI 20 17.28 0.87

27 work-stealing –pin-workers –pre-partition –STATIC –PERCPU –SEQ 20 17.50 1.03

27 work-stealing –pin-workers –pre-partition –STATIC –PERCPU –SEQPRI 20 17.86 1.01

27 work-stealing –pin-workers –pre-partition –STATIC –PERCPU –RANDOM 20 17.93 0.94

27 work-stealing –pin-workers –pre-partition –STATIC –PERCPU –RANDOMPRI 20 18.14 0.81

27 work-stealing –pin-workers –pre-partition –GSS –CENTRALIZED –SEQ 20 17.46 1.35

27 work-stealing –pin-workers –pre-partition –GSS –CENTRALIZED –SEQPRI 20 17.60 1.31

27 work-stealing –pin-workers –pre-partition –GSS –CENTRALIZED –RANDOM 20 17.85 1.50



Result Data 53

27 work-stealing –pin-workers –pre-partition –GSS –CENTRALIZED –RANDOMPRI 20 17.72 1.49

27 work-stealing –pin-workers –pre-partition –GSS –PERGROUP –SEQ 20 16.85 0.92

27 work-stealing –pin-workers –pre-partition –GSS –PERGROUP –SEQPRI 20 16.89 0.82

27 work-stealing –pin-workers –pre-partition –GSS –PERGROUP –RANDOM 20 16.87 0.92

27 work-stealing –pin-workers –pre-partition –GSS –PERGROUP –RANDOMPRI 20 16.45 0.78

27 work-stealing –pin-workers –pre-partition –GSS –PERCPU –SEQ 20 19.60 0.92

27 work-stealing –pin-workers –pre-partition –GSS –PERCPU –SEQPRI 20 19.06 1.00

27 work-stealing –pin-workers –pre-partition –GSS –PERCPU –RANDOM 20 19.41 1.13

27 work-stealing –pin-workers –pre-partition –GSS –PERCPU –RANDOMPRI 20 19.22 0.96

27 work-stealing –pin-workers –pre-partition –TSS –CENTRALIZED –SEQ 20 17.13 1.43

27 work-stealing –pin-workers –pre-partition –TSS –CENTRALIZED –SEQPRI 20 16.84 1.52

27 work-stealing –pin-workers –pre-partition –TSS –CENTRALIZED –RANDOM 20 17.07 1.38

27 work-stealing –pin-workers –pre-partition –TSS –CENTRALIZED –RANDOMPRI 20 16.63 1.10

27 work-stealing –pin-workers –pre-partition –TSS –PERGROUP –SEQ 20 16.26 0.71

27 work-stealing –pin-workers –pre-partition –TSS –PERGROUP –SEQPRI 20 16.12 0.65

27 work-stealing –pin-workers –pre-partition –TSS –PERGROUP –RANDOM 20 16.46 0.94

27 work-stealing –pin-workers –pre-partition –TSS –PERGROUP –RANDOMPRI 20 16.45 0.78

27 work-stealing –pin-workers –pre-partition –TSS –PERCPU –SEQ 20 18.11 0.75

27 work-stealing –pin-workers –pre-partition –TSS –PERCPU –SEQPRI 20 18.17 1.15

27 work-stealing –pin-workers –pre-partition –TSS –PERCPU –RANDOM 20 18.35 1.13

27 work-stealing –pin-workers –pre-partition –TSS –PERCPU –RANDOMPRI 20 18.59 0.96

27 work-stealing –pin-workers –pre-partition –FAC2 –CENTRALIZED –SEQ 20 17.31 1.49

27 work-stealing –pin-workers –pre-partition –FAC2 –CENTRALIZED –SEQPRI 20 17.40 1.52

27 work-stealing –pin-workers –pre-partition –FAC2 –CENTRALIZED –RANDOM 20 17.32 1.05

27 work-stealing –pin-workers –pre-partition –FAC2 –CENTRALIZED –RANDOMPRI 20 17.22 1.26

27 work-stealing –pin-workers –pre-partition –FAC2 –PERGROUP –SEQ 20 16.18 0.69

27 work-stealing –pin-workers –pre-partition –FAC2 –PERGROUP –SEQPRI 20 16.38 1.11

27 work-stealing –pin-workers –pre-partition –FAC2 –PERGROUP –RANDOM 20 16.62 0.92

27 work-stealing –pin-workers –pre-partition –FAC2 –PERGROUP –RANDOMPRI 20 16.31 0.93

27 work-stealing –pin-workers –pre-partition –FAC2 –PERCPU –SEQ 20 19.92 0.76

27 work-stealing –pin-workers –pre-partition –FAC2 –PERCPU –SEQPRI 20 19.78 1.01

27 work-stealing –pin-workers –pre-partition –FAC2 –PERCPU –RANDOM 20 20.46 0.86

27 work-stealing –pin-workers –pre-partition –FAC2 –PERCPU –RANDOMPRI 20 20.49 1.10

27 work-stealing –pin-workers –pre-partition –TFSS –CENTRALIZED –SEQ 20 17.16 1.13

27 work-stealing –pin-workers –pre-partition –TFSS –CENTRALIZED –SEQPRI 20 17.04 1.35

27 work-stealing –pin-workers –pre-partition –TFSS –CENTRALIZED –RANDOM 20 17.34 1.29

27 work-stealing –pin-workers –pre-partition –TFSS –CENTRALIZED –RANDOMPRI 20 16.75 1.15

27 work-stealing –pin-workers –pre-partition –TFSS –PERGROUP –SEQ 20 16.09 0.84

27 work-stealing –pin-workers –pre-partition –TFSS –PERGROUP –SEQPRI 20 16.65 0.83

27 work-stealing –pin-workers –pre-partition –TFSS –PERGROUP –RANDOM 20 16.55 0.71

27 work-stealing –pin-workers –pre-partition –TFSS –PERGROUP –RANDOMPRI 20 16.41 0.94

27 work-stealing –pin-workers –pre-partition –TFSS –PERCPU –SEQ 20 21.13 1.08

27 work-stealing –pin-workers –pre-partition –TFSS –PERCPU –SEQPRI 20 20.96 1.25

27 work-stealing –pin-workers –pre-partition –TFSS –PERCPU –RANDOM 20 21.18 1.22

27 work-stealing –pin-workers –pre-partition –TFSS –PERCPU –RANDOMPRI 20 21.25 1.08

27 work-stealing –pin-workers –pre-partition –FISS –CENTRALIZED –SEQ 20 17.36 1.62

27 work-stealing –pin-workers –pre-partition –FISS –CENTRALIZED –SEQPRI 20 17.29 1.12

27 work-stealing –pin-workers –pre-partition –FISS –CENTRALIZED –RANDOM 20 17.03 1.35

27 work-stealing –pin-workers –pre-partition –FISS –CENTRALIZED –RANDOMPRI 20 17.27 1.34

27 work-stealing –pin-workers –pre-partition –FISS –PERGROUP –SEQ 20 16.84 0.88

27 work-stealing –pin-workers –pre-partition –FISS –PERGROUP –SEQPRI 20 16.97 1.04

27 work-stealing –pin-workers –pre-partition –FISS –PERGROUP –RANDOM 20 17.09 0.59

27 work-stealing –pin-workers –pre-partition –FISS –PERGROUP –RANDOMPRI 20 16.57 0.89

27 work-stealing –pin-workers –pre-partition –FISS –PERCPU –SEQ 20 17.98 0.80

27 work-stealing –pin-workers –pre-partition –FISS –PERCPU –SEQPRI 20 18.04 1.11

27 work-stealing –pin-workers –pre-partition –FISS –PERCPU –RANDOM 20 18.09 0.85

27 work-stealing –pin-workers –pre-partition –FISS –PERCPU –RANDOMPRI 20 18.12 0.85

27 work-stealing –pin-workers –pre-partition –VISS –CENTRALIZED –SEQ 20 16.74 1.07

27 work-stealing –pin-workers –pre-partition –VISS –CENTRALIZED –SEQPRI 20 16.65 1.20

27 work-stealing –pin-workers –pre-partition –VISS –CENTRALIZED –RANDOM 20 16.63 1.28

27 work-stealing –pin-workers –pre-partition –VISS –CENTRALIZED –RANDOMPRI 20 16.88 1.68

27 work-stealing –pin-workers –pre-partition –VISS –PERGROUP –SEQ 20 16.27 0.68

27 work-stealing –pin-workers –pre-partition –VISS –PERGROUP –SEQPRI 20 16.54 0.69

27 work-stealing –pin-workers –pre-partition –VISS –PERGROUP –RANDOM 20 16.24 0.67

27 work-stealing –pin-workers –pre-partition –VISS –PERGROUP –RANDOMPRI 20 16.33 0.94

27 work-stealing –pin-workers –pre-partition –VISS –PERCPU –SEQ 20 18.84 1.04

27 work-stealing –pin-workers –pre-partition –VISS –PERCPU –SEQPRI 20 18.44 0.69

27 work-stealing –pin-workers –pre-partition –VISS –PERCPU –RANDOM 20 19.15 0.89

27 work-stealing –pin-workers –pre-partition –VISS –PERCPU –RANDOMPRI 20 19.23 1.07

27 work-stealing –pin-workers –pre-partition –PLS –CENTRALIZED –SEQ 20 17.28 1.16

27 work-stealing –pin-workers –pre-partition –PLS –CENTRALIZED –SEQPRI 20 17.29 1.28

27 work-stealing –pin-workers –pre-partition –PLS –CENTRALIZED –RANDOM 20 17.47 1.40

27 work-stealing –pin-workers –pre-partition –PLS –CENTRALIZED –RANDOMPRI 20 17.21 1.18

27 work-stealing –pin-workers –pre-partition –PLS –PERGROUP –SEQ 20 16.68 0.66

27 work-stealing –pin-workers –pre-partition –PLS –PERGROUP –SEQPRI 20 16.56 0.77

27 work-stealing –pin-workers –pre-partition –PLS –PERGROUP –RANDOM 20 16.68 0.87

27 work-stealing –pin-workers –pre-partition –PLS –PERGROUP –RANDOMPRI 20 16.75 0.82

27 work-stealing –pin-workers –pre-partition –PLS –PERCPU –SEQ 20 19.54 1.03

27 work-stealing –pin-workers –pre-partition –PLS –PERCPU –SEQPRI 20 19.79 0.96

27 work-stealing –pin-workers –pre-partition –PLS –PERCPU –RANDOM 20 19.66 1.08

27 work-stealing –pin-workers –pre-partition –PLS –PERCPU –RANDOMPRI 20 19.76 0.97

27 work-stealing –pin-workers –pre-partition –MSTATIC –CENTRALIZED –SEQ 20 17.06 1.39

27 work-stealing –pin-workers –pre-partition –MSTATIC –CENTRALIZED –SEQPRI 20 17.46 1.60

27 work-stealing –pin-workers –pre-partition –MSTATIC –CENTRALIZED –RANDOM 20 16.93 1.39
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27 work-stealing –pin-workers –pre-partition –MSTATIC –CENTRALIZED –RANDOMPRI 20 16.98 1.49

27 work-stealing –pin-workers –pre-partition –MSTATIC –PERGROUP –SEQ 20 16.37 0.78

27 work-stealing –pin-workers –pre-partition –MSTATIC –PERGROUP –SEQPRI 20 16.47 0.87

27 work-stealing –pin-workers –pre-partition –MSTATIC –PERGROUP –RANDOM 20 16.27 0.79

27 work-stealing –pin-workers –pre-partition –MSTATIC –PERGROUP –RANDOMPRI 20 16.56 1.02

27 work-stealing –pin-workers –pre-partition –MSTATIC –PERCPU –SEQ 20 18.72 0.87

27 work-stealing –pin-workers –pre-partition –MSTATIC –PERCPU –SEQPRI 20 18.54 0.85

27 work-stealing –pin-workers –pre-partition –MSTATIC –PERCPU –RANDOM 20 18.79 0.91

27 work-stealing –pin-workers –pre-partition –MSTATIC –PERCPU –RANDOMPRI 20 18.80 1.08

27 work-stealing –pin-workers –pre-partition –MFSC –CENTRALIZED –SEQ 20 16.46 1.18

27 work-stealing –pin-workers –pre-partition –MFSC –CENTRALIZED –SEQPRI 20 16.46 1.23

27 work-stealing –pin-workers –pre-partition –MFSC –CENTRALIZED –RANDOM 20 16.75 1.36

27 work-stealing –pin-workers –pre-partition –MFSC –CENTRALIZED –RANDOMPRI 20 16.43 1.01

27 work-stealing –pin-workers –pre-partition –MFSC –PERGROUP –SEQ 20 16.52 0.63

27 work-stealing –pin-workers –pre-partition –MFSC –PERGROUP –SEQPRI 20 16.59 0.96

27 work-stealing –pin-workers –pre-partition –MFSC –PERGROUP –RANDOM 20 16.59 1.14

27 work-stealing –pin-workers –pre-partition –MFSC –PERGROUP –RANDOMPRI 20 16.41 0.80

27 work-stealing –pin-workers –pre-partition –MFSC –PERCPU –SEQ 20 21.03 0.78

27 work-stealing –pin-workers –pre-partition –MFSC –PERCPU –SEQPRI 20 20.73 0.97

27 work-stealing –pin-workers –pre-partition –MFSC –PERCPU –RANDOM 20 20.95 1.12

27 work-stealing –pin-workers –pre-partition –MFSC –PERCPU –RANDOMPRI 20 21.24 1.01

27 work-stealing –pin-workers –pre-partition –PSS –CENTRALIZED –SEQ 20 17.24 1.24

27 work-stealing –pin-workers –pre-partition –PSS –CENTRALIZED –SEQPRI 20 17.24 1.32

27 work-stealing –pin-workers –pre-partition –PSS –CENTRALIZED –RANDOM 20 17.06 1.48

27 work-stealing –pin-workers –pre-partition –PSS –CENTRALIZED –RANDOMPRI 20 16.63 1.03

27 work-stealing –pin-workers –pre-partition –PSS –PERGROUP –SEQ 20 16.64 0.98

27 work-stealing –pin-workers –pre-partition –PSS –PERGROUP –SEQPRI 20 16.41 0.64

27 work-stealing –pin-workers –pre-partition –PSS –PERGROUP –RANDOM 20 16.92 0.76

27 work-stealing –pin-workers –pre-partition –PSS –PERGROUP –RANDOMPRI 20 16.63 0.96

27 work-stealing –pin-workers –pre-partition –PSS –PERCPU –SEQ 20 20.49 1.10

27 work-stealing –pin-workers –pre-partition –PSS –PERCPU –SEQPRI 20 20.45 1.06

27 work-stealing –pin-workers –pre-partition –PSS –PERCPU –RANDOM 20 20.84 0.87

27 work-stealing –pin-workers –pre-partition –PSS –PERCPU –RANDOMPRI 20 21.10 1.02

1 work-stealing –pin-workers –pre-partition –STATIC –CENTRALIZED –SEQ 20 13.26 0.98

1 work-stealing –pin-workers –pre-partition –STATIC –CENTRALIZED –SEQPRI 20 13.49 1.26

1 work-stealing –pin-workers –pre-partition –STATIC –CENTRALIZED –RANDOM 20 13.19 1.06

1 work-stealing –pin-workers –pre-partition –STATIC –CENTRALIZED –RANDOMPRI 20 13.33 1.21

1 work-stealing –pin-workers –pre-partition –STATIC –PERGROUP –SEQ 20 13.24 1.22

1 work-stealing –pin-workers –pre-partition –STATIC –PERGROUP –SEQPRI 20 13.45 1.34

1 work-stealing –pin-workers –pre-partition –STATIC –PERGROUP –RANDOM 20 13.52 1.30

1 work-stealing –pin-workers –pre-partition –STATIC –PERGROUP –RANDOMPRI 20 12.70 0.92

1 work-stealing –pin-workers –pre-partition –STATIC –PERCPU –SEQ 20 12.63 1.03

1 work-stealing –pin-workers –pre-partition –STATIC –PERCPU –SEQPRI 20 12.39 1.01

1 work-stealing –pin-workers –pre-partition –STATIC –PERCPU –RANDOM 20 12.92 1.24

1 work-stealing –pin-workers –pre-partition –STATIC –PERCPU –RANDOMPRI 20 12.26 0.67

1 work-stealing –pin-workers –pre-partition –GSS –CENTRALIZED –SEQ 20 12.47 1.05

1 work-stealing –pin-workers –pre-partition –GSS –CENTRALIZED –SEQPRI 20 12.59 1.27

1 work-stealing –pin-workers –pre-partition –GSS –CENTRALIZED –RANDOM 20 12.40 0.81

1 work-stealing –pin-workers –pre-partition –GSS –CENTRALIZED –RANDOMPRI 20 12.71 1.14

1 work-stealing –pin-workers –pre-partition –GSS –PERGROUP –SEQ 20 11.89 1.11

1 work-stealing –pin-workers –pre-partition –GSS –PERGROUP –SEQPRI 20 11.97 0.81

1 work-stealing –pin-workers –pre-partition –GSS –PERGROUP –RANDOM 20 12.18 1.33

1 work-stealing –pin-workers –pre-partition –GSS –PERGROUP –RANDOMPRI 20 12.02 1.05

1 work-stealing –pin-workers –pre-partition –GSS –PERCPU –SEQ 20 12.32 0.82

1 work-stealing –pin-workers –pre-partition –GSS –PERCPU –SEQPRI 20 12.34 1.07

1 work-stealing –pin-workers –pre-partition –GSS –PERCPU –RANDOM 20 12.48 1.09

1 work-stealing –pin-workers –pre-partition –GSS –PERCPU –RANDOMPRI 20 12.47 1.03

1 work-stealing –pin-workers –pre-partition –TSS –CENTRALIZED –SEQ 20 12.67 1.19

1 work-stealing –pin-workers –pre-partition –TSS –CENTRALIZED –SEQPRI 20 12.53 1.21

1 work-stealing –pin-workers –pre-partition –TSS –CENTRALIZED –RANDOM 20 12.62 1.17

1 work-stealing –pin-workers –pre-partition –TSS –CENTRALIZED –RANDOMPRI 20 12.76 1.21

1 work-stealing –pin-workers –pre-partition –TSS –PERGROUP –SEQ 20 11.63 0.98

1 work-stealing –pin-workers –pre-partition –TSS –PERGROUP –SEQPRI 20 11.50 0.89

1 work-stealing –pin-workers –pre-partition –TSS –PERGROUP –RANDOM 20 11.85 1.16

1 work-stealing –pin-workers –pre-partition –TSS –PERGROUP –RANDOMPRI 20 11.99 1.25

1 work-stealing –pin-workers –pre-partition –TSS –PERCPU –SEQ 20 12.71 1.33

1 work-stealing –pin-workers –pre-partition –TSS –PERCPU –SEQPRI 20 13.11 1.58

1 work-stealing –pin-workers –pre-partition –TSS –PERCPU –RANDOM 20 12.89 1.04

1 work-stealing –pin-workers –pre-partition –TSS –PERCPU –RANDOMPRI 20 12.96 1.19

1 work-stealing –pin-workers –pre-partition –FAC2 –CENTRALIZED –SEQ 20 12.52 1.06

1 work-stealing –pin-workers –pre-partition –FAC2 –CENTRALIZED –SEQPRI 20 12.10 1.02

1 work-stealing –pin-workers –pre-partition –FAC2 –CENTRALIZED –RANDOM 20 13.10 1.29

1 work-stealing –pin-workers –pre-partition –FAC2 –CENTRALIZED –RANDOMPRI 20 12.62 1.18

1 work-stealing –pin-workers –pre-partition –FAC2 –PERGROUP –SEQ 20 11.66 1.12

1 work-stealing –pin-workers –pre-partition –FAC2 –PERGROUP –SEQPRI 20 11.89 1.15

1 work-stealing –pin-workers –pre-partition –FAC2 –PERGROUP –RANDOM 20 11.56 1.18

1 work-stealing –pin-workers –pre-partition –FAC2 –PERGROUP –RANDOMPRI 20 11.51 0.97

1 work-stealing –pin-workers –pre-partition –FAC2 –PERCPU –SEQ 20 13.45 1.54

1 work-stealing –pin-workers –pre-partition –FAC2 –PERCPU –SEQPRI 20 12.98 1.34

1 work-stealing –pin-workers –pre-partition –FAC2 –PERCPU –RANDOM 20 12.87 1.34

1 work-stealing –pin-workers –pre-partition –FAC2 –PERCPU –RANDOMPRI 20 12.96 1.35

1 work-stealing –pin-workers –pre-partition –TFSS –CENTRALIZED –SEQ 20 12.69 1.33

1 work-stealing –pin-workers –pre-partition –TFSS –CENTRALIZED –SEQPRI 20 12.73 1.26

1 work-stealing –pin-workers –pre-partition –TFSS –CENTRALIZED –RANDOM 20 12.60 1.28
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1 work-stealing –pin-workers –pre-partition –TFSS –CENTRALIZED –RANDOMPRI 20 12.15 1.09

1 work-stealing –pin-workers –pre-partition –TFSS –PERGROUP –SEQ 20 11.60 1.15

1 work-stealing –pin-workers –pre-partition –TFSS –PERGROUP –SEQPRI 20 11.40 1.04

1 work-stealing –pin-workers –pre-partition –TFSS –PERGROUP –RANDOM 20 11.80 1.17

1 work-stealing –pin-workers –pre-partition –TFSS –PERGROUP –RANDOMPRI 20 11.22 0.93

1 work-stealing –pin-workers –pre-partition –TFSS –PERCPU –SEQ 20 13.20 1.50

1 work-stealing –pin-workers –pre-partition –TFSS –PERCPU –SEQPRI 20 13.11 0.90

1 work-stealing –pin-workers –pre-partition –TFSS –PERCPU –RANDOM 20 12.93 1.29

1 work-stealing –pin-workers –pre-partition –TFSS –PERCPU –RANDOMPRI 20 13.49 1.12

1 work-stealing –pin-workers –pre-partition –FISS –CENTRALIZED –SEQ 20 13.59 1.02

1 work-stealing –pin-workers –pre-partition –FISS –CENTRALIZED –SEQPRI 20 13.63 0.97

1 work-stealing –pin-workers –pre-partition –FISS –CENTRALIZED –RANDOM 20 13.83 1.02

1 work-stealing –pin-workers –pre-partition –FISS –CENTRALIZED –RANDOMPRI 20 13.14 0.48

1 work-stealing –pin-workers –pre-partition –FISS –PERGROUP –SEQ 20 12.50 0.92

1 work-stealing –pin-workers –pre-partition –FISS –PERGROUP –SEQPRI 20 12.72 1.02

1 work-stealing –pin-workers –pre-partition –FISS –PERGROUP –RANDOM 20 12.42 0.90

1 work-stealing –pin-workers –pre-partition –FISS –PERGROUP –RANDOMPRI 20 12.37 0.63

1 work-stealing –pin-workers –pre-partition –FISS –PERCPU –SEQ 20 12.56 0.22

1 work-stealing –pin-workers –pre-partition –FISS –PERCPU –SEQPRI 20 13.23 1.10

1 work-stealing –pin-workers –pre-partition –FISS –PERCPU –RANDOM 20 13.60 1.33

1 work-stealing –pin-workers –pre-partition –FISS –PERCPU –RANDOMPRI 20 13.45 1.29

1 work-stealing –pin-workers –pre-partition –VISS –CENTRALIZED –SEQ 20 12.10 0.94

1 work-stealing –pin-workers –pre-partition –VISS –CENTRALIZED –SEQPRI 20 12.21 0.94

1 work-stealing –pin-workers –pre-partition –VISS –CENTRALIZED –RANDOM 20 12.36 1.15

1 work-stealing –pin-workers –pre-partition –VISS –CENTRALIZED –RANDOMPRI 20 12.43 1.14

1 work-stealing –pin-workers –pre-partition –VISS –PERGROUP –SEQ 20 11.59 1.06

1 work-stealing –pin-workers –pre-partition –VISS –PERGROUP –SEQPRI 20 11.61 1.05

1 work-stealing –pin-workers –pre-partition –VISS –PERGROUP –RANDOM 20 11.56 1.13

1 work-stealing –pin-workers –pre-partition –VISS –PERGROUP –RANDOMPRI 20 11.33 0.99

1 work-stealing –pin-workers –pre-partition –VISS –PERCPU –SEQ 20 13.27 1.10

1 work-stealing –pin-workers –pre-partition –VISS –PERCPU –SEQPRI 20 12.60 0.18

1 work-stealing –pin-workers –pre-partition –VISS –PERCPU –RANDOM 20 13.20 1.01

1 work-stealing –pin-workers –pre-partition –VISS –PERCPU –RANDOMPRI 20 13.21 1.05

1 work-stealing –pin-workers –pre-partition –PLS –CENTRALIZED –SEQ 20 13.11 1.17

1 work-stealing –pin-workers –pre-partition –PLS –CENTRALIZED –SEQPRI 20 13.18 1.22

1 work-stealing –pin-workers –pre-partition –PLS –CENTRALIZED –RANDOM 20 12.48 0.55

1 work-stealing –pin-workers –pre-partition –PLS –CENTRALIZED –RANDOMPRI 20 12.95 1.07

1 work-stealing –pin-workers –pre-partition –PLS –PERGROUP –SEQ 20 12.71 1.20

1 work-stealing –pin-workers –pre-partition –PLS –PERGROUP –SEQPRI 20 11.89 0.74

1 work-stealing –pin-workers –pre-partition –PLS –PERGROUP –RANDOM 20 11.94 0.84

1 work-stealing –pin-workers –pre-partition –PLS –PERGROUP –RANDOMPRI 20 12.37 1.22

1 work-stealing –pin-workers –pre-partition –PLS –PERCPU –SEQ 20 13.53 1.14

1 work-stealing –pin-workers –pre-partition –PLS –PERCPU –SEQPRI 20 13.79 1.22

1 work-stealing –pin-workers –pre-partition –PLS –PERCPU –RANDOM 20 13.67 1.30

1 work-stealing –pin-workers –pre-partition –PLS –PERCPU –RANDOMPRI 20 13.00 0.83

1 work-stealing –pin-workers –pre-partition –MSTATIC –CENTRALIZED –SEQ 20 13.45 1.21

1 work-stealing –pin-workers –pre-partition –MSTATIC –CENTRALIZED –SEQPRI 20 13.45 1.14

1 work-stealing –pin-workers –pre-partition –MSTATIC –CENTRALIZED –RANDOM 20 13.41 1.22

1 work-stealing –pin-workers –pre-partition –MSTATIC –CENTRALIZED –RANDOMPRI 20 13.16 1.09

1 work-stealing –pin-workers –pre-partition –MSTATIC –PERGROUP –SEQ 20 12.32 1.24

1 work-stealing –pin-workers –pre-partition –MSTATIC –PERGROUP –SEQPRI 20 11.93 0.93

1 work-stealing –pin-workers –pre-partition –MSTATIC –PERGROUP –RANDOM 20 12.20 1.15

1 work-stealing –pin-workers –pre-partition –MSTATIC –PERGROUP –RANDOMPRI 20 11.94 0.98

1 work-stealing –pin-workers –pre-partition –MSTATIC –PERCPU –SEQ 20 13.14 1.05

1 work-stealing –pin-workers –pre-partition –MSTATIC –PERCPU –SEQPRI 20 13.12 0.92

1 work-stealing –pin-workers –pre-partition –MSTATIC –PERCPU –RANDOM 20 13.15 1.04

1 work-stealing –pin-workers –pre-partition –MSTATIC –PERCPU –RANDOMPRI 20 13.07 0.90

1 work-stealing –pin-workers –pre-partition –MFSC –CENTRALIZED –SEQ 20 11.39 0.90

1 work-stealing –pin-workers –pre-partition –MFSC –CENTRALIZED –SEQPRI 20 11.82 1.18

1 work-stealing –pin-workers –pre-partition –MFSC –CENTRALIZED –RANDOM 20 11.51 1.00

1 work-stealing –pin-workers –pre-partition –MFSC –CENTRALIZED –RANDOMPRI 20 11.85 1.18

1 work-stealing –pin-workers –pre-partition –MFSC –PERGROUP –SEQ 20 11.53 1.05

1 work-stealing –pin-workers –pre-partition –MFSC –PERGROUP –SEQPRI 20 11.23 0.92

1 work-stealing –pin-workers –pre-partition –MFSC –PERGROUP –RANDOM 20 11.30 1.03

1 work-stealing –pin-workers –pre-partition –MFSC –PERGROUP –RANDOMPRI 20 11.23 0.92

1 work-stealing –pin-workers –pre-partition –MFSC –PERCPU –SEQ 20 13.24 0.85

1 work-stealing –pin-workers –pre-partition –MFSC –PERCPU –SEQPRI 20 13.48 1.18

1 work-stealing –pin-workers –pre-partition –MFSC –PERCPU –RANDOM 20 13.97 1.37

1 work-stealing –pin-workers –pre-partition –MFSC –PERCPU –RANDOMPRI 20 14.11 1.19

1 work-stealing –pin-workers –pre-partition –PSS –CENTRALIZED –SEQ 20 13.05 1.19

1 work-stealing –pin-workers –pre-partition –PSS –CENTRALIZED –SEQPRI 20 12.70 1.01

1 work-stealing –pin-workers –pre-partition –PSS –CENTRALIZED –RANDOM 20 13.30 1.29

1 work-stealing –pin-workers –pre-partition –PSS –CENTRALIZED –RANDOMPRI 20 12.56 0.92

1 work-stealing –pin-workers –pre-partition –PSS –PERGROUP –SEQ 20 12.16 1.04

1 work-stealing –pin-workers –pre-partition –PSS –PERGROUP –SEQPRI 20 11.73 0.72

1 work-stealing –pin-workers –pre-partition –PSS –PERGROUP –RANDOM 20 12.61 1.26

1 work-stealing –pin-workers –pre-partition –PSS –PERGROUP –RANDOMPRI 20 11.80 0.85

1 work-stealing –pin-workers –pre-partition –PSS –PERCPU –SEQ 20 13.15 0.98

1 work-stealing –pin-workers –pre-partition –PSS –PERCPU –SEQPRI 20 13.21 1.01

1 work-stealing –pin-workers –pre-partition –PSS –PERCPU –RANDOM 20 13.24 1.06

1 work-stealing –pin-workers –pre-partition –PSS –PERCPU –RANDOMPRI 20 13.53 1.01
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