\/
AN

X< University
]

ANIX
>_<
/] of Basel

\/
/\
AN

Task Scheduling and Work Stealing in
the DAPHNE Runtime System

Master’s Thesis

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science
HPC Group
https://hpc.dmi.unibas.ch/

Advisor: Prof. Dr. Florina M. Ciorba
Supervisor: Dr. Ahmed Hamdy Mohamed Eleliemy

Jonathan Giger
j-giger@stud.unibas.ch
19-067-511

Acknowledgments

First and foremost, I would like to express my gratitude to Prof. Dr. Florina Ciorba
for giving me the opportunity to conduct my Master’s Thesis in the High Performance
Computing research group. I would like to sincerely thank my supervisors Dr. Ahmed
Eleliemy and Gabrielle Poerwawinata for the continuous support and valuable feedback
throughout my Thesis. I would also like to thank Marc Hennemann for the grammatical
and structural suggestions that helped form this Thesis. Finally, I would like to thank
Patrick Damme and the entire DAPHNE team for their support and insights in response to
my questions. I greatly appreciate all that I have learned and discovered while completing
this Thesis.

Abstract

Modern research relies on the processing of large datasets using High Performance Com-
puting, Big Data, and Machine Learning operations. DAPHNE is a system infrastructure
for such integrated data analysis pipelines that provides language abstractions, compilation
and runtime techniques, and built-in parallelization features for researchers to process such
datasets seamlessly. In order to offer parallelization features that are nearly transparent
to the researcher while still delivering high performance, versatile scheduling techniques
with proven track records must be evaluated and implemented. As computing hardware is
constantly evolving, often becoming more heterogeneous, scheduling heuristics are becoming
more complex and new factors must be taken into account. This Thesis surveys task schedul-
ing techniques and work-stealing mechanisms from previous research on runtime systems in
the High Performance Computing field. The advantages of each technique are interpreted
with respect to various application types and hardware systems that may be employed by
a researcher using DAPHNE to process data. Locality-aware task scheduling techniques for
integrated data analysis pipelines are then implemented in DAPHNE and the performance

is evaluated using publicly available datasets.

Table of Contents

Acknowledgments ii
Abstract iii
1 Introduction 1
1.1 Motivation L 3
1.2 Contribution 4
1.3 Outline e 4

2 Terminology and Background 5
2.1 Terminology e 5
2.2 Background 6
2.2.1 DAPHNE Infrastructure and Applications 6

2.2.1.1 Built-in Kernels 0oL 7

2.2.1.2 Dense and Sparse Matrix Representation 7

2.2.1.3 Connected Components Algorithm 8

2.2.1.4 Slurm Integration 8

2.2.1.5 Vectorized Execution Engine 9

2.2.2 Scheduling Schemes L o 9

3 Related Work 12
3.1 DataLocality 13
3.2 Task Granularity L 13
3.3 Task Dependencies 14

4 Methodology 16
4.1 Load Partitioning 16
4.2 Scheduling Schemes 17
4.2.1 Static 17

4.2.2 Self-Scheduling 18

4.2.3 Guided Self-Scheduling o oo 18

4.2.4 Trapezoid Self-Scheduling 19

4.2.,5 Factoring L e 19

4.2.6 Trapezoid Factoring Self-Scheduling 19

Table of Contents v
4.2.7 Fixed Increase Self-Scheduling 19

4.2.8 Variable Increase Self-Scheduling 20

4.2.9 Performance-Based Loop Self-Scheduling 20

4.2.10 Probabilistic Self-Scheduling 20

4.2.11 Modified Fixed-Size Chunk 21

43 Fused Kernels o 23
4.4 Work-Sharing 23
4.5 System Architecture L 23
4.5.1 NUMA System Topology 24

4.5.1.1 First-Touch policy 25

4.5.2 Simultaneous Multithreading 26

4.6 Work-Stealing L 26
4.6.1 Serializing Work Stealing 26

4.6.2 Eager Binary Splitting o 0o 27

4.6.3 Hierarchical Work Stealing 28

4.6.4 Victim Selection L 28

4.6.4.1 Sequential 29

4.6.4.2 Sequential Prioritized 30

4.6.4.3 Random o 31

4.6.4.4 Random Prioritized 32

4.6.5 Multi-Threaded Shepherds 33

4.7 Multi-threading Wrapper e 34
4.8 Vectorized Engine Trace Files 35
4.9 Design of Factorial Experiments 0oL 36

5 Results 37
5.1 Broadwell 38
5.1.1 Work-Stealing 38

5.1.2 Tiling 39

5.1.3 Hierarchical 39

5.2 Cascade Lake L 40
5.2.1 Work-Stealing 40

5.2.2 Tiling e 41

5.2.3 Hierarchical L 41

6 Conclusion 42
7 Future Work 43
Bibliography 45
Appendix A Result Data 49

Introduction

The scientific community relies on data processing now more than ever before. The demand
for data processing comes in many shapes and sizes. There are Big Data applications
which rely heavily on disk I/O while having relatively simple computational steps, there
are Machine Learning applications which have heavy computational requirements but often
result in small output datasets, and there are also High Performance Computing applications
which usually rely on the applications being parallelizable in nature. These computational
tasks, which when combined with the data to be processed are referred to as pipelines and
are similar in all of these scenarios, yet still differ in their requirements enough that there
has not yet been a full convergence on the software infrastructure to handle them. While
all three of these domains are heavily researched in their own fields, a single unified system
combine all three into a single system infrastructure for data analysis is an open research
topic.

While datasets are becoming larger and computing clusters are becoming more pow-
erful, research and development communities are striving to create an system infrastructure
that can handle integrated data analysis pipelines with a wide range of input data, perfor-
mance, and computational requirements. Input data requirements often restrict the data
types that software frameworks support. Performance requirements are usually met by both
programming solutions that bring the code closer to the bare-metal, and also supporting
the distributed execution of code across multiple computing nodes. These computing nodes
are in turn often becoming more heterogeneous, especially in large clusters that contain
specialized hardware such as FPGAs and other hardware accelerators. The hardware itself
is also becoming increasingly more complex, with shared-memory systems that do not have
uniform access to memory becoming more common.

There has always been a convergence on the hardware level between Machine Learning,
Big Data, and High Performance Computing applications, since all of these use cases are
applied using Data Centers with similar computing units. However, an integrated system
infrastructure that creates a convergence on the software level is still in the early stages
of research and development. One such project that aims to create this convergence is

DAPHNE, an integrated Data Analysis Pipelines for large-scale data management, High-

Introduction 2

performance computing, and machiNE learning *.

The DAPHNE project is a system architecture built from scratch in C++ to pro-
cess workloads that contain integrated data analysis pipelines. It is designed to be open
and extensible which allows users to implement their own use cases through use of the Do-
main Specific Language, DaphneDSL. The user’s code is then passed through the DAPHNE
compiler and is optimized to improve utilization of the hardware cluster’s resources. This
process takes advantage of techniques such as reordering, reducing redundancy, and taking
advantage of matrix sparsity. The modular use of kernels in the DAPHNE backend also
allows for easy extensibility by adding new kernels or adjusting scheduling knobs.

Use cases such as earth observation, semiconductor manufacturing, and automotive
vehicle development have shown the potential of this convergence on the software level in
real-world applications. These real-world use cases consist of a combination of Big Data,
Machine Learning, and High Performance Computing characteristics that have since not
been solved on a single system in an efficient manner. Consolidating these tasks into a
single integrated system not only simplifies the development of these applications for the
programmer, but also allows for clever optimizations to be made when consolidating certain
operations. In the context of DAPHNE, the vectorized execution engine splits datasets into
chunks which can be independently executed, while combining adjacent operations when

applicable in order to optimize the transport of data.

Computation Processing ML Training
Application Layer
we |

Big Data ‘ ‘ Machine Learning

Cluster Layer

Resource allocation and management

CPU

Hardware Layer SAN

Computing Networking Storage

Figure 1.1: Ecosystem for integrated data analysis pipelines, adapted from [14]

The goal of a integrated system infrastructure for data analysis pipelines is not just to
be able to output the correct result, but also to minimize the execution time needed on the
computing cluster, freeing up computing resources for other jobs and saving energy. One
factor that affects a programs execution time is the scheduling of the program’s instructions.
When scheduling a program’s instructions, the order, size, and distribution of the instruc-

tions must be carefully optimized. This can be done by taking into account heterogeneous

1 https://daphne-eu.eu/

https://daphne-eu.eu/

Introduction 3

hardware, natural variance in code execution time, and sparseness properties of the input
dataset. When developing a scheduler for such a versatile and extensible system it is im-
portant to weigh many factors such as data locality, load imbalance, and overhead in order
to achieve an optimal balance that is efficient for the given use case.

Another dimension of complexity emerges when taking into account systems with Non-
Uniform Memory Access (NUMA) which brings another layer of possible optimizations when
designing a scheduler for such a system infrastructure. This scenario opens the possibility
of being able to access an address in memory, but the delay in accessing the memory can
vary depending on where it is being accessed from. This requires not only being aware of
where data is stored in memory, but also anticipating when in the program’s execution it will
be called and adjusting the scheduling behavior accordingly. Research in this area exists
and different approaches to handling this complexity already exist in High Performance
Computing libraries such as OpenMP and in implementations of this library such as the
LLVM libomp runtime library.

1.1 Motivation

While scheduling is a comprehensive field of research, the methods used are tightly con-
nected to their context. A scheduling technique that is effective for small shared-memory
system will not necessarily be effective for a large distributed-memory computing cluster
with heterogeneous hardware. This makes the case for a highly customizable system in-
frastructure that is versatile enough to be used in all distributed computing contexts. The
dimensions in the design of a scheduler include the partitioning of the load, order of execu-
tion, design of the queues, work stealing, and additional optimizations which can be made
during runtime. In order to design an effective scheduler, the runtime system must take
into account factors such as the size of the individual computation chunks, which end of the
queue to dequeue from, if the layout of the queues should reflect the NUMA architecture,
how nodes should behave at the end of their respective queue, and what strategies to use
to split the input data. All of these factors can be corroborated to maximize data locality
and minimize scheduling overhead to the best extent possible for each use case. This thesis
will explore the use of state of the art scheduling techniques and identify which of these
techniques are best suited for scheduling integrated data analysis pipelines on large scale
heterogeneous systems.

The varying sparsity of data, complex interconnections of dependencies in operations,
and heterogeneous hardware used in the processing of data analysis pipelines demands a
comprehensive scheduling solution that takes all of these factoring into account. Highly
sparse input data requires larger chunk sizes to account for the sections of data that gets
processed quickly because they are empty. A complex series of operations can often be
executed by various combinations of kernels, some of which can be parallelized more effective
than others. The homogeneity of the hardware used to process this data can also cause
scheduling abnormalities that can often be accounted for beforehand. This Thesis will

analyse these aspects of scheduling and possible in the context of DAPHNE.

Introduction 4

1.2 Contribution

The contribution of this Thesis is a modification to the load partitioner and the allo-
cation of queues in the DAPHNE work scheduler. In order to implement a work-stealing
scheduler, we first allow for multiple queues to be created to hold work planned for execu-
tion. Then we modify the work allocation function to distribute work to these queues using
block, cyclic, and a combination technique. Finally, a hierarchical implementation in which

restricts work stealing to only certain appointed foreman workers is applied and evaluated.

1.3 Outline

The following chapters of this Thesis will provide a summary of the background, im-
plementation, and evaluation of the implementations for this Thesis. In Chapter 2 the
Terminology used in this Thesis is introduced and background on the test system, software
environment, and evaluation applications are provided. Then in Chapter 3 work related to
task scheduling and work stealing is summarized and the interesting concepts in the context
of this Thesis are highlighted. Chapter 4 provides the methodology of the implementation
and hypothesizes what the result might be. In Chapter 5 the results are presented and
interpreted. Chapter 6 then summarized what can be learned from this Thesis. Finally,
Chapter 7 speculates on possible future extensions of this work and provides insight to what

could be achieved.

Terminology and Background

In the context of scheduling many algorithms from other work are used and many concepts
are referred to by abbreviations. This list encompasses most abbreviations and technical
terms that are used in this Thesis. Some terms can have multiple definitions depending on
the context they are used in. Since the concept of work-stealing schedulers is an evolving
field of research, the definitions of these terms may also become more loosely interpreted

over time.

2.1 Terminology

Self-scheduling - A work assignment principle in which a worker obtains a task to
execute once it completed the previous task.

Work-sharing - A scheduling approach following the self-scheduling principle with a
centralized work queue from which workers obtain tasks.

Work-stealing - Another scheduling approach which uses distributed work queues in
which workers dequeue tasks from following the self-scheduling principle.

Worker - Refers to individual software processing units that execute tasks.

Foreman - A type of worker that executes tasks and also coordinates the scheduling
for other workers. (Also referred to as a Shepherd [23])

Cluster - Multiple nodes connected by a fast interconnect network.

Node - One physical server with shared-memory.

Thread - Can refer to software threads in a programming context or hardware threads
in a system architecture context.

Split - A unit representing the smallest chunk that work can be divided into, in
DAPHNE either rows, columns, or scalars. Somewhat interchangeable with iterations in
other scheduling contexts.

Work Partitioning - The scheduling step in which input work is grouped into tasks of
various size, often exploiting data and/or functional parallelism. [7]

Work Assignment - Refers to both the mapping of tasks to workers on the software
level, and also the mapping of workers to hardware execution units (CPUs, GPUs, FPGAs)

on the hardware level.

Terminology and Background 6

DSL - Domain Specific Language

DAPHNE - System infrastructure for large-scale integrated data analysis pipelines.

IR - Intermediate Representation

DAPHNE IR - DAPHNE Intermediate Representation (Dialect of MLIR)

Runtime system - An engine that translates a DSL into machine code for execution. [8]

Operator - A mapping or function in mathematics that on elements to produce other
elements.

Workflow - A series of repeatable steps performed on a dataset.

Static Scheduling - Scheduling algorithms in which the size of the chunks are known
before the program is executed.

Dynamic Scheduling - Scheduling algorithms where the size of the chunks are known
once the size of the input data is known.

Adaptive dynamic scheduling - Scheduling algorithms where the size of the chunks are
decided during the program’s runtime.

DLS - Dynamic Loop Self-Scheduling

Task - An object containing the functions to be executed, packaged in way that can
be scheduled.

Pipeline - A term referring to a task being executed on input data.

X | ¥ \
1] 2 /

(a) Input Data (b) Task (c) Pipeline

Figure 2.1: Visual representation of a Data Analysis Pipeline made up of a task and data

Vectorized pipeline - Refers to multiple pipelines executed in parallel.

Sparsity - The number of non-zero elements divided by the number of elements in a
matrix (also referred to as density)

I/O - Input / Output (Usually from or to a Disk)

2.2 Background

This Thesis analyses the effectiveness of works stealing schedulers in the context of
Data Analysis Pipelines. The experiments will be performed on the DAPHNE infrastructure
in order to provide a realistic estimation of the performance of work-stealing scheduling

concepts for real data analysis tasks.

2.2.1 DAPHNE Infrastructure and Applications

DAPHNE is designed to be open and extensible. Since mathematical operations are
implemented as kernels, new operations can be added or modified by simply adding or modi-
fying the relevant kernel file. When a kernel is implemented, the vectorization of the pipeline
operation is handled by the DAPHNE IR using another kernel named vectorized pipeline.
This vectorizing kernel acts as an operation which can be used with other operations, and

sends its input to the multi-threaded wrapper whose implementation will be discussed in

Terminology and Background 7

more detail in Chapter 4.

2.2.1.1 Built-in Kernels

One of the key building blocks of DAPHNE is that operations in the IR (Intermediate
Representation) can be implemented by kernels, which in themselves are highly extensible
and versatile. The DAPHNE IR has a set of common built-in kernels, however the user
can also add their own kernels as needed. These kernels are highly type flexible and allow
for great functionality while minimizing code duplication. Each kernel has input sand out-
puts, and can have multiple multiple implementations to handle different input and output

combinations that the kernel will support.

2.2.1.2 Dense and Sparse Matrix Representation

Since some datasets are made up of matrices that are excessively large, but have very
few non-zero values, it can become feasible to represent these matrices using a separate
notation. Matrices that have many non-zero values which contain any given data format
can be represented by a combination of three columns, one for the row location of a value,
one for the column location of a value, and one for the value itself. This is referred to
as the COO matrix format. While file input in DAPHNE uses the COO matrix format,
the representation inside the DAPHNE IR for sparse matrices is the CSR format, which is

similar to COO format, but the row indexes are compressed.

010010000
100000000
000000000 5 8
000000010 6 7
eee 100000000 37
000000001 04
000000010 01
000100100
000001000
(a) Verteces and Edges (b) Dense Representation (c) Sparse Representation

Figure 2.2: Dense and Sparse representations of an undirected graph

Using sparse matrix representations allows for computations with much larger matrices
than would otherwise be possible with just a dense representation. Since only the elements
that contain non-zero values have to be stored in memory the amount of memory needed to
store a matrix using sparse representation in memory would scale linearly with the amount
of non-zero values in the matrix. Currently, the use of sparse representations in DAPHNE
can be enabled with the select-matrix-representation argument, which will automatically
use the sparse representation when less than 10% of the values in a matrix contain non-zero
values.

Sparse matrices also result in much fast computations than their dense counterparts.
Rows that do not contains any non-zero values do not add any computational effect when

performing the calculations instructed by the kernel. Due to this different in implementa-

Terminology and Background 8

tion, kernels must be implemented multiple times. Since some kernels can have more than
one input, every possible combination of dense and sparse inputs to the kernel must be

implemented separately.

2.2.1.3 Connected Components Algorithm

The connected components algorithm, also referred to as blob extraction or region
labeling, is a graph theory application that finds the largest subsets of a given set are found
and labels them uniquely. The input of this application is a list of connected vertexes of a

graph, and the output will be a list of all vertexes with their respective subset label.

O—0 @
3 @ ®
O—D ®

(a) Input Graph (b) Output Graph

Figure 2.3: Input and result of the connected components algorithm

This algorithm is an ideal test case for scheduling performance in DAPHNE as it
includes a loop, multiple operators that can be used in a vectorized pipeline, and intermediate
sparse outputs. The input to this algorithm is a CSV file that contains a list of all the edges in
the graph, and a metadata file that contains the total number of nodes in the graph, which in
this case will also be the number of rows and columns of the input matrix. This input matrix
then undergoes a serious of transpose, element-wise multiplication, aggregation, maximum,
comparison, and summation operations which will label the beginning and end point of each
edge with the number of the largest connected component that the corresponding node is

part of.

2.2.1.4 Slurm Integration

High performance computing clusters are usually shared with a number of users and
run a variety of different computation jobs. Slurm is a workload manager that can coordi-
nate jobs from several users on a cluster and relieve contention on computing resources by
managing a queue of pending work. A cluster that uses Slurm to manage workloads can
be configured in one of two ways, exclusive allocation and non-exclusive allocation. When
using exclusive allocation an entire computing node is reserved for one job, regardless of
how many CPU threads are requested or required by the job. However in a non-exclusive
configuration, a computing node can be allocated to more than one job at a time. In this
case Slurm employs thread pinning which locks processes to a specific set of CPU threads in
order to divide the resources of that computing node in fair manner. DAPHNE applications

can also be run on clusters using Slurm, however certain precautions must be taken to pre-

Terminology and Background 9

vent the non-exclusive provisioning of resources from affecting the results of the experiments
in this Thesis.

When the Slurm Task/Affinity plug is enabled, multiple jobs can be executed on a
single node concurrently. Each job is assigned a set number of CPU cores to utilize and
Slurm then schedules jobs to nodes based on the number of available CPU cores on that
node. This limiting of CPU resources is achieved through either the setaffinity function,
UNIX cgroups, or both. How both of these systems exactly function may vary by operating

system, however the definitions in this Thesis pertain to Linux.

2.2.1.5 Vectorized Execution Engine

Matrices can be split by rows, columns, or scalars. This versatile approach allows
for efficient scheduling of ”tall” and ”wide” matrices, especially when they are sparse. In
some applications such as linear regression there could be large datasets encoded into a
matrix which only has a handful of columns, these would not result in balanced schedules
if split by columns as there may not even be enough rows for the number of CPU cores
in the system. Even if there are sufficient rows to create at least one task per CPU, the
eleven other scheduling schemes described in this Thesis may not have enough input splits

to produce meaningful chunk sizes.

(4] [9] [4] [9] [4] [4 9 4 9 4] [9] [9]
31 18] |3] (8] |3 38 3 8 3]
20 17| 12] [7] |2 2 7 2 7 3]
1| |6| |1]| |6] |1 1 6 1 6 1] (6] [6]
0] (5] (0] |5] (O] 0 5 0 5 0 [0] [0] [0]
(a) Column Split (b) Row Split (c) Scalar Split

Figure 2.4: Vectorizable splits of a dense matrix

2.2.2 Scheduling Schemes
The simplest scheduling technique is a simple static partitioner. With the technique the

total units of work to be done is divided into P tasks, where P is the number of processing
units. This scheduler very common due to its ease of implementation and low overhead.
Any variation in execution time of a single task will cause load imbalance when using this
scheduler.

In order to prevent this load imbalance from taking place, a strategy with fine-grained
tasks which allow the scheduler to allocate the tasks at runtime, referred to as self-scheduling
(SS) was suggested. This technique results in the most fine-grained distribution of work
among the processing units, as the work can be split and reallocated by the smallest possible
chunk size. While this technique theoretically results in the lowest possible amount of load

imbalance, the cost of the scheduling overhead can far outweigh the benefits. A minimum

Terminology and Background 10

chunk size parameter passed from the user could optimize this trade off.

In order to balance the low overhead of large chunk sizes and low load imbalance of
small chunk sizes, there are a number of scheduling schemes that dynamically calculate
chunk sizes mathematically based on the size of the input work, the number of workers,
and some other factors that may even be specific to the system that the application will be
running on. In Guided self-scheduling (GSS), the load partitioner aims to find a balance
between load imbalance and scheduling overhead by creating tasks with a large chunk size
for the beginning of the programs execution and then tasks with a small chunk size at
the end of the execution. This technique still falls under the category of self-scheduling
since the determination of which processing units each task is execution on still occurs at
runtime. Similar to Guided self-scheduling, Trapezoid self-scheduling (T'SS) also utilizes the
advantages of small and large chunks by decreasing the chunk size at run time. In this case
the chunk size is decreased linearly, as opposed to guided where the chunk size is decreased
according to a division function. The main advantage of TSS is that the function to calculate
the chunk size requires very little computational resources.

In contrast to the previous methods which simply calculate the chunk size of a given
task using a continuous function, the chunk sizes can be computed in batches which com-
plements the symmetrical nature of processing units on a computing node. The factoring
scheme (FAC) has a “step” variable, which only gets increased once the chunk sizes for one
batch of tasks have been computed, meaning one task per processing unit. The factoring
technique can be further customized by dividing the chunk size by a variable x, a variable
which can be set by the user and further reduces the chunk size. For practical use, a value of
2 is used for this variable, and this variation referred to as FAC2. A combination of factor-
ing and trapezoid self-scheduling exists with the name Trapezoid Factoring Self-Scheduling
(TFSS). According to this technique, chunk sizes are calculated in a linearly decreasing
manner, however the the computations are done in batches.

While all of the previous technique that have variable chunk sizes up until now have
had a decreasing chunk size as the program executes, there are also techniques that increase
the chunk size. Fixed Increase Self-Scheduling (FISS) uses a calculation similar to factoring,
however the chunk size is increase instead of decreasing [26]. Similar to FISS, Variable
Increase self-scheduling (VISS) also increments the chunk size, however amount of the chunk
size increase is reduced as the program is executing.

In addition to simply computing the chunk size using a mathematical formula, more
advanced techniques exist which calculate the size of a chunk at run time using information
from the previously executed chunks to influence the calculation. In Performance-based
Loop self-scheduling (PLS) the size of a chunk is calculated based on a workload ratio that
is computed during run time. A variation of the above adaptive scheduling technique is
Probabilistic self-scheduling (PSS). With this technique the size of a chunk is calculated
using the number of currently idle processors.

The last scheduling technique that is explored in this Thesis is Modified Fixed-Size
Chunk self-scheduling (MFSC). This is a simple technique which is an implementation of
self-scheduling that uses one chunk size for all tasks in the application. This single chunk

size is calculated using a logarithmic function with the number of workers and the total

Terminology and Background 11

number of work units. The goal of the mathematical function to compute the chunk size,
is to end up with the same resulting number of chunks as when using the factoring (FAC)

technique.

Related Work

The book [6] provides a comprehensive overview of task scheduling on shared-memory ar-
chitecture. The book separates parallel environments into two sections, task parallelism
and data parallelism. In data parallelism, the focus is on distributing data across process-
ing units, as opposed to in task parallelism where the focus is on distributing tasks among
processing units which will be executing on the same data. The book then focused on task
scheduling, outlines the major obstacles to performance in current task scheduling schemes,
and offers solutions which for the most part involve different work stealing scheduling tech-
niques.

When designing a scheduler one of the most important functions of the scheduler
is the work partitioner. For any given length of work N, a mathematical function must
compute the sizes of the individual chunks to schedule to the work queue. The most simple
implementation of a scheduler is the static scheduler, this will simply divide the total work
units evenly into the number of processing units and result in one task per processing unit.
This results in perfect data locality as data stays exactly where it is at first assigned, however
this method is not suited for unbalanced loads as there is no balancing mechanism when
one processing unit completes a task before another. In the High Performance Computing
field, many other techniques have been researched to provide balance between these three
dimensions to create a versatile scheduler.

Research on work scheduling techniques can be found in the context of loop scheduling
techniques and task scheduling techniques. The main difference being that in a task-based
technique, any task can depend on any number of other tasks, while in a loop-based technique
the current loop iterations can only depend on previous loop iterations. The taxonomy in
[33] provides an overview of the current task-based scheduling techniques. Several task-based
scheduling techniques are compared in various dimensions including the distribution of the
data, fault tolerance, and the memory architecture of the hardware. What is noteworthy
from this comparison is that all task-based technique surveyed support work stealing. The
main differences between these task-based schedulers fall into the following categories listed

below.

Related Work 13

3.1 Data Locality

A simple work stealing scheduler allocates a separate queue for each processing unit.
When a queue is empty, additional work is stolen from other queues. In order to optimize the
data locality of the input data that this work is performed on, strategies are used to increase
the likelihood that work is executed where the data is located. In [1] a mailbox concept
is used, where each process has a FIFO queue of threads that have affinity to the current
process. This mailbox concept may have had an influence on modern tasking schedulers,
also use a FIFO queue for storing tasks, which in this context are effectively an abstraction
of how software threads were used at the time. The mailbox in this case is similar to double-
ended queue used in modern work stealing schedulers, which act as a standard FIFO queue
from the perspective of the Worker, but also allow for other workers to steal tasks from the
front of the queue.

The simplest way to improve data locality is it reuse tasks on the same core as much
as possible on the same core. This idea was implemented in [17] with a new scheduler
named constrained locality-sensitivity, or shortened cla. This scheduler supports multiple
queues, still has one shared queue, and has an adjustable parameter which can be set from
0.0 to 1.0 which determines the probability that a task will be chosen according to it’s origin
domain. The adjustable parameter allows the user to tune the schedulers load balance and
data locality.

Distributed-memory systems are understood to cause a memory access overhead when-
ever remote memory is access, however this cost also exists on shared-memory systems with
non-uniform memory access. This cost can be measured and is reported in [9] as both
latency and bandwidth measurements. To achieve this, the authors create a tool which
reads OMPT trace files and creates a SimGrid simulation of the tasks being executed while
taking into account task dependencies, data locality, and memory effects. SimGrid, which
is a framework for simulating application running on a network, proved to be suited for the
task as the estimation for the bandwidth available on over a Intel Ultra Path Interconnect
system was estimated to be 45 GB/s, which is close to the 41.6 GB/s (or respectively 62.4
GB/s if using 3 UPT links) specification from Intel for this interconnect.

3.2 Task Granularity

When designing a task scheduler, determining the chunk size of a task is one of the
most important decisions to make. Task granularity, also referred to as chunk size, is the
deciding factor when optimizing between load imbalance and scheduling overhead. When
the chunk size is too small, the overhead from all the additional context switches and lock
contention rises. On the other hand, when the chunk size is too large, computing power
may needlessly sit idle due to load imbalance near the end of a program’s execution. In [2]
comprehensive experiments on program execution time are conducted using several different
task granularity values for several applications using the Cilk runtime library. They also
propose a solution to this problem is proposed in which batches of tasks that will be executed
sequentially anyway are aggregated into larger tasks when appropriate. The authors also

make the case for using two schedulers, one local and another remote to handle work-sharing

Related Work 14

requests. Another solution is presented in [34] where tasks are split into smaller tasks while
the application is running. In [24] Olivier, Porterfield, and Wheeler implemented several
of the above queue allocation and work placement schemes in Qthreads and compare the
results quantitatively. The evaluation criteria includes serial and parallel execution times,
the number of failed steals, number of successful steals, L3 cache misses, bytes read from
memory, and the total number of L3 cache misses. After an analysis of the results, this
paper makes the case for a Multi-Threaded Shepherd approach where each NUMA domain
is assigned a specific worker to steal tasks, with the option to steal a fixed number of tasks
at once. The experiments are repeated with chunk sizes varying from 1 to 64. The authors
also stress the importance of using schedulers that take into account the system topology,
especially when using server chips that have more than 12 cores. Finally, the overhead
caused by locking and unlocking queues is emphasized and the potential for an array-based

lock-free deque is hinted at.

3.3 Task Dependencies

While work stealing is viable for both shared-memory and distributed-memory sys-
tems, the advantages and disadvantages of using work stealing schedulers are most apparent
on distributed memory systems. In [35] a hierarchical system is proposed that takes advan-
tage of the improved data locality of work stealing on the intra-node and inter-node level,
while using a global scheduler to handle the victim selection for inter-node task stealing.
This removes relatively large cost of failed steals, which are particularly apparent on dis-
tributed memory systems. As a followup to this paper, [36] then adds six algorithms to
determine how many tasks to steal for a given steal request. Both [35] and [36] also identify
three patterns in task parallelism, which are flat parallelism (also referred to as iterative

parallelism), recursive parallelism, and irregular parallelism.

(a) Iterative (b) Recursive (c) Irregular

Figure 3.1: Types of Parallelism, adapted from [36]

In contrast to the previous practical evaluation of task stealing, Sonenberg et al. eval-
uate task stealing mathematically in [32] and found that the decision whether to steal
parent or child tasks first can have a large impact on performance. Both parent-stealing
and child-stealing were simulated in applications that have various load and probe rates.
Child job stealing was found to perform better when there is high load and a low probe rate,
while parent job stealing was better with low loads and high probe rates.

When designing a work stealing scheduler, it may seem logical to have idle processing

units steal work from other queues in a greedy fashion. In [12], Halpern points out ”In

Related Work 15

applications where processor affinity is important, a non-greedy scheduler can perform better
than a greedy scheduler.” This is due to data locality effects on NUMA architectures. Since
the memory access times can vary based on which processing unit the code is executed on,
and the queue that a task is on is generally the best place for it to be executed, there are
situations where the program execution would be faster if said task is not stolen, but rather
executed locally, even if it would result in another processing unit being idle. Given that a
task trace profile shows load imbalance but does not show additional execution time due to
cache misses or suboptimal memory access, this may not seem logical at first glance.

Since the addition of promises and futures in C++11, there has been research on
incorporating futures into tasking schedulers. Both [29, 31] provide examples of where
wrapping tasks into promises and futures can provide advantages of traditional tasking. An
especially interesting use-case was found in the context of blocking system calls.

Earlier research on scheduling techniques refer to computation units as threads [3], in
this case referring to software threads in a multi-threaded application. To avoid confusion
between software threads and hardware threads, modern research in this area refers to units
of work as tasks. A collection of software threads in a waiting list was often referred to
as a thread pool, however when referring to task-based scheduling a queue is usually used.
While software threads and tasks are conceptually different, the scheduling techniques can
be transferred seamlessly. A similar concept is explained in [5] with a focus on tasking and
work stealing.

The main compromise made between work-sharing (central queue) and work-stealing
(multiple queue) techniques is the balance between data locality being preserved and load
imbalance. A technique created to maximize both of these dimensions is Hierarchical Work
Stealing. In hierarchical work stealing each task is assigned a ”level” in a tree and a threshold
is set to limit task stealing. Tasks with a level below the threshold are considered global
tasks, while tasks with a level above the threshold are local and cannot be stolen [28].

When designing a work stealing scheduler another important aspect to reflect is the
victim selection algorithm. When a worker is idle and executes a steal, there are usually
multiple task queues that can be stolen from. When deciding which queue to execute the
steal on, there are several factors that can be taken into account including the freshness of the
task, the memory access time of where the queue (and the respective task data) is located,
and the architecture of the system. In [25] benchmarks are performed using random victim
selection and random victim selection with a skewed distribution. The impact of search time

and failed steals, as well as the impact of chunk sizes are also discussed.

Methodology

In order to improve the performance of vectorized data analytics pipelines in DAPHNE, this
Thesis hypothesises changes to the work partitioning, work assignment, and task execution
order in order to balance scheduling overhead, data locality, and load imbalance. In the

load partitioning section, the distribution of

4.1 Load Partitioning

Since the load partitioning object in DAPHNE is takes one input size and outputs
chunk sizes for chunks that are intended to be enqueued into a single queue. The architecture
must be adjusted in order to support multiple queues. One solution would be to assign each
chunk to a respective queue in a block fashion given where the starting split would land
relative to the total input. Another solution would be to generate chunks and distribute

them into separate queues in a cyclic fashion.

mm

) Block Distribution b) Cyclic Distribution

Figure 4.1: Block and Cyclic distribution, adapted from [4]

In this case, a block distribution would result in a better data affinity as consecutive
chunks of data would be accessed in order by the same worker. There is however a downside
that arises when using a scheduler that results in changing chunk sizes. When a scheduler
starts allocating large or small chunks at the beginning of the programs execution, those
chunks would be unevenly allocated to the first workers in line, thus causing an asymmetrical
distribution of work which can result in a load imbalance at the end of the execution.
Especially when using schedulers with large chunk sizes, this load imbalance can have a

significant impact on the applications performance. In order to counteract this, the input

Methodology 17

work can first be divided into even chunks, then a separate load partitioning object can be
created for each of these chunks separately. This results in chunks of different size while still

having symmetrical queues.

- -
/ \
LLP] [LP] [LP] [LP]

Figure 4.2: Tiled Partitioning

4.2 Scheduling Schemes

A crucial component of any scheduler is the scheme that calculates the chunk sizes that
the work is partitioned into. There are varying strategies when it comes to work partitioning
ranging from starting with small chunks, ending with small chunks, partitioning in batches,
probabilistic, and performance based heuristics. In this Thesis 11 scheduling schemes that
are implemented in DAPHNE will be analysed. Plots with visualizations of the below

mentioned scheduling schemes are shown in Figure 4.3 and all equations are adapted from
[10].

Table 4.1: Table of Symbols

Symbol Description

K Output chunk size
N Total size of input data
P Number of Workers
i Scheduling iteration
R; Size of data that has not been partitioned at step i
Trnin Minimum task execution time
Trnaz Maximum task execution time
4.2.1 Static

Using a static scheduler is the simplest way to distribute work in a multithreaded
application. The total work to be done is simply divide evenly into among each worker into
a single task for each worker. This technique results in optimal data locality, as the worker
that executes each task is deterministic, assuming that the tasks are distributed to the same
workers each time the program is executed. The downside of the static technique is that it
results in the highest average load imbalance from all the techniques covered in this Thesis.
Once a worker completes its task, is simply remains idle until all other workers complete
their work and reach the barrier. Even if the runtime system supports work stealing, there
would be no tasks to steal as all the tasks that are created would by either executing with
another worker or already completed as well. The chunk size S is calculated below by simply

dividing the input iterations N among the workers P.

Methodology 18

Static __
Ki

=

4.2.2 Self-Scheduling

A possible solution to the load imbalance problem that a static scheduler has is to
create tasks with a size of one, meaning with the smallest indivisible unit of work that
the input data allows. Throughout this Thesis, Self-Scheduling refers to any method that
results in more than one task per worker, as this allows for work stealing, which means that
the works are effectively scheduling themselves by stealing remaining tasks. This technique
would theoretically result in the best possible load balance, since upon any load imbalance
a worker can steal very fine-grained units of work that have not been executed yet from
other workers. The downside of this method is that tasks are not executed on the worker
that the task was originally assigned to. Especially on NUMA systems, this can result
in performance degradation since the increased memory access times result in the same
task taking longer than it would have if it here executed by the originally assigned worker.
Logically, one would assume that a task being executed on another worker is better than the
task not being executed at all until the assigned worker becomes available again, however
there are situations were the original worker would have quickly become available again and
the stealing worker being idle would have been worth the time penalty of executing the task
on a different worker. Since it is costly to determine how long a task will take to execute
without executing it, this is very difficult to predict ahead of time. This work partitioning
technique is implemented by simply settings the size of each chunk to 1.

K79 =1 (4.2)

7

Another downside to self-scheduling is the higher scheduling overhead resulting from
the multithreading wrapper having the create the task objects, the victim selection stage
during task stealing, and the excess context switches from a worker switching between

executing tasks and stealing tasks.

4.2.3 Guided Self-Scheduling

A reasonable compromise to the problems mentioned above would be the compromise
and create multiple tasks with varying chunk sizes. Guided Self-Scheduling is one of the
oldest and most researched techniques to pick chunk sizes in the HPC industry. Since the
issue of load imbalance only arises once a worker has completed their assigned tasks, it can
be stated that there is no load imbalance until the first task in the application’s execution is
completed. On this basis larger tasks can be created at the beginning of the task queue in
order to maximize data locality and minimize overhead, then later on in the queue the task
can become more fine-grained to optimize load imbalance. The chunk size S is calculated

by dividing the remaining iterations R; by the numbers of workers P. [27]

R;

GSS __

(4.3)

Methodology 19

4.2.4 Trapezoid Self-Scheduling

Similar to GSS, Trapezoid Self-Scheduling (TSS) assigns decreasing chunk sizes how-
ever in this case the first chunk is half the size of that of GSS. The goal of TSS is similar to
GSS however the computational cost of computing each iteration is lower which results in a

lower scheduling overhead.

TSS TSS
KO B stl

KI5 = KI'5% — 4.4
i i—1 _ S—1 J ()
2x N
K9+ K59
N
KJSS = [0 KESY =1 (16)

4.2.5 Factoring

While GSS does generate decreasing chunk sizes, the consistently decreasing chunk size
results in different chunk sizes for different workers. In order to create more symmetrical
tasks among the workers, the factoring [13] scheme generates chunk sizes in batches. This
way if there are P workers, there will be P tasks generated with the same size every batch.
this consistent chunk size within the same batch of tasks removes a large source of load
imbalance between workers as opposed to a scheduling scheme that does not use batches. In
this Thesis, the FAC2 scheme is used, which results in chunks with half the size of factoring.

R,
KFAC? = [mhfzmodp =0 (4.7
KFAC? = KFAC otherwise (4.8)
R; = N — £iZ{ kA (4.9)

4.2.6 Trapezoid Factoring Self-Scheduling

In order to benefit from calculating batches of equal sizes as seen in factoring, but at
the same have a consistently decreasing chunk size, Trapezoid Factoring Self-Scheduling
(TFSS) combines both the concepts of factoring and trapezoidal self-scheduling to result in
chunk sizes in batches that also decrease at a constant rate.

i+P

Ejii Kijs1S s
#zfzmodP =0 (4.10)
KIFPSS = KTSSotherwise (4.11)

TFSS _
KTFss =

4.2.7 Fixed Increase Self-Scheduling

All of the scheduling schemes mentioned up to this point operate on the principle of
decreasing chunk sizes. When using Fixed Increase Self-Scheduling the opposite concept is
applied. Chunk sizes start at a relatively small point and increase as the program executes.
The goal of the increasing chunk size is to avoid the large scheduling overhead at the end

of a programs execution due to the excessively small chunk sizes generated when using a

Methodology 20

decreasing chunk size. This scheduling scheme is designed for distributed-memory systems
which suffer from greater scheduling overhead due to the fact that task stealing happens
over the network. Even though the scheme is designed with distributed-memory systems in

mind, it is included in this Thesis in order uncover a possible benefit on NUMA systems.

2x N x (1-5E2)
K,FISS — K,FISS 2+B 4.19
% i—1 ’— PXBX(B—]_) -\,where ()
N
K§5% = ——— (4.13)

(2+B)x P

4.2.8 Variable Increase Self-Scheduling
Similar to how factoring decreases the chunk size in batches, VISS is a scheduler with
increasing chunk sizes that schedules chunks in batches. This combines the advantage of

more symmetrical queues from factoring, with the potential idea of increasing chunk sizes
from FISS.

VISS viss | KPS
K; =K,/ 7"+ TzfzmodP =0 (4.14)
K159 = KY1SSotherwise (4.15)
N
KY1SS = — — 4.1
0 (2+B)x P (4.16)

4.2.9 Performance-Based Loop Self-Scheduling

Since DAPHNE runs on many different systems with different characteristics, it is
beneficial to also offer scheduling techniques that can dynamically adjust to system and
application characteristics. In Performance-based Loop Self-scheduling, the work is divided
into two parts, with the first being scheduling with a static chunk size, and the second
scheduled with GSS. The size of the first part relative to the second is based on a Static
Workload Ratio, which is unique to each system and is computed beforehand in a separate

execution of the application.

N x SWR
KPS = XTifRi > N — (N x SWR) (4.17)
KPS = KG9 otherwise (4.18)
T .
SWR= "%~ 4.19
Tmam ()

4.2.10 Probabilistic Self-Scheduling

While all of the previous scheduling schemes have precise input data, there may be
utility to using approximations of data such as the number of idle workers. In Probabilistic
Self-scheduling the average number of idle workers over a given time period is used to
determine the chunk size. The calculation for the chunk size used in this case is similar to
GSS, however in this case only the number of idle workers is counted, instead of the total

workers.

Methodology 21

R;

KP9% —[—
’ [1.5 x P,

] (4.20)

4.2.11 Modified Fixed-Size Chunk
The Modified Fixed-Sized Chunk scheduler is very simple to implement, as the chunk

size only needs to be calculated once and then chunks can easily be scheduled with said chunk
size. In MFSC, the a chunk size is calculated where the number of chunks will be equal to
the number of chunks generated when using factoring. In the DAPHNE load partitioner,
this chunk size is calculated using the formula below, where IV is the input size and P is the

number of Workers.

In(2) x (N + P —1)
P x In(FE=1)

S=7T] (4.21)

22

Methodology
(a) Static (b) Self-scheduling (¢) Guided
.
]
N =
; llin
N '] ENEEEEEEEEEEEEEEEENE N I
T T T T T
1 P 1 N 1
Chunk Number Chunk Number Chunk Number
(d) Trapezoid (e) Factoring (f) Trapezoid Factoring
N N N
2P 2P 2P
E E E
ol ol III“'IIIIIIII ol IIIII'IIIIIIIII
; ; ;
1 1 1
Chunk Number Chunk Number Chunk Number
(g) Fixed Increase (h) Variable Increase (i) Performance-based
2 2
= 5
& 5
3 3 |||II|
ol Y T
T T T
1 1 1
Chunk Number Chunk Number Chunk Number
(k) Modifed Fixed-Size Chunk (1) mStatic

(j) Probabilistic

=
I

h

&
=

Chunk Size

T
P

Chunk Number

=3

,
““““““““““ 1 1nm
04
1 P 1

1

Chunk Number Chunk Number

Figure 4.3: Visual overview of scheduling techniques and the respective chunk sizes

(Chunk sizes approximated for visual effect)

Methodology 23

4.3 Fused Kernels
In the DAPHNE vectorized execution engine, when the output of one operation is di-
rectly input into another operation, the two operations can be fused together and vectorized

as if it were a single operation. This improves performance by reducing the overhead needed

to accumulate the outputs of one operation and the setup needed for the second operation.

2

44

36
28

} Task: EwMatMul + AggRow
< > Aggregnte
Outputs

[Task: EwMatMul 4+ AggRow

20

Figure 4.4: Multiple kernels fused and vectorized by row (Chunk size of 2)

4.4 Work-Sharing

A work-sharing scheduler is a scheduler in which a central entity assigns tasks to
workers. In practice, this is generally implemented by a single-queue with a shared lock
that all workers and dequeue tasks from. This is generally the simplest shared-memory
scheduler to implement as it does not involve any work-stealing or victim selection logic.
The downside of work-sharing scheduler is that it is more difficult to implement locality-

aware schedulers.

4.5 System Architecture

Historically computing systems have been improving via an increase processor clock
speeds. According to Moore’s Law, these clock speed were expected to increase linearly
with respect to time. Since the time it takes for an electric signal to reach it’s destination is
limited by the speed of light, there is a limit to how large a CPU can be built before delays
are introduced in the internal connections. Due to the fact that higher clock rates generally
require higher voltages, and there is a limit to how much thermal density can be packed into
a limited space, the improvement in clock rate has largely plateaued. In order to improve
performance, applications must now be parallelized and executed on shared-memory multi-
processor systems and distributed-memory multi-node systems. While a multi-processor
system has the advantage of offering more computing power without the need to coordinate
the sending of data in memory, the fact that the memory is not longer accessed uniformly
creates new challenges that scheduling systems must take into account. Systems that have
more than one path to access memory are referred to as Non-Uniform Memory Access
(NUMA) systems. An example of a possible NUMA system architecture is depicted in
Figure 4.5 below.

Methodology 24

4.5.1 NUMA System Topology
Both test systems are configured with Intel CPUs from the Broadwell and Casecade

Lake family, respectively. The system topologies are similar, apart from the difference in
generation. While the Broadwell architecture uses a “ring” bus to access the L3 cache and
memory interfaces, the Casecade Lake family has a “mesh” architecture which allows for
a quicker route with less hops to get to the destination cache line or memory address. In
addition, the Cascade Lake architecture has three interconnect links as opposed to two in
the Broadwell architecture. These factors would theoretically result in a larger performance
improvement in the Per-Core results for the Cascade lake test system over the Broadwell
test system.

Even though these are shared-memory systems in which every memory page is available
to every processor, the access times are not uniform. The latency of a memory access to
a remote memory node is generally considered to be twice as high as a local memory node
access. In interesting effect that occurs due to the fact that the interconnect bus is separate
from the memory controller for local memory is that there are situations where accessing
local memory and remote memory at the same time results in a higher memory bandwidth
than only accessing local memory, since the bandwidth of the local memory controller and
the interconnect link can both be fully saturated simultaneously. However, since all the tests
performed in this Thesis utilize all of the available CPUs on the system, this effect would
not become apparent in this Thesis.

NUMA Domain 0 NUMA Domain 1

Core 0 Core 3 Core 4 Core 7

Thread Thread Thread Thread

Thread Thread Thread Thread

2 2 1 2 L2

H
I
H
H
I
H
H

Core 1 Core 2 Core 5 Core 6

Thread Thread Thread Thread

Thread Thread Thread Thread

H
=
H
I
H
I
H
r1II
=

2 1 2 1 2 L2

‘ L3 Cache ‘ ‘ L3 Cache ‘
Memory Controller Interconnect Interconnect ‘ Memory Controller
Node 0 Local Memory Node 1 Local Memory

Figure 4.5: System Topology

Memory pages that are requested and reside on the local memory connected to the
requesting processor are referred to as local requests. Memory pages requested from any
other memory node are referred to as remote requests. Remote requests are more costly
in terms of performance since the requests but first be directed to the respective CPU,
and the other CPU must then handle that memory access request. Essentially, the request

must be handling anyway, but if it is a remote request then the inter-socket communication

Methodology 25

overhead is adds to the access time in addition to the standard memory access time. The
exact amount of this additional overhead can be interred by the memory interconnects speed
and latency. The two infrastructures used in this Thesis, Intel Broadwell and Intel Cascade
Lake, which use Intel QuickPath [16] and Intel Ultra Path [21] interconnects, are listed in
Table 4.1 with their respective bandwidth specifications.

Table 4.2: Test hardware memory interconnect specifications

Test System Broadwell Cascade Lake
Interconnect | Intel QuickPath Interconnect | Intel Ultra Path Interconnect
Clock Rate 4 GHz 5.8 GHz
Transfers/Hz 2
Transfer Rate 8 GT/s [15] \ 10.4 GT/s [22]
Link Width in Bits 20 [16]
Interconnect Links 2 [15]
Payload/Link width 16/20 [16]
Bits/Byte 1/8
Total Bandwidth 32 GB/s \ 41.6 GB/s

These values should provide an upper-bound on the performance improvement that
can be achieved by optimizing the data locality of tasks on the above mentioned shared-
memory systems. With regards to the bandwidth specifications above, overhead caused by
the "Home Snoop” procedure and the fact that an memory line with a minimum size of 64
bytes must be retrieved each time would further reduce the practical link bandwidth, so a
lower performance improvement than this upper-bound is to be expected. More complex
topologies such as the 2-socket/4-chip AMD Magny Cours [24] are also used in this context,
but will not be analysed in this Thesis.

4.5.1.1 First-Touch policy

On a system with non-uniform memory access, the operating system makes decisions
on how to best utilize the memory topology available. Possible strategies to maximize the
effectiveness of non-uniformly accessed memory is to either ignore it’s existence altogether
and treat it as a normal uniform memory system, stripe the memory addresses between the
NUMA domains so that consecutive data is forced to be distributed evenly among the NUMA
nodes, or to manage the memory in a NUMA-aware manner. The Linux operating system
uses the first-touch policy to decide where to allocate memory for a virtual address [18]. Tt
is important to note that it is this policy only takes effect when the memory in question is
”touched” or written to. Not all programming instructions that are intuitively thought to
allocate memory actually touch the page of memory in question upon invocation.

For a single-threaded application this concept is quite simple, as it is clear in which
NUMA domain the memory address will be allocated in. However in an application where
multiple threads located in different NUMA domains access the same memory address, am-
biguity is introduced and it can often not be predicted where the memory will be allocated to
before the program executes. In Linux 3.8 there was development on a framework that au-
tomatically migrates memory pages from one NUMA node to another when the appropriate

opportunity arises [18].

Methodology 26

4.5.2 Simultaneous Multithreading

Simultaneous Multithreading, also commonly referred to as hyperthreading by Intel,
is a technique that some hardware supports in order to improve performance in certain
situations. As clock speeds have reached physical limitations, this technique allows for
multiple hardware contexts to be to run in parallel on a single core without having to
duplicate all of the hardware on the core. The concept is to duplicate certain elements of
processing units, namely the computing elements, while still sharing functional units of the
processor cores. This is a clever method of increasing the logical throughput of computing
hardware without having to duplicate entire processor cores.

Due to the additional functional units, many small operations can be executed in
parallel and it can be beneficial to utilize these additional functional units, as they essentially
result in a latency-hiding technique [30], however the increased usage of the L2 and L3 cache
may outweigh these benefits and result in a performance regression. It can be difficult to
determine if utilizing these threads is a net gain or loss in performance before a program
is executed, which is why most computing resource providers recommend benchmarking
the application in question with both configurations first [11]. Generally applications that
suffer from memory stalls, wrong branch predictions, or unbuffered file I/O benefit from
simultaneous multithreading. Since implementation of multiple task queues in this Thesis
queries the system topology anyway to allow for the prioritized work stealing, the option to

utilize simultaneous multithreading is exposed to the user.

4.6 Work-Stealing

Worker Worker Queue Worker
Queue

Worker Worker Queue Worker

Queue

Worker Worker Queue Worker
Queue

Worker Worker Queue Worker

(a) Central Queue (b) Per-Group Queues (c) Per-Core Queues

Figure 4.6: Queue Allocation Schemes

4.6.1 Serializing Work Stealing

Dequeue and enqueue from bottom of deque, steal from top of other deques.

Since a task that is added to a queue is fresh in in the cache of the worker that added
it to the queue, it would be advantageous for that same worker to dequeue and execute it.
For this reason, worker enqueue and deque to the bottom of the double-ended queues. Since
this advantage does not apply to other workers due to their cache being separate, other
workers will dequeue tasks from the top of the queue in order to leave more fresh tasks for

the enqueueing worker that can claim an advantage from them.

Methodology 27

TQ TQ TQ TQ

[] [] [] [1

l Worker }<— l Worker ‘ l Worker ‘ l Worker ‘

Figure 4.7: Serializing Work Stealing

4.6.2 Eager Binary Splitting

When partitioning work using a tasking scheduler, the load partitioner must determine
the upper and lower bound indexes of the input data that each task will represent. In
serializing work stealing, one large task with a upper and lower bound encompassing all
of the input data is created, and workers ”split” off a single iteration at a time when task
stealing. Instead of splitting one unit of work at a time, Eager Binary Splitting splits the
stolen task into two equal halves, with one half remaining as a task on the victim’s deque,

and the other half executed by the initiator as a new task.

Original Task

New Task New Task

New Task New Task New Task New Task

SStIIIIIIIIIIIIIIII (R R NRENRENENEENRENINRNNNNINNNNENNNNN,]

Figure 4.8: Eager Binary Splitting

In order to prevent task from being continuously split until the task size is 1, effectively
resulting in serializing work stealing, a stop splitting threashold is set which sets a minimum
task size after which tasks will no longer be split [34]. In addition to the static partitioner
method with a set sst there is also an auto partitioner concept in which the sst is dynamic
depending on the number of workers.

Eager Binary Splitting is an effective concept to quickly partition load among any num-
ber of queues in a work stealing system. However, since in DAPHNE the load partitioning
is centralized by the Multi-threading wrapper, the input work can directly be split among
the queues without the need for stealing. In addition, since the number of queues is known
by the multi-threading wrapper at the time of load partitioning, the work can directly be
split according to the scheduling scheme selected by the user in the program arguments.
When using the pre-partitioning argument the segments can then be split again, all within

the wrapper.

Methodology 28

4.6.3 Hierarchical Work Stealing
While Serializing Work Stealing and Eager Binary Splitting determine how many tasks

to steal, or respectively what to do with a task while it is stolen, it is also important to
take into account the architecture of the system that the parallel application is running
on. Whether it is the network structure on a distributed memory system, or the memory
architecture of a NUMA system, the additional time that it takes a task to run due to
the system hierarchy can be minimized when deciding victim queue to steal from. One
implementation of a hierarchical system is Multi-Threaded Shepherds, where one workers
from every domain is a selected to be the Shepherd who is responsible for stealing tasks for

all workers in its domain.

4.6.4 Victim Selection

Work stealing schedulers have to make a decision on which victim queue to steal a task
from. Research in this area generally points to two strategies, sequential and random victim
selection. Although many papers make the case for sequential or random victim selection
in distributed memory environments, the same arguments can also be made for a shared
memory environments.

The logic that a worker follows to execute tasks without work stealing is very simple.
The worker simply dequeues a task and executes it, if the task that is returned from the
queue is blank (referred to as EOFTask in this Thesis and in the DAPHNE source code)
then that worker is completed and can join the barrier. The logic workflows described in
this Thesis are in part inspired by the task stealing logic from the LLVM OpenMP Runtime
System [20].

Another decision that work-stealing schedulers make is whether to stick with the same
victim after a successful steal, or to select a new victim each time, regardless of whether the
previous steal was successful or not. In (citation) the implementation changed the victim
each time in order in attempt to balance the load more evenly, however the authors noted
there a potential where sticking to the same victim after a successful steal would improve

performance.

Worker w Start

Dequeue task from w

Execute task Worker Complete

Figure 4.9: Worker task execution logic without work-stealing

Methodology 29

4.6.41 Sequential

In sequential victim selection a worker searches for victim queues in a round-robin
fashion starting at their own position in the system topology. An advantage of this method
is that queues that are close to the initiator, or at least numerically above the initiator,
will naturally have a priority to be chosen as a victim queue. In [25] victims are skipped
regardless of whether the steal is successful or not in order to provide more scheduling
deterministic behavior. In the implementation for this Thesis, victim’s are only skipped

after a failed steal, as it simplifies the implementation of the termination algorithm.

Worker w Start — i++

Dequeue task from w

“ . Dequeue task
xecute tas from w+i%q

Execute task — Worker Complete

Figure 4.10: Worker task execution logic with sequential victim selection

In this implementation, the termination is simply after one pass has been made through
all of the possible queues. This simple algorithm does not require any writes to memory to

keep track of which queues are closed or still open, other than the incremented variable i.

Methodology 30

4.6.4.2 Sequential Prioritized

In order to preserve data locality between NUMA domains when possible, and to
prevent inter-socket communication, queues from the same domain can be prioritized [6].
This makes the work stealing logic slightly more complicated, as a comparison needs to be
made to check whether a potential victim queue is in the same domain first, however this
comparison does not require taking the lock of the potential victim’s queue so that extra
overhead added should be minimal. In Figure 4.11 this is done using a simple incrementing
variable i. When i reached its original position again, a steal has been unsuccessful on every

available queue, so the worker is complete and can join the barrier.

Worker w Start — i++ — i++

Dequeue task from w

Dequeue task

Execute task from w+i%q

Dequeue task
from w+i%q

Execute task

Execute task — Worker Complete

Figure 4.11: Worker task execution logic with prioritized sequential victim selection

Methodology 31

4.6.4.3 Random

While a sequential victim selection algorithm is already very efficient, there is research
that indicates that a random victim selection can improve performance even further. In [25]
the random victim selection algorithm is compared to a sequential reference implementation
and a large decrease in the number of failed steal attempts was observed, in some cases this
also translated to an improvement in performance. This can be explained by the sequential
algorithm resulting in a large number of failed steal attempts while traversing from the
initiating worker to the victim that results in a successful steal. If the input data results in
load imbalance that is clustered in regions, then a random victim selection will arrive at the

a victim in the optimal region quicker.

Worker w Start 1 Execute task

swap(i, t)
i — —

Dequeue task from w

Execute task L—— Dequeue task from t

|

i=P t=rand(i)

Worker Complete

Figure 4.12: Worker task execution logic with random victim selection

As seen in Figure 4.12, the downside of using a random victim selection algorithm is
the additional overhead caused by generating a random number each time a steal attempt
is made, and also the requirement to keep a register of which queues have been completed.
This latter overhead can be minimized by keeping the list local to that worker’s memory,

however it still results in additional reads and writes to memory.

Methodology 32

4.6.4.4 Random Prioritized

Similar to the “Random” implementation, the Random Prioritized implementation
also requires keeping a register of which CPU cores have empty and closed queues and
which ones still have the possibility of having tasks in their queue. However, in this case
two registered must be kept, so in the worst-case the overhead caused by this bookkeeping
could double in comparison to the standard random implementation. In practice the cost

of keeping these registers on a shared-memory system should be minimal.

Worker w Start 1 Execute task

swap(i, t)
i =1i—-1

Dequeue task from w

Execute task L—— Dequeue task from t

|

i=P t=rand(i)

swap(i, t)
i =i—1

Execute task

Dequeue t=rand(i) — i>0

Worker Complete

Figure 4.13: Worker task execution logic with prioritized random victim selection

Methodology 33

4.6.5 Multi-Threaded Shepherds

While a simple work-sharing architecture with a single queue provides for optimal load
balancing, and a work-stealing architecture with multiple queues provides for optimal data
locality, a compromise can be made between the two by grouping workers utilizing work-
sharing inside the groups while employing work-stealing between the groups. Previously in
this Thesis there are examples of work-stealing with one queue per CPU socket, however in
the the previous examples any worker was able to steal from any other worker. To optimize
communication between the groups, one worker from each group can be assigned as the
Foreman (Also referred to in the literature as Shepherds) of that group. The foreman is
responsible for stealing tasks and enqueueing them onto the queue for that group. This
limits the work stealing activities to only one worker per group and prevents unnecessary

communication overhead.

Foreman Work Stealing Foreman
‘Worker Worker
Queue Queue
Worker Worker
‘Worker Worker

Figure 4.14: Multi-threaded Shepherds Architecture

The downside of this hybrid work-sharing and work-stealing implementation, which is
a type of Hierarchical, is that it adds a new layer of overhead to the application, as tasks now
have to be dequeued from the victim queue, enqueued into the initiating foreman’s queue,
then dequeued and executed by the worker. The new addition overhead can be minimized
by stealing a vector of multiple tasks. The optimal size of this vector is found in [6, p. 35]
to be half of the available tasks on the victim’s queue in the context of distributed memory
systems. Intuitively, on shared memory systems the optimal amount would be slightly lower.
For the purposes of this Thesis, a value of one-half is used in the multi-threaded shepherds

experiments.

Methodology 34

4.7 Multi-threading Wrapper

When one or multiple operators in the DAPHNE DSL can be vectorized, they pass
through one or multiple ”lowering passes” and become instructions in the DAPHNE IR. Here
the corresponding kernels are found and function pointers to the respective apply functions
are created. The function pointers, along with the corresponding splits (rows, columns,
or scalars) are passed to the Multi-threading wrapper. The multi-threading wrapper is an
abstraction that distributes the work without regard to what functions are called, how the

data is split, or how many kernels are called in one vectorized pipeline.

Dequeues tasks from
Worker Task Queue

Total length Enqueues tasks into
MTWrapper

Chunk sizes Creates
Load Partitioning Task

Figure 4.15: Architecture of the DAPHNE Multi-threading wrapper

The multi-threading wrapper is the central point that handles all the objects required
to parallelize a vectorized pipeline. When it is called, the function pointers, resulting variable
pointers, input data pointers, number of inputs, and number of outputs are passed to the
multi-threading wrapper. It will then create a load partitioning object which will generate
the chunk sizes used for the lower and upper bound values of tasks. Then one or multiple
queues are created and workers are started with their respective queues. One the workers
are ready tasks are created and added to the respective queues which the workers can deque

from.

Methodology 35

4.8 Vectorized Engine Trace Files

In order to diagnose slow performance in the vectorized execution engine, I added hooks
in the code at the pointers where both the Multithreaded wrapper and tasks start and end.
These hooks record timestamps and save them to a vector in the DAPHNE context, which
can be printed to a file at the end of the program’s execution. When these timestamps are
plotted against time, a trace plot can be generated such as the one below. In this plot, the
dark grey boxes in the background show instances of the Multithreading Wrapper, while the

white rectangles show the executions of individual tasks.

Worker Number
-3
|

T T T T T T T T T
10 10.02 10.04 10.06 10.08 10.1 10.12 10.14 10.16 10.18 10.2
Program Execution Time (Seconds)

Figure 4.16: Task trace of a multithreaded vectorized pipeline execution in DAPHNE

The task trace plot shows weak points in the runtime scheduling system. For example,
the grey area on the right side of the plot show how long workers are idle after executing
their tasks, which is the load imbalance. Empty areas in between tasks show the time lost
due to scheduling overheads such as context switching. However one aspect that must be
recognized when designing a scheduler which is now display in this plot is the time lost
due to non-optimal data locality. If a task is executed by an execution unit that does not
have the data ready in cache, which another execution unit theoretically would have had
the relevant data in cache, the task would take longer, but this type of plot does not make

the reason for this longer execution time apparent.

Methodology 36

4.9 Design of Factorial Experiments

All experiments were performed on the University of Basel miniHPC cluster on node001
and node027. Jobs were dispatched using Slurm and the execution times of the core algo-
rithm were measured using the now() function within DAPHNE DSL which is printed to
standard output which is then saved to the filesystem by Slurm. Each experiment configura-
tion is executed 20 times as a Slurm Arrayjob and the mean result is reported in chapter 5.
In order to satisfy various dependencies required by DAPHNE, all experiments are launched

inside a Singularity container built from a Ubuntu 22.04 recipe. The standard deviations of

the runtimes for each experiment are reported in Appendix A.

Table 4.3: Design of Experiments, Resulting in a Total of 11,000 Experiments
Factors Values Properties
Applications Connected Components algorithm Amazon product co-purchasing network

Amazon0601.txt: scale factor 50
20,169,700 Nodes, 8.26% Sparsity

Scheduler Type

Work Stealing
Multi-threaded Shepherds

Any worker can steal from any queue
No further configuration

Task Assignment

Queue Layout

Centralized Queue
Per-group Queues
Per-thread Queues

One queue for the entire node
One queue per NUMA-node
One queue per processor core

Victim Selection

Sequential

Sequential Prioritized
Random

Random

Workers pick victim queues in sequentially
Sequential prioritizing same group
Workers randomly pick victims

Random prioritizing same group

Further Arguments

Cyclic Assignment
Pre-partition

Tasks assigned to queues cyclically
Use two levels of load partitioning

Partitioning Scheme

Static

Guided Self-scheduling

Trapezoid Self-scheduling
Factoring (FAC2)

Trapezoid Factoring Self-scheduling
Fixed Increase Self-scheduling
Variable Increase Self-scheduling
Performance-based Self-scheduling
Modified Static

Modified Fixed-Size Chunk
Probabilistic Self-scheduling

Entire workload divided evenly into P tasks
Remaining tasks divided by workers
Progressively smaller tasks enqueued

Tasks half the size of Guided self-scheduling
Chunks half the size of GSS

Chunks of increasing size

Similar to FISS

Uses a workload ratio to compute chunk
Uses chunks one quarter the size of the Static
Chunks a fixed size based on an equation
Uses CPU idle time

Computing Nodes

miniHPC-Broadwell

Intel E5-2640 v4
P=20 (2x10), hyperthreading disabled

miniHP C-CascadeLake

Intel Xeon Gold 6258R
P=56 (2x28), hyperthreading disabled

Repetitions

20

Results

For the connected componenets application, the Stanford SNAP Amazon product co-purchasing
network dataset is used. This dataset was collected by scraping the ” Customers Who Bought
This Item Also Bought” feature of the Amazon website. According to the SNAP website,
”If a product i is frequently co-purchased with product j, the graph contains a directed edge
from i to j” [19]. This dataset contains 403,394 nodes and 3,387,388 edges, resulting in a
density (sparsity) of 0.002%. The dataset first parsed using a python script that converts
all directional edges into non-directional edges and output the edges in COOFormat, which
is compatible with the sparse matrix reader in DAPHNE. In order to increase the execution
time of the microbenchmark, a scale factor of 50 was also applied to the source dataset,
which resulted in an input matrix of 20,169,700 nodes and 244,340,800 directional edges.
This scale factors resulted in program execution made up of approximately 90 seconds of
file I/O and 10 seconds of parallel computation.

For each test system, the first experiment is a Work-Stealing setup with either per-
Node, per-Group, or per-Core queue allocations. For each of these queue allocation the
victim selection options sequential, sequential prioritized, random, and random prioritized
are tested. Then, for each of these permutations all 11 available load partitioning options
are also tested. FEach of these experiments are repeated 20 times and the mean value is
reported in the tables below. There is one unified color scale for the Broadwell test system
and one unified color scale for the Cascade Lake test system.

These experiments are then repeated with the —pre-partitioning option enabled, which
splits the incoming work in to sections for each queue, before applying the load partitioner
to created chunks of various sizes. This option is expected to increase data locality which
would theoretically reduce the number of cache misses and memory accesses through the
socket interconnects. However, this split before the load partitioner is applies also results in
smaller chunk sizes for the same experiment with the option disabled, since the input size as
seen by the load partitioner is smaller, which resutls in smaller chunk sizes being generated.
This additional effect can also affect the resulting runtimes because the smaller chunk sizes
could reduce load imbalance in the program’s execution. It is difficult to isolate the effects
of the data locality and the effects from load imbalance when only the program runtime is

available and this must be taken into account when interpreting the pre partitioning results.

Results

38

5.1 Broadwell

5.1.1 Work-Stealing

Sequential

[
2 Sequential Prioritized

“
5 Random

s}
Random Prioritized
Sequential

=
8 Sequential Prioritized

<
o} Random

[

Random Prioritized
Sequential
a

Sequential Prioritized

Random

Per-Core

Random Prioritized

Figure 5.1: Results from Work-Stealing Experiments: Broadwell

STATIC GSS
13.71 13.56
13.89 12.96
142 13.24
14.2 13.36
13.9 13.75
14.24 13.23
13.63 13.27
14.3 13.54
13.71 13.72
13.8 13.79
13.11 13.92
13.58 13.51

TSS
13.35
12.87
12.63
13.58
13.28
13.62
13.38
13.52
13.52
13.04
13.65
13.45

FAC2
12.68
12.9
12.64
13.03
12.96
12.93
12.92
13.29
13.16
13.35
13.85
13.04

TFSS
12.54
12.52
12.2
12.43
13.14
13.43
13.18
13.18
13.57
13.85
13.51
13.39

FISS
13.92
13.8
14.09
14.03
13.98
14.39
14.23
14.34
13.68
13.75
13.28
13.91

VISS
12.53
12.87
12.37
12.28
13.33
13.51
13.08
13.54
12.1
13.01
12.64
12.17

PLS MSTATIt MFSC

13.32
12.97
13.15
13.4
13.22
13.59
13.19
12.82
13.24
13.41
13.41
13.97

13.1
13.31
13.05
13.61
14.17
14.15
14.41
14.18
13.22
13.42
13.09
13.55

11.83
11.84
11.86
11.71
13.16
12.76
13.27
13.19
12.4
12.88
12.57
12.25

PSS

12.72
13.09
13.25
12.93
13.27
13.39
13.76
13.49
13.83
13.63
13.84
13.75

]

11.22

14.41

In this experiment all possible permutations of scheduling techniques, queue alloca-

tions, and victim selection techniques are measured separately with 20 repetitions each.
Static, FISS, and MSTATIC performed the worst while MFSC and VISS performed the

best. For input dataset of this size Static was expected to perform the worst since it has

the highest load imbalance. The large difference in performance between FISS and VISS is

an interesting result as they result in similar patterns in chunk sizes. The number of queues

had a greater effect when using some scheduling schemes than on others, with the per-Core

option performing better or worse than the other queue allocation schemes depending on

the scheduling scheme. The victim selection algorithm did not have as large of an effect as

the other factors, which can be explained by the input data not having a significant inherent

load imbalance which results in most of the tasks being executed before task stealing takes

effect.

Results 39

5.1.2 Tiling

STATIC GSS TSS FAC2 TFSS FISS VISS PLS MSTATItMFSC PSS
Sequential 13.26 12.47 12.67 12,52 12.69 13.59 12.1 13.11 13.45 11.39 13.05

:‘; Sequential Prioritized = 13.49 12.59 1253 12.1 12.73 13.63 12.21 13.18 1345 11.82 12.7
é Random 13.19 124 12.62 13.1 12.6 13.83 12.36 1248 13.41 11.51 133
Random Prioritized 13.33 12.71 12.76 12.62 12.15 13.14 1243 12.95 13.16 11.85 12.56
Sequential 13.24 11.89 11.63 11.66 11.6 12,5 11.59 12.71 12.32 11.53 12.16

gSequential Prioritized 13.45 11.97 115 11.89 114 1272 11.61 11.89 11.93 11.23 11.73
E Random 13.52 12.18 11.85 11.56 11.8 1242 11.56 11.94 12.2 11.3 12.61

Random Prioritized 12.7 12.02 11.99 11.51 11.22 1237 11.33 1237 11.94 11.23 11.8
Sequential 12.63 12.32 12.71 13.45 13.2 1256 13.27 13.53 13.14 13.24 13.15

Sequential Prioritized 12.39 12.34 13.11 1298 13.11 13.23 126 13.79 13.12 13.48 13.21
Random 12.92 1248 1289 1287 12.93 13.6 13.2 13.67 13.15 13.97 13.24

Per-Core

Random Prioritized 12.26 12.47 12.96 12.96 13.49 13.45 13.21 13.0 13.07 14.11 13.53

I]
11.22 14.41

Figure 5.2: Results from Partitioned Work-Stealing Experiments: Broadwell

Adding the —pre-partitioning option greatly improved the performance when using one
queue per group, which in this case is a CPU socket. This indicates either a large advantage
to having tasks in consecutive order among Cores that share the same L3 cache, or a large
advantage stemming from a smaller chunk size. The central queue per node did not show
any significant differences in this experiment than the previous, which is to be expected as

the pre-partitioning option has no effect in this case.

5.1.3 Hierarchical

STATIC GSS TSS FAC2 TFSS FISS VISS PLS MSTATI(MFSC PSS
Broadwell 13.86 13.4 12.72 13.33 13.15 13.14 11.89 12.78 12.17 11.73 12.93

I]
11.22 14.41

Figure 5.3: Results from Hierarchical Work-Stealing Experiments

In this experiment one queue is allocated for each processor and only one Core on each
processor is assigned to be the Foreman, who is the only worker who is allowed to steal
tasks from other queues. This resulted in similar performance to the per-Node option in the
previous experiment, indicating that it does not add as much overhead due to lock contention
as the other two options in the previous experiment. The best performing techniques in
this experiment are VISS and MFSC, which can be explained by the hierarchical nature
exploiting the benefits of a smaller chunk size while avoiding the excess overhead due to

queue lock contention.

Results 40

5.2 Cascade Lake
5.2.1 Work-Stealing

STATIC GSS TSS FAC2 TFSS FISS VISS PLSMSTATItMFSC PSS
Sequential 17.36 17.27 17.05 16.43 16.51 16.48 16.47 16.84 16.56 17.18 17.01

;; Sequential Prioritized 17.83 17.45 16.58 16.68 16.72 16.9 16.32 17.44 16.81 16.34 17.08
E Random 17.68 1731 16.27 17.24 16.64 16.81 15.78 17.39 16.88 16.59 17.79
Random Prioritized 17.04 16.9 16.58 16.88 16.66 17.04 1581 16.74 16.74 16.66 17.72
Sequential 17.59 17.97 17.34 17.65 1744 1691 16.03 17.28 17.7 16.37 17.89

gEEequential Prioritized 17.85 17.19 17.19 17.29 16.89 17.32 16.25 17.8 17.55 16.48 17.99
E Random 17.36 17.29 1744 1724 1711 17.26 16.2 17.82 17.34 16.71 17.8

Random Prioritized 17.46 17.8 1732 1741 1745 1737 16.3 17.67 17.13 16.24 18.03
Sequential 17.08 17.33 16.33 16.05 16.53 16.41 15.98 17.21 16.35 16.1 16.98

Sequential Prioritized 17.46 16.55 16.22 16.54 16.53 16.78 16.0 16.84 16.02 16.11 16.53
Random 17.43 16.98 16.38 16.59 16.84 16.41 16.48 17.08 16.49 16.44 17.43

Per-Core

Random Prioritized 17.36 17.4 16.49 16.8 17.06 16.9 16.55 17.25 16.64 16.32 17.21

\]
15.78 21.25

Figure 5.4: Results from Work-Stealing Experiments: Casecade Lake

Similar to the results from the Broadwell experiment, VISS and MFSC perform the
best and Static performed the worst. However in contrast to the Broadwell experiments,
the per-Core queue allocation option showed a more consistent advantage over the other
queue allocations. This could be explained by a larger L1 and L2 cache relative to the
L3 cache, however the Cascade Lake system has more interconnected cache lines in the
microarchitecture than the Broadwell system so it is surprising that the per-Core option
performed this much better than the per-Group option. As in the Broadwell experiments,
the victim selection algorithm did not have as great of an effect as any other options which
can be explained by the very low cost of a failed steal attempt on a shared-memory system.

The color scale for the Cascade Lake experiments ranges from 15 to 21 second, which
is over a 30% increase from the Broadwell experiment results. This is interesting as the
Cascade Lake system is a newer generation, has more CPU cores, a faster interconnect, and
faster memory. Since only the execution time of the core connected components algorithm
is measured, a possible network or file I/O bottleneck can be ruled out. This indicates that

there may be a regression due to the number of CPU cores in the system.

Results 41

5.2.2 Tiling

STATIC GSS TSS FAC2 TFSS FISS VISS PLSMSTATItMFSC PSS
Sequential 1825 17.46 17.13 17.31 17.16 17.36 16.74 17.28 17.06 16.46 17.24

:‘; Sequential Prioritized 18.66 17.6 16.84 174 17.04 17.29 16.65 17.29 17.46 16.46 17.24
é Random 18.46 17.85 17.07 1732 17.34 17.03 16.63 17.47 16.93 16.75 17.06
Random Prioritized 18.22 17.72 16.63 17.22 16.75 17.27 16.88 17.21 16.98 16.43 16.63
Sequential 16.92 16.85 16.26 16.18 16.09 16.84 16.27 16.68 16.37 16.52 16.64

gSequential Prioritized 17.52 16.89 16.12 16.38 16.65 16.97 16.54 16.56 16.47 16.59 16.41
E Random 17.33 16.87 16.46 16.62 16.55 17.09 16.24 16.68 16.27 16.59 16.92

Random Prioritized 17.28 16.45 16.45 16.31 16.41 16.57 16.33 16.75 16.56 16.41 16.63
Sequential 17.5 ~ 19.6 18.11 19.92 21.13 17.98 18.84 19.54 18.72 21.03 20.49

Sequential Prioritized 17.86 19.06 18.17 19.78 20.96 18.04 18.44 19.79 1854 20.73 20.45
Random 17.93 19.41 1835 20.46 21.18 18.09 19.15 19.66 18.79 20.95 20.84

Per-Core

Random Prioritized 18.14 19.22 18.59 20.49 21.25 18.12 19.23 19.76 18.8 21.24 21.1

\]
15.78 21.25

Figure 5.5: Results from Partitioned Work-Stealing Experiments: Cascade Lake

Similar to the results from the Broadwell system, the per-group option performed the
best when pre partitioning the work before assigning it to the load partitioners. The per-core
option, however, performed far worse even when the effect is compared to the the per Core
option on the Broadwell experiment results. This would suggest that the per-Core option is

not viable on systems with a large number of cores.

5.2.3 Hierarchical

STATIC GSS TSS FAC2 TFSS FISS VISS PLSMSTATICMFSC PSS
Cascade Lake 17.27 16.72 16.57 16.48 16.56 16.74 16.19 16.44 1591 15.95 16.7

I]
15.78 21.25

Figure 5.6: Results from Hierarchical Work-Stealing Experiments

Similar to the Broadwell results, MFSC and MSTATIC, and VISS performed the best
on the hierarchical setup. On the Cascade Lake test system the hierarchical implementation
resulted in slightly better performance than the baseline centralized queue implementation
for certain scheduling schemes which indicates a potential for hierarchical work stealing

architectures for systems with a high number of CPU cores.

Conclusion

As seen in the program execution time heatmaps, the choice of scheduling algorithm, the
allocation of the task queues, and the victim selection algorithm all have an effect on the
performance of parallelized operations in DAPHNE. The results also varied depending on
the test system and application, so every use-case should be analysed individually. With a
cyclic distribution of tasks the per-group queue allocation resulted in the lowest performance
on both test systems, which would indicate that either the L.1 and L2 cache has a larger effect
than the L3 cache and the cost of an intra-socket memory access, or alternating between
memory sockets for consecutive tasks performs worse than effectively assigning tasks to
workers randomly using a centralized queue. When tiling the input into sections and using
separate load paratitioners for each queue both test systems showed the best performed
with per-socket queues and the worst performance with per-core queues. Since the poor
performance for the per-core queue allocation does not appear in the non-tiling approach, it
must be caused by the resulting smaller chunk sizes, which result in more tasks, which seem
to cause an exponential slowdown when combined with the large number of queues on the
per-core approach. The slightly better performance for the per-socket queues can be caused
by better data locality and cache-awareness across multiple iterations of the components
algorithm, or it can be a propagated effect of the smaller chunk sizes due to there being two
load partitioners instead of one.

The scheduling schemes that are available in the DAPHNE infrastructure seem to
cover a wide variety of situations. The different test systems showing different performance
characteristics highlights the importance of exposing scheduling knobs to the user so that

each application and system can be configured for each use-case individually.

Future Work

Further analysis could be conducted with experiments on additional systems and more
quantitative measurements such as the number of cache misses, the number of stolen tasks,
and the summation of the size of the stolen tasks. Recording the number of cache misses
would further narrow down the cause of the results in this Thesis, and it would reveal
to which extent the results are caused by better cache-awareness and how much can be
attributed to other effects. Recording the number of stolen tasks would reveal to what
extent the low performance results are caused by the victim selection logic, which can cause
high lock contention when applied inefficiently. The number of stolen tasks can also be
divided into the number of successful and failed steal attempts. The total cumulative task
size stolen would provide a metric for how much load imbalance an application would have
had if work stealing was not applied, similar to looking at a task trace profile.

In order to evaluate the results of the queue allocation configuration and the results
from the different chunk sizes calculated using the scheduling scheme separately, further
experiments could be conducted with fixed chunk sizes. Even though there are fixed-sized
chunk scheduling schemes used in this Thesis, the calculation of the chunk size is dependant
on the input parameters. Experiments with globally fixed size chunks can offer comparisons
between various queue configurations while eliminating chunk size factors. Since the com-
ponents microbenchmark involved file I/O, which in this case likely occurred in full by one
thread, there can be theoretically be a further reduction in the number of cache misses and in
turn an even larger increase in performance by intelligently distributing the file I/O among
the memory domains. The readMatrix operation could split the file input operations evenly
among threads across the NUMA domains, which can then be respected when assigning the
further tasks to the workers across the NUMA domains. Depending on the implementation,
the file I/O operations could even be fused with the calculation kernels. This would result
in an improvement in memory access throughput and latency as it would reduce the use of
the memory interconnect and it could also result in fewer cache misses, even for the first
computation iteration directly after the file I/O.

As seen in the task trace plots, each operation is vectorized through the multithreaded
wrapper separately. The configured options such as the scheduling technique, minimum

chunk size, and number of threads is only provided once for the entire application. Since some

Future Work 44

operations behave differently than others, it can be profitable to customize the scheduling
behavior depending on the operation at hand. In the examples in this Thesis, the transpose
operation seems to execute the fastest, while the fused operators that execute many kernels
take orders of magnitude longer. A compensation factor for each kernel could be added to
take this discrepancy into account. Another possibility to ease this discrepancy would be
to add scheduling hints on a per function basis directly in the DAPHNE DSL, so that the
programmer can optionally add what they believe would increase performance directly while
writing the DAPHNE application. However, since only function pointers to the compiled
operations are passed to the multithreaded wrapper, this can prove difficult to implement.

The execution trace plots proved useful to debug slow performance in the vectorized
execution engine, as it shows the number of idle workers caused by load imbalance at the
end of a program’s execution. These plots can be further extended with the names of the
kernels and the data type that each kernel is called with.

Another aspect that was not tested in this Thesis is the effects of simultaneous multi-
threading has on the performance of per-group and per-core queues. Since certain applica-
tions, particularly applications with sporadic file or network I/O can benefit from simulta-
neous multithreading but would in turn suffer from a busier 1.2 and L3 cache, the per-core
queue option could become a more viable option to more effectively make use of this busier
cache.

In summary, the DAPHNE infrastructure can greatly benefit from work-stealing task-
based scheduling techniques to improve memory access times, reduce cache misses, and
rearrange work resulting in an increase in performance. Future work parallelizing further
operations and offering more fine-tuned scheduling configurations has the potential to im-

prove performance when processing integrated data analysis pipelines even further.

[10]

Bibliography

Umut A Acar, Guy E Blelloch, and Robert D Blumofe. The data locality of work
stealing. In Proceedings of the twelfth annual ACM symposium on Parallel algorithms
and architectures, pages 1-12, 2000. doi: 10.1145/341800.341801.

Dana Akhmetova, Gokcen Kestor, Roberto Gioiosa, Stefano Markidis, and Erwin Laure.
On the application task granularity and the interplay with the scheduling overhead in
many-core shared memory systems. In 2015 IEEFE International Conference on Cluster
Computing, pages 428-437. IEEE, 2015. doi: 10.1109/CLUSTER.2015.65.

Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. Thread scheduling for multi-
programmed multiprocessors. Theory of computing systems, 34(2):115-144, 2001. doi:
10.1007/s00224-001-0004-z.

Blaise Barney and Donald Frederick. Introduction to parallel comput-
ing tutorial, 2022. URL https://hpc.llnl.gov/documentation/tutorials/

introduction-parallel-computing-tutorial.

Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations
by work stealing. Journal of the ACM (JACM), 46(5):720-748, 1999. doi: 10.1145/
324133.324234.

Quan Chen and Minyi Guo. Task scheduling for multi-core and parallel architectures.
Springer, 2017. doi: 10.1007/978-981-10-6238-4.

Florina M. Ciorba, Patrick Damme, Ahmed Eleliemy, Vasileios Karakostas, and
Gabrielle Poerwawinata. D5.1 scheduler design for pipelines and tasks, 2022. URL
http://daphne-eu.eu/wp-content /uploads/2021/11 /Deliverable-5.1-fin.pdf.

TechTarget Contributor. What is runtime system? - definition from whatis.com, Feb
2017. URL https://www.techtarget.com/whatis/definition/runtime-system.

Idriss Daoudi, Philippe Virouleau, Thierry Gautier, Samuel Thibault, and Olivier
Aumage. somp: Simulating openmp task-based applications with numa effects. In
International Workshop on OpenMP, pages 197-211. Springer, 2020. doi: 10.1007/
978-3-030-58144-2\{_}13.

Ahmed Eleliemy and Florina M. Ciorba. A distributed chunk calculation approach
for self-scheduling of parallel applications on distributed-memory systems. Journal
of Computational Science, 51:101284, 2021. ISSN 1877-7503. doi: https://doi.org/

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
http://daphne-eu.eu/wp-content/uploads/2021/11/Deliverable-5.1-fin.pdf
https://www.techtarget.com/whatis/definition/runtime-system

Bibliography 46

[11]

[14]

[15]

[16]

[20]

[21]

10.1016/j.jocs.2020.101284. URL https://www.sciencedirect.com/science/article/pii/
S1877750320305792.

Google. Best practices for running tightly coupled hpc applications
on compute engine, 2021. URL https://cloud.google.com/architecture/
best-practices-for-using-mpi-on-compute-engine#disable_simultaneous_

multithreading.

Pablo Halpern. Parallel program execution using work stealing. Lecture, 2015.
URL https://github.com/CppCon/CppCon2015/blob/master /Presentations/ Work %
20Stealing/ Work%20Stealing%20- %20Pablo%20Halpern%20- %20CppCon %202015.
pptx.

Susan Flynn Hummel, Edith Schonberg, and Lawrence E Flynn. Factoring: A practical
and robust method for scheduling parallel loops. In Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 610-632, 1991. doi: 10.1145/125826.126137.

Nina Ihde, Paula Marten, Ahmed Eleliemy, Gabrielle Poerwawinata, Pedro Silva, Ilin
Tolovski, Florina M Ciorba, and Tilmann Rabl. A survey of big data, high perfor-
mance computing, and machine learning benchmarks. In Technology Conference on

Performance Evaluation and Benchmarking, pages 98-118. Springer, 2021.

Intel. Intel xeon processor €5-2640 v4 specifications.
URL: https://ark.intel.com/content /www /us/en/ark/products/92984/
intel-xeon-processor-e52640-v4-25m-cache-2-40-ghz.html, 2016.

An Intel. Introduction to the intel quickpath interconnect. White Pa-
per, 2009. URL https://www.intel.com/content /dam/doc/white-paper/

quick-path-interconnect-introduction-paper.pdf.

Vivek Kale and Martin Kong. Enhancing support in openmp to improve data locality in
application programs using task scheduling. URL: https://openmpcon.org/wp-content/
uploads/2018_Session3_Li.pdf, 7 2018.

Christoph Lameter. Numa (non-uniform memory access): An overview, 2013. URL
https://queue.acm.org/detail.cfm?id=2513149.

Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics of viral
marketing. ACM Transactions on the Web (TWEB), 1(1):5-es, 2007. doi: 10.1145/
1232722.1232727.

LLVM. Llvmm openmp runtime library kmp_tasking.cpp. https://github.com/
llvm/llvm-project /blob/main/openmp /runtime/src/kmp_tasking.cpp, 2022. Accessed:
2022-07-05.

David L Mulnix, Jul 2017. URL https://www.intel.com/content/www /us/en/

developer/articles/technical /xeon-processor-scalable-family-technical-overview.html.

https://www.sciencedirect.com/science/article/pii/S1877750320305792
https://www.sciencedirect.com/science/article/pii/S1877750320305792
https://cloud.google.com/architecture/best-practices-for-using-mpi-on-compute-engine#disable_simultaneous_multithreading
https://cloud.google.com/architecture/best-practices-for-using-mpi-on-compute-engine#disable_simultaneous_multithreading
https://cloud.google.com/architecture/best-practices-for-using-mpi-on-compute-engine#disable_simultaneous_multithreading
https://github.com/CppCon/CppCon2015/blob/master/Presentations/Work%20Stealing/Work%20Stealing%20-%20Pablo%20Halpern%20-%20CppCon%202015.pptx
https://github.com/CppCon/CppCon2015/blob/master/Presentations/Work%20Stealing/Work%20Stealing%20-%20Pablo%20Halpern%20-%20CppCon%202015.pptx
https://github.com/CppCon/CppCon2015/blob/master/Presentations/Work%20Stealing/Work%20Stealing%20-%20Pablo%20Halpern%20-%20CppCon%202015.pptx
https://ark.intel.com/content/www/us/en/ark/products/92984/intel-xeon-processor-e52640-v4-25m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92984/intel-xeon-processor-e52640-v4-25m-cache-2-40-ghz.html
https://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://openmpcon.org/wp-content/uploads/2018_Session3_Li.pdf
https://openmpcon.org/wp-content/uploads/2018_Session3_Li.pdf
https://queue.acm.org/detail.cfm?id=2513149
https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp_tasking.cpp
https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp_tasking.cpp
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html

Bibliography 47

[22]

[25]

[28]

[30]

[31]

[32]

[33]

David L Mulnix. Intel Xeon Processor Scalable Family Technical Overview. Techni-
cal report, Intel, 2017. URL https://www.intel.com/content/www /us/en/developer/

articles/technical /xeon-processor-scalable-family-technical-overview.html.

Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, and Jan F Prins. Scheduling
task parallelism on multi-socket multicore systems. In Proceedings of the 1st Interna-
tional Workshop on Runtime and Operating Systems for Supercomputers, pages 49-56,
2011. doi: 10.1145/1988796.1988804.

Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael Spiegel, and Jan F
Prins. Openmp task scheduling strategies for multicore numa systems. The Interna-
tional Journal of High Performance Computing Applications, 26(2):110-124, 2012. doi:
10.1177/1094342011434065.

Swann Perarnau and Mitsuhisa Sato. Victim selection and distributed work stealing
performance: A case study. In 201/ IEEE 28th International Parallel and Distributed
Processing Symposium, pages 659-668. IEEE, 2014. doi: 10.1109/ITPDPS.2014.74.

Teebu Philip. Increasing chunk size loop scheduling algorithms for data independent
loops. PhD thesis, Pennsylvania State University, 1995. URL https://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.56.5370&rep=repl&type=pdf.

Constantine D. Polychronopoulos and David J. Kuck. Guided self-scheduling: A prac-
tical scheduling scheme for parallel supercomputers. IEEE Transactions on Computers,
C-36(12):1425-1439, 1987. doi: 10.1109/TC.1987.5009495.

Jean-Noél Quintin and Frédéric Wagner. Hierarchical work-stealing. In Furopean
Conference on Parallel Processing, pages 217-229. Springer, 2010. doi: 10.1007/
978-3-642-15277-1\{_}21.

Florian Schmaus, Florian Fischer, Timo Hoénig, and Wolfgang Schroder-Preikschat.
Modern concurrency platforms require modern system-call techniques. Technical Re-
ports, 2021. ISSN 2191-5008.

Muhammad Shaaban. Eecc722 - simultaneous multithreading (smt). University Lec-
ture, 2012. URL http://meseec.ce.rit.edu/eecc722-fall2012/722-9-3-2012.pdf.

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. Proactive work stealing for futures. In
Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming,
pages 257271, 2019. doi: 10.1145/3293883.3295735.

Nikki Sonenberg, Grzegorz Kielanski, and Benny Van Houdt. Performance analysis of
work stealing in large-scale multithreaded computing. ACM Transactions on Modeling
and Performance Evaluation of Computing Systems, 6(2):1-28, 2021. doi: 10.1145/
3470887.

Peter Thoman, Khalid Hasanov, Kiril Dichev, Roman Iakymchuk, Xavier Aguilar,

Philipp Gschwandtner, Pierre Lemarinier, Stefano Markidis, Herbert Jordan, Erwin

https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.5370&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.5370&rep=rep1&type=pdf
http://meseec.ce.rit.edu/eecc722-fall2012/722-9-3-2012.pdf

Bibliography 48

Laure, Kostas Katrinis, Dimitrios Nikolopoulos, and Thomas Fahringer. A Tazonomy
of Task-Based Technologies for High-Performance Computing, pages 264-274. Springer
Cham, 03 2018. ISBN 978-3-319-78053-5. doi: 10.1007/978-3-319-78054-2\{_}25.

Alexandros Tzannes, George C Caragea, Rajeev Barua, and Uzi Vishkin. Lazy binary-
splitting: a run-time adaptive work-stealing scheduler. ACM Sigplan Notices, 45(5):
179-190, 2010. doi: 10.1145/1837853.1693479.

Yizhuo Wang, Weixing Ji, Qi Zuo, and Feng Shi. A hierarchical work-stealing frame-
work for multi-core clusters. In 2012 13th International Conference on Parallel and
Distributed Computing, Applications and Technologies, pages 350-355. IEEE, 2012.
doi: 10.1109/PDCAT.2012.17.

Yizhuo Wang, Yang Zhang, Yan Su, Xiaojun Wang, Xu Chen, Weixing Ji, and Feng Shi.
An adaptive and hierarchical task scheduling scheme for multi-core clusters. Parallel
computing, 40(10):611-627, 2014. doi: 10.1016/j.parco.2014.09.012.

Result Data

This is a readout of all of the resulting data from the experiments performed that is used
in the results section. In the table below, N refers to the number of repetitions of each
experiment, p refers to the mean of all the results from the given repetitions, and o refers

to the Standard Deviation of the results for the given repetitions.

Node | Branch Application Arguments N [p o

1 work-stealing pin-workers -STATIC ~-CENTRALIZED -SEQ 20 | 13.71 | 0.90
1 work-stealing | —pin-workers —STATIC ~-CENTRALIZED -SEQPRI 20 | 13.89 | 1.06
1 work-stealing | —pin-workers —-STATIC ~-CENTRALIZED -RANDOM 20 | 14.20 | 1.26
1 work-stealing | —pin-workers —-STATIC ~-CENTRALIZED -RANDOMPRI 20 | 14.20 | 1.31
1 work-stealing | —pin-workers —-STATIC —-PERGROUP —-SEQ 20 | 13.90 | 1.07
1 work-stealing | —pin-workers —-STATIC —-PERGROUP —SEQPRI 20 | 14.24 | 1.21
1 work-stealing | —pin-workers —-STATIC -PERGROUP —RANDOM 20 | 13.63 | 0.88
1 work-stealing | —pin-workers —-STATIC ~-PERGROUP -RANDOMPRI 20 | 14.30 | 1.16
1 work-stealing | —pin-workers —STATIC —-PERCPU —-SEQ 20 | 13.71 | 1.04
1 work-stealing | —pin-workers —-STATIC -PERCPU -SEQPRI 20 | 13.80 | 1.20
1 work-stealing | —pin-workers —-STATIC ~-PERCPU ~-RANDOM 20 | 13.11 | 0.84
1 work-stealing | —pin-workers —-STATIC ~-PERCPU ~-RANDOMPRI 20 | 13.58 | 1.08
1 work-stealing pin-workers -GSS ~-CENTRALIZED -SEQ 20 | 13.56 | 1.24
1 work-stealing | —pin-workers —-GSS ~-CENTRALIZED -SEQPRI 20 | 12.96 | 0.89
1 work-stealing | —pin-workers —-GSS ~-CENTRALIZED ~-RANDOM 20 | 13.24 | 1.07
1 work-stealing | —pin-workers —-GSS ~-CENTRALIZED ~-RANDOMPRI 20 | 13.36 | 1.19
1 work-stealing | —pin-workers —-GSS —-PERGROUP —-SEQ 20 | 13.75 | 1.22
1 work-stealing | —pin-workers —GSS -PERGROUP —SEQPRI 20 | 13.23 | 0.93
1 work-stealing | —pin-workers —-GSS -PERGROUP —-RANDOM 20 | 13.27 | 0.93
1 work-stealing | —pin-workers —GSS -PERGROUP —RANDOMPRI 20 | 13.54 | 1.08
1 work-stealing | —pin-workers —GSS -PERCPU —-SEQ 20 | 13.72 | 0.98
1 work-stealing | —pin-workers —-GSS —-PERCPU —-SEQPRI 20 | 13.79 | 0.94
1 work-stealing | —pin-workers ~-GSS ~-PERCPU ~-RANDOM 20 | 13.92 | 1.13
1 work-stealing | —pin-workers ~-GSS ~PERCPU ~-RANDOMPRI 20 | 13.51 | 0.67
1 work-stealing | —pin-workers —TSS ~-CENTRALIZED —-SEQ 20 | 13.35 | 1.22
1 work-stealing pin-workers —“TSS ~-CENTRALIZED —-SEQPRI 20 | 12.87 | 0.90
1 work-stealing | —pin-workers —TSS ~-CENTRALIZED ~-RANDOM 20 | 12.63 | 0.53
1 work-stealing | —pin-workers —TSS ~-CENTRALIZED ~-RANDOMPRI 20 | 13.58 | 1.31
1 work-stealing | —pin-workers —TSS -PERGROUP —-SEQ 20 | 13.28 | 0.70
1 work-stealing | —pin-workers —TSS _-PERGROUP —SEQPRI 20 | 13.62 | 1.10
1 work-stealing | —pin-workers —“TSS _-PERGROUP —RANDOM 20 | 13.38 | 0.92
1 work-stealing | —pin-workers —TSS -PERGROUP —-RANDOMPRI 20 | 13.52 | 0.99
1 work-stealing | —pin-workers —TSS -PERCPU -SEQ 20 | 13.52 | 1.20
1 work-stealing | —pin-workers —TSS -PERCPU -SEQPRI 20 | 13.04 | 0.83
1 work-stealing | —pin-workers -TSS -PERCPU ~-RANDOM 20 | 13.65 | 1.26
1 work-stealing | —pin-workers —TSS -PERCPU ~-RANDOMPRI 20 | 13.45 | 1.24
1 work-stealing | —pin-workers —-FAC2 —-CENTRALIZED -SEQ 20 | 12.68 | 0.93
1 work-stealing pin-workers -FAC2 -CENTRALIZED -SEQPRI 20 | 12.90 | 1.07
1 work-stealing | —pin-workers —-FAC2 —-CENTRALIZED ~-RANDOM 20 | 12.64 | 0.94
1 work-stealing | —pin-workers —-FAC2 —-CENTRALIZED ~-RANDOMPRI 20 | 13.03 | 1.32
1 work-stealing | —pin-workers —-FAC2 —-PERGROUP —-SEQ 20 | 12.96 | 0.80
1 work-stealing | —pin-workers —-FAC2 _-PERGROUP —SEQPRI 20 | 12.93 | 0.76
1 work-stealing | —pin-workers —-FAC2 _-PERGROUP —RANDOM 20 | 12.92 | 0.73
1 work-stealing | —pin-workers -FAC2 _-PERGROUP —-RANDOMPRI 20 | 13.29 | 1.09
1 work-stealing | —pin-workers -FAC2 —-PERCPU —SEQ 20 | 13.16 | 1.06
1 work-stealing | —pin-workers —-FAC2 -PERCPU -SEQPRI 20 | 13.35 | 1.16
1 work-stealing | —pin-workers —-FAC2 - PERCPU -RANDOM 20 | 13.85 | 1.24
1 work-stealing | —pin-workers ~-FAC2 ~-PERCPU —~-RANDOMPRI 20 | 13.04 | 0.91
1 work-stealing | —pin-workers -TFSS ~-CENTRALIZED -SEQ 20 | 12.54 | 0.88

Result Data

50

1 work-stealing | —pin-workers —“TFSS ~-CENTRALIZED -SEQPRI 20 | 12.52 | 0.87
1 work-stealing | —pin-workers —-TFSS —-CENTRALIZED ~-RANDOM 20 | 12.20 | 0.20
1 work-stealing pin-workers “TFSS -CENTRALIZED ~-RANDOMPRI 20 | 12.43 | 0.76
1 work-stealing | —pin-workers ~TFSS ~-PERGROUP -SEQ 20 | 13.14 | 0.99
1 work-stealing | —pin-workers —“TFSS ~-PERGROUP -SEQPRI 20 | 13.43 | 1.08
1 work-stealing | —pin-workers -TFSS - PERGROUP ~-RANDOM 20 | 13.18 | 1.01
1 work-stealing | —pin-workers -TFSS —-PERGROUP —-RANDOMPRI 20 | 13.18 | 1.02
1 work-stealing | —pin-workers —-TFSS —-PERCPU —SEQ 20 | 13.57 | 0.90
1 work-stealing | —pin-workers —“TFSS -PERCPU —SEQPRI 20 | 13.85 | 1.10
1 work-stealing | —pin-workers _TFSS —-PERCPU —RANDOM 20 | 13.51 | 0.87
1 work-stealing | —pin-workers —“TFSS - PERCPU -RANDOMPRI 20 | 13.39 | 0.69
1 work-stealing | —pin-workers —FISS ~-CENTRALIZED —-SEQ 20 | 13.92 | 1.01
1 work-stealing | —pin-workers —FISS ~-CENTRALIZED -SEQPRI 20 | 13.80 | 0.94
1 work-stealing | —pin-workers —FISS ~-CENTRALIZED -RANDOM 20 | 14.09 | 1.08
1 work-stealing pin-workers —FISS -CENTRALIZED ~-RANDOMPRI 20 | 14.03 | 1.09
1 work-stealing | —pin-workers —FISS —-PERGROUP -SEQ 20 | 13.98 | 0.72
1 work-stealing | —pin-workers —FISS ~-PERGROUP -SEQPRI 20 | 14.39 | 1.05
1 work-stealing | —pin-workers —FISS ~-PERGROUP ~-RANDOM 20 | 14.23 | 0.98
1 work-stealing | —pin-workers —FISS -PERGROUP —-RANDOMPRI 20 | 14.34 | 0.98
1 work-stealing | —pin-workers —FISS —-PERCPU —-SEQ 20 | 13.68 | 1.07
1 work-stealing | —pin-workers —FISS -PERCPU -SEQPRI 20 | 13.75 | 1.06
1 work-stealing | —pin-workers —FISS —-PERCPU —RANDOM 20 | 13.28 | 0.69
1 work-stealing | —pin-workers —FISS —-PERCPU —-RANDOMPRI 20 | 13.91 | 1.11
1 work-stealing | —pin-workers —VISS -CENTRALIZED -SEQ 20 | 12.53 | 1.18
1 work-stealing | —pin-workers —VISS ~-CENTRALIZED -SEQPRI 20 | 12.87 | 1.21
1 work-stealing | —pin-workers —VISS -CENTRALIZED - RANDOM 20 | 12.37 | 1.09
1 work-stealing pin-workers —VISS ~-CENTRALIZED ~-RANDOMPRI 20 | 12.28 | 0.95
1 work-stealing | —pin-workers —VISS ~-PERGROUP -SEQ 20 | 13.33 | 1.03
1 work-stealing | —pin-workers —VISS ~PERGROUP -SEQPRI 20 | 13.51 | 1.08
1 work-stealing | —pin-workers —VISS ~-PERGROUP ~-RANDOM 20 | 13.08 | 0.96
1 work-stealing | —pin-workers —VISS -PERGROUP —RANDOMPRI 20 | 13.54 | 1.16
1 work-stealing | —pin-workers —VISS —-PERCPU —SEQ 20 | 12.10 | 0.86
1 work-stealing | —pin-workers —VISS —-PERCPU —SEQPRI 20 | 13.01 | 1.32
1 work-stealing | —pin-workers —VISS —-PERCPU —RANDOM 20 | 12.64 | 1.17
1 work-stealing | —pin-workers —VISS ~-PERCPU —-RANDOMPRI 20 | 12.17 | 0.91
1 work-stealing | —pin-workers —-PLS —CENTRALIZED —-SEQ 20 | 13.32 | 1.22
1 work-stealing | —pin-workers —PLS ~-CENTRALIZED -SEQPRI 20 | 12.97 | 1.00
1 work-stealing | —pin-workers —-PLS ~-CENTRALIZED ~-RANDOM 20 | 13.15 | 1.12
1 work-stealing | —pin-workers —-PLS ~-CENTRALIZED —~-RANDOMPRI 20 | 13.40 | 1.24
1 work-stealing pin-workers ~-PLS -PERGROUP -SEQ 20 | 13.22 | 0.95
1 work-stealing | —pin-workers —-PLS ~PERGROUP -SEQPRI 20 | 13.59 | 1.15
1 work-stealing | —pin-workers —-PLS ~-PERGROUP ~-RANDOM 20 | 13.19 | 0.90
1 work-stealing | —pin-workers —PLS ~PERGROUP ~-RANDOMPRI 20 | 12.82 | 0.15
1 work-stealing | —pin-workers —-PLS -PERCPU —SEQ 20 | 13.24 | 0.98
1 work-stealing | —pin-workers —-PLS —-PERCPU —SEQPRI 20 | 13.41 | 1.06
1 work-stealing | —pin-workers —-PLS —-PERCPU —-RANDOM 20 | 13.41 | 1.03
1 work-stealing | —pin-workers -PLS —-PERCPU —RANDOMPRI 20 | 13.97 | 1.26
1 work-stealing | —pin-workers —-MSTATIC —-CENTRALIZED -SEQ 20 | 13.10 | 0.85
1 work-stealing | —pin-workers -MSTATIC ~-CENTRALIZED —-SEQPRI 20 | 13.31 | 1.03
1 work-stealing | —pin-workers -MSTATIC ~-CENTRALIZED ~-RANDOM 20 | 13.05 | 0.88
1 work-stealing | —pin-workers -MSTATIC —-CENTRALIZED —-RANDOMPRI 20 | 13.61 | 1.14
1 work-stealing pin-workers —-MSTATIC ~-PERGROUP -SEQ 20 | 14.17 | 1.08
1 work-stealing | —pin-workers -MSTATIC ~-PERGROUP -SEQPRI 20 | 14.15 | 1.08
1 work-stealing | —pin-workers —-MSTATIC —-PERGROUP —-RANDOM 20 | 14.41 | 1.24
1 work-stealing | —pin-workers -MSTATIC ~-PERGROUP ~RANDOMPRI 20 | 14.18 | 1.21
1 work-stealing | —pin-workers —-MSTATIC —PERCPU —-SEQ 20 | 13.22 | 1.09
1 work-stealing | —pin-workers -MSTATIC —PERCPU —-SEQPRI 20 | 13.42 | 1.20
1 work-stealing | —pin-workers —-MSTATIC —PERCPU —RANDOM 20 | 13.09 | 0.97
1 work-stealing | —pin-workers —-MSTATIC —-PERCPU —RANDOMPRI 20 | 13.55 | 1.15
1 work-stealing | —pin-workers -MFSC —-CENTRALIZED —-SEQ 20 | 11.83 | 1.12
1 work-stealing | —pin-workers -MFSC ~-CENTRALIZED -SEQPRI 20 | 11.84 | 1.08
1 work-stealing | —pin-workers -MFSC ~-CENTRALIZED —~-RANDOM 20 | 11.86 | 1.12
1 work-stealing | —pin-workers -MFSC ~-CENTRALIZED - RANDOMPRI 20 [11.71 | 1.13
1 work-stealing pin-workers -MFSC ~-PERGROUP -SEQ 20 | 13.16 | 0.70
1 work-stealing | —pin-workers -MFSC ~-PERGROUP -SEQPRI 20 | 12.76 | 0.69
1 work-stealing | —pin-workers -MFSC ~PERGROUP ~-RANDOM 20 | 13.27 | 0.81
1 work-stealing | —pin-workers -MFSC ~PERGROUP —-RANDOMPRI 20 | 13.19 | 0.77
1 work-stealing | —pin-workers —-MFSC —PERCPU —-SEQ 20 | 12.40 | 0.99
1 work-stealing | —pin-workers —-MFSC —PERCPU —SEQPRI 20 | 12.88 | 1.20
1 work-stealing | —pin-workers —-MFSC —PERCPU —RANDOM 20 | 12.57 | 1.16
1 work-stealing | —pin-workers —-MFSC —-PERCPU —RANDOMPRI 20 | 12.25 | 0.77
1 work-stealing | —pin-workers - PSS —CENTRALIZED —-SEQ 20 | 12.72 | 0.98
1 work-stealing | —pin-workers —PSS —-CENTRALIZED —-SEQPRI 20 | 13.09 | 1.15
1 work-stealing | —pin-workers —PSS ~-CENTRALIZED - RANDOM 20 | 13.25 | 1.17
1 work-stealing | —pin-workers -PSS ~-CENTRALIZED ~-RANDOMPRI 20 | 12.93 | 1.03
1 work-stealing | —pin-workers —PSS ~PERGROUP -SEQ 20 | 13.27 | 1.06
1 work-stealing pin-workers -PSS -PERGROUP —-SEQPRI 20 | 13.39 | 1.09
1 work-stealing | —pin-workers —PSS ~PERGROUP ~-RANDOM 20 | 13.76 | 1.20
1 work-stealing | —pin-workers -PSS ~PERGROUP ~-RANDOMPRI 20 | 13.49 | 1.18
1 work-stealing | —pin-workers —PSS ~PERCPU —-SEQ 20 | 13.83 | 0.90
1 work-stealing | —pin-workers —PSS —-PERCPU —SEQPRI 20 | 13.63 | 0.93
1 work-stealing | —pin-workers —-PSS —-PERCPU —RANDOM 20 | 13.84 | 0.95
1 work-stealing | —pin-workers - PSS —-PERCPU —-RANDOMPRI 20 | 13.75 | 0.86
2 work-stealing | —pin-workers —-STATIC ~-CENTRALIZED -SEQ 20 | 17.36 | 1.55

Result Data

o1

27 work-stealing | —pin-workers —-STATIC ~-CENTRALIZED -SEQPRI 20 | 17.83 | 1.70
27 work-stealing | —pin-workers —-STATIC ~-CENTRALIZED ~-RANDOM 20 | 17.68 | 1.46
27 work-stealing pin-workers ~-STATIC ~-CENTRALIZED -RANDOMPRI 20 | 17.04 | 1.19
27 work-stealing | —pin-workers —-STATIC ~-PERGROUP -SEQ 20 | 17.59 | 0.92
27 work-stealing | —pin-workers —-STATIC ~-PERGROUP —-SEQPRI 20 | 17.85 | 0.97
27 work-stealing | —pin-workers —-STATIC ~-PERGROUP ~-RANDOM 20 | 17.36 | 0.86
27 work-stealing | —pin-workers —-STATIC -PERGROUP —-RANDOMPRI 20 | 17.46 | 0.91
27 work-stealing | —pin-workers —STATIC —-PERCPU —SEQ 20 | 17.08 | 0.69
27 work-stealing | —pin-workers —-STATIC -PERCPU -SEQPRI 20 | 17.46 | 0.91
27 work-stealing | —pin-workers —-STATIC —-PERCPU —RANDOM 20 | 17.43 | 1.00
27 work-stealing | —pin-workers —-STATIC -PERCPU -RANDOMPRI 20 | 17.36 | 0.93
27 work-stealing | —pin-workers —GSS —CENTRALIZED —-SEQ 20 | 17.27 | 1.21
27 work-stealing | —pin-workers ~-GSS ~-CENTRALIZED -SEQPRI 20 | 17.45 | 1.40
27 work-stealing | —pin-workers —-GSS ~-CENTRALIZED - RANDOM 20 [17.31 | 1.36
27 work-stealing pin-workers -GSS ~-CENTRALIZED -RANDOMPRI 20 | 16.90 | 1.46
27 work-stealing | —pin-workers —GSS ~-PERGROUP -SEQ 20 | 17.97 | 0.91
27 work-stealing | —pin-workers —-GSS ~PERGROUP -SEQPRI 20 | 17.19 | 0.67
27 work-stealing | —pin-workers —-GSS ~-PERGROUP ~-RANDOM 20 | 17.29 | 0.94
27 work-stealing | —pin-workers —-GSS -PERGROUP —RANDOMPRI 20 | 17.80 | 0.91
27 work-stealing | —pin-workers —GSS —-PERCPU —SEQ 20 | 17.33 | 0.75
27 work-stealing | —pin-workers —-GSS -PERCPU —-SEQPRI 20 | 16.55 | 0.97
27 work-stealing | —pin-workers —GSS —-PERCPU —-RANDOM 20 | 16.98 | 0.94
27 work-stealing | —pin-workers —GSS —-PERCPU —RANDOMPRI 20 | 17.40 | 0.95
27 work-stealing | —pin-workers —TSS ~-CENTRALIZED -SEQ 20 | 17.05 | 1.76
27 work-stealing | —pin-workers —TSS ~-CENTRALIZED -SEQPRI 20 | 16.58 | 1.36
27 work-stealing | —pin-workers —TSS ~-CENTRALIZED ~-RANDOM 20 | 16.27 | 1.47
27 work-stealing pin-workers —“TSS ~-CENTRALIZED ~-RANDOMPRI 20 | 16.58 | 1.32
27 work-stealing | —pin-workers —TSS -PERGROUP -SEQ 20 | 17.34 | 0.94
27 work-stealing | —pin-workers —TSS ~-PERGROUP -SEQPRI 20 | 17.19 | 0.93
27 work-stealing | —pin-workers —TSS -PERGROUP ~-RANDOM 20 | 17.44 | 1.02
27 work-stealing | —pin-workers —TSS _-PERGROUP —RANDOMPRI 20 | 17.32 | 0.70
27 work-stealing | —pin-workers —TSS _-PERCPU —SEQ 20 | 16.33 | 1.12
27 work-stealing | —pin-workers —TSS _-PERCPU —SEQPRI 20 | 16.22 | 0.94
27 work-stealing | —pin-workers —“TSS -PERCPU —-RANDOM 20 | 16.38 | 0.82
27 work-stealing | —pin-workers —TSS _-PERCPU —RANDOMPRI 20 | 16.49 | 0.89
27 work-stealing | —pin-workers -FAC2 —-CENTRALIZED -SEQ 20 | 16.43 | 1.01
27 work-stealing | —pin-workers —-FAC2 —-CENTRALIZED -SEQPRI 20 | 16.68 | 1.53
27 work-stealing | —pin-workers —-FAC2 -CENTRALIZED - RANDOM 20 | 17.24 | 1.48
27 work-stealing | —pin-workers -FAC2 —-CENTRALIZED —~-RANDOMPRI 20 | 16.88 | 1.70
27 work-stealing pin-workers ~-FAC2 ~-PERGROUP -SEQ 20 | 17.65 | 0.87
27 work-stealing | —pin-workers ~-FAC2 ~-PERGROUP -SEQPRI 20 | 17.29 | 0.88
27 work-stealing | —pin-workers —-FAC2 - PERGROUP ~-RANDOM 20 [17.24 | 0.72
27 work-stealing | —pin-workers —-FAC2 - PERGROUP ~-RANDOMPRI 20 | 17.41 | 0.88
27 work-stealing | —pin-workers —-FAC2 _-PERCPU —SEQ 20 | 16.05 | 0.93
27 work-stealing | —pin-workers —-FAC2 _-PERCPU —SEQPRI 20 | 16.54 | 0.88
27 work-stealing | —pin-workers -FAC2 —-PERCPU —RANDOM 20 | 16.59 | 0.82
27 work-stealing | —pin-workers -FAC2 _-PERCPU —RANDOMPRI 20 | 16.80 | 0.78
27 work-stealing | —pin-workers —“TFSS —CENTRALIZED —-SEQ 20 | 16.51 | 1.15
27 work-stealing | —pin-workers —“TFSS ~-CENTRALIZED -SEQPRI 20 | 16.72 | 1.35
27 work-stealing | —pin-workers - TFSS ~-CENTRALIZED ~-RANDOM 20 | 16.64 | 1.39
27 work-stealing | —pin-workers —“TFSS —-CENTRALIZED —-RANDOMPRI 20 | 16.66 | 1.17
27 work-stealing pin-workers “TFSS -PERGROUP -SEQ 20 | 17.44 | 0.92
27 work-stealing | —pin-workers ~TFSS ~PERGROUP -SEQPRI 20 | 16.89 | 0.91
27 work-stealing | —pin-workers —“TFSS ~-PERGROUP ~-RANDOM 20 [17.11 | 0.78
27 work-stealing | —pin-workers —“TFSS ~PERGROUP ~-RANDOMPRI 20 | 17.45 | 0.95
27 work-stealing | —pin-workers —-TFSS —-PERCPU —SEQ 20 | 16.53 | 0.93
27 work-stealing | —pin-workers —“TFSS —-PERCPU —SEQPRI 20 | 16.53 | 1.06
27 work-stealing | —pin-workers “TFSS —-PERCPU —RANDOM 20 | 16.84 | 1.13
27 work-stealing | —pin-workers “TFSS —-PERCPU —RANDOMPRI 20 | 17.06 | 0.97
27 work-stealing | —pin-workers —FISS —-CENTRALIZED —-SEQ 20 | 16.48 | 1.22
27 work-stealing | —pin-workers —FISS ~-CENTRALIZED -SEQPRI 20 | 16.90 | 1.07
27 work-stealing | —pin-workers —FISS ~-CENTRALIZED -RANDOM 20 | 16.81 | 1.33
27 work-stealing | —pin-workers —FISS ~-CENTRALIZED - RANDOMPRI 20 [17.04 | 1.21
27 work-stealing pin-workers —FISS -PERGROUP -SEQ 20 | 16.91 | 0.65
27 work-stealing | —pin-workers —FISS ~-PERGROUP -SEQPRI 20 | 17.32 | 0.89
27 work-stealing | —pin-workers —FISS ~-PERGROUP ~-RANDOM 20 | 17.26 | 0.83
27 work-stealing | —pin-workers —FISS ~-PERGROUP ~-RANDOMPRI 20 | 17.37 | 0.81
27 work-stealing | —pin-workers —FISS —-PERCPU —-SEQ 20 | 16.41 | 0.69
27 work-stealing | —pin-workers —FISS —-PERCPU —SEQPRI 20 | 16.78 | 1.06
27 work-stealing | —pin-workers —-FISS —-PERCPU —-RANDOM 20 | 16.41 | 1.06
27 work-stealing | —pin-workers —FISS —-PERCPU —RANDOMPRI 20 | 16.90 | 1.19
27 work-stealing | —pin-workers —VISS -CENTRALIZED —-SEQ 20 | 16.47 | 1.26
27 work-stealing | —pin-workers —VISS —-CENTRALIZED -SEQPRI 20 | 16.32 | 1.37
27 work-stealing | —pin-workers —VISS -CENTRALIZED - RANDOM 20 | 15.78 | 1.23
27 work-stealing | —pin-workers —VISS -CENTRALIZED ~-RANDOMPRI 20 | 15.81 | 1.38
27 work-stealing | —pin-workers —VISS —-PERGROUP -SEQ 20 | 16.03 | 0.98
27 work-stealing pin-workers —VISS -PERGROUP —-SEQPRI 20 | 16.25 | 0.79
27 work-stealing | —pin-workers —VISS ~-PERGROUP ~-RANDOM 20 | 16.20 | 0.79
27 work-stealing | —pin-workers —VISS -PERGROUP ~-RANDOMPRI 20 | 16.30 | 0.92
27 work-stealing | —pin-workers —VISS ~-PERCPU —-SEQ 20 | 15.98 | 0.96
27 work-stealing | —pin-workers —VISS —-PERCPU —SEQPRI 20 | 16.00 | 0.95
27 work-stealing | —pin-workers —VISS —-PERCPU —RANDOM 20 | 16.48 | 0.98
27 work-stealing | —pin-workers —VISS —-PERCPU —-RANDOMPRI 20 | 16.55 | 1.36
27 work-stealing | —pin-workers —-PLS —-CENTRALIZED —-SEQ 20 | 16.84 | 1.60

Result Data

52

27 work-stealing | —pin-workers —PLS ~-CENTRALIZED -SEQPRI 20 | 17.44 | 1.57
27 work-stealing | —pin-workers —-PLS ~-CENTRALIZED ~-RANDOM 20 | 17.39 | 1.55
27 work-stealing pin-workers -PLS -CENTRALIZED - RANDOMPRI 20 | 16.74 | 1.24
27 work-stealing | —pin-workers —-PLS ~-PERGROUP -SEQ 20 | 17.28 | 0.96
27 work-stealing | —pin-workers —-PLS ~-PERGROUP -SEQPRI 20 [17.80 | 1.09
27 work-stealing | —pin-workers —-PLS ~-PERGROUP ~-RANDOM 20 | 17.82 | 0.81
27 work-stealing | —pin-workers -PLS —-PERGROUP —-RANDOMPRI 20 | 17.67 | 0.80
27 work-stealing | —pin-workers —-PLS _-PERCPU —SEQ 20 | 17.21 | 0.95
27 work-stealing | —pin-workers —PLS -PERCPU -SEQPRI 20 | 16.84 | 1.02
27 work-stealing | —pin-workers -PLS —-PERCPU —RANDOM 20 | 17.08 | 1.04
27 work-stealing | —pin-workers —-PLS ~-PERCPU —RANDOMPRI 20 | 17.25 | 0.92
27 work-stealing | —pin-workers -MSTATIC ~-CENTRALIZED -SEQ 20 | 16.56 | 1.21
27 work-stealing | —pin-workers -MSTATIC ~-CENTRALIZED —-SEQPRI 20 | 16.81 | 1.44
27 work-stealing | —pin-workers -MSTATIC —-CENTRALIZED - RANDOM 20 | 16.88 | 1.32
27 work-stealing pin-workers —-MSTATIC ~-CENTRALIZED ~-RANDOMPRI 20 | 16.74 | 1.45
27 work-stealing | —pin-workers —-MSTATIC —-PERGROUP -SEQ 20 | 17.70 | 0.63
27 work-stealing | —pin-workers -MSTATIC —-PERGROUP —-SEQPRI 20 | 17.55 | 0.68
27 work-stealing | —pin-workers —-MSTATIC ~-PERGROUP —-RANDOM 20 | 17.34 | 0.79
27 work-stealing | —pin-workers —-MSTATIC -PERGROUP —RANDOMPRI 20 | 17.13 | 0.80
27 work-stealing | —pin-workers —-MSTATIC —PERCPU —SEQ 20 | 16.35 | 0.69
27 work-stealing | —pin-workers -MSTATIC —PERCPU —-SEQPRI 20 | 16.02 | 0.83
27 work-stealing | —pin-workers -MSTATIC —PERCPU —RANDOM 20 | 16.49 | 0.94
27 work-stealing | —pin-workers —-MSTATIC -PERCPU —-RANDOMPRI 20 | 16.64 | 0.74
27 work-stealing | —pin-workers -MFSC ~-CENTRALIZED -SEQ 20 | 17.18 | 1.21
27 work-stealing | —pin-workers -MFSC ~-CENTRALIZED -SEQPRI 20 | 16.34 | 1.23
27 work-stealing | —pin-workers -MFSC ~-CENTRALIZED - RANDOM 20 | 16.59 | 1.40
27 work-stealing pin-workers —-MFSC ~-CENTRALIZED - RANDOMPRI 20 | 16.66 | 1.60
27 work-stealing | —pin-workers -MFSC ~-PERGROUP -SEQ 20 | 16.37 | 0.91
27 work-stealing | —pin-workers -MFSC ~-PERGROUP -SEQPRI 20 | 16.48 | 0.84
27 work-stealing | —pin-workers -MFSC ~PERGROUP ~-RANDOM 20 | 16.71 | 0.62
27 work-stealing | —pin-workers -MFSC —-PERGROUP —-RANDOMPRI 20 | 16.24 | 0.48
27 work-stealing | —pin-workers —-MFSC —PERCPU —SEQ 20 | 16.10 | 1.15
27 work-stealing | —pin-workers —-MFSC —PERCPU —SEQPRI 20 | 16.11 | 0.98
27 work-stealing | —pin-workers —-MFSC —PERCPU —RANDOM 20 | 16.44 | 0.96
27 work-stealing | —pin-workers —-MFSC —-PERCPU —RANDOMPRI 20 | 16.32 | 1.21
27 work-stealing | —pin-workers —PSS —-CENTRALIZED —-SEQ 20 | 17.01 | 1.35
27 work-stealing | —pin-workers —PSS ~-CENTRALIZED -SEQPRI 20 | 17.08 | 1.24
27 work-stealing | —pin-workers —PSS ~-CENTRALIZED - RANDOM 20 [17.79 | 1.51
27 work-stealing | —pin-workers —PSS —-CENTRALIZED ~-RANDOMPRI 20 | 17.72 | 1.60
27 work-stealing pin-workers -PSS ~-PERGROUP -SEQ 20 [17.89 | 0.88
27 work-stealing | —pin-workers —PSS ~PERGROUP -SEQPRI 20 [17.99 | 1.02
27 work-stealing | —pin-workers —-PSS ~PERGROUP ~-RANDOM 20 [17.80 | 1.12
27 work-stealing | —pin-workers -PSS ~-PERGROUP ~-RANDOMPRI 20 | 18.03 | 0.76
27 work-stealing | —pin-workers —-PSS —-PERCPU —SEQ 20 | 16.98 | 0.96
27 work-stealing | —pin-workers —PSS —-PERCPU —SEQPRI 20 | 16.53 | 0.88
27 work-stealing | —pin-workers - PSS —-PERCPU —-RANDOM 20 | 17.43 | 0.86
27 work-stealing | —pin-workers —-PSS ~-PERCPU —-RANDOMPRI 20 | 17.21 | 0.72
1 hierarchical —pin-workers -PERGROUP —STATIC 20 | 13.86 | 1.11
1 hierarchical —pin-workers -PERGROUP -GSS 20 | 13.40 | 1.16
1 hierarchical —pin-workers -PERGROUP —-TSS 20 | 12.72 | 1.20
1 hierarchical —pin-workers —-PERGROUP -FAC2 20 | 13.33 | 1.16
1 hierarchical pin-workers -PERGROUP —TFSS 20 | 13.15 | 1.18
1 hierarchical —pin-workers -PERGROUP —FISS 20 | 13.14 | 1.16
1 hierarchical —pin-workers -PERGROUP —VISS 20 [11.89 | 1.11
1 hierarchical —pin-workers -PERGROUP —PLS 20 | 12.78 | 1.00
1 hierarchical —pin-workers -PERGROUP —MSTATIC 20 | 12.17 | 1.00
1 hierarchical —pin-workers -PERGROUP —-MFSC 20 | 11.73 | 1.05
1 hierarchical —pin-workers -PERGROUP —PSS 20 | 12.93 | 1.22
27 hierarchical —pin-workers -PERGROUP —STATIC 20 | 17.27 | 0.77
27 hierarchical —pin-workers -PERGROUP -GSS 20 | 16.72 | 0.66
27 hierarchical —pin-workers -PERGROUP —TSS 20 | 16.57 | 0.82
27 hierarchical —pin-workers —-PERGROUP —-FAC2 20 | 16.48 | 0.61
27 hierarchical —pin-workers -PERGROUP —-TFSS 20 | 16.56 | 0.68
27 hierarchical pin-workers -PERGROUP -FISS 20 | 16.74 | 0.85
27 hierarchical —pin-workers -PERGROUP —-VISS 20 | 16.19 | 0.85
27 hierarchical —pin-workers -PERGROUP —-PLS 20 | 16.44 | 1.10
27 hierarchical —pin-workers -PERGROUP ~-MSTATIC 20 | 15.91 | 0.74
27 hierarchical —pin-workers -PERGROUP —-MFSC 20 | 15.95 | 0.64
27 hierarchical —pin-workers -PERGROUP —PSS 20 | 16.70 | 0.76
27 work-stealing | —pin-workers —pre-partition —STATIC —-CENTRALIZED —-SEQ 20 | 18.25 | 1.62
27 work-stealing | —pin-workers —pre-partition —STATIC —-CENTRALIZED —SEQPRI 20 | 18.66 | 1.15
27 work-stealing | —pin-workers —pre-partition —STATIC —-CENTRALIZED —-RANDOM 20 | 18.46 | 1.98
27 work-stealing | —pin-workers —pre-partition —STATIC —-CENTRALIZED —-RANDOMPRI 20 | 18.22 | 1.59
27 work-stealing | —pin-workers —pre-partition —-STATIC -PERGROUP -SEQ 20 | 16.92 | 0.84
27 work-stealing | —pin-workers —pre-partition ~-STATIC -PERGROUP -SEQPRI 20 | 17.52 | 0.84
27 work-stealing | —pin-workers —pre-partition —-STATIC ~-PERGROUP ~-RANDOM 20 | 17.33 | 0.74
27 work-stealing pin-workers —pre-partition ~-STATIC ~-PERGROUP ~-RANDOMPRI 20 | 17.28 | 0.87
27 work-stealing | —pin-workers —pre-partition —-STATIC ~-PERCPU -SEQ 20 | 17.50 | 1.03
27 work-stealing | —pin-workers —pre-partition —STATIC —-PERCPU -SEQPRI 20 | 17.86 | 1.01
27 work-stealing | —pin-workers —pre-partition —-STATIC -PERCPU ~-RANDOM 20 | 17.93 | 0.94
27 work-stealing | —pin-workers —pre-partition —STATIC _-PERCPU —-RANDOMPRI 20 | 18.14 | 0.81
27 work-stealing | —pin-workers —pre-partition —-GSS —CENTRALIZED —SEQ 20 | 17.46 | 1.35
27 work-stealing | —pin-workers —pre-partition —-GSS —CENTRALIZED —SEQPRI 20 | 17.60 | 1.31
27 work-stealing | —pin-workers —pre-partition —-GSS —CENTRALIZED —-RANDOM 20 | 17.85 | 1.50

Result Data

53

27 work-stealing | —pin-workers —pre-partition —-GSS ~-CENTRALIZED ~-RANDOMPRI 20 | 17.72 | 1.49
27 work-stealing | —pin-workers —pre-partition —-GSS ~-PERGROUP —-SEQ 20 | 16.85 | 0.92
27 work-stealing pin-workers —pre-partition -GSS ~PERGROUP -SEQPRI 20 | 16.89 | 0.82
27 work-stealing | —pin-workers —pre-partition —-GSS ~PERGROUP ~-RANDOM 20 | 16.87 | 0.92
27 work-stealing | —pin-workers —pre-partition —-GSS ~-PERGROUP —-RANDOMPRI 20 | 16.45 | 0.78
27 work-stealing | —pin-workers —pre-partition —-GSS ~PERCPU —-SEQ 20 | 19.60 | 0.92
27 work-stealing | —pin-workers —pre-partition —GSS —-PERCPU —SEQPRI 20 | 19.06 | 1.00
27 work-stealing | —pin-workers —pre-partition —GSS —-PERCPU —RANDOM 20 | 19.41 | 1.13
27 work-stealing | —pin-workers —pre-partition —-GSS —-PERCPU —RANDOMPRI 20 | 19.22 | 0.96
27 work-stealing | —pin-workers —pre-partition —TSS —-CENTRALIZED —-SEQ 20 | 17.13 | 1.43
27 work-stealing | —pin-workers —pre-partition —TSS —-CENTRALIZED —SEQPRI 20 | 16.84 | 1.52
27 work-stealing | —pin-workers —pre-partition —TSS ~-CENTRALIZED ~-RANDOM 20 | 17.07 | 1.38
27 work-stealing | —pin-workers —pre-partition —TSS ~-CENTRALIZED ~-RANDOMPRI 20 | 16.63 | 1.10
27 work-stealing | —pin-workers —pre-partition —TSS -PERGROUP —-SEQ 20 | 16.26 | 0.71
27 work-stealing pin-workers —pre-partition -TSS ~-PERGROUP -SEQPRI 20 | 16.12 | 0.65
27 work-stealing | —pin-workers —pre-partition —TSS ~-PERGROUP ~RANDOM 20 | 16.46 | 0.94
27 work-stealing | —pin-workers —pre-partition —TSS ~-PERGROUP —-RANDOMPRI 20 | 16.45 | 0.78
27 work-stealing | —pin-workers —pre-partition —TSS ~PERCPU —-SEQ 20 | 18.11 | 0.75
27 work-stealing | —pin-workers —pre-partition —TSS —-PERCPU —SEQPRI 20 | 18.17 | 1.15
27 work-stealing | —pin-workers —pre-partition —TSS -PERCPU - RANDOM 20 | 18.35 | 1.13
27 work-stealing | —pin-workers —pre-partition “TSS —-PERCPU —RANDOMPRI 20 | 18.59 | 0.96
27 work-stealing | —pin-workers —pre-partition —-FAC2 —-CENTRALIZED —SEQ 20 | 17.31 | 1.49
27 work-stealing | —pin-workers —pre-partition —-FAC2 —-CENTRALIZED -SEQPRI 20 | 17.40 | 1.52
27 work-stealing | —pin-workers —pre-partition —-FAC2 -CENTRALIZED -RANDOM 20 | 17.32 | 1.05
27 work-stealing | —pin-workers —pre-partition —-FAC2 —-CENTRALIZED ~-RANDOMPRI 20 | 17.22 | 1.26
27 work-stealing | —pin-workers —pre-partition —-FAC2 ~-PERGROUP -SEQ 20 | 16.18 | 0.69
27 work-stealing pin-workers —pre-partition ~-FAC2 ~-PERGROUP —-SEQPRI 20 | 16.38 | 1.11
27 work-stealing | —pin-workers —pre-partition —-FAC2 —-PERGROUP ~-RANDOM 20 | 16.62 | 0.92
27 work-stealing | —pin-workers —pre-partition ~-FAC2 ~-PERGROUP ~-RANDOMPRI 20 | 16.31 | 0.93
27 work-stealing | —pin-workers —pre-partition —-FAC2 -PERCPU —-SEQ 20 | 19.92 | 0.76
27 work-stealing | —pin-workers —pre-partition —-FAC2 -PERCPU —SEQPRI 20 | 19.78 | 1.01
27 work-stealing | —pin-workers —pre-partition -FAC2 -PERCPU —RANDOM 20 | 20.46 | 0.86
27 work-stealing | —pin-workers —pre-partition —-FAC2 -PERCPU —RANDOMPRI 20 | 20.49 | 1.10
27 work-stealing | —pin-workers —pre-partition “TFSS —-CENTRALIZED —-SEQ 20 | 17.16 | 1.13
27 work-stealing | —pin-workers —pre-partition “TFSS —CENTRALIZED —-SEQPRI 20 | 17.04 | 1.35
27 work-stealing | —pin-workers —pre-partition —“TFSS —-CENTRALIZED - RANDOM 20 | 17.34 | 1.29
27 work-stealing | —pin-workers —pre-partition —“TFSS ~-CENTRALIZED -RANDOMPRI 20 | 16.75 | 1.15
27 work-stealing | —pin-workers —pre-partition -“TFSS ~-PERGROUP -SEQ 20 | 16.09 | 0.84
27 work-stealing | —pin-workers —pre-partition —-TFSS ~-PERGROUP -SEQPRI 20 | 16.65 | 0.83
27 work-stealing pin-workers —pre-partition -“TFSS ~-PERGROUP ~-RANDOM 20 | 16.55 | 0.71
27 work-stealing | —pin-workers —pre-partition -“TFSS ~PERGROUP ~-RANDOMPRI 20 | 16.41 | 0.94
27 work-stealing | —pin-workers —pre-partition —“TFSS ~-PERCPU —-SEQ 20 [21.13 | 1.08
27 work-stealing | —pin-workers —pre-partition —“TFSS ~PERCPU -SEQPRI 20 | 20.96 | 1.25
27 work-stealing | —pin-workers —pre-partition “TFSS -PERCPU —RANDOM 20 | 21.18 | 1.22
27 work-stealing | —pin-workers —pre-partition “TFSS -PERCPU —-RANDOMPRI 20 | 21.25 | 1.08
27 work-stealing | —pin-workers —pre-partition —FISS —-CENTRALIZED —-SEQ 20 | 17.36 | 1.62
27 work-stealing | —pin-workers —pre-partition —FISS -CENTRALIZED -SEQPRI 20 | 17.29 | 1.12
27 work-stealing | —pin-workers —pre-partition —FISS —-CENTRALIZED -RANDOM 20 | 17.03 | 1.35
27 work-stealing | —pin-workers —pre-partition —-FISS ~-CENTRALIZED ~-RANDOMPRI 20 | 17.27 | 1.34
27 work-stealing | —pin-workers —pre-partition —-FISS ~-PERGROUP -SEQ 20 | 16.84 | 0.88
27 work-stealing | —pin-workers —pre-partition —-FISS -PERGROUP -SEQPRI 20 | 16.97 | 1.04
27 work-stealing pin-workers —pre-partition ~-FISS ~-PERGROUP ~-RANDOM 20 | 17.09 | 0.59
27 work-stealing | —pin-workers —pre-partition —~-FISS ~-PERGROUP ~-RANDOMPRI 20 | 16.57 | 0.89
27 work-stealing | —pin-workers —pre-partition —-FISS ~-PERCPU -SEQ 20 | 17.98 | 0.80
27 work-stealing | —pin-workers —pre-partition —FISS ~-PERCPU —-SEQPRI 20 | 18.04 | 1.11
27 work-stealing | —pin-workers —pre-partition —-FISS -PERCPU —-RANDOM 20 | 18.09 | 0.85
27 work-stealing | —pin-workers —pre-partition —-FISS -PERCPU —-RANDOMPRI 20 | 18.12 | 0.85
27 work-stealing | —pin-workers —pre-partition —VISS —-CENTRALIZED —-SEQ 20 | 16.74 | 1.07
27 work-stealing | —pin-workers —pre-partition —VISS —-CENTRALIZED —-SEQPRI 20 | 16.65 | 1.20
27 work-stealing | —pin-workers —pre-partition —VISS ~-CENTRALIZED —-RANDOM 20 | 16.63 | 1.28
27 work-stealing | —pin-workers —pre-partition —VISS ~-CENTRALIZED ~-RANDOMPRI 20 | 16.88 | 1.68
27 work-stealing | —pin-workers —pre-partition —VISS ~-PERGROUP -SEQ 20 | 16.27 | 0.68
27 work-stealing | —pin-workers —pre-partition —VISS ~-PERGROUP -SEQPRI 20 | 16.54 | 0.69
27 work-stealing pin-workers —pre-partition —VISS ~PERGROUP ~-RANDOM 20 | 16.24 | 0.67
27 work-stealing | —pin-workers —pre-partition —VISS ~-PERGROUP ~-RANDOMPRI 20 | 16.33 | 0.94
27 work-stealing | —pin-workers —pre-partition —VISS ~-PERCPU -SEQ 20 | 18.84 | 1.04
27 work-stealing | —pin-workers —pre-partition —VISS ~PERCPU -SEQPRI 20 | 18.44 | 0.69
27 work-stealing | —pin-workers —pre-partition —VISS -PERCPU —-RANDOM 20 | 19.15 | 0.89
27 work-stealing | —pin-workers —pre-partition —VISS -PERCPU —-RANDOMPRI 20 | 19.23 | 1.07
27 work-stealing | —pin-workers —pre-partition —-PLS —-CENTRALIZED —-SEQ 20 | 17.28 | 1.16
27 work-stealing | —pin-workers —pre-partition —-PLS —-CENTRALIZED —SEQPRI 20 | 17.29 | 1.28
27 work-stealing | —pin-workers —pre-partition —-PLS ~-CENTRALIZED —-RANDOM 20 | 17.47 | 1.40
27 work-stealing | —pin-workers —pre-partition —-PLS —-CENTRALIZED —-RANDOMPRI 20 | 17.21 | 1.18
27 work-stealing | —pin-workers —pre-partition —-PLS ~-PERGROUP -SEQ 20 | 16.68 | 0.66
27 work-stealing | —pin-workers —pre-partition —-PLS ~PERGROUP -SEQPRI 20 | 16.56 | 0.77
27 work-stealing | —pin-workers —pre-partition —-PLS ~-PERGROUP ~-RANDOM 20 | 16.68 | 0.87
27 work-stealing pin-workers —pre-partition ~-PLS -PERGROUP ~-RANDOMPRI 20 | 16.75 | 0.82
27 work-stealing | —pin-workers —pre-partition —-PLS ~-PERCPU —-SEQ 20 | 19.54 | 1.03
27 work-stealing | —pin-workers —pre-partition —-PLS ~-PERCPU —-SEQPRI 20 | 19.79 | 0.96
27 work-stealing | —pin-workers —pre-partition —-PLS ~-PERCPU ~-RANDOM 20 | 19.66 | 1.08
27 work-stealing | —pin-workers —pre-partition —-PLS -PERCPU —RANDOMPRI 20 | 19.76 | 0.97
27 work-stealing | —pin-workers —pre-partition —-MSTATIC —CENTRALIZED —SEQ 20 | 17.06 | 1.39
27 work-stealing | —pin-workers —pre-partition —-MSTATIC —CENTRALIZED —SEQPRI 20 | 17.46 | 1.60
27 work-stealing | —pin-workers —pre-partition —-MSTATIC —CENTRALIZED —-RANDOM 20 | 16.93 | 1.39

Result Data

54

27 work-stealing | —pin-workers —pre-partition -MSTATIC ~-CENTRALIZED - RANDOMPRI | 20 | 16.98 | 1.49
27 work-stealing | —pin-workers —pre-partition -MSTATIC ~-PERGROUP -SEQ 20 | 16.37 | 0.78
27 work-stealing pin-workers —pre-partition —-MSTATIC ~-PERGROUP -SEQPRI 20 | 16.47 | 0.87
27 work-stealing | —pin-workers —pre-partition —-MSTATIC ~-PERGROUP ~RANDOM 20 | 16.27 | 0.79
27 work-stealing | —pin-workers —pre-partition -MSTATIC ~-PERGROUP —~RANDOMPRI 20 | 16.56 | 1.02
27 work-stealing | —pin-workers —pre-partition -MSTATIC ~-PERCPU —-SEQ 20 | 18.72 | 0.87
27 work-stealing | —pin-workers —pre-partition —-MSTATIC —-PERCPU —SEQPRI 20 | 18.54 | 0.85
27 work-stealing | —pin-workers —pre-partition —-MSTATIC —-PERCPU —RANDOM 20 | 18.79 | 0.91
27 work-stealing | —pin-workers —pre-partition —-MSTATIC —-PERCPU —RANDOMPRI 20 | 18.80 | 1.08
27 work-stealing | —pin-workers —pre-partition -MFSC —-CENTRALIZED —-SEQ 20 | 16.46 | 1.18
27 work-stealing | —pin-workers —pre-partition —-MFSC —-CENTRALIZED —-SEQPRI 20 | 16.46 | 1.23
27 work-stealing | —pin-workers —pre-partition -MFSC ~-CENTRALIZED -RANDOM 20 | 16.75 | 1.36
27 work-stealing | —pin-workers —pre-partition -MFSC ~-CENTRALIZED ~-RANDOMPRI 20 | 16.43 | 1.01
27 work-stealing | —pin-workers —pre-partition -MFSC ~-PERGROUP -SEQ 20 | 16.52 | 0.63
27 work-stealing pin-workers —pre-partition —-MFSC ~-PERGROUP -SEQPRI 20 | 16.59 | 0.96
27 work-stealing | —pin-workers —pre-partition -MFSC ~-PERGROUP ~-RANDOM 20 | 16.59 | 1.14
27 work-stealing | —pin-workers —pre-partition -MFSC ~-PERGROUP ~-RANDOMPRI 20 | 16.41 | 0.80
27 work-stealing | —pin-workers —pre-partition —-MFSC —PERCPU —-SEQ 20 | 21.03 | 0.78
27 work-stealing | —pin-workers —pre-partition —-MFSC —PERCPU —SEQPRI 20 | 20.73 | 0.97
27 work-stealing | —pin-workers —pre-partition -MFSC —-PERCPU —RANDOM 20 | 20.95 | 1.12
27 work-stealing | —pin-workers —pre-partition -MFSC —PERCPU —RANDOMPRI 20 | 21.24 | 1.01
27 work-stealing | —pin-workers —pre-partition —-PSS —-CENTRALIZED —-SEQ 20 | 17.24 | 1.24
27 work-stealing | —pin-workers —pre-partition —-PSS ~-CENTRALIZED -SEQPRI 20 | 17.24 | 1.32
27 work-stealing | —pin-workers —pre-partition -PSS ~-CENTRALIZED -RANDOM 20 | 17.06 | 1.48
27 work-stealing | —pin-workers —pre-partition —-PSS ~-CENTRALIZED ~-RANDOMPRI 20 | 16.63 | 1.03
27 work-stealing | —pin-workers —pre-partition -PSS ~PERGROUP -SEQ 20 | 16.64 | 0.98
27 work-stealing pin-workers —pre-partition -PSS ~-PERGROUP -SEQPRI 20 | 16.41 | 0.64
27 work-stealing | —pin-workers —pre-partition —-PSS ~-PERGROUP ~-RANDOM 20 | 16.92 | 0.76
27 work-stealing | —pin-workers —pre-partition —-PSS ~PERGROUP ~-RANDOMPRI 20 | 16.63 | 0.96
27 work-stealing | —pin-workers —pre-partition —-PSS ~PERCPU —-SEQ 20 | 20.49 | 1.10
27 work-stealing | —pin-workers —pre-partition —-PSS -PERCPU —-SEQPRI 20 | 20.45 | 1.06
27 work-stealing | —pin-workers —pre-partition —-PSS -PERCPU —RANDOM 20 | 20.84 | 0.87
27 work-stealing | —pin-workers —pre-partition -PSS -PERCPU —RANDOMPRI 20 | 21.10 | 1.02
1 work-stealing | —pin-workers —pre-partition —STATIC —-CENTRALIZED —-SEQ 20 | 13.26 | 0.98
1 work-stealing | —pin-workers —pre-partition —-STATIC ~-CENTRALIZED -SEQPRI 20 | 13.49 | 1.26
1 work-stealing | —pin-workers —pre-partition —-STATIC —-CENTRALIZED —-RANDOM 20 | 13.19 | 1.06
1 work-stealing | —pin-workers —pre-partition —-STATIC ~-CENTRALIZED -RANDOMPRI 20 | 13.33 | 1.21
1 work-stealing | —pin-workers —pre-partition —-STATIC ~-PERGROUP -SEQ 20 | 13.24 | 1.22
1 work-stealing | —pin-workers —pre-partition —-STATIC -PERGROUP -SEQPRI 20 | 13.45 | 1.34
1 work-stealing pin-workers —pre-partition ~-STATIC -PERGROUP ~-RANDOM 20 | 13.52 | 1.30
1 work-stealing | —pin-workers —pre-partition —-STATIC -PERGROUP ~-RANDOMPRI 20 | 12.70 | 0.92
1 work-stealing | —pin-workers —pre-partition —-STATIC —-PERCPU -SEQ 20 | 12.63 | 1.03
1 work-stealing | —pin-workers —pre-partition —-STATIC ~-PERCPU -SEQPRI 20 | 12.39 | 1.01
1 work-stealing | —pin-workers —pre-partition —STATIC —-PERCPU —RANDOM 20 | 12.92 | 1.24
1 work-stealing | —pin-workers —pre-partition —STATIC _-PERCPU —-RANDOMPRI 20 | 12.26 | 0.67
1 work-stealing | —pin-workers —pre-partition —-GSS —-CENTRALIZED —-SEQ 20 | 12.47 | 1.05
1 work-stealing | —pin-workers —pre-partition —-GSS —CENTRALIZED —SEQPRI 20 | 12.59 | 1.27
1 work-stealing | —pin-workers —pre-partition —-GSS —-CENTRALIZED - RANDOM 20 | 12.40 | 0.81
1 work-stealing | —pin-workers —pre-partition —-GSS ~-CENTRALIZED ~-RANDOMPRI 20 | 12.71 | 1.14
1 work-stealing | —pin-workers —pre-partition —-GSS ~PERGROUP -SEQ 20 | 11.89 | 1.11
1 work-stealing | —pin-workers —pre-partition —-GSS ~-PERGROUP -SEQPRI 20 | 11.97 | 0.81
1 work-stealing pin-workers —pre-partition ~-GSS ~PERGROUP ~-RANDOM 20 | 12.18 | 1.33
1 work-stealing | —pin-workers —pre-partition —-GSS ~-PERGROUP ~RANDOMPRI 20 | 12.02 | 1.05
1 work-stealing | —pin-workers —pre-partition —-GSS ~PERCPU —-SEQ 20 | 12.32 | 0.82
1 work-stealing | —pin-workers —pre-partition —-GSS ~PERCPU -SEQPRI 20 | 12.34 | 1.07
1 work-stealing | —pin-workers —pre-partition —GSS —-PERCPU —RANDOM 20 | 12.48 | 1.09
1 work-stealing | —pin-workers —pre-partition —-GSS —-PERCPU —RANDOMPRI 20 | 12.47 | 1.03
1 work-stealing | —pin-workers —pre-partition —“TSS —-CENTRALIZED —SEQ 20 | 12.67 | 1.19
1 work-stealing | —pin-workers —pre-partition —TSS ~-CENTRALIZED -SEQPRI 20 | 12.53 | 1.21
1 work-stealing | —pin-workers —pre-partition —TSS —-CENTRALIZED —-RANDOM 20 | 12.62 | 1.17
1 work-stealing | —pin-workers —pre-partition —TSS ~-CENTRALIZED ~-RANDOMPRI 20 | 12.76 | 1.21
1 work-stealing | —pin-workers —pre-partition —TSS -PERGROUP -SEQ 20 [11.63 | 0.98
1 work-stealing | —pin-workers —pre-partition -TSS -PERGROUP -SEQPRI 20 | 11.50 | 0.89
1 work-stealing pin-workers —pre-partition —“TSS ~PERGROUP ~RANDOM 20 | 11.85 | 1.16
1 work-stealing | —pin-workers —pre-partition —TSS -PERGROUP ~-RANDOMPRI 20 [11.99 | 1.25
1 work-stealing | —pin-workers —pre-partition —TSS ~PERCPU —-SEQ 20 | 12.71 | 1.33
1 work-stealing | —pin-workers —pre-partition —TSS ~-PERCPU —-SEQPRI 20 | 13.11 | 1.58
1 work-stealing | —pin-workers —pre-partition —TSS -PERCPU - RANDOM 20 | 12.89 | 1.04
1 work-stealing | —pin-workers —pre-partition —TSS —-PERCPU —RANDOMPRI 20 | 12.96 | 1.19
1 work-stealing | —pin-workers —pre-partition —-FAC2 —-CENTRALIZED —SEQ 20 | 12.52 | 1.06
1 work-stealing | —pin-workers —pre-partition —-FAC2 —-CENTRALIZED —SEQPRI 20 | 12.10 | 1.02
1 work-stealing | —pin-workers —pre-partition —-FAC2 —-CENTRALIZED - RANDOM 20 | 13.10 | 1.29
1 work-stealing | —pin-workers —pre-partition —-FAC2 —-CENTRALIZED -RANDOMPRI 20 | 12.62 | 1.18
1 work-stealing | —pin-workers —pre-partition —-FAC2 -PERGROUP -SEQ 20 | 11.66 | 1.12
1 work-stealing | —pin-workers —pre-partition -FAC2 - PERGROUP -SEQPRI 20 | 11.89 | 1.15
1 work-stealing | —pin-workers —pre-partition —-FAC2 ~-PERGROUP ~-RANDOM 20 | 11.56 | 1.18
1 work-stealing pin-workers —pre-partition ~-FAC2 ~-PERGROUP ~-RANDOMPRI 20 | 11.51 | 0.97
1 work-stealing | —pin-workers —pre-partition ~-FAC2 ~-PERCPU —-SEQ 20 | 13.45 | 1.54
1 work-stealing | —pin-workers —pre-partition —-FAC2 —-PERCPU -SEQPRI 20 | 12.98 | 1.34
1 work-stealing | —pin-workers —pre-partition —-FAC2 ~-PERCPU ~-RANDOM 20 | 12.87 | 1.34
1 work-stealing | —pin-workers —pre-partition —-FAC2 -PERCPU —-RANDOMPRI 20 | 12.96 | 1.35
1 work-stealing | —pin-workers —pre-partition “TFSS —-CENTRALIZED —-SEQ 20 | 12.69 | 1.33
1 work-stealing | —pin-workers —pre-partition “TFSS —-CENTRALIZED —-SEQPRI 20 | 12.73 | 1.26
1 work-stealing | —pin-workers —pre-partition “TFSS —-CENTRALIZED —-RANDOM 20 | 12.60 | 1.28

Result Data

95

1 work-stealing | —pin-workers —pre-partition -“TFSS ~-CENTRALIZED ~-RANDOMPRI 20 | 12.15 | 1.09
1 work-stealing | —pin-workers —pre-partition —“TFSS ~-PERGROUP -SEQ 20 | 11.60 | 1.15
1 work-stealing pin-workers —pre-partition -“TFSS ~PERGROUP -SEQPRI 20 [11.40 | 1.04
1 work-stealing | —pin-workers —pre-partition -~ TFSS ~PERGROUP ~-RANDOM 20 | 11.80 | 1.17
1 work-stealing | —pin-workers —pre-partition —“TFSS ~PERGROUP ~-RANDOMPRI 20 [11.22 | 0.93
1 work-stealing | —pin-workers —pre-partition —“TFSS ~-PERCPU —-SEQ 20 | 13.20 | 1.50
1 work-stealing | —pin-workers —pre-partition —“TFSS -PERCPU —SEQPRI 20 | 13.11 | 0.90
1 work-stealing | —pin-workers —pre-partition “TFSS -PERCPU —RANDOM 20 | 12.93 | 1.29
1 work-stealing | —pin-workers —pre-partition “TFSS -PERCPU —RANDOMPRI 20 | 13.49 | 1.12
1 work-stealing | —pin-workers —pre-partition —FISS —-CENTRALIZED -SEQ 20 | 13.59 | 1.02
1 work-stealing | —pin-workers —pre-partition —FISS —-CENTRALIZED —-SEQPRI 20 | 13.63 | 0.97
1 work-stealing | —pin-workers —pre-partition —FISS ~-CENTRALIZED -RANDOM 20 | 13.83 | 1.02
1 work-stealing | —pin-workers —pre-partition —-FISS -CENTRALIZED ~-RANDOMPRI 20 | 13.14 | 0.48
1 work-stealing | —pin-workers —pre-partition —-FISS ~-PERGROUP -SEQ 20 | 12.50 | 0.92
1 work-stealing pin-workers —pre-partition ~-FISS ~-PERGROUP —-SEQPRI 20 | 12.72 | 1.02
1 work-stealing | —pin-workers —pre-partition —-FISS ~-PERGROUP ~-RANDOM 20 | 12.42 | 0.90
1 work-stealing | —pin-workers —pre-partition —-FISS ~-PERGROUP -RANDOMPRI 20 | 12.37 | 0.63
1 work-stealing | —pin-workers —pre-partition —-FISS ~-PERCPU -SEQ 20 | 12.56 | 0.22
1 work-stealing | —pin-workers —pre-partition —FISS -PERCPU —-SEQPRI 20 | 13.23 | 1.10
1 work-stealing | —pin-workers —pre-partition —FISS -PERCPU —RANDOM 20 | 13.60 | 1.33
1 work-stealing | —pin-workers —pre-partition —-FISS -PERCPU —RANDOMPRI 20 | 13.45 | 1.29
1 work-stealing | —pin-workers —pre-partition —VISS —-CENTRALIZED —-SEQ 20 | 12.10 | 0.94
1 work-stealing | —pin-workers —pre-partition —VISS ~-CENTRALIZED —-SEQPRI 20 | 12.21 | 0.94
1 work-stealing | —pin-workers —pre-partition —VISS ~-CENTRALIZED -RANDOM 20 | 12.36 | 1.15
1 work-stealing | —pin-workers —pre-partition —VISS ~-CENTRALIZED ~-RANDOMPRI 20 | 12.43 | 1.14
1 work-stealing | —pin-workers —pre-partition —VISS ~-PERGROUP -SEQ 20 | 11.59 | 1.06
1 work-stealing pin-workers —pre-partition —VISS ~PERGROUP —-SEQPRI 20 | 11.61 | 1.05
1 work-stealing | —pin-workers —pre-partition —VISS ~-PERGROUP ~-RANDOM 20 [11.56 | 1.13
1 work-stealing | —pin-workers —pre-partition —VISS ~-PERGROUP ~-RANDOMPRI 20 | 11.33 | 0.99
1 work-stealing | —pin-workers —pre-partition —VISS ~-PERCPU —-SEQ 20 | 13.27 | 1.10
1 work-stealing | —pin-workers —pre-partition —VISS -PERCPU —-SEQPRI 20 | 12.60 | 0.18
1 work-stealing | —pin-workers —pre-partition —VISS -PERCPU —-RANDOM 20 | 13.20 | 1.01
1 work-stealing | —pin-workers —pre-partition —VISS -PERCPU —RANDOMPRI 20 | 13.21 | 1.05
1 work-stealing | —pin-workers —pre-partition —-PLS —-CENTRALIZED —-SEQ 20 | 13.11 | 1.17
1 work-stealing | —pin-workers —pre-partition —-PLS ~-CENTRALIZED -SEQPRI 20 | 13.18 | 1.22
1 work-stealing | —pin-workers —pre-partition —-PLS —-CENTRALIZED -RANDOM 20 | 12.48 | 0.55
1 work-stealing | —pin-workers —pre-partition —-PLS ~-CENTRALIZED ~-RANDOMPRI 20 | 12.95 | 1.07
1 work-stealing | —pin-workers —pre-partition -PLS ~-PERGROUP -SEQ 20 | 12.71 | 1.20
1 work-stealing | —pin-workers —pre-partition —-PLS ~-PERGROUP -SEQPRI 20 | 11.89 | 0.74
1 work-stealing pin-workers —pre-partition ~-PLS -PERGROUP ~-RANDOM 20 [11.94 | 0.84
1 work-stealing | —pin-workers —pre-partition —-PLS ~PERGROUP ~-RANDOMPRI 20 | 12.37 | 1.22
1 work-stealing | —pin-workers —pre-partition —-PLS ~-PERCPU —-SEQ 20 | 13.53 | 1.14
1 work-stealing | —pin-workers —pre-partition —-PLS ~-PERCPU —-SEQPRI 20 | 13.79 | 1.22
1 work-stealing | —pin-workers —pre-partition —-PLS -PERCPU —RANDOM 20 | 13.67 | 1.30
1 work-stealing | —pin-workers —pre-partition —-PLS -PERCPU —RANDOMPRI 20 | 13.00 | 0.83
1 work-stealing | —pin-workers —pre-partition —-MSTATIC —CENTRALIZED —SEQ 20 | 13.45 | 1.21
1 work-stealing | —pin-workers —pre-partition -MSTATIC —-CENTRALIZED -SEQPRI 20 | 13.45 | 1.14
1 work-stealing | —pin-workers —pre-partition —-MSTATIC —CENTRALIZED —-RANDOM 20 | 13.41 | 1.22
1 work-stealing | —pin-workers —pre-partition -MSTATIC ~-CENTRALIZED - RANDOMPRI | 20 | 13.16 | 1.09
1 work-stealing | —pin-workers —pre-partition -MSTATIC ~-PERGROUP -SEQ 20 | 12.32 | 1.24
1 work-stealing | —pin-workers —pre-partition -MSTATIC ~-PERGROUP -SEQPRI 20 | 11.93 | 0.93
1 work-stealing pin-workers —pre-partition —-MSTATIC ~-PERGROUP ~-RANDOM 20 | 12.20 | 1.15
1 work-stealing | —pin-workers —pre-partition -MSTATIC ~-PERGROUP ~RANDOMPRI 20 [11.94 | 0.98
1 work-stealing | —pin-workers —pre-partition —-MSTATIC —-PERCPU —-SEQ 20 | 13.14 | 1.05
1 work-stealing | —pin-workers —pre-partition —-MSTATIC ~-PERCPU —-SEQPRI 20 | 13.12 | 0.92
1 work-stealing | —pin-workers —pre-partition —-MSTATIC —-PERCPU —RANDOM 20 | 13.15 | 1.04
1 work-stealing | —pin-workers —pre-partition —-MSTATIC —-PERCPU —RANDOMPRI 20 | 13.07 | 0.90
1 work-stealing | —pin-workers —pre-partition —-MFSC —CENTRALIZED —SEQ 20 | 11.39 | 0.90
1 work-stealing | —pin-workers —pre-partition —-MFSC —CENTRALIZED —SEQPRI 20 | 11.82 | 1.18
1 work-stealing | —pin-workers —pre-partition —-MFSC —-CENTRALIZED —-RANDOM 20 | 11.51 | 1.00
1 work-stealing | —pin-workers —pre-partition -MFSC ~-CENTRALIZED - RANDOMPRI 20 | 11.85 | 1.18
1 work-stealing | —pin-workers —pre-partition -MFSC —-PERGROUP -SEQ 20 | 11.53 | 1.05
1 work-stealing | —pin-workers —pre-partition -MFSC ~-PERGROUP -SEQPRI 20 | 11.23 | 0.92
1 work-stealing pin-workers —pre-partition —-MFSC ~PERGROUP ~RANDOM 20 | 11.30 | 1.03
1 work-stealing | —pin-workers —pre-partition -MFSC ~-PERGROUP ~-RANDOMPRI 20 | 11.23 | 0.92
1 work-stealing | —pin-workers —pre-partition —-MFSC ~-PERCPU -SEQ 20 | 13.24 | 0.85
1 work-stealing | —pin-workers —pre-partition -MFSC —-PERCPU -SEQPRI 20 | 13.48 | 1.18
1 work-stealing | —pin-workers —pre-partition —-MFSC —PERCPU —RANDOM 20 | 13.97 | 1.37
1 work-stealing | —pin-workers —pre-partition -MFSC —PERCPU —RANDOMPRI 20 | 14.11 | 1.19
1 work-stealing | —pin-workers —pre-partition —-PSS —-CENTRALIZED —-SEQ 20 | 13.05 | 1.19
1 work-stealing | —pin-workers —pre-partition —-PSS —-CENTRALIZED —-SEQPRI 20 | 12.70 | 1.01
1 work-stealing | —pin-workers —pre-partition —-PSS —-CENTRALIZED —-RANDOM 20 | 13.30 | 1.29
1 work-stealing | —pin-workers —pre-partition —-PSS —-CENTRALIZED —-RANDOMPRI 20 | 12.56 | 0.92
1 work-stealing | —pin-workers —pre-partition -PSS ~PERGROUP -SEQ 20 | 12.16 | 1.04
1 work-stealing | —pin-workers —pre-partition -PSS ~PERGROUP -SEQPRI 20 | 11.73 | 0.72
1 work-stealing | —pin-workers —pre-partition -PSS ~PERGROUP ~-RANDOM 20 | 12.61 | 1.26
1 work-stealing pin-workers —pre-partition -PSS ~PERGROUP ~-RANDOMPRI 20 [11.80 | 0.85
1 work-stealing | —pin-workers —pre-partition -PSS ~PERCPU —-SEQ 20 | 13.15 | 0.98
1 work-stealing | —pin-workers —pre-partition —-PSS ~PERCPU -SEQPRI 20 | 13.21 | 1.01
1 work-stealing | —pin-workers —pre-partition —-PSS ~PERCPU ~-RANDOM 20 | 13.24 | 1.06
1 work-stealing | —pin-workers —pre-partition -PSS -PERCPU —RANDOMPRI 20 | 13.53 | 1.01

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Outline

	2 Terminology and Background
	2.1 Terminology
	2.2 Background
	2.2.1 DAPHNE Infrastructure and Applications
	2.2.1.1 Built-in Kernels
	2.2.1.2 Dense and Sparse Matrix Representation
	2.2.1.3 Connected Components Algorithm
	2.2.1.4 Slurm Integration
	2.2.1.5 Vectorized Execution Engine

	2.2.2 Scheduling Schemes

	3 Related Work
	3.1 Data Locality
	3.2 Task Granularity
	3.3 Task Dependencies

	4 Methodology
	4.1 Load Partitioning
	4.2 Scheduling Schemes
	4.2.1 Static
	4.2.2 Self-Scheduling
	4.2.3 Guided Self-Scheduling
	4.2.4 Trapezoid Self-Scheduling
	4.2.5 Factoring
	4.2.6 Trapezoid Factoring Self-Scheduling
	4.2.7 Fixed Increase Self-Scheduling
	4.2.8 Variable Increase Self-Scheduling
	4.2.9 Performance-Based Loop Self-Scheduling
	4.2.10 Probabilistic Self-Scheduling
	4.2.11 Modified Fixed-Size Chunk

	4.3 Fused Kernels
	4.4 Work-Sharing
	4.5 System Architecture
	4.5.1 NUMA System Topology
	4.5.1.1 First-Touch policy

	4.5.2 Simultaneous Multithreading

	4.6 Work-Stealing
	4.6.1 Serializing Work Stealing
	4.6.2 Eager Binary Splitting
	4.6.3 Hierarchical Work Stealing
	4.6.4 Victim Selection
	4.6.4.1 Sequential
	4.6.4.2 Sequential Prioritized
	4.6.4.3 Random
	4.6.4.4 Random Prioritized

	4.6.5 Multi-Threaded Shepherds

	4.7 Multi-threading Wrapper
	4.8 Vectorized Engine Trace Files
	4.9 Design of Factorial Experiments

	5 Results
	5.1 Broadwell
	5.1.1 Work-Stealing
	5.1.2 Tiling
	5.1.3 Hierarchical

	5.2 Cascade Lake
	5.2.1 Work-Stealing
	5.2.2 Tiling
	5.2.3 Hierarchical

	6 Conclusion
	7 Future Work
	Bibliography
	A Result Data

