
Investigation of Domain Decomposition
and Scheduling in HPC Applications

Master project

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

High Performance Parallel And Distributed Computing

https://hpc.dmi.unibas.ch

Advisor: Prof. Dr. Florina M. Ciorba

Supervisor: Jonas Henrique Müller Korndörfer

Nderim Shatri

nderim.shatri@stud.unibas.ch

HS16-062-234

31.07.2022

Table of Contents

1 Introduction 1

2 Methods 2

2.1 Investigation of Open Source HPC applications 2

2.1.1 Benchmark suite, Name, Link, Domain and description 2

2.1.2 Lines of Code and Programming Langua 3

2.1.3 OpenMP, MPI, OpenACC, CUDA, OpenCL 3

2.1.4 Data Distribution and Location of Data Distribution 3

2.1.5 Process Level Scheduling and Location of the Process Level Scheduling 3

2.1.6 Release Date, Version, new Version, and new Release date 4

2.1.7 Storage . 4

2.1.8 Notes . 4

2.1.9 A/M, A, M . 4

2.2 Approach . 5

2.2.1 Retrieve the application . 5

2.2.2 Grep for MPI Init . 5

2.2.3 Use of IDE . 5

2.2.4 Domain Decomposition and Process Level Scheduling 5

2.2.5 Extract other data . 6

2.2.5.1 Retrieve the storage in MB 7

2.2.6 Challenges in Code Analysis . 7

3 Analyzed open source HPC Applications 8

3.1 No benchmark suite . 8

3.2 LLNL ASC Proxy Apps . 12

3.3 Mantevo . 12

3.4 ExaGraph . 13

3.5 Fiber Mini App . 13

3.6 SPEC CPU 2017 . 13

3.7 Chatterbug . 15

3.8 CORAL-2 . 15

3.9 Rodinia 3.1 . 15

3.10 UK Mini-App Consortium . 15

Table of Contents iii

3.11 SPEC CPU 2017 . 16

3.12 ExMatEx . 17

4 Data Processing 18

4.1 Data preparation . 18

4.2 Data-input . 18

5 Results 19

5.1 Generic information . 19

5.2 Information about the Length of Code and Storage 24

5.3 Parallel programming paradigm, decomposition and scheduling at process level 24

5.4 Paradigms and Programming Language over years 25

5.5 Domains in Programming Languages . 28

5.6 Trends over years in Paradigms and Programming language 28

6 Conclusion 30

Bibliography 31

Appendix A Appendix 36

A.1 ControlTable[73] . 37

A.2 Processed ControlTable[74] . 40

Appendix B Appendix 42

B.1 Script to get automatic information . 42

1
Introduction

In High Performance Computing, HPC, different parallel programming paradigms are being

used in applications to work on a specific computation in parallel. Thus, enhancing the

performance of the application. The applications in domains, such as Molecular Dynam-

ics, Smoothed Particle Hydrodynamics, and many more, were released over the years with

various usage of programming paradigms. The popular parallel programming paradigms

tackle different aspects of parallelization. Those most common used among the community

are OpenMP, MPI, OpenCL, OpenAcc, and CUDA. With this project, we aim to set an

overview of open source HPC applications. We tried to capture the relevant information and

characteristics of an application, consisting of the Domain, Programming Language, LoC,

parallel programming paradigms, and releases. Furthermore, we analyzed the code to see

how the data decomposition and scheduling on process level has been implemented. As the

investigation is based on process level, a focus on the paradigms is the MPI library, namely

the Message-Passing-Interface. MPI assures communication over each CPU (or core), so

each CPU runs an independent program. The difficulty and the most challenging part

is to deep dive into the community’s code and search for their domain decomposition and

scheduling on process level techniques, as there are infinitely many ways to formulate a code,

discrepancy of Lines of Code, and various programming languages. Furthermore, among the

applications there might be legacy code or another application which solves the same prob-

lem faster. To counter these difficulties a systematic approach consisting of automatized and

manual processes is needed and provided. Within this project we created a data set provid-

ing our results to understand the common implementation practices within the community

to be able to propose novel and new methods to enhance applications’ performance.

2
Methods

Achieving the investigation of domain decomposition and scheduling in HPC applications,

we were given 180 applications. Among these 180 applications, we successfully managed to

analyze 71 of them during this project. The investigated applications have been randomly

chosen and vary in benchmark suites, domains used, and used technologies. Briefly, the

project has fulfilled two goals. First, gathering available information about the applications

and secondly, investigating the domain decomposition and scheduling in HPC applications.

Therefore, manual work which cannot be automatized had to be done.

2.1 Investigation of Open Source HPC applications
One of the fundamental question is: what is necessary in providing information that might

help the community for the future use of our results? Naturally, it comes practical in

building a data set which is visual and can be modified and adopted in the future. For

this purpose, we build a table view using ”google-sheets”, as it is available, modifiable,

and exportable in various formats. The data which is analyzed consist of 26 columns with

different characteristics.

2.1.1 Benchmark suite, Name, Link, Domain and description
The columns Benchmark suite, Name, Link and Description provide information about the

application analyzed. The Benchmark suite column shows the user the type of suite the

application belongs to. It has been showed as the first column, as it offers a broad selection

of scientific application to solve different domains. The name of the application and the link

define what the application’s name is and where it can be retrieved from the application.

As for the link, mostly the repository of the application is being used. The reason is that

updates of the application, bug fixes, and different branches can be explored. The domain

was constructed to show the area of research of the application. Additionally, for a better

understanding about the application, we added the description of the application. All those

information have been gathered manually from the different links and sources provided by

the publishers.

Methods 3

Figure 2.1: First part of the table containing the retrieved information

2.1.2 Lines of Code and Programming Langua
The Lines of Code is an indicator of how complex an application has been developed. This

is also a measurement to represent the data graphically within this project. Thus, we

introduced in our data set: C Lines, C++-Lines, Fortran Lines, C/C++ Header lines. Fur-

thermore, we wanted to show the programming languages that the code has been written on

and detect if there were multiple languages were used. Last but not least, we wanted to show

the application’s line distribution, consisting of each amount for the different programming

languages used.

Figure 2.2: Second part of the table containing the retrieved information

2.1.3 OpenMP, MPI, OpenACC, CUDA, OpenCL
Columns consisting the common parallel programming paradigms, such as OpenMP, MPI,

OpenACC, CUDA, and OpenCL are necessary to determine the characteristics of an appli-

cation. To make it human readable, we assured that the possible values are ”yes” or ”no”

if one application shares, or does not share the paradigms.

Figure 2.3: Third part of the table containing the retrieved information

2.1.4 Data Distribution and Location of Data Distribution
As one of the focus of this work is to identify the data decomposition on process level, we

present those information as Data Distribution consisting of the type and Location of Data

Distribution consisting of the locality in the code. The types of the Data Distribution can

be:

• distributed: applications which have distributed data decomposition on process level

• replicated: applications which have replicated data decomposition on process level

• centralized: applications which have centralized data decomposition on process level

• unknown: applications where we could not found indices of one of the above types

2.1.5 Process Level Scheduling and Location of the Process Level Scheduling
Another aspect of this work has been to find what kind of and where process level scheduling

occurs. Therefore, we captured our analysis inside the columns ProcessLevelScheduling

Methods 4

and LocationoftheProcesslevelScheduling. For simplicity, we distinguished only two types

of the process level scheduling:

• dynamic: applications with dynamic process level scheduling

• static: applications with static process level scheduling

• unknown: applications where we were not able to find indices of one of the types above

Figure 2.4: Fourth part of the table containing the retrieved information

2.1.6 Release Date, Version, new Version, and new Release date
Among the applications in the portfolio, there have been applications which have already

newer versions. The release date column and version is meant to show the release date of the

analyzed application. As another aspect, we updated the applications of the portfolio and

marked if there are further releases and newer versions. Furtheremore, all the applications

have been updated inside the portfolio where an update was found.

2.1.7 Storage
Within this column, we tried to get the application’s storage that it takes. The storage was

measured in Megabyte and consists of the application’s whole directory.

2.1.8 Notes
The column Notes consists of remarks that have resulted during the analysis. Those notes

may be, for instance, on difficulties to find the application’s domain decomposition and

scheduling or information about a frequent update of an application.

2.1.9 A/M, A, M
Within the headers of the column there are letters describing whether information was

retrieved automatically by a script, denoted as A, manually by research and investigating,

denoted as M, or whether it consisted manual and automatic investigation, denoted as A/M.

Figure 2.5: Remaining part of the table containing the retrieved information

Methods 5

2.2 Approach
To achieve the goal of the project, we used a systematic approach. The approach could be

described by the following steps. The applications have been stored on the HPC-Cluster of

the University of Basel. The applications have been chosen randomly.

1. Retrieve the application

2. Grep for the initialization of MPI with MPI Init

3. Use of Visual Studio Code[60] IDE, Integrated Development Environment

4. Analyze Decomposition and Scheduling at process level

5. Collect the information about an application

2.2.1 Retrieve the application
As all the applications lie on the HPC cluster, we decided to firstly retrieve them on our

local machines. Having applications on a local machine comes handy when we try to analyze

the code, as the use of IDEs such as Visual Studio Code[60] is possible.

2.2.2 Grep for MPI Init
Our main goal is to analyze the domain decomposition and scheduling at process level.

Therefore, to grep for MPI Init in each application is one of the first steps. By using the

command:

grep −n ”MPI Init ” ” d i r e c to ry−name” # C or C++ app l i c a t i o n

grep −n ”MPI INIT” ” dr i e c to ry−name” # Fortran app l i c a t i o n

With this step, we assured that MPI was used in the application and therefore, a kind of

process level scheduling and domain decomposition might have been used.

2.2.3 Use of IDE
An IDE is very useful when analyzing code. The searches of methods and code classes have

various shortcuts. Therefore, the code can be investigated fast and efficiently by using short

cuts. In our case, we used visual studio code, as extension of programming languages can

be quickly installed. The user interface is fast forward and searches are handled quickly.

2.2.4 Domain Decomposition and Process Level Scheduling
Applications vary a lot in the code structure, programming languages and the way of code.

The crucial step here, is to analyze the occurrence of the MPI library. Starting with the

occurence of MPI Init, we know the initialization point of the MPI execution environment.

In most cases, immediately after the initialization of the MPI is the MPI Comm rank and

MPI Comm size. MPI Comm rank takes as argument, the MPI COMM WORLD which

contains all the MPI processes and the rank which determines the rank of the MPI pro-

cess. In Figure 2.6, we can see the used variable for MPI Comm rank which is defined as

Methods 6

myrankid. By following the rank, we might end up at function which uses the rank and

where we might encounter data decomposition and or scheduling at process level.

Figure 2.6: Search for MPI Init

Figure 2.7: Identifying Decomposition and Scheduling at process level

In Figure 2.7, we can see that the function exponential() containsmyrankid and nProcesses

as an input. In the following lines we detect that tilesize will always be a constant value.

This is a strong indicator for static scheduling. In the following lines of code, we see that

the for loop is statically divided and the computations are statically done in blocks ranging

from myrankid ∗ tilesize up to myrankid ∗ tilesize+ tilesize. This manifests our belief for

static scheduling. Furthermore, we can see that tilesize has a value which does not change.

Therefore, the data decomposition is replicated.

2.2.5 Extract other data
As mentioned, there are multiple aspects of characteristics for an HPC application. Most

information retrieved has been done manually. The Columns LoC, Programming Language,

C Lines, C++ Lines, Fortran Lines, C C++ Header lines, OpenMP, CUDA, OpenACC,

and OpenCL have been retrieved automatically with a script. The script was provided,

therefore, execution of the script led to the information.

Methods 7

2.2.5.1 Retrieve the storage in MB

Getting the storage information, we decided to do this by the following Linux command:

du −r −sh [App l i ca t ion Name]

This command ensures that we get the information about the storage in Megabyte. We took

Megabyte as a measurement, as the applications have varied by a huge size. While some

applications had less then 1MB other had a size of almost 1GB.

2.2.6 Challenges in Code Analysis
Investigating the code strongly depends on the length of code. In principle, we experienced

that the longer the code the more complex an application was built up. Therefore, searching

and investigating for data decomposition and process level scheduling resulted in a very high

time effort. Understanding code of other developers depends on the comments made. In

general, written code without comments is difficult to understand. Furthermore, there

is no general naming convention on how to name variables. For instance, the rank of

an MPI process can be called randomly. It matters if a rank is defined as myrankid,

rank, or id. The latter comes not handy when searching deep into the code. Applications

analyzed have different domains in which they are solving a scientific problem. Those

domains ranges in different areas, such as MD, SPH, or Deep Learning. All those use

computations on their domains which are computed and approximated by formulas. So, the

specificity of those computations can lead to issues in understanding what the application

is solving. Unfortunately, understanding code is subjective and the ability to understand

HPC applications only grows with experience in this field.

3
Analyzed open source HPC Applications

3.1 No benchmark suite
1. Adios[31] (https://github.com/ornladios/ADIOS/releases): ADIOS is developed as

part of the United States Department of Energy’s Exascale Computing Project. It is

a framework for scientific data I/O to publish and subscribe to data when and where

required.

2. ExaMiniMD[58] (https://github.com/ECP-copa/ExaMiniMD/releases/tag/1.0): Ex-

aMiniMD is a proxy application and research vehicle for particle codes, in particular

Molecular Dynamics (MD). Compared to previous MD proxy apps (MiniMD, COMD),

its design is significantly more modular in order to allow independent investigation of

different aspects.

3. MACSio[33] (https://github.com/LLNL/MACSio): MACSio is being developed to

fill a long existing void in co-design proxy applications that allow for I/O performance

testing and evaluation of tradeoffs in data models, I/O library interfaces and parallel

I/O paradigms for multi-physics, HPC applications.

4. mcb[27] (https://computing.llnl.gov/projects/co-design/mcb): The Monte Carlo Bench-

mark (MCB) is intended for use in exploring the computational performance of Monte

Carlo algorithms on parallel architectures.

5. OpenMD[39] (https://github.com/OpenMD/OpenMD): OpenMD is an open source

molecular dynamics engine which is capable of efficiently simulating liquids, proteins,

nanoparticles, interfaces, and other complex systems using atom types with orien-

tational degrees of freedom (e.g. ”sticky” atoms, point dipoles, and coarse-grained

assemblies).

6. SAMRAI[45] (https://github.com/LLNL/SAMRAI): SAMRAI (Structured Adap-

tive Mesh Refinement Application Infrastructure) is an object-oriented C++ software

library that enables exploration of numerical, algorithmic, parallel computing, and

software issues associated with applying structured adaptive mesh refinement (SAMR)

technology in large-scale parallel application development. SAMRAI provides software

https://github.com/ornladios/ADIOS/releases
https://github.com/ECP-copa/ExaMiniMD/releases/tag/1.0
https://github.com/LLNL/MACSio
https://computing.llnl.gov/projects/co-design/mcb
https://github.com/OpenMD/OpenMD
https://github.com/LLNL/SAMRAI

Analyzed open source HPC Applications 9

tools for developing SAMR applications that involve coupled physics models, sophisti-

cated numerical solution methods, and which require high-performance parallel com-

puting hardware. SAMRAI enables integration of SAMR technology into existing

codes and simplifies the exploration of SAMR methods in new application domains.

7. Siesta[35] (https://gitlab.com/siesta-project/siesta/-/releases): SIESTA is both a

method and its computer program implementation, to perform efficient electronic

structure calculations and ab initio molecular dynamics simulations of molecules and

solids. SIESTA’s efficiency stems from the use of strictly localized basis sets and

from the implementation of linear-scaling algorithms which can be applied to suitable

systems.

8. SimpleMOC[36] (https://github.com/ANL-CESAR/SimpleMOC/tree/v4): The pur-

pose of this mini-app is to demonstrate the performance characterterics and viability

of the Method of Characteristics (MOC) for 3D neutron transport calculations in the

context of full scale light water reactor simulation.

9. souffle[42] (https://github.com/souffle-lang/souffle/releases): Souffle is a logic pro-

gramming language inspired by Datalog. It overcomes some of the limitations in

classical Datalog. For example, programmers are not restricted to finite domains, and

the usage of functors (intrinsic, user-defined, records/constructors, etc.) is permitted.

Soufflé has a component model so that large logic projects can be expressed.

10. sphynx[43] (https://astro.physik.unibas.ch/en/people/ruben-cabezon/sphynx/): SPH-

YNX is an SPH hydrocode with its focus on Astrophysical applications. SPHYNX

includes state-of-the-art methods that allow it to address subsonic hydrodynamical

instabilities and strong shocks, which are ubiquitous in astrophysical scenarios. SPH-

YNX, is of Newtonian type and grounded on the Euler-Lagrange formulation of the

smoothed-particle hydrodynamics technique.

11. splatt[37] (https://github.com/ShadenSmith/splatt): SPLATT is a library and C

API for sparse tensor factorization. SPLATT supports shared-memory parallelism

with OpenMP and distributed-memory parallelism with MPI.

12. sw4lite-RAJA[44] (https://github.com/geodynamics/sw4lite/tree/RAJA-v1.0): sw4lite

is a bare bone version of SW4 (https://github.com/geodynamics/sw4) intended for

testing performance optimizations in a few important numerical kernels of SW4.

13. thornado mini[38] (https://github.com/ECP-Astro/thornado mini): Thornado mini

solves the equation of radiative transfer in the multi-group two-moment approxima-

tion. The Discontinuous Galekin (DG) method is used for spatial discretization, and

an implicit-explicit (IMEX) method is used to integrate the moment equations in time.

The hyperbolic (streaming) part is treated explicitly, while the collision term is treated

implicitly.

14. Trillinos[46] (https://github.com/trilinos/Trilinos): The Trilinos Project is an effort

to develop algorithms and enabling technologies within an object-oriented software

https://gitlab.com/siesta-project/siesta/-/releases
https://github.com/ANL-CESAR/SimpleMOC/tree/v4
https://github.com/souffle-lang/souffle/releases
https://astro.physik.unibas.ch/en/people/ruben-cabezon/sphynx/
https://github.com/ShadenSmith/splatt
https://github.com/geodynamics/sw4lite/tree/RAJA-v1.0
https://github.com/ECP-Astro/thornado_mini
https://github.com/trilinos/Trilinos

Analyzed open source HPC Applications 10

framework for the solution of large-scale, complex multi-physics engineering and sci-

entific problems. A unique design feature of Trilinos is its focus on packages.

15. tycho2[50] (https://github.com/lanl/tycho2): A mini-app for neutral-particle, discrete-

ordinates (SN), transport on parallel-decomposed meshes of tetrahedra.

16. vlasiator[51] (https://github.com/fmihpc/vlasiator/releases/tag/v5.1): In Vlasiator,

ions are represented as velocity distribution functions, while electrons are magneto-

hydrodynamic fluid, enabling a self-consistent global plasma simulation that can de-

scribe multi-temperature plasmas to resolve non-MHD processes that currently cannot

be self-consistently described by the existing global space weather simulations. The

novelty is that by modelling ions as velocity distribution functions the outcome will

be numerically noiseless.

17. vmd[48] (https://www.ks.uiuc.edu/Research/vmd/): VMD is a molecular visualiza-

tion program for displaying, animating, and analyzing large biomolecular systems using

3-D graphics and built-in scripting.

18. WRF[47] (https://github.com/wrf-model/WRF/releases/tag/v4.2.1): WRF is a state-

of-the-art atmospheric modeling system designed for both meteorological research and

numerical weather prediction. It offers a host of options for atmospheric processes and

can run on a variety of computing platforms.

19. yambo[49] (https://github.com/yambo-code/yambo): YAMBO implements Many-

Body Perturbation Theory (MBPT) methods (such as GW and BSE) and Time-

Dependent Density Functional Theory (TDDFT), which allows for accurate prediction

of fundamental properties as band gaps of semiconductors, band alignments, defect

quasi-particle energies, optics and out-of-equilibrium properties of materials.

20. arbor-0.3[54] (https://github.com/arbor-sim/arbor): Arbor is a high-performance li-

brary for computational neuroscience simulations with multi-compartment, morphologically-

detailed cells, from single cell models to very large networks. Arbor is written from

the ground up with many-cpu and gpu architectures in mind, to help neuroscientists

effectively use contemporary and future HPC systems to meet their simulation needs.

21. Caffe-MPI[32] (https://github.com/Caffe-MPI/Caffe-MPI.github.io): The Caffe-MPI

is designed for high density GPU clusters; The new version supports InfiniBand (IB)

high speed network connection and shared storage system that can be equipped by

distributed file system, like NFS and GlusterFS. The training dataset is read in paral-

lel for each MPI process. The hierarchical communication mechanisms were developed

to minimize the bandwidth requirements between computing nodes.

22. CFDEMcoupling[29] (https://github.com/CFDEMproject/CFDEMcoupling-PUBLIC):

CFDEM® coupling provides an open source parallel coupled CFD-DEM framework

combining the strengths of LIGGGHTS® DEM code and the Open Source CFD pack-

age OpenFOAM®(*). The CFDEM®coupling toolbox allows to expand standard

CFD solvers of OpenFOAM®(*) to include a coupling to the DEM code LIGGGHTS®.

https://github.com/lanl/tycho2
https://github.com/fmihpc/vlasiator/releases/tag/v5.1
https://www.ks.uiuc.edu/Research/vmd/
https://github.com/wrf-model/WRF/releases/tag/v4.2.1
https://github.com/yambo-code/yambo
https://github.com/arbor-sim/arbor
https://github.com/Caffe-MPI/Caffe-MPI.github.io
https://github.com/CFDEMproject/CFDEMcoupling-PUBLIC

Analyzed open source HPC Applications 11

23. Elemental[30] (https://github.com/elemental/Elemental/releases/tag/v0.87.7): Ele-

mental is a modern C++ library for distributed-memory dense and sparse-direct linear

algebra, conic optimization, and lattice reduction. The library was initially released

in Elemental: A new framework for distributed memory dense linear algebra and ab-

sorbed, then greatly expanded upon, the functionality from the sparse-direct solver

Clique, which was originally released during a project on Parallel Sweeping Precondi-

tioners.

24. Gadget[25] (https://wwwmpa.mpa-garching.mpg.de/gadget/): GADGET-4 is a mas-

sively parallel code for N-body/hydrodynamical cosmological simulations. It is a flex-

ible code that can be applied to a variety of different types of simulations, offering a

number of sophisticated simulation algorithms.

25. hemelb[55] (https://github.com/hemelb-codes/hemelb): HemeLB uses the lattice

Boltzmann method to simulate fluid flow in complex geometries, such as a blood

vessel network.

26. horovod[56] (https://github.com/horovod/horovod/releases): Horovod is a distributed

deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

The goal of Horovod is to make distributed deep learning fast and easy to use.

27. meshkit[40] (https://bitbucket.org/fathomteam/meshkit.git/src): MeshKit is an open-

source library of mesh generation functionality. MeshKit has general mesh manipula-

tion and generation functions such as Copy, Move, Rotate and Extrude mesh. In ad-

dition, new quad mesh and embedded boundary Cartesian mesh algorithm (EBMesh)

are developed to be used. Interfaces to several public-domain tetrahedral meshing

algorithms (Gmsh, netgen) are also offered.

28. metag partitioning[28] (https://github.com/ParBLiSS/metag partitioning): Paral-

lel metagenomic assembler designed to handle very large datasets. Program identifies

the disconnected subgraphs in the de Bruijn graph, partitions the input dataset and

runs a popular assember Velvet independently on the partitions. This software is a

high performance version of the khmer library for assembly.

29. MITgcm[52] (https://github.com/MITgcm/MITgcm): it can be used to study both

atmospheric and oceanic phenomena; one hydrodynamical kernel is used to drive for-

ward both atmospheric and oceanic models it has a non-hydrostatic capability and so

can be used to study both small-scale and large scale processes.

30. MLSL-IntelMLSL[34] (https://github.com/intel/MLSL): Intel(R) Machine Learn-

ing Scaling Library (Intel(R) MLSL) is a library providing an efficient implementation

of communication patterns used in deep learning.

31. mxx[57] (https://github.com/patflick/mxx): mxx is a C++/C++11 template library

for MPI. The main goal of this library is to provide two things: First, simplified,

efficient, and type-safe C++11 bindings to common MPI operations. Second, a collec-

tion of scalable, high-performance standard algorithms for parallel distributed memory

architectures, such as sorting.

https://github.com/elemental/Elemental/releases/tag/v0.87.7
https://wwwmpa.mpa-garching.mpg.de/gadget/
https://github.com/hemelb-codes/hemelb
https://github.com/horovod/horovod/releases
https://bitbucket.org/fathomteam/meshkit.git/src
https://github.com/ParBLiSS/metag_partitioning
https://github.com/MITgcm/MITgcm
https://github.com/intel/MLSL
https://github.com/patflick/mxx

Analyzed open source HPC Applications 12

32. Nek5000[53] (https://github.com/Nek5000/nekRS/releases/tag/v21.1): High-order

methods have the potential to overcome the current limitations of standard CFD

solvers.It features state-of-the-art, scalable algorithms that are fast and efficient on

platforms ranging from laptops to the world’s fastest computers. Applications span a

wide range of fields, including fluid flow, thermal convection, combustion and magne-

tohydrodynamics.

33. phyml[41] (https://github.com/stephaneguindon/phyml): PhyML is a software pack-

age that uses modern statistical approaches to analyse alignments of nucleotide or

amino acid sequences in a phylogenetic framework. The main tool in this package

builds phylogenies under the maximum likelihood criterion. It implements a large

number of substitution models coupled to efficient options to search the space of phy-

logenetic tree topologies.

34. PrincetonCBEMDMPI[26] (https://github.com/PrincetonUniversity/PrincetonCBEMDMPI):

CBEMD: Parallel Molecular Dynamics Under Various Thermodynamic Ensembles.

3.2 LLNL ASC Proxy Apps
1. Lulesh[24] (https://github.com/LLNL/LULESH): LULESH is a highly simplified ap-

plication, hard-coded to only solve a simple Sedov blast problem with analytic answers

– but represents the numerical algorithms, data motion, and programming style typical

in scientific C or C++ based applications.

3.3 Mantevo
1. miniAMR[72] (https://github.com/Mantevo/miniAMR): miniAMR applies a stencil

calculation on a unit cube computational domain, which is divided into blocks. The

blocks all have the same number of cells in each direction and communicate ghost

values with neighboring blocks.

2. miniMD[71] (https://github.com/Mantevo/miniMD): miniMD is a parallel molecu-

lar dynamics (MD) simulation package written in C++ and intended for use on parallel

supercomputers and new architechtures for testing purposes. The software package is

meant to be simple, lightweight, and easily adaptable to new hardware.

3. miniFE[69] (https://github.com/Mantevo/miniFE/releases): MiniFE is an proxy ap-

plication for unstructured implicit finite element codes. It is a similar to HPCCG and

pHPCCG but provides a much more complete vertical covering of the steps in this

class of applications.

4. miniSMAC[70] (https://github.com/Mantevo/miniSMAC/releases): Solves the finite-

differenced 2D incompressible Navier-Stokes equations with Spalart-Allmaras one-

equation turbulence model on a structured body conforming grid. The grid is par-

titioned into subgrids load balanced for the number of MPI ranks requested by the

user

https://github.com/Nek5000/nekRS/releases/tag/v21.1
https://github.com/stephaneguindon/phyml
https://github.com/PrincetonUniversity/PrincetonCBEMDMPI
https://github.com/LLNL/LULESH
https://github.com/Mantevo/miniAMR
https://github.com/Mantevo/miniMD
https://github.com/Mantevo/miniFE/releases
https://github.com/Mantevo/miniSMAC/releases

Analyzed open source HPC Applications 13

5. miniTri[67] (https://github.com/Mantevo/miniTri): miniTri is a proxy for a class of

triangle based data analytics (Mantevo). This simple code is a self-contained piece of

C++ software that uses triangle enumeration with a calculation of specific vertex and

edge properties.

6. miniAero[66] (https://github.com/Mantevo/miniAero/releases): MiniAero is a mini-

application for the evaulation of programming models and hardware for next genera-

tion platforms. MiniAero is an explicit (using RK4) unstructured finite volume code

that solves the compressible Navier-Stokes equations.

7. miniXyce[68] (https://github.com/Mantevo/miniXyce): At this time, miniXyce is

a simple linear circuit simulator with a basic parser that performs transient analysis

on any circuit with resistors (R), inductors (L), capacitors (C), and voltage/current

sources. The parser incorporated into this version of miniXyce is a single pass parser,

where the netlist is expected to be flat (no hierarchy via subcircuits is allowed). Sim-

ulating the system of DAEs generates a nonsymmetric linear problem, which is solved

using un-preconditioned GMRES. The time integration method used in miniXyce is

backward Euler with a constant time-step. The simulator outputs all the solution

variables at each time step in a ’prn’ file.

3.4 ExaGraph
1. miniVite[64] (https://github.com/Exa-Graph/miniVite): miniVite is a proxy app

that implements a single phase of Louvain.

3.5 Fiber Mini App
1. ntchemini[23] (https://github.com/fiber-miniapp/ntchem-mini): NTChem is a high-

performance software package for the molecular electronic structure calculation for

general purpose on the K computer.

3.6 SPEC CPU 2017
1. 104.milc[2] (http://www.spec.org/auto/mpi2007/Docs/104.milc.html): The MILC

Code is a set of codes written in C developed by the MIMD Lattice Computation

(MILC) collaboration for doing simulations of four dimensional SU(3) lattice gauge

theory on MIMD parallel machines. The code is used for millions of node hours at

DOE and NSF supercomputer centers.

2. 107.leslie3d[3] (http://www.spec.org/auto/mpi2007/Docs/107.leslie3d.html): 107.leslie3d

is derived from LESlie3d (Large-Eddy Simulations with Linear-Eddy Model in 3D),

a research-level Computational Fluid Dynamics (CFD) code. It is the primary solver

used to investigate a wide array of turbulence phenomena such as mixing, combustion,

acoustics and general fluid mechanics.

https://github.com/Mantevo/miniTri
https://github.com/Mantevo/miniAero/releases
https://github.com/Mantevo/miniXyce
https://github.com/Exa-Graph/miniVite
https://github.com/fiber-miniapp/ntchem-mini
http://www.spec.org/auto/mpi2007/Docs/104.milc.html
http://www.spec.org/auto/mpi2007/Docs/107.leslie3d.html

Analyzed open source HPC Applications 14

3. 122.tachyon[4] (http://www.spec.org/auto/mpi2007/Docs/122.tachyon.html): Tachyon

is a parallel ray tracing application.

4. 126.lammps[1] (http://www.spec.org/auto/mpi2007/Docs/126.lammps.html): LAMMPS

is a classical molecular dynamics simulation code designed to run efficiently on parallel

computers. It was developed at Sandia National Laboratories, a US Department of

Energy facility, with funding from the DOE. It is an open-source code, distributed

freely under the terms of the GNU Public License (GPL).

5. 129.tera tf [5] (http://www.spec.org/auto/mpi2007/Docs/129.tera tf.html): 3D eu-

lerian hydrodynamics application 2nd godunov-type scheme, 3rd order remapping re-

quires only a Fortran 90 compiler, and an MPI (1.2) implementation uses mostly

point-to-point messages, and some reductions use non-blocking messages.

6. 130.socorro[6] (http://www.spec.org/auto/mpi2007/Docs/130.socorro.html): Socorro

is a modular, object oriented code for performing self-consistent electronic-structure

calculations utilizing the Kohn-Sham formulation of density-functional theory.

7. 132.zeusmp2[9] (http://www.spec.org/auto/mpi2007/Docs/132.zeusmp2.html): ZEUS-

MP is a computational fluid dynamics code developed at the Laboratory for Compu-

tational Astrophysics (NCSA, SDSC, University of Illinois at Urbana-Champaign, UC

San Diego) for the simulation of astrophysical phenomena.

8. 137.lu[10] (http://www.spec.org/auto/mpi2007/Docs/137.lu.html): The 137.lu code

has a rich ancestry in benchmarking. Its immediate predecessor is the LU benchmark

in NPB3.2-MPI, part of the NAS Parallel Benchmark suite. It is sometimes referred

to as APPLU (a version of that was 173.applu in CPU2000) or NAS-LU. Solution of

five coupled nonlinear PDE’s, on a 3-dimensional logically structured grid, using an

implicit pseudo-time marching scheme, based on two-factor approximate factorization

of the sparse Jacobian matrix.

9. 142.dmilc[7] (http://www.spec.org/auto/mpi2007/Docs/142.dmilc.html): The MILC

Code is a set of codes written in C developed by the MIMD Lattice Computation

(MILC) collaboration for doing simulations of four dimensional SU(3) lattice gauge

theory on MIMD parallel machines.

10. 143.dleslie[8] (http://www.spec.org/auto/mpi2007/Docs/143.dleslie.html): 143.dleslie

is derived from LESlie3d (Large-Eddy Simulations with Linear-Eddy Model in 3D), a

research-level Computational Fluid Dynamics (CFD) code.

11. 145.lGemsFDTD[11] (http://www.spec.org/auto/mpi2007/Docs/145.lGemsFDTD.

html): GemsFDTD solves the Maxwell equations in 3D in the time domain using

the finite-difference time-domain (FDTD) method. GemsFDTD is a Computational

Electromagnetic(CEM) application.

http://www.spec.org/auto/mpi2007/Docs/122.tachyon.html
http://www.spec.org/auto/mpi2007/Docs/126.lammps.html
http://www.spec.org/auto/mpi2007/Docs/129.tera_tf.html
http://www.spec.org/auto/mpi2007/Docs/130.socorro.html
http://www.spec.org/auto/mpi2007/Docs/132.zeusmp2.html
http://www.spec.org/auto/mpi2007/Docs/137.lu.html
http://www.spec.org/auto/mpi2007/Docs/142.dmilc.html
http://www.spec.org/auto/mpi2007/Docs/143.dleslie.html
http://www.spec.org/auto/mpi2007/Docs/145.lGemsFDTD.html
http://www.spec.org/auto/mpi2007/Docs/145.lGemsFDTD.html

Analyzed open source HPC Applications 15

3.7 Chatterbug
1. chatterbug[59] (https://github.com/hpcgroup/chatterbug): A suite of communication-

intensive proxy applications that mimic commonly found communication patterns in

HPC codes. These codes can be used as synthetic codes for benchmarking, or for trace

generation using OTF2.

3.8 CORAL-2
1. Kripke[62] (https://github.com/LLNL/Kripke): Kripke is a simple, scalable, 3D Sn

deterministic particle transport code. Its primary purpose is to research how data

layout, programming paradigms and architectures effect the implementation and per-

formance of Sn transport. Kripke is also a Proxy-App since it is a proxy for the LLNL

transport code ARDRA.

2. Laghos[63] (https://github.com/CEED/Laghos): Laghos (LAGrangian High-Order

Solver) is a miniapp that solves the time-dependent Euler equations of compressible gas

dynamics in a moving Lagrangian frame using unstructured high-order finite element

spatial discretization and explicit high-order time-stepping.

3.9 Rodinia 3.1
1. SRAD[21] (https://github.com/JuliaParallel/rodinia/tree/master/openmp/srad v1):

SRAD (Speckle Reducing Anisotropic Diffusion) is a diffusion method for ultrasonic

and radar imaging applications based on partial differential equations (PDEs). It is

used to remove locally correlated noise, known as speckles, without destroying im-

portant image features. SRAD consists of several pieces of work: image extraction,

continuous iterations over the image (preparation, reduction, statistics, computation

1 and computation 2) and image compression. The sequential dependency between all

of these stages requires synchronization after each stage (because each stage operates

on the entire image).

2. Streamcluster[22] (https://github.com/JuliaParallel/rodinia/tree/master/openmp/

streamcluster): It assigns each point of a stream to its nearest center Medium-sized

working sets of user-determined size.

3.10 UK Mini-App Consortium
1. TeaLeaf [61] (https://github.com/UK-MAC/TeaLeaf ref): TeaLeaf is a mini-app that

solves the linear heat conduction equation on a spatially decomposed regularly grid

using a 5 point stencil with implicit solvers. TeaLeaf currently solves the equations in

two dimensions, but three dimensional support is in beta.

https://github.com/hpcgroup/chatterbug
https://github.com/LLNL/Kripke
https://github.com/CEED/Laghos
https://github.com/JuliaParallel/rodinia/tree/master/openmp/srad_v1
https://github.com/JuliaParallel/rodinia/tree/master/openmp/streamcluster
https://github.com/JuliaParallel/rodinia/tree/master/openmp/streamcluster
https://github.com/UK-MAC/TeaLeaf_ref

Analyzed open source HPC Applications 16

3.11 SPEC CPU 2017
1. 500.perlbench r[12] (https://www.spec.org/cpu2017/Docs/benchmarks/500.perlbench

r.html): is a cut-down version of Perl v5.22.1, the popular scripting language. SPEC’s

version of Perl has had most of OS-specific features removed.

2. 508.namd r[13] (https://www.spec.org/cpu2017/Docs/benchmarks/508.namd r.html):

The 508.namd r benchmark is derived from the data layout and inner loop of NAMD,

a parallel program for the simulation of large biomolecular systems. Although NAMD

scales to over 200,000 cores for very large systems, serial performance is equally impor-

tant to the over 50,000 users who have downloaded the program over the past decade.

Almost all of the runtime is spent calculating inter-atomic interactions in a small set

of functions. This set was separated from the bulk of the code to form a compact

benchmark for CPU2017.

3. 510.parest r[14] (https://www.spec.org/cpu2017/Docs/benchmarks/510.parest r.html):

solves a problem from biomedical imaging. Specifically, the underlying problem is the

reconstruction of interior properties of a 3d body from multiple observations at its

two-dimensional surface, in much the same way as multiple 2d X-ray images are com-

bined to do 3d CT (computed tomography) scans. The difference to CT scans is that

the method this program describes is infrared light that does not go through tissues

in a straight line, but diffuses.

4. 511.povray r[15] (https://www.spec.org/cpu2017/Docs/benchmarks/511.povray r.html):

POV-Ray is a free and open source ray-tracing application. The CPU 2017 version is

based on POV-Ray version 3.7.

5. 520.omnetpp r[16] (https://www.spec.org/cpu2017/Docs/benchmarks/520.omnetpp

r.html): The benchmark performs discrete event simulation of a large 10 gigabit Ether-

net network. The simulation is based on the OMNeT++ discrete event simulation sys-

tem ([1]www.omnetpp.org), a generic and open simulation framework. OMNeT++’s

primary application area is the simulation of communication networks, but its generic

and flexible architecture allows for its use in other areas such as the simulation of IT

systems, queueing networks, hardware architectures or business processes as well.

6. 523.xalancbmk r[17] (https://www.spec.org/cpu2017/Docs/benchmarks/523.xalancbmk

r.html): XSLT processor for transforming XML documents into HTML, text, or other

XML document types.

7. 531.deepsjeng r[18] (https://www.spec.org/cpu2017/Docs/benchmarks/531.deepsjeng

r.html): 531.deepsjeng r is based on Deep Sjeng WC2008, the 2008 World Computer

Speed-Chess Champion. Deep Sjeng is a rewrite of the older Sjeng-Free program, fo-

cused on obtaining the highest possible playing strength. (alpha-beta tree search &

pattern recognition).

8. 541.leela r[19] (https://www.spec.org/cpu2017/Docs/benchmarks/541.leela r.html):

541.leela r is a Go playing engine featuring Monte Carlo based position estimation,

https://www.spec.org/cpu2017/Docs/benchmarks/500.perlbench_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/500.perlbench_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/508.namd_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/510.parest_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/511.povray_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/520.omnetpp_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/520.omnetpp_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/523.xalancbmk_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/523.xalancbmk_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/531.deepsjeng_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/531.deepsjeng_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/541.leela_r.html

Analyzed open source HPC Applications 17

selective tree search based on Upper Confidence Bounds, and move valuation based

on Elo ratings. (Monte Carlo simulation, game tree search & pattern recognition).

9. 548.exchange2 r[20] (https://www.spec.org/cpu2017/Docs/benchmarks/548.exchange2

r.html): This program was written for development of non-trivial 9x9 sudoku puzzles.

It has been used extensively in informal competitions, which run for days. Incidentally,

it tests many Fortran 95 array handling features (including some intrinsic functions)

for use with integer arrays. Unusually, it relies heavily on recursion (up to eight levels

deep) but, in contrast to most Fortran programs, uses no floating-point arithmetic.

3.12 ExMatEx
1. ASPA-master[65] (https://github.com/exmatex/ASPA/tree/master/doc): The pur-

pose of ASPA (Adaptive Sampling Proxy Application) is to enable the evaluation of

a technique known as adaptive sampling on advanced computer architectures. Adap-

tive sampling is of interest in simulations involving multiple physical scales, wherein

models of individual scales are combined using some form of scale bridging.

https://www.spec.org/cpu2017/Docs/benchmarks/548.exchange2_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/548.exchange2_r.html
https://github.com/exmatex/ASPA/tree/master/doc

4
Data Processing

4.1 Data preparation
Gathering the information of all the applications, resulted to a broad table. The table needed

to be pre-processed where cleaning and preparation for data input was done. The cleaning

consisted of removing redundant data where no information was found. Furthermore, con-

sistency was needed in every column. For instance, the column Domain for applications

that solve partial differential equations, the entries have been varying between PDE and

PartialDifferentialequations. Thus, ensuring consistency by writing PDE for the appli-

cations’ domain led to consistency. As there is not a large data set, the pre-processing was

done manually.

4.2 Data-input
Having broad characteristics of applications, we needed to distinguish which characteris-

tics we want to show. This resulted in removing columns which we cannot show, have

not enough information about, or are not usable for the sake of our analysis. So, we de-

cided to remove the columns: Links, Description(M), LocationDataDecomposition(M),

LocationScheduling(M), V ersion(M), NewerV ersions(M), NewReleaseDate(M)(github),

and Notes(M). This procedure removed eight columns for the analysis and hence, we cre-

ated the new table ProcessedControlTable. In the ProcessedControlTable we decided to

rename columns because of simplicity for plotting the results. Furthermore, we added the

column ReleaseY ear which indicates only the release year of the application. Due to this

modification we have been able to show the applications’ characteristics over year. Lastly,

we removed applications which did not have the use of MPI, such that 60 applications

remained.

5
Results

Investigation of domain decomposition and scheduling in HPC applictions included the

retrieval of various characteristics of an application. Having a table consisting of 26 charac-

teristics per application, yield to a broad range of information. While the focus lied mainly

in domain decomposition and scheduling at process level, we still managed to display various

results for the analyzed application.

5.1 Generic information
Providing generic information of the data, one can see in Figure 5.1 that most analyzed

applications are moderate complex with a lines of code ranging between 10′000 - 100′000.

This means that 28 applications lie between that range.

In figure 5.2 we can see that among the applications analyzed more than a half of them

were using only MPI for performance enhancement. The second biggest part consisting of

a quarter of the analyzed applications is the combination between OpenMP and MPI.

Not surprisingly, most of the applications have been using a distributed data decomposition,

as shown in Figure 5.3. The fraction with unknown shows applications that we analyzed

but could not be defined what type of decomposition has been used.

In Figure 5.4, we can observe that scheduling at process level is in most cases static. The

reason might be that using static scheduling is simpler to code.

Results 20

0-10'000

31.7%

10'000-100'000

48.3%

>100'000

20.0%

LoC ranges

Figure 5.1: LoC distributed among the applications

Results 21

MPI,
53.3%

MPI,OpenMP

26.7%

MPI,CUDA,OpenMP

6.7%

MPI,CUDA,

6.7%

MPI,OpenACC,CUDA,OpenMPOpenCL,

3.3%

MPI,OpenACC,CUDA,OpenMP

1.7%

MPI,OpenCL,

1.7%

Programming paradigms

Figure 5.2: Used parallel programming paradigms

Results 22

distributed73.3%

replicated

16.7%

unknown

8.3%

centralized

1.7%

Data decomposition

Figure 5.3: Data Decomposition at process level

Results 23

static

63.3%

dynamic

28.3%

unknown

8.3%

Process level scheduling

Figure 5.4: Process level scheduling

Results 24

5.2 Information about the Length of Code and Storage
Generally, we can see in Figure 5.5 that with growing storage, more lines of code are written.

As the storage of an application varies depends on other files, such as .pdfs, we use for the

following results the line of code, denoted as LoC. In the following in figure 5.6, we can see

8 10 12 14
ln(LoC)

0

100

200

300

400

500

600

700

800

St
or

ag
e

in
 M

by
te

Figure 5.5: Storage in relation with the natural logarithm of lines of code

the distribution of the different programming languages used per application. Noticeably,

there are applications which consist of a lot of header lines used in header files, C-files,

and C++-files. This might indicate also that there are are applications which might have

imported common libraries used within the community.

G
ad

ge
t

12
6.

la
m

m
ps

14
3.

dl
es

lie
14

2.
dm

ilc
13

0.
so

co
rro

12
9.

te
ra

_t
f

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

13
2.

ze
us

m
p2

14
5.

lG
em

sF
D

TD
13

7.
lu

Pr
in

ce
to

nC
BE

M
D

M
PI

m
cb

nt
ch

em
in

i
AS

PA
-m

as
te

r
Te

aL
ea

f
m

et
ag

_p
ar

tit
io

ni
ng

m
in

iT
ri

m
in

iX
yc

e
m

in
iA

er
o

m
in

iS
M

AC
m

in
iF

E
El

em
en

ta
l

52
0.

om
ne

tp
p_

r
51

0.
pa

re
st

_r
M

LS
L-

In
te

lM
LS

L
Ex

aM
in

iM
D

th
or

na
do

_m
in

i
C

af
fe

-M
PI

Lu
le

sh
M

AC
Si

o
Ad

io
s

Si
m

pl
eM

O
C

Si
es

ta
ch

at
te

rb
ug

sp
la

tt
sw

4l
ite

-R
AJ

A
m

in
iM

D
m

es
hk

it
sp

hy
nx

Kr
ip

ke
ph

ym
l

O
pe

nM
D

W
R

F
vm

d
Tr

illi
no

s
SA

M
R

AI
ya

m
bo

m
in

iA
M

R
vl

as
ia

to
r

m
in

iV
ite

ty
ch

o2
La

gh
os

m
xx

N
ek

50
00

ho
ro

vo
d

M
IT

gc
m

he
m

el
b

ar
bo

r-0
.3

Applications sorted by release year

0

20

40

60

80

100

%

C
C++
Fortran
Header lines

Figure 5.6: Code relation between the applications

5.3 Parallel programming paradigm, decomposition and scheduling at pro-
cess level

In figure 5.7, we display the resulting table. This provides us an overview among the used

paradigms, decomposition and scheduling at process level per application. We distinguished

the used parallel programming paradigms, the decomposition types, and the scheduling

types. By looking at the figure, we have chosen to show only applications that use MPI.

Interestingly, there are only two applications that are using all considered parallel program-

ming paradigms. Those applications are vmd[48] and vlasiator[51]. By providing this plot,

Results 25

we think that the community may introduce another parallel programming paradigm to

enhance the application’s performance.
G

ad
ge

t
12

6.
la

m
m

ps
14

3.
dl

es
lie

14
2.

dm
ilc

13
0.

so
co

rro
12

9.
te

ra
_t

f
10

4.
m

ilc
10

7.
le

sl
ie

3d
12

2.
ta

ch
yo

n
13

2.
ze

us
m

p2
14

5.
lG

em
sF

D
TD

13
7.

lu
Pr

in
ce

to
nC

BE
M

D
M

PI
nt

ch
em

in
i

AS
PA

-m
as

te
r

m
cb

Te
aL

ea
f

m
et

ag
_p

ar
tit

io
ni

ng
m

in
iT

ri
m

in
iX

yc
e

m
in

iA
er

o
m

in
iS

M
AC

m
in

iF
E

El
em

en
ta

l
52

0.
om

ne
tp

p_
r

51
0.

pa
re

st
_r

th
or

na
do

_m
in

i
C

af
fe

-M
PI

M
LS

L-
In

te
lM

LS
L

sp
la

tt
Lu

le
sh

Ex
aM

in
iM

D
Ad

io
s

ch
at

te
rb

ug
M

AC
Si

o
Si

m
pl

eM
O

C
Si

es
ta

sw
4l

ite
-R

AJ
A

m
in

iM
D

m
es

hk
it

sp
hy

nx
Kr

ip
ke

ph
ym

l
O

pe
nM

D
vm

d
ya

m
bo

W
R

F
Tr

illi
no

s
SA

M
R

AI
m

in
iA

M
R

vl
as

ia
to

r
m

in
iV

ite
ty

ch
o2

La
gh

os
ho

ro
vo

d
M

IT
gc

m
he

m
el

b
m

xx
N

ek
50

00
ar

bo
r-0

.3

Applications

O
cc

ur
re

nc
e

Data distributed
Data centralized
Data replicated
Data unknown
Scheduling dynamic
Scheduling static
Scheduling unknown
MPI
OpenMP
CUDA
OpenCL
OpenACC

Figure 5.7: Occurrences of paradigm, decomposition and scheduling at process level

5.4 Paradigms and Programming Language over years
The analyzed applications were all released between 2005 and 2021. Thus, we have been

interested in: How complex did the community implement the application within this period

with its used paradigms, respectively the code?. In Fig. 5.8, we can see the parallel pro-

gramming paradigms used over years in relation with the LoC. Within Fig. 5.8a, we see that

over the years the trend was to develop applications with a higher LoC. Followed by a zoom

in Fig. 5.8b, we look at applications with LoC <50′000 to investigate the used paradigms.

In Fig. 5.8c, we look at application lying having a LoC between 50′000 and 400′000. Inter-

estingly, applications with their solely usage of MPI, seem to be present within all ranges of

LoC.

In Fig. 5.9, we can see the applications’ programming languages over the years with the

LoC. As in Fig. 5.9a illustrated, we can see that within applications <50′000, there seem to

be more applications, using C++ and C. In Fig. 5.9c, applications ranging between 50′000

and 400′000 LoC, tend to be released from 2017.

Results 26

2005 2007 2009 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Release year

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

Lo
C

Parallel paradigms
MPI,
MPI,OpenMP
MPI,CUDA,
MPI,CUDA,OpenMP
MPI,OpenACC,CUDA,OpenMP
MPI,OpenCL,
MPI,OpenACC,CUDA,OpenMPOpenCL,

(a) Parallel programming paradigms over years with complete LoC

2005 2007 2009 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Release year

0

10,000

20,000

30,000

40,000

50,000

Lo
C

Parallel paradigms
MPI,
MPI,OpenMP
MPI,CUDA,
MPI,CUDA,OpenMP
MPI,OpenACC,CUDA,OpenMP
MPI,OpenCL,
MPI,OpenACC,CUDA,OpenMPOpenCL,

(b) Parallel programming paradigms over years with LoC: 0 - 50’000

2005 2007 2009 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Release year

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Lo
C

Parallel paradigms
MPI,
MPI,OpenMP
MPI,CUDA,
MPI,CUDA,OpenMP
MPI,OpenACC,CUDA,OpenMP
MPI,OpenCL,
MPI,OpenACC,CUDA,OpenMPOpenCL,

(c) Parallel programming paradigms over years with LoC: 50’000 - 400’000

Figure 5.8: Used paradigms over time in relation with the LoC

Results 27

2005 2007 2009 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Release year

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

Lo
C

Programming language
C++
Fortran
C
C, Fortran
C, C++
C, C++, Fortran

(a) Programming language over years with complete LoC

2005 2007 2009 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Release year

0

10,000

20,000

30,000

40,000

50,000

Lo
C

Programming language
C++
Fortran
C
C, Fortran
C, C++
C, C++, Fortran

(b) Programming language over years with LoC: 0 - 50’000

2005 2007 2009 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Release year

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Lo
C

Programming language
C++
Fortran
C
C, Fortran
C, C++
C, C++, Fortran

(c) Programming language over years with LoC: 50’000 - 400’000

Figure 5.9: Programming language over time in relation with the LoC

Results 28

5.5 Domains in Programming Languages
We wanted to analyze the domains inside applications with their usage over programming

language. In figure 5.10, we can see that we have analyzed various domains among the

applications. For instance, we see that MD has been mostly represented within the ana-

lyzed applications. Furthermore, MD applications have been implemented in almost every

combination of the code languages. Followed by the domains SPH and CFD which make

the second most used domains within the data set.

C++ C, C++ Fortran C C, Fortran C, C++, Fortran
Programming language

CFD
PDE
MD

Finite Element
Triangle Enumeration

Community Detection - Louvain method
Quantum Chronodynamics

Graphics: Parallel Ray Tracing
3D Eulerian Hydrodynamics

CEM
I/O componentization

Mimic of Communication Patterns
MC

Structured Adaptive Mesh Refinement
SPH

Tensor Factorization
Linear heat conduction equation

Equation Radiative Transfer
Package of Scientific Problem

Time-Dependent Density Functional Theory
Biomedical Imaging

Discrete Event simulation - computer network
Adaptive Sampling

GPU Clusters
Linear Algebra

AI
Mesh generation

Metagenomic Assembler
Linear Circuit Simulator
Template library for MPI

Phylogenetics

D
om

ai
n

Figure 5.10: Domain representation with their used programming language

5.6 Trends over years in Paradigms and Programming language
In the following, we showed the trend over years of all analyzed applications. Furthermore,

we illustrated their used parallel programming paradigms, respectively their used program-

ming language. As shown in figure 5.11, the releases of 2021, the analyzed applications have

been majorly using the paradigms of MPI and the combination between MPI and CUDA.

Whereas the applications released between 2005 and 2009 primarily used MPI.

G
ad

ge
t

12
6.

la
m

m
ps

14
3.

dl
es

lie

14
2.

dm
ilc

13
0.

so
co

rro

12
9.

te
ra

_t
f

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

13
2.

ze
us

m
p2

14
5.

lG
em

sF
D

TD

13
7.

lu

Pr
in

ce
to

nC
BE

M
D

M
PI

AS
PA

-m
as

te
r

m
cb

nt
ch

em
in

i

Te
aL

ea
f

m
et

ag
_p

ar
tit

io
ni

ng

m
in

iT
ri

m
in

iX
yc

e

m
in

iA
er

o

m
in

iS
M

AC

m
in

iF
E

El
em

en
ta

l

52
0.

om
ne

tp
p_

r

51
0.

pa
re

st
_r

ch
at

te
rb

ug

Si
es

ta

Si
m

pl
eM

O
C

M
AC

Si
o

Ad
io

s

sp
la

tt

Lu
le

sh

M
LS

L-
In

te
lM

LS
L

C
af

fe
-M

PI

th
or

na
do

_m
in

i

Ex
aM

in
iM

D

sw
4l

ite
-R

AJ
A

m
in

iM
D

m
es

hk
it

sp
hy

nx

Kr
ip

ke

ph
ym

l

O
pe

nM
D

SA
M

R
AI

Tr
illi

no
s

ya
m

bo

vm
d

W
R

F

m
in

iA
M

R

vl
as

ia
to

r

m
in

iV
ite

ty
ch

o2

La
gh

os

N
ek

50
00

ho
ro

vo
d

M
IT

gc
m

he
m

el
b

m
xx

ar
bo

r-0
.3

Application Name

2005

2007

2009

2011

2013

2015

2017

2019

2021

R
el

ea
se

 y
ea

r

Parallel paradigms
MPI,
MPI,OpenMP
MPI,CUDA,
MPI,CUDA,OpenMP
MPI,OpenACC,CUDA,OpenMP
MPI,OpenCL,
MPI,OpenACC,CUDA,OpenMPOpenCL,

Figure 5.11: Occurrences of paradigm, decomposition and scheduling at process level

In figure 5.12, we see that the oldest programming language among the group of C, C++,

and Fortran is still used in the newer releases. Generally, the programming language C++

Results 29

seem to be mostly represented among the applications.
G

ad
ge

t

12
6.

la
m

m
ps

14
3.

dl
es

lie

14
2.

dm
ilc

13
0.

so
co

rro

12
9.

te
ra

_t
f

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

13
2.

ze
us

m
p2

14
5.

lG
em

sF
D

TD

13
7.

lu

Pr
in

ce
to

nC
BE

M
D

M
PI

AS
PA

-m
as

te
r

m
cb

nt
ch

em
in

i

Te
aL

ea
f

m
et

ag
_p

ar
tit

io
ni

ng

m
in

iT
ri

m
in

iX
yc

e

m
in

iA
er

o

m
in

iS
M

AC

m
in

iF
E

El
em

en
ta

l

52
0.

om
ne

tp
p_

r

51
0.

pa
re

st
_r

ch
at

te
rb

ug

Si
es

ta

Si
m

pl
eM

O
C

M
AC

Si
o

Ad
io

s

sp
la

tt

Lu
le

sh

M
LS

L-
In

te
lM

LS
L

C
af

fe
-M

PI

th
or

na
do

_m
in

i

Ex
aM

in
iM

D

sw
4l

ite
-R

AJ
A

m
in

iM
D

m
es

hk
it

sp
hy

nx

Kr
ip

ke

ph
ym

l

O
pe

nM
D

SA
M

R
AI

Tr
illi

no
s

ya
m

bo

vm
d

W
R

F

m
in

iA
M

R

vl
as

ia
to

r

m
in

iV
ite

ty
ch

o2

La
gh

os

N
ek

50
00

ho
ro

vo
d

M
IT

gc
m

he
m

el
b

m
xx

ar
bo

r-0
.3

Application Name

2005

2007

2009

2011

2013

2015

2017

2019

2021

R
el

ea
se

 y
ea

r

Programming language
C++
Fortran
C
C, Fortran
C, C++
C, C++, Fortran

Figure 5.12: Occurrences of paradigm, decomposition and scheduling at process level

6
Conclusion

Investigation of domain decomposition and scheduling in HPC applications consisted of

analytical work with a broad area inside HPC applications. First, open source applications

have been gathered. Second, information about the domain decomposition and scheduling

have been manually retrieved from each application. Third, results have been analyzed

and followed by looking at various aspects within applications. Fortunately, number based

information, such as LoC, Storage, or OpenMP usages can be retrieved automatically with

the provided script. The difficulty lied in retrieving places where scheduling and domain

decomposition have occurred, as the time-effort of analysis depend on the application itself.

Nevertheless, we managed to show results, covering a broad part of the data. Most of

the analyzed applications used MPI as their solely programming paradigm. Furthermore,

nearly 75% have used a distributed domain decomposition. Last but not least, most of the

applications have been scheduled statically. Another point of view is the dependence of lines

of code within the applications. Furthermore, we displayed all the analyzed applications with

their release dates and their used parallel programming paradigms, domain decomposition

and scheduling at process level. At the end, we believe that we fulfilled the aim to set an

overview, displaying a wide area of HPC applications describing their usage of the common

way of code within the community.

Bibliography

[1] SPEC MPI 2007. 126.lammps, 2005. URL http://www.spec.org/auto/mpi2007/Docs/

126.lammps.html. Release date; 1/17/2005.

[2] SPEC MPI 2007. 104.milc, 2007. URL http://www.spec.org/auto/mpi2007/Docs/104.

milc.html. Release date; 3/16/2007.

[3] SPEC MPI 2007. 107.leslie3d, 2007. URL http://www.spec.org/auto/mpi2007/Docs/

107.leslie3d.html. Release date; 4/11/2007.

[4] SPEC MPI 2007. 122.tachyon, 2007. URL http://www.spec.org/auto/mpi2007/Docs/

122.tachyon.html. Release date; 2/2/2007.

[5] SPEC MPI 2007. 129.tera, 2007. URL http://www.spec.org/auto/mpi2007/Docs/129.

tera tf.html. Release date; 2/5/2007.

[6] SPEC MPI 2007. 130.socorro, 2007. URL http://www.spec.org/auto/mpi2007/Docs/

130.socorro.html. Release date; 2/6/2007.

[7] SPEC MPI 2007. 142.dmilc, 2007. URL http://www.spec.org/auto/mpi2007/Docs/

142.dmilc.html. Release date; 3/16/2007.

[8] SPEC MPI 2007. 143.dleslie, 2007. URL http://www.spec.org/auto/mpi2007/Docs/

143.dleslie.html. Release date; 4/11/2007.

[9] SPEC MPI 2007. 132.zeusmp2, 2009. URL http://www.spec.org/auto/mpi2007/Docs/

132.zeusmp2.html. Release date; 9/3/2009.

[10] SPEC MPI 2007. 137.lu, 2009. URL http://www.spec.org/auto/mpi2007/Docs/137.

lu.html. Release date; 9/3/2009.

[11] SPEC MPI 2007. 145.lgemsfdtd, 2009. URL http://www.spec.org/auto/mpi2007/

Docs/145.lGemsFDTD.html. Release date; 4/20/2009.

[12] SPEC CPU 2017. 500.perlbench r, 2017. URL https://www.spec.org/cpu2017/Docs/

benchmarks/500.perlbench r.html. Release date; 1/1/2017.

[13] SPEC CPU 2017. 508.namd r, 2017. URL https://www.spec.org/cpu2017/Docs/

benchmarks/508.namd r.html. Release date; 1/1/2017.

[14] SPEC CPU 2017. 510.parest r, 2017. URL https://www.spec.org/cpu2017/Docs/

benchmarks/510.parest r.html. Release date; 1/1/2017.

http://www.spec.org/auto/mpi2007/Docs/126.lammps.html
http://www.spec.org/auto/mpi2007/Docs/126.lammps.html
http://www.spec.org/auto/mpi2007/Docs/104.milc.html
http://www.spec.org/auto/mpi2007/Docs/104.milc.html
http://www.spec.org/auto/mpi2007/Docs/107.leslie3d.html
http://www.spec.org/auto/mpi2007/Docs/107.leslie3d.html
http://www.spec.org/auto/mpi2007/Docs/122.tachyon.html
http://www.spec.org/auto/mpi2007/Docs/122.tachyon.html
http://www.spec.org/auto/mpi2007/Docs/129.tera_tf.html
http://www.spec.org/auto/mpi2007/Docs/129.tera_tf.html
http://www.spec.org/auto/mpi2007/Docs/130.socorro.html
http://www.spec.org/auto/mpi2007/Docs/130.socorro.html
http://www.spec.org/auto/mpi2007/Docs/142.dmilc.html
http://www.spec.org/auto/mpi2007/Docs/142.dmilc.html
http://www.spec.org/auto/mpi2007/Docs/143.dleslie.html
http://www.spec.org/auto/mpi2007/Docs/143.dleslie.html
http://www.spec.org/auto/mpi2007/Docs/132.zeusmp2.html
http://www.spec.org/auto/mpi2007/Docs/132.zeusmp2.html
http://www.spec.org/auto/mpi2007/Docs/137.lu.html
http://www.spec.org/auto/mpi2007/Docs/137.lu.html
http://www.spec.org/auto/mpi2007/Docs/145.lGemsFDTD.html
http://www.spec.org/auto/mpi2007/Docs/145.lGemsFDTD.html
https://www.spec.org/cpu2017/Docs/benchmarks/500.perlbench_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/500.perlbench_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/508.namd_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/508.namd_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/510.parest_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/510.parest_r.html

Bibliography 32

[15] SPEC CPU 2017. 511.povray r, 2017. URL https://www.spec.org/cpu2017/Docs/

benchmarks/511.povray r.html. Release date; 1/1/2017.

[16] SPEC CPU 2017. 520.omnetpp r, 2017. URL https://www.spec.org/cpu2017/Docs/

benchmarks/520.omnetpp r.html. Release date; 1/1/2017.

[17] SPEC CPU 2017. 523.xalancbmk r, 2017. URL https://www.spec.org/cpu2017/Docs/

benchmarks/523.xalancbmk r.html. Release date; 1/1/2017.

[18] SPEC CPU 2017. 531.deepsjeng r, 2017. URL https://www.spec.org/cpu2017/Docs/

benchmarks/531.deepsjeng r.html. Release date; 1/1/2017.

[19] SPEC CPU 2017. 541.leela r, 2017. URL https://www.spec.org/cpu2017/Docs/

benchmarks/541.leela r.html. Release date; 1/1/2017.

[20] SPEC CPU 2017. 548.exchange2 r, 2017. URL https://www.spec.org/cpu2017/Docs/

benchmarks/548.exchange2 r.html. Release date; 1/1/2017.

[21] Rodinia 3.1. Srad, 2015. URL https://github.com/JuliaParallel/rodinia/tree/master/

openmp/srad v1. Release date; 11/10/2015.

[22] Rodinia 3.1. Streamcluster, 2016. URL https://github.com/JuliaParallel/rodinia/tree/

master/openmp/streamcluster. Release date; 9/19/2016.

[23] Fiber Mini App. ntchemini, 2014. URL https://github.com/fiber-miniapp/

ntchem-mini. Release date; 10/31/2014.

[24] LLNL ASC Proxy Apps. Lulesh, 2018. URL https://github.com/LLNL/LULESH.

Release date; 7/18/2018.

[25] No benchmark suite. Gadget, 2005. URL https://wwwmpa.mpa-garching.mpg.de/

gadget/. Release date; 1/5/2005.

[26] No benchmark suite. Princetoncbemdmpi, 2013. URL https://github.com/

PrincetonUniversity/PrincetonCBEMDMPI. Release date; 1/17/2013.

[27] No benchmark suite. mcb, 2014. URL https://computing.llnl.gov/projects/co-design/

mcb. Release date; 1/6/2014.

[28] No benchmark suite. metag partitioning, 2016. URL https://github.com/ParBLiSS/

metag partitioning. Release date; 9/29/2016.

[29] No benchmark suite. Cfdemcoupling, 2017. URL https://github.com/CFDEMproject/

CFDEMcoupling-PUBLIC. Release date; 12/4/2017.

[30] No benchmark suite. Elemental, 2017. URL https://github.com/elemental/Elemental/

releases/tag/v0.87.7. Release date; 2/7/2017.

[31] No benchmark suite. Adios, 2018. URL https://github.com/ornladios/ADIOS/releases.

Release date; 4/18/2018.

https://www.spec.org/cpu2017/Docs/benchmarks/511.povray_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/511.povray_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/520.omnetpp_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/520.omnetpp_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/523.xalancbmk_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/523.xalancbmk_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/531.deepsjeng_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/531.deepsjeng_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/541.leela_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/541.leela_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/548.exchange2_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/548.exchange2_r.html
https://github.com/JuliaParallel/rodinia/tree/master/openmp/srad_v1
https://github.com/JuliaParallel/rodinia/tree/master/openmp/srad_v1
https://github.com/JuliaParallel/rodinia/tree/master/openmp/streamcluster
https://github.com/JuliaParallel/rodinia/tree/master/openmp/streamcluster
https://github.com/fiber-miniapp/ntchem-mini
https://github.com/fiber-miniapp/ntchem-mini
https://github.com/LLNL/LULESH
https://wwwmpa.mpa-garching.mpg.de/gadget/
https://wwwmpa.mpa-garching.mpg.de/gadget/
https://github.com/PrincetonUniversity/PrincetonCBEMDMPI
https://github.com/PrincetonUniversity/PrincetonCBEMDMPI
https://computing.llnl.gov/projects/co-design/mcb
https://computing.llnl.gov/projects/co-design/mcb
https://github.com/ParBLiSS/metag_partitioning
https://github.com/ParBLiSS/metag_partitioning
https://github.com/CFDEMproject/CFDEMcoupling-PUBLIC
https://github.com/CFDEMproject/CFDEMcoupling-PUBLIC
https://github.com/elemental/Elemental/releases/tag/v0.87.7
https://github.com/elemental/Elemental/releases/tag/v0.87.7
https://github.com/ornladios/ADIOS/releases

Bibliography 33

[32] No benchmark suite. Caffe-mpi, 2018. URL https://github.com/Caffe-MPI/Caffe-MPI.

github.io. Release date; 2/5/2018.

[33] No benchmark suite. Macsio, 2018. URL https://github.com/LLNL/MACSio. Release

date; 10/2/2018.

[34] No benchmark suite. Mlsl-intelmlsl, 2018. URL https://github.com/intel/MLSL. Re-

lease date; 10/1/2018.

[35] No benchmark suite. Siesta, 2018. URL https://gitlab.com/siesta-project/siesta/-/

releases. Release date; 7/19/2018.

[36] No benchmark suite. Simplemoc, 2018. URL https://github.com/ANL-CESAR/

SimpleMOC/tree/v4. Release date; 7/31/2018.

[37] No benchmark suite. splatt, 2018. URL https://github.com/ShadenSmith/splatt. Re-

lease date; 9/5/2018.

[38] No benchmark suite. thornado mini, 2018. URL https://github.com/ECP-Astro/

thornado mini. Release date; 9/9/2018.

[39] No benchmark suite. Openmd, 2019. URL https://github.com/OpenMD/OpenMD.

Release date; 8/31/2019.

[40] No benchmark suite. meshkit, 2019. URL https://bitbucket.org/fathomteam/meshkit.

git/src. Release date; 12/9/2019.

[41] No benchmark suite. phyml, 2019. URL https://github.com/stephaneguindon/phyml.

Release date; 3/21/2019.

[42] No benchmark suite. souffle, 2019. URL https://github.com/souffle-lang/souffle/

releases. Release date; 8/19/2019.

[43] No benchmark suite. sphynx, 2019. URL https://astro.physik.unibas.ch/en/people/

ruben-cabezon/sphynx/. Release date; 7/3/2019.

[44] No benchmark suite. sw4lite-raja, 2019. URL https://github.com/geodynamics/

sw4lite/tree/RAJA-v1.0. Release date; 3/15/2019.

[45] No benchmark suite. Samrai, 2020. URL https://github.com/LLNL/SAMRAI. Release

date; 9/30/2020.

[46] No benchmark suite. Trillinos, 2020. URL https://github.com/trilinos/Trilinos. Release

date; 8/6/2020.

[47] No benchmark suite. Wrf, 2020. URL https://github.com/wrf-model/WRF/releases/

tag/v4.2.1. Release date; 7/22/2020.

[48] No benchmark suite. vmd, 2020. URL https://www.ks.uiuc.edu/Research/vmd/. Re-

lease date; 10/13/2020.

https://github.com/Caffe-MPI/Caffe-MPI.github.io
https://github.com/Caffe-MPI/Caffe-MPI.github.io
https://github.com/LLNL/MACSio
https://github.com/intel/MLSL
https://gitlab.com/siesta-project/siesta/-/releases
https://gitlab.com/siesta-project/siesta/-/releases
https://github.com/ANL-CESAR/SimpleMOC/tree/v4
https://github.com/ANL-CESAR/SimpleMOC/tree/v4
https://github.com/ShadenSmith/splatt
https://github.com/ECP-Astro/thornado_mini
https://github.com/ECP-Astro/thornado_mini
https://github.com/OpenMD/OpenMD
https://bitbucket.org/fathomteam/meshkit.git/src
https://bitbucket.org/fathomteam/meshkit.git/src
https://github.com/stephaneguindon/phyml
https://github.com/souffle-lang/souffle/releases
https://github.com/souffle-lang/souffle/releases
https://astro.physik.unibas.ch/en/people/ruben-cabezon/sphynx/
https://astro.physik.unibas.ch/en/people/ruben-cabezon/sphynx/
https://github.com/geodynamics/sw4lite/tree/RAJA-v1.0
https://github.com/geodynamics/sw4lite/tree/RAJA-v1.0
https://github.com/LLNL/SAMRAI
https://github.com/trilinos/Trilinos
https://github.com/wrf-model/WRF/releases/tag/v4.2.1
https://github.com/wrf-model/WRF/releases/tag/v4.2.1
https://www.ks.uiuc.edu/Research/vmd/

Bibliography 34

[49] No benchmark suite. yambo, 2020. URL https://github.com/yambo-code/yambo. Re-

lease date; 7/20/2020.

[50] No benchmark suite. tycho2, 2021. URL https://github.com/lanl/tycho2. Release date;

6/1/2021.

[51] No benchmark suite. vlasiator, 2021. URL https://github.com/fmihpc/vlasiator/

releases/tag/v5.1. Release date; 4/26/2021.

[52] No benchmark suite. Mitgcm, 2022. URL https://github.com/MITgcm/MITgcm. Re-

lease date; 4/27/2022.

[53] No benchmark suite. Nek5000, 2022. URL https://github.com/Nek5000/nekRS/

releases/tag/v21.1. Release date; 05/13/2022.

[54] No benchmark suite. arbor-0.3, 2022. URL https://github.com/arbor-sim/arbor. Re-

lease date; 01/26/2022.

[55] No benchmark suite. hemelb, 2022. URL https://github.com/hemelb-codes/hemelb.

Release date; 6/20/2022.

[56] No benchmark suite. horovod, 2022. URL https://github.com/horovod/horovod/

releases. Release date; 4/21/2022.

[57] No benchmark suite. mxx, 2022. URL https://github.com/patflick/mxx. Release date;

4/13/2022.

[58] No benchmark suite ”Co-design center for Particle Applications (CoPA)”. Examin-

imd, 2018. URL https://github.com/ECP-copa/ExaMiniMD/releases/tag/1.0. Release

date; 3/14/2018.

[59] Chatterbug. chatterbug, 2018. URL https://github.com/hpcgroup/chatterbug. Release

date; 9/18/2018.

[60] VS Code. Visual studio code, 2022. URL https://code.visualstudio.com/. IDE in which

code was analyzed.

[61] UK Mini-App Consortium. Tealeaf, 2015. URL https://github.com/UK-MAC/

TeaLeaf ref. Release date; 6/2/2015.

[62] CORAL-2. Kripke, 2019. URL https://github.com/LLNL/Kripke. Release date;

6/14/2019.

[63] CORAL-2. Laghos, 2021. URL https://github.com/CEED/Laghos. Release date;

4/10/2021.

[64] ExaGraph. minivite, 2021. URL https://github.com/Exa-Graph/miniVite. Release

date; 4/10/2021.

[65] ExMatEx. Aspa-master, 2014. URL https://github.com/exmatex/ASPA/tree/master/

doc. Release date; 1/23/2014.

https://github.com/yambo-code/yambo
https://github.com/lanl/tycho2
https://github.com/fmihpc/vlasiator/releases/tag/v5.1
https://github.com/fmihpc/vlasiator/releases/tag/v5.1
https://github.com/MITgcm/MITgcm
https://github.com/Nek5000/nekRS/releases/tag/v21.1
https://github.com/Nek5000/nekRS/releases/tag/v21.1
https://github.com/arbor-sim/arbor
https://github.com/hemelb-codes/hemelb
https://github.com/horovod/horovod/releases
https://github.com/horovod/horovod/releases
https://github.com/patflick/mxx
https://github.com/ECP-copa/ExaMiniMD/releases/tag/1.0
https://github.com/hpcgroup/chatterbug
https://code.visualstudio.com/
https://github.com/UK-MAC/TeaLeaf_ref
https://github.com/UK-MAC/TeaLeaf_ref
https://github.com/LLNL/Kripke
https://github.com/CEED/Laghos
https://github.com/Exa-Graph/miniVite
https://github.com/exmatex/ASPA/tree/master/doc
https://github.com/exmatex/ASPA/tree/master/doc

Bibliography 35

[66] Mantevo. miniaero, 2016. URL https://github.com/Mantevo/miniAero/releases. Re-

lease date; 7/6/2016.

[67] Mantevo. minitri, 2016. URL https://github.com/Mantevo/miniTri. Release date;

7/6/2016.

[68] Mantevo. minixyce, 2016. URL https://github.com/Mantevo/miniXyce. Release date;

7/6/2016.

[69] Mantevo. minife, 2017. URL https://github.com/Mantevo/miniFE/releases. Release

date; 11/22/2017.

[70] Mantevo. minismac, 2017. URL https://github.com/Mantevo/miniSMAC/releases.

Release date; 10/24/2017.

[71] Mantevo. minimd, 2019. URL https://github.com/Mantevo/miniMD. Release date;

2/28/19.

[72] Mantevo. miniamr, 2021. URL https://github.com/Mantevo/miniAMR. Release date;

11/23/2021.

[73] Nderim Shatri. Controltable, 2022. URL https://bitbucket.org/unibasdmihpc/

nderim-master-project/src/master/tables/ControlTable.csv. Controltable contains all

the data.

[74] Nderim Shatri. Controltable, 2022. URL https://bitbucket.org/unibasdmihpc/

nderim-master-project/src/master/tables/ProcessedControlTable.csv. Processed Con-

troltable which is after processing the original ControlTable.

https://github.com/Mantevo/miniAero/releases
https://github.com/Mantevo/miniTri
https://github.com/Mantevo/miniXyce
https://github.com/Mantevo/miniFE/releases
https://github.com/Mantevo/miniSMAC/releases
https://github.com/Mantevo/miniMD
https://github.com/Mantevo/miniAMR
https://bitbucket.org/unibasdmihpc/nderim-master-project/src/master/tables/ControlTable.csv
https://bitbucket.org/unibasdmihpc/nderim-master-project/src/master/tables/ControlTable.csv
https://bitbucket.org/unibasdmihpc/nderim-master-project/src/master/tables/ProcessedControlTable.csv
https://bitbucket.org/unibasdmihpc/nderim-master-project/src/master/tables/ProcessedControlTable.csv

A
Appendix

Suite(M)
Application Name
(M) Links(M) Domain(M) Description(M) LoC(A)

Programming
Language (M) Fortran Lines(A) C Lines(A) C++ Lines(A) C_CPP_H_Lines(A) OpenMP(A/M) MPI(M) OpenACC(A/M) CUDA(A/M) OpenCL(A/M)

Data
Decomposition
(M)

Location Data
Decomposition(M)

Process level (M)
Scheduling

Location
Scheduling(M) Storage (MB) (M) Version(M)

Release Date (M)
(github release date)Newer Versions(M)

New Release Date (M)
(github) Notes(M)

LLNL ASC Proxy Apps Lulesh https://github.com/LLNL/LULESH CFD

LULESH is a highly simplified application, hard-coded to
only solve a simple Sedov blast problem with analytic
answers – but represents the numerical algorithms, data
motion, and programming style typical in scientific C or C++
based applications 12798 C++ 0 0 11296 1502 yes yes yes yes no distributed lulesh-init.cc [189 - 238] dynamic lulesh-init.cc [377-484] 4.4 2.0.2 7/18/2018 no -

Mantevo miniAMR https://github.com/Mantevo/miniAMR PDE

miniAMR applies a stencil calculation on a unit cube
computational domain, which is divided into blocks. The
blocks all have the same number of cells in each direction
and communicate ghost values with neighboring blocks. 54312 C, C++ 0 4850 18017 31445 yes yes no no no distributed init.c static init.c 1.1 1.7 11/23/2021 no -

Mantevo miniMD https://github.com/Mantevo/miniMD MD

miniMD is a parallel molecular dynamics (MD) simulation
package written in C++ and intended for use on parallel
supercomputers and new architechtures for testing
purposes. The software package is meant to be simple,
lightweight, and easily adapted to new hardware. 17496 C++ 0 371 14468 2657 yes yes no no no distributed setup.cc [278-282] static setup.cc [359 -392] 2.6 1.2 2/28/19 no -

Mantevo miniFE https://github.com/Mantevo/miniFE/releases Finite Element

MiniFE is an proxy application for unstructured implicit finite
element codes. It is similar to HPCCG and pHPCCG but
provides a much more complete vertical covering of the
steps in this class of applications. 36812 C, C++ 0 4479 3549 28784 yes yes no yes no distributed

BoxPartitionIB.c :
box_partition static BoxPartionIB.c 21 2.2 11/22/2017 no -

Mantevo miniSMAC
https://github.
com/Mantevo/miniSMAC/releases PDE

Solves the finite-differenced 2D incompressible Navier-
Stokes equations with Spalart-Allmaras one-equation
turbulence model on a structured body conforming grid. The
grid is partitioned into subgrids load balanced for the
number of MPI ranks requested by the user 11167 Fortran 10984 0 0 183 yes yes no no no distributed hint in smac2d.f [536-546] static

hint in smac2d.f [536-
546] 0.812 1 10/24/2017 no -

Mantevo miniTri https://github.com/Mantevo/miniTri Triangle Enumeration

miniTri is a proxy for a class of triangle based data analytics
(Mantevo). This simple code is a self-contained piece of
C++ software that uses triangle enumeration with a
calculation of specific vertex and edge properties. 9517 C++ 0 0 7779 1738 yes yes no no no distributed CSRMatrix.cc[1053-1096] dynamic

CSRMatrix.cpp [1105-
1203] 1.2 2.0.0 7/6/2016 no -

ExaGraph miniVite https://github.com/Exa-Graph/miniVite Community Detection - Louvain method
miniVite is a proxy app that implements a single phase of
Louvain 2429 C++ 0 0 195 2234 yes yes no no no distributed graph.hpp [367-377] dynamic

graph.hpp [from 980
onwards?] 0.148 1.2 4/10/2021 no -

Fiber Mini App ntchemini https://github.com/fiber-miniapp/ntchem-mini MD

NTChem is a high-performance software package for the
molecular electronic structure calculation for general
purpose on the K computer 6571 Fortran 6571 0 0 0 yes yes no no no replicated util_initmpi static

util_initmpi.f90 [96-
124] 39 1.2 10/31/2014 no - No hints of other data decomposition

SPEC MPI 2007 104.milc
http://www.spec.
org/auto/mpi2007/Docs/104.milc.html Quantum Chronodynamics

The MILC Code is a set of codes written in C developed by
the MIMD Lattice Computation (MILC) collaboration for
doing simulations of four dimensional SU(3) lattice gauge
theory on MIMD parallel machines. The code is used for
millions of node hours at DOE and NSF supercomputer
centers. 22989 C 0 10424 0 12565 no yes no no no distributed setup.c [146-253] static control.c [59-110] 0.948 - 3/16/2007 no -

SPEC MPI 2007 107.leslie3d
http://www.spec.
org/auto/mpi2007/Docs/107.leslie3d.html CFD

107.leslie3d is derived from LESlie3d (Large-Eddy
Simulations with Linear-Eddy Model in 3D), a research-level
Computational Fluid Dynamics (CFD) code. It is the primary
solver used to investigate a wide array of turbulence
phenomena such as mixing, combustion, acoustics and
general fluid mechanics. 7545 Fortran 7545 0 0 0 no yes no no no distributed main.f [17-55] static parallel.f[202-235] 0.536 - 4/11/2007 no -

SPEC MPI 2007 122.tachyon
http://www.spec.
org/auto/mpi2007/Docs/122.tachyon.html Graphics: Parallel Ray Tracing Tachyon is a parallel ray tracing application. 10763 C 0 9592 0 1171 no yes no no no distributed parallel.c dynamic parallel.c 0.387 0.97 2/2/2007 no -

SPEC MPI 2007 126.lammps
http://www.spec.
org/auto/mpi2007/Docs/126.lammps.html MD

LAMMPS is a classical molecular dynamics simulation code
designed to run efficiently on parallel computers. It was
developed at Sandia National Laboratories, a US
Department of Energy facility, with funding from the DOE. It
is an open-source code, distributed freely under the terms
of the GNU Public License (GPL) 7162 C++ 0 0 3241 3921 no yes no no no distributed

read_data.cpp different
methods using distribution
ex. ReadData:impropers()
[580-618] static universe.cpp [55-87] 11 - 1/17/2005 no -

SPEC MPI 2007 129.tera_tf
http://www.spec.
org/auto/mpi2007/Docs/129.tera_tf.html 3D Eulerian Hydrodynamics

3D eulerian hydrodynamics application 2nd godunov-type
scheme, 3rd order remapping requires only a Fortran 90
compiler, and an MPI (1.2) implementation uses mostly
point-to-point messages, and some reductions uses non-
blocking messages 3665 Fortran 3665 0 0 0 no yes no no no replicated TF_GENDATA.f90 [2...] static

TF_INIT.f90
[INITIALIZE_RUN] 0.588 - 2/5/2007 no -

SPEC MPI 2007 130.socorro
http://www.spec.
org/auto/mpi2007/Docs/130.socorro.html MD

Socorro is a modular, object oriented code for performing
self-consistent electronic-structure calculations utilizing the
Kohn-Sham formulation of density-functional theory. 86593 C, Fortran 53199 32842 0 552 no yes no no no replicated mpi_mod.f90[380-480] static mpi_mod.f90[225-273] 5.5 1.0 2/6/2007 no -

SPEC MPI 2007 132.zeusmp2
http://www.spec.
org/auto/mpi2007/Docs/132.zeusmp2.html CFD

ZEUS-MP is a computational fluid dynamics code
developed at the Laboratory for Computational
Astrophysics (NCSA, SDSC, University of Illinois at Urbana-
Champaign, UC San Diego) for the simulation of
astrophysical phenomena. 29414 Fortran 29323 91 0 0 no yes no no no distributed configure.F static configure.F 2.1 - 9/3/2009 no -

SPEC MPI 2007 137.lu
http://www.spec.
org/auto/mpi2007/Docs/137.lu.html PDE

The 137.lu code has a rich ancestry in benchmarking. Its
immediate predecessor is the LU benchmark in NPB3.2-
MPI, part of the NAS Parallel Benchmark suite. It is
sometimes referred to as APPLU (a version of that was
173.applu in CPU2000) or NAS-LU. Solution of five coupled
nonlinear PDE's, on a
3-dimensional logically structured grid, using
an implicit pseudo-time marching scheme, based
on two-factor approximate factorization of the
sparse Jacobian matrix. 3924 Fortran 3924 0 0 0 no yes no no no centralized

read_input.F (Hint in
comments) static subdomain.F 0.532 - 9/3/2009 no -

SPEC MPI 2007 142.dmilc
http://www.spec.
org/auto/mpi2007/Docs/142.dmilc.html MD

The MILC Code is a set of codes written in C developed by
the MIMD Lattice Computation (MILC) collaboration for
doing simulations of four dimensional SU(3) lattice gauge
theory on MIMD parallel machines. 11498 C 0 10426 0 1072 no yes no no no distributed io_lat4.c static com_mpi.c [962-983] 0.944 - 3/16/2007 no -

SPEC MPI 2007 143.dleslie
http://www.spec.
org/auto/mpi2007/Docs/143.dleslie.html CFD

143.dleslie is derived from LESlie3d (Large-Eddy
Simulations with Linear-Eddy Model in 3D), a research-level
Computational Fluid Dynamics (CFD) code. 3483 Fortran 3483 0 0 0 no yes no no no replicated main.f [36-78] static

parallel.f:GRIDMAP()
[168-253] 0.32 2.0 4/11/2007 no -

SPEC MPI 2007 145.lGemsFDTD

http://www.spec.
org/auto/mpi2007/Docs/145.lGemsFDTD.
html CEM

GemsFDTD solves the Maxwell equations in 3D in the time
domain using the finite-difference time-domain (FDTD)
method. GemsFDTD is a Computational Electromagnetic
(CEM) application 10487 Fortran 10487 0 0 0 no yes no no no distributed Loadbalance.f90 dynamic Loadbalance.f90 24 - 4/20/2009 no - No hints of other data decomposition

NO Adios https://github.com/ornladios/ADIOS/releases I/O componentization

ADIOS is developed as part of the United States
Department of Energy's Exascale Computing Project. It is a
framework for scientific data I/O to publish and subscribe to
data when and where required. 255137 C, C++, Fortran 12319 151373 83788 7657 no yes no no no distributed read_dimes.c[1233-1296] static

adios_nssi_config.c
[218-276] 26 1.3.1 4/18/2018 no -

Chatterbug chatterbug https://github.com/hpcgroup/chatterbug Mimic of Communication Patterns

A suite of communication-intensive proxy applications that
mimic commonly found communication patterns in HPC
codes. These codes can be used as synthetic codes for
benchmarking, or for trace generation using OTF2. 1056 C++ 0 0 1056 0 no yes no no no replicated unstr-mesh.c static unstr-mesh.c[86-94] 0.156 1.0 9/18/2018 no - No hints of other data decomposition

NO "Co-design center
for Particle
Applications (CoPA)" ExaMiniMD

https://github.com/ECP-
copa/ExaMiniMD/releases/tag/1.0 MD

ExaMiniMD is a proxy application and research vehicle for
particle codes, in particular Molecular Dynamics (MD).
Compared to previous MD proxy apps (MiniMD, COMD), its
design is significantly more modular in order to allow
independent investigation of different aspects 6149 C++ 0 0 1816 4333 no yes no no no unknown - unknown - 0.556 1.0 3/14/2018 no - Usage of Kokkos

CORAL-2 Kripke https://github.com/LLNL/Kripke MD

Kripke is a simple, scalable, 3D Sn deterministic particle
transport code. Its primary purpose is to research how data
layout, programming paradigms and architectures effect the
implementation and performance of Sn transport.
Kripke is also a Proxy-App since it is a proxy for the LLNL
transport code ARDRA.

5350 C++ 0 0 2471 2879 no yes no no no distributed PartionSpace.cpp[75-123] static PartitionSpace.cpp 0.42 1.2.4 6/14/2019 no -

NO MACSio https://github.com/LLNL/MACSio I/O componentization

MACSio is being developed to fill a long existing void in co-
design proxy applications that allow for I/O performance
testing and evaluation of tradeoffs in data models, I/O
library interfaces and parallel I/O paradigms for multi-
physics, HPC applications. 4749 C 0 4705 0 44 no yes no no no distributed make_mesh.c[329-390] static make_mesh.c[43-58] 6.7 1.1 10/2/2018 no -

NO mcb https://computing.llnl.gov/projects/co-design/mcbMC

The Monte Carlo Benchmark (MCB) is intended for use in
exploring the computational performance of Monte Carlo
algorithms on parallel architectures. 13334 C++ 0 0 9704 3630 yes yes no no no replicated see Notes static

MCBenchmark.cc
[689-695] 1.5 1 1/6/2014 no - No hints of other data decomposition

Mantevo miniAero
https://github.
com/Mantevo/miniAero/releases CFD

MiniAero is a mini-application for the evaulation of
programming models and hardware for next generation
platforms. MiniAero is an explicit (using RK4) unstructured
finite volume code that solves the compressible Navier-
Stokes equations. 41570 C++ 0 0 11666 29904 no yes no yes no unknown - unknown - 4.2 1.0.0 7/6/2016 no - Usage of Kokkos

NO OpenMD https://github.com/OpenMD/OpenMD MD

OpenMD is an open source molecular dynamics engine
which is capable of efficiently simulating liquids, proteins,
nanoparticles, interfaces, and other complex systems using
atom types with orientational degrees of freedom (e.g.
"sticky" atoms, point dipoles, and coarse-grained
assemblies). 113635 C++ 0 0 84362 29273 no yes no no no replicated see Notes dynamic

Simcreator.cpp[530-
669] 124 2.6 8/31/2019 no - No hints of other data decomposition

NO SAMRAI https://github.com/LLNL/SAMRAI Structured Adaptive Mesh Refinement

SAMRAI (Structured Adaptive Mesh Refinement Application
Infrastructure) is an
object-oriented C++ software library that enables
exploration of numerical,
algorithmic, parallel computing, and software issues
associated with applying
structured adaptive mesh refinement (SAMR) technology in
large-scale parallel
application development. SAMRAI provides software tools
for developing SAMR
applications that involve coupled physics models,
sophisticated numerical
solution methods, and which require high-performance
parallel computing
hardware. SAMRAI enables integration of SAMR
technology into existing codes and
simplifies the exploration of SAMR methods in new
application domains. 203168 C++ 2741 0 150953 49474 yes yes no yes no distributed TreeLoadBalancer.c dynamic TreeLoadBalancer.c 66 4.01 9/30/2020 4.1.1 3/5/2022

Appendix 37

A.1 ControlTable[73]

Suite(M)
Application Name
(M) Links(M) Domain(M) Description(M) LoC(A)

Programming
Language (M) Fortran Lines(A) C Lines(A) C++ Lines(A) C_CPP_H_Lines(A) OpenMP(A/M) MPI(M) OpenACC(A/M) CUDA(A/M) OpenCL(A/M)

Data
Decomposition
(M)

Location Data
Decomposition(M)

Process level (M)
Scheduling

Location
Scheduling(M) Storage (MB) (M) Version(M)

Release Date (M)
(github release date)Newer Versions(M)

New Release Date (M)
(github) Notes(M)

NO Siesta
https://gitlab.com/siesta-project/siesta/-
/releases MD

SIESTA is both a method and its computer program
implementation, to perform efficient electronic structure
calculations and ab initio molecular dynamics simulations of
molecules and solids. SIESTA's efficiency stems from the
use of strictly localized basis sets and from the
implementation of linear-scaling algorithms which can be
applied to suitable systems. 162544 Fortran 162418 126 0 0 yes yes no no no replicated domain_decom.F[293-349] static sys.f [66-89] 47 4.0.2 7/19/2018 4.1.5 1/27/2021

NO SimpleMOC
https://github.com/ANL-
CESAR/SimpleMOC/tree/v4 MD

The purpose of this mini-app is to demonstrate the
performance characterterics and viability of the Method of
Characteristics (MOC) for 3D neutron transport calculations
in the context of full scale light water reactor simulation. 2591 C 0 2396 0 195 yes yes no no no replicated main.c static init.c[162-224] 0.164 v4 7/31/2018 no -

NO souffle
https://github.com/souffle-
lang/souffle/releases Logic programming language

Souffle is a logic programming language inspired by
Datalog. It overcomes some of the limitations in classical
Datalog. For example, programmers are not restricted to
finite domains, and the usage of functors (intrinsic, user-
defined, records/constructors, etc.) is permitted. Soufflé has
a component model so that large logic projects can be
expressed. 58128 C++ 0 0 25847 32281 yes no no no no - - - - 61 2.1 8/19/2019 2.2 1/17/2022 No MPI

NO sphynx
https://astro.physik.unibas.
ch/en/people/ruben-cabezon/sphynx/ SPH

SPHYNX is an SPH hydrocode with its focus on
Astrophysical applications. SPHYNX includes state-of-the-
art methods that allow it to address subsonic
hydrodynamical instabilities and strong shocks, which are
ubiquitous in astrophysical scenarios. SPHYNX, is of
Newtonian type and grounded on the Euler-Lagrange
formulation of the smoothed-particle hydrodynamics
technique 2152 Fortran 2152 0 0 0 yes yes no no no distributed sphynx_hybrid.f90[40-60] static

buildtreemod_grav.
f90 1.5 1.5.3 7/3/2019 no -

NO splatt https://github.com/ShadenSmith/splatt Tensor Factorization

SPLATT is a library and C API for sparse tensor
factorization. SPLATT supports shared-memory parallelism
with OpenMP and distributed-memory parallelism with MPI 10252 C 0 9135 0 1117 yes yes no no no distributed mpi_io.c[852-896] dynamic matrix.c[490-415] 20 1.1.0 9/5/2018 no -

Rodinia 3.1 SRAD

https://github.
com/JuliaParallel/rodinia/tree/master/openm
p/srad_v1 PDE

SRAD (Speckle Reducing Anisotropic Diffusion) is a
diffusion method for ultrasonic and radar imaging
applications based on partial differential equations (PDEs).
It is used to remove locally correlated noise, known as
speckles, without destroying important image features.
SRAD consists of several pieces of work: image extraction,
continuous iterations over the image (preparation,
reduction, statistics, computation 1 and computation 2) and
image compression. The sequential dependency between
all of these stages requires synchronization after each
stage (because each stage operates on the entire image). 322 C 0 308 0 14 yes no no yes yes - - - - 0.084 1.1 11/10/2015 yes - No MPI

Rodinia 3.1 Streamcluster

https://github.
com/JuliaParallel/rodinia/tree/master/openm
p/streamcluster Heterogenerous Computing

It assigns each point of a stream to its nearest center
Medium-sized working sets of user-determined size 1945 C++ 0 0 1945 0 yes no no yes yes - - - - 0.08 9/19/2016 -

This is a modified application of
PARSEC Benchmark Suite(https:
//parsec.cs.princeton.edu/parsec3-doc.
htm). It is mentioned here: http://www.
cs.virginia.edu/rodinia/doku.php?
id=streamcluster

NO sw4lite-RAJA
https://github.
com/geodynamics/sw4lite/tree/RAJA-v1.0 SPH

sw4lite is a bare bone version of SW4 (https://github.
com/geodynamics/sw4) intended for testing performance
optimizations in a few important numerical kernels of SW4. 38510 C, Fortran 7874 0 28774 1862 yes yes no yes no distributed EW.c[140-218] static EW.c[264-473] 4.9 1.0 3/15/2019 no -

UK Mini-App
Consortium TeaLeaf https://github.com/UK-MAC/TeaLeaf_ref Linear heat conduction equation

TeaLeaf is a mini-app that solves the linear heat conduction
equation on a
spatially decomposed regularly grid using a 5 point stencil
with implicit
solvers. TeaLeaf currently solves the equations in two
dimensions, but three
dimensional support is in beta. 3989 Fortran 3959 11 0 19 yes yes no no no distributed tea.f90[195-235] static tea.f90[121-193] 0.344 "Matrix Powers" 6/2/2015 no -

NO thornado_mini https://github.com/ECP-Astro/thornado_mini Equation Radiative Transfer

Thornado_mini solves the equation of radiative transfer in
the multi-group two-moment approximation. The
Discontinuous Galekin (DG) method is used for spatial
discretization, and an implicit-explicit (IMEX) method is
used to integrate the moment equations in time. The
hyperbolic (streaming) part is treated explicitly, while the
collision term is treated implicitly. 10368 Fortran 10368 0 0 0 yes yes no no no distributed Meshmodule.f90[29-64] static

PolynomialBasisModul
e_Lagrange[215-241] 16 master 9/9/2018 no -

NO Trillinos https://github.com/trilinos/Trilinos Package of Scientific Problem

The Trilinos Project is an effort to develop algorithms and
enabling technologies within an object-oriented software
framework for the solution of large-scale, complex multi-
physics engineering and scientific problems. A unique
design feature of Trilinos is its focus on packages. 3828846 C++ 175022 379380 1540325 1734119 yes yes no yes no distributed

different application
examples dynamic different localities 792 13.0.0 8/6/2020 13.2.0 10/29/2021 Collection of different applications

NO tycho2 https://github.com/lanl/tycho2 MD
A mini-app for neutral-particle, discrete-ordinates (SN),
transport on parallel-decomposed meshes of tetrahedra. 6341 C++ 0 0 4991 1350 yes yes no no no distributed Tychomesh.cc dynamic different localities 182 0.2 6/1/2021 no -

NO vlasiator
https://github.
com/fmihpc/vlasiator/releases/tag/v5.1 MD

In Vlasiator, ions are represented as velocity distribution
functions, while electrons are magnetohydrodynamic fluid,
enabling a self-consistent global plasma simulation that can
describe multi-temperature plasmas to resolve non-MHD
processes that currently cannot be self-consistently
described by the existing global space weather simulations.
The novelty is that by modelling ions as velocity distribution
functions the outcome will be numerically noiseless. 44095 C++ 0 0 30662 13433 yes yes yes yes yes distributed grid.cc dynamic vlasiator.cpp 51 5.1 4/26/2021 no -

NO vmd https://www.ks.uiuc.edu/Research/vmd/ MD

VMD is a molecular visualization program for displaying,
animating, and analyzing large biomolecular systems using
3-D graphics and built-in scripting. 190943 C, C++ 0 10593 151812 28538 yes yes yes yes yes distributed Quicksurf.c static

Quicksurf.c[1372-
1395] 22 1.9.4 10/13/2020 no -

NO WRF
https://github.com/wrf-
model/WRF/releases/tag/v4.2.1 MD

WRF is a state-of-the-art atmospheric modeling system
designed for both meteorological research and numerical
weather prediction. It offers a host of options for
atmospheric processes and can run on a variety of
computing platforms. 1139122 Fortran 1073300 56279 0 9543 yes yes no no no distributed module_dm.f[1804-1905] static

module_dm.f[1908-
1928] 500 4.2.1 7/22/2020 yes 01/11/2022

NO yambo https://github.com/yambo-code/yambo Time-Dependent Density Functional Theory

YAMBO implements Many-Body Perturbation Theory
(MBPT) methods (such as GW and BSE) and Time-
Dependent Density Functional Theory (TDDFT), which
allows for accurate prediction of fundamental properties as
band gaps of semiconductors, band alignments, defect
quasi-particle energies, optics and out-of-equilibrium
properties of materials. 99987 C, Fortran 96164 3228 0 595 yes yes no no no distributed only hints static only hints 8.7 4.5 7/20/2020 yes 04/18/2021

Based on hints in comment section
of the code

SPEC CPU 2017 500.perlbench_r

https://www.spec.
org/cpu2017/Docs/benchmarks/500.
perlbench_r.html Perl interpreter

is a cut-down version of Perl v5.22.1, the popular scripting
language. SPEC's version of Perl has had most of OS-
specific features removed. 291132 C 0 148054 0 143078 no no no no no - - - - 106 1/1/2017 - - NO MPI

SPEC CPU 2017 508.namd_r

https://www.spec.
org/cpu2017/Docs/benchmarks/508.
namd_r.html MD

The 508.namd_r benchmark is derived from the data layout
and inner loop of NAMD, a parallel program for the
simulation of large biomolecular systems. Although NAMD
scales to over 200,000 cores for very large systems, serial
performance is equally important to the over 50,000 users
who have downloaded the program over the past decade.
Almost all of the runtime is spent calculating inter-atomic
interactions in a small set of functions. This set was
separated from the bulk of the code to form a compact
benchmark for CPU2017. 6396 C++ 0 0 2174 4222 no no no no no - - - - 8.5 2017 1/1/2017 - -

MPI as a top layer, no specific
scheduling or data distribution
technique

SPEC CPU 2017 510.parest_r

https://www.spec.
org/cpu2017/Docs/benchmarks/510.
parest_r.html Biomedical Imaging

solves a problem from biomedical imaging. Specifically, the
underlying problem is the reconstruction of interior
properties of a 3d body from multiple observations at its
two-dimensional surface, in much the same way as multiple
2d X-ray images are combined to do 3d CT (computed
tomography) scans. The difference to CT scans is that the
method this program describes is infrared light that does
not go through tissues in a straight line, but diffuses. 359012 C++ 0 0 106968 252044 no yes no no no unknown ? unknown ? 30 2017 1/1/2017 - -

MPI as a top layer, no specific
scheduling or data distribution
technique

SPEC CPU 2017 511.povray_r

https://www.spec.
org/cpu2017/Docs/benchmarks/511.
povray_r.html Ray tracing

POV-Ray is a free and open source ray-tracing application.
The CPU 2017 version is based on POV-Ray version 3.7. 76598 C++ 0 1019 72798 2781 no no no no no - - - - 24 2017 1/1/2017 - - NO MPI

SPEC CPU 2017 520.omnetpp_r

https://www.spec.
org/cpu2017/Docs/benchmarks/520.
omnetpp_r.html Discrete Event simulation - computer network

The benchmark performs discrete event simulation of a
large 10 gigabit Ethernet network. The simulation is based
on the OMNeT++ discrete event simulation system ([1]
www.omnetpp.org), a generic and open simulation
framework. OMNeT++'s primary application area is the
simulation of communication networks, but its generic and
flexible architecture allows for its use in other areas such as
the simulation of IT systems, queueing networks, hardware
architectures or business processes as well. 85732 C++ 0 0 72727 13005 no yes no no no unknown ? unknown ? 58 2017 1/1/2017 - -

MPI as a top layer, no specific
scheduling or data distribution
technique

SPEC CPU 2017 523.xalancbmk_r

https://www.spec.
org/cpu2017/Docs/benchmarks/523.
xalancbmk_r.html XML to HTML conversion via XSLT

XSLT processor for transforming XML documents into
HTML, text, or other XML document types 294614 C++ 0 3454 197453 93707 no no no no no - - - - 215 2017 1/1/2017 - - NO MPI

SPEC CPU 2017 531.deepsjeng_r

https://www.spec.
org/cpu2017/Docs/benchmarks/531.
deepsjeng_r.html AI

531.deepsjeng_r is based on Deep Sjeng WC2008, the
2008 World Computer Speed-Chess Champion. Deep
Sjeng is a rewrite of the older Sjeng-Free program, focused
on obtaining the highest possible playing strength. (alpha-
beta tree search & pattern recognition) 7284 C++ 0 0 6659 625 no no no no no - - - - 0.66 2017 1/1/2017 - - NO MPI

SPEC CPU 2017 541.leela_r

https://www.spec.
org/cpu2017/Docs/benchmarks/541.leela_r.
html AI

541.leela_r is a Go playing engine featuring Monte Carlo
based position estimation, selective tree search based on
Upper Confidence Bounds, and move valuation based on
Elo ratings. (Monte Carlo simulation, game tree search &
pattern recognition) 30524 C++ 0 0 4655 25869 no no no no no - - - - 4.9 2017 1/1/2017 - - NO MPI

Suite(M)
Application Name
(M) Links(M) Domain(M) Description(M) LoC(A)

Programming
Language (M) Fortran Lines(A) C Lines(A) C++ Lines(A) C_CPP_H_Lines(A) OpenMP(A/M) MPI(M) OpenACC(A/M) CUDA(A/M) OpenCL(A/M)

Data
Decomposition
(M)

Location Data
Decomposition(M)

Process level (M)
Scheduling

Location
Scheduling(M) Storage (MB) (M) Version(M)

Release Date (M)
(github release date)Newer Versions(M)

New Release Date (M)
(github) Notes(M)

SPEC CPU 2017 548.exchange2_r

https://www.spec.
org/cpu2017/Docs/benchmarks/548.
exchange2_r.html Games: Sudoku Puzzle Generator

This program was written for development of non-trivial 9x9
sudoku puzzles. It has been used extensively in informal
competitions, which run for days. Incidentally, it tests many
Fortran 95 array handling features (including some intrinsic
functions) for use with integer arrays. Unusually, it relies
heavily on recursion (up to eight levels deep) but, in
contrast to most Fortran programs, uses no floating-point
arithmetic. 1478 Fortran 1478 0 0 0 no no no no no - - - - 0.24 2017 1/1/2017 - - NO MPI

NO arbor-0.3 https://github.com/arbor-sim/arbor MD

Arbor is a high-performance library for computational
neuroscience simulations with multi-compartment,
morphologically-detailed cells, from single cell models to
very large networks. Arbor is written from the ground up
with many-cpu and gpu architectures in mind, to help
neuroscientists effectively use contemporary and future
HPC systems to meet their simulation needs. 86336 C++ 0 0 43506 42830 no yes no yes no distributed mpi_context.cpp dynamic mpi_context.cpp 7.2 v0.6 01/26/2022 no -

ExMatEx ASPA-master
https://github.
com/exmatex/ASPA/tree/master/doc Adaptive Sampling

The purpose of ASPA (Adaptive Sampling Proxy
Application) is to enable the evaluation of a technique
known as adaptive sampling on advanced computer
architectures. Adaptive sampling is of interest in simulations
involving multiple physical scales, wherein models of
individual scales are combined using some form of scale
bridging. 29119 C++ 0 0 12956 16163 no yes no no no replicated MPI.cc static MPI.cc 5.5 master 1/23/2014 no -

NO Caffe-MPI
https://github.com/Caffe-MPI/Caffe-MPI.
github.io GPU Clusters

The Caffe-MPI is designed for high density GPU clusters;
The new version supports InfiniBand (IB) high speed
network connection and shared storage system that can be
equipped by distributed file system, like NFS and
GlusterFS. The training dataset is read in parallel for each
MPI process. The hierarchical communication mechanisms
were developed to minimize the bandwidth requirements
between computing nodes. 68871 C++ 0 0 46110 22761 no yes no yes no distributed data_reader.cpp[230-268] static parallel.cpp[145193] 23 master 2/5/2018 no -

NO CFDEMcoupling

https://github.
com/CFDEMproject/CFDEMcoupling-
PUBLIC CFD

CFDEM® coupling provides an open source parallel
coupled CFD-DEM framework combining the strengths of
LIGGGHTS® DEM code and the Open Source CFD
package OpenFOAM®(*). The CFDEM®coupling toolbox
allows to expand standard CFD solvers of OpenFOAM®(*)
to include a coupling to the DEM code LIGGGHTS®. 18394 C, C++ 0 0 12981 5413 no NO no no no - - - - 24 master 12/4/2017 no - No Mpi

NO Elemental

https://github.
com/elemental/Elemental/releases/tag/v0.
87.7 Linear Algebra

Elemental is a modern C++ library for distributed-memory
dense and sparse-direct linear algebra, conic optimization,
and lattice reduction. The library was initially released in
Elemental: A new framework for distributed memory dense
linear algebra and absorbed, then greatly expanded upon,
the functionality from the sparse-direct solver Clique, which
was originally released during a project on Parallel
Sweeping Preconditioners. 275609 C++ 0 10260 129772 135577 no yes no no no distributed DistMap.cpp[26-35] dynamic DistMap.cpp[65-136] 21 0.87.7 2/7/2017 no -

NO Gadget
https://wwwmpa.mpa-garching.mpg.
de/gadget/ SPH

GADGET-4 is a massively parallel code for N-
body/hydrodynamical cosmological simulations. It is a
flexible code that can be applied to a variety of different
types of simulations, offering a number of sophisticated
simulation algorithms. 12823 C++ 57 12063 0 703 no yes no no no distributed begrun.c dynamic gravtree.c 30 2 1/5/2005 4 10/01/2020

https://wwwmpa.mpa-garching.mpg.
de/gadget4/

NO hemelb https://github.com/hemelb-codes/hemelb SPH

HemeLB uses the lattice Boltzmann method to simulate
fluid flow in complex geometries, such as a blood vessel
network. 28856 C++ 0 0 11353 17503 no yes no no no distributed LatticeData.cc dynamic ColloidController.cc 23 main 6/20/2022 no -

No release versions, still ongoing
work

NO horovod
https://github.
com/horovod/horovod/releases AI

Horovod is a distributed deep learning training framework
for TensorFlow, Keras, PyTorch, and Apache MXNet. The
goal of Horovod is to make distributed deep learning fast
and easy to use. 13313 C++ 0 0 9414 3899 no yes no yes no distributed adasum_mpi.cc dynamic adasum_mpi.cc 4.3 v0.24.3 4/21/2022 no -

frequent hot fixes and updates,
might be possible for newer
versions

CORAL-2 Laghos https://github.com/CEED/Laghos SPH

Laghos (LAGrangian High-Order Solver) is a miniapp that
solves the time-dependent Euler equations of compressible
gas dynamics in a moving Lagrangian frame using
unstructured high-order finite element spatial discretization
and explicit high-order time-stepping. 8230 C++ 0 0 7494 736 no yes no no no distributed laghos_solver.cpp static laghos_solver.cpp 0.928 3.1 4/10/2021 no -

NO meshkit
https://bitbucket.org/fathomteam/meshkit.
git/src Mesh generation

MeshKit is an open-source library of mesh generation
functionality. MeshKit has general mesh manipulation and
generation functions such as Copy, Move, Rotate and
Extrude mesh. In addition, new quad mesh and embedded
boundary Cartesian mesh algorithm (EBMesh) are
developed to be used. Interfaces to several public-domain
tetrahedral meshing algorithms (Gmsh, netgen) are also
offered. 156659 C++ 0 0 92285 64374 no yes no no no distributed different meshes static different meshes 46 master-20191209 12/9/2019 no -

NO metag_partitioning
https://github.
com/ParBLiSS/metag_partitioning Metagenomic Assembler

Parallel metagenomic assembler designed to handle very
large datasets. Program identifies the disconnected
subgraphs in the de Bruijn graph, partitions the input
dataset and runs a popular assember Velvet independently
on the partitions. This software is a high performance
version of the khmer library for assembly. 12021 C, C++ 0 8113 298 3610 no yes no no no distributed mesh.cpp static graph.cpp 9 master-20160929 9/29/2016 no -

Mantevo miniXyce https://github.com/Mantevo/miniXyce Linear Circuit Simulator

At this time, miniXyce is a simple linear circuit simulator
with a basic parser that performs transient analysis on any
circuit with resistors (R), inductors (L), capacitors (C), and
voltage/current sources. The parser incorporated into this
version of miniXyce is a single pass parser, where the
netlist is expected to be flat (no hierarchy via subcircuits is
allowed). Simulating the system of DAEs generates a
nonsymmetric linear problem, which is solved using un-
preconditioned GMRES. The time integration method used
in miniXyce is backward Euler with a constant time-step.
The simulator outputs all the solution variables at each time
step in a 'prn' file. 1661 C++ 0 0 1446 215 no yes no no no distributed

mx_linear_ckt_simulator.
cpp static

mX_linear_ckt_simul
ator.cpp 0.388 v1.0.0 7/6/2016 no -

NO MITgcm https://github.com/MITgcm/MITgcm SPH

it can be used to study both atmospheric and oceanic
phenomena; one hydrodynamical kernel is used to
drive forward both atmospheric and oceanic models it
has a non-hydrostatic capability and so can be used to
study both small-scale and large scale processes 369484 C, Fortran 305819 10386 0 53279 no yes no no no unknown - unknown - 329 cp68i 4/27/2022 no -

NO MLSL-IntelMLSL https://github.com/intel/MLSL AI

Intel(R) Machine Learning Scaling Library (Intel(R) MLSL) is
a library providing an efficient implementation of
communication patterns used in deep learning. 28139 C, C++ 0 9075 6043 13021 no yes no no no distributed mlsl.cpp[765-776] dynamic mlsl.cpp[648-682] 113 v2018.2 10/1/2018 v2018.3 4/12/2019

NO mxx https://github.com/patflick/mxx Template library for MPI

mxx is a C++/C++11 template library for MPI. The
main goal of this library is to provide two things:
 1. Simplified, efficient, and type-safe C++11
bindings to common MPI operations.
 2. A collection of scalable, high-performance
standard algorithms for parallel distributed memory
architectures, such as sorting. 27391 C++ 0 0 7238 20153 no yes no no no distributed

benchmark_a2a.cpp[46-
72] static

benchmark_a2a.cpp
[46-72] 2.8 master-20220413 4/13/2022 no -

NO Nek5000
https://github.
com/Nek5000/nekRS/releases/tag/v21.1 CFD

High-order methods have the potential to overcome the
current limitations of standard CFD solvers.It features state-
of-the-art, scalable algorithms that are fast and efficient on
platforms ranging from laptops to the world’s fastest
computers. Applications span a wide range of fields,
including fluid flow, thermal convection, combustion and
magnetohydrodynamics. 201433 C, Fortran 180695 15442 0 720 no yes no no no distributed gs.c[3257-3311] static

vtk_interface.c[194-
219] 20.8 v22 05/13/2022 no -

NO phyml https://github.com/stephaneguindon/phyml Phylogenetics

PhyML is a software package that uses modern statistical
approaches to analyse alignments of nucleotide or amino
acid sequences in a phylogenetic framework. The main tool
in this package builds phylogenies under the maximum
likelihood criterion. It implements a large number of
substitution models coupled to efficient options to search
the space of phylogenetic tree topologies. 76383 C 0 66832 0 4062 no yes no no yes distributed m4.c static utilities.c[201-393] 5.6 v3.3.20190321 3/21/2019 v3.3.20220408 04/08/2022

NO PrincetonCBEMDMPI

https://github.
com/PrincetonUniversity/PrincetonCBEMD
MPI MD

CBEMD: Parallel Molecular Dynamics Under Various
Thermodynamic Ensembles 2785 C++ 0 0 2465 320 no yes no no no distributed atom.cpp static atom.cpp 34 v20130117 1/17/2013 no -

Suite Application NameDomain LoC ProgrammingLanguageFortranLines CLines CppLines C_CPP_H_LinesOpenMP MPI OpenACC CUDA OpenCL
DataDistributi
on ProcessLevelSchedulingStorage ReleaseDate ReleaseYear

LLNL ASC Proxy
Apps Lulesh CFD 12798 C++ 0 0 11296 1502 yes yes yes yes no distributed dynamic 4.4 07-18-2018 2018
Mantevo miniAMR PDE 54312 C, C++ 0 4850 18017 31445 yes yes no no no distributed static 1.1 11-23-2021 2021
Mantevo miniMD MD 17496 C++ 0 371 14468 2657 yes yes no no no distributed static 2.6 02-28-2019 2019
Mantevo miniFE Finite Element 36812 C, C++ 0 4479 3549 28784 yes yes no yes no distributed static 21 11-22-2017 2017
Mantevo miniSMAC PDE 11167 Fortran 10984 0 0 183 yes yes no no no distributed static 0.812 10-24-2017 2017

Mantevo miniTri
Triangle
Enumeration 9517 C++ 0 0 7779 1738 yes yes no no no distributed dynamic 1.2 07-06-2016 2016

ExaGraph miniVite

Community
Detection -
Louvain method 2429 C++ 0 0 195 2234 yes yes no no no distributed dynamic 0.148 04-10-2021 2021

Fiber Mini App ntchemini MD 6571 Fortran 6571 0 0 0 yes yes no no no replicated static 39 10-31-2014 2014

SPEC MPI 2007 104.milc

Quantum
Chronodynamic
s 22989 C 0 10424 0 12565 no yes no no no distributed static 0.948 03-16-2007 2007

SPEC MPI 2007 107.leslie3d CFD 7545 Fortran 7545 0 0 0 no yes no no no distributed static 0.536 04-11-2007 2007

SPEC MPI 2007 122.tachyon

Graphics:
Parallel Ray
Tracing 10763 C 0 9592 0 1171 no yes no no no distributed dynamic 0.387 02-02-2007 2007

SPEC MPI 2007 126.lammps MD 7162 C++ 0 0 3241 3921 no yes no no no distributed static 11 01-17-2005 2005

SPEC MPI 2007 129.tera_tf
3D Eulerian
Hydrodynamics 3665 Fortran 3665 0 0 0 no yes no no no replicated static 0.588 02-05-2007 2007

SPEC MPI 2007 130.socorro MD 86593 C, Fortran 53199 32842 0 552 no yes no no no replicated static 5.5 02-06-2007 2007
SPEC MPI 2007 132.zeusmp2 CFD 29414 Fortran 29323 91 0 0 no yes no no no distributed static 2.1 09-03-2009 2009
SPEC MPI 2007 137.lu PDE 3924 Fortran 3924 0 0 0 no yes no no no centralized static 0.532 09-03-2009 2009
SPEC MPI 2007 142.dmilc MD 11498 C 0 10426 0 1072 no yes no no no distributed static 0.944 03-16-2007 2007
SPEC MPI 2007 143.dleslie CFD 3483 Fortran 3483 0 0 0 no yes no no no replicated static 0.32 04-11-2007 2007
SPEC MPI 2007 145.lGemsFDTD CEM 10487 Fortran 10487 0 0 0 no yes no no no distributed dynamic 24 04-20-2009 2009

NO Adios

I/O
componentizati
on 255137 C, C++, Fortran 12319 151373 83788 7657 no yes no no no distributed static 26 04-18-2018 2018

Chatterbug chatterbug

Mimic of
Communication
Patterns 1056 C++ 0 0 1056 0 no yes no no no replicated static 0.156 09-18-2018 2018

NO "Co-design
center for Particle
Applications
(CoPA)" ExaMiniMD MD 6149 C++ 0 0 1816 4333 no yes no no no unknown unknown 0.556 03-14-2018 2018
CORAL-2 Kripke MD 5350 C++ 0 0 2471 2879 no yes no no no distributed static 0.42 06-14-2019 2019

NO MACSio

I/O
componentizati
on 4749 C 0 4705 0 44 no yes no no no distributed static 6.7 10-02-2018 2018

NO mcb MC 13334 C++ 0 0 9704 3630 yes yes no no no replicated static 1.5 01-06-2014 2014
Mantevo miniAero CFD 41570 C++ 0 0 11666 29904 no yes no yes no unknown unknown 4.2 07-06-2016 2016
NO OpenMD MD 113635 C++ 0 0 84362 29273 no yes no no no replicated dynamic 124 08-31-2019 2019

NO SAMRAI

Structured
Adaptive Mesh
Refinement 203168 C++ 2741 0 150953 49474 yes yes no yes no distributed dynamic 66 09-30-2020 2020

NO Siesta MD 162544 Fortran 162418 126 0 0 yes yes no no no replicated static 47 07-19-2018 2018
NO SimpleMOC MD 2591 C 0 2396 0 195 yes yes no no no replicated static 0.164 07-31-2018 2018
NO sphynx SPH 2152 Fortran 2152 0 0 0 yes yes no no no distributed static 1.5 07-03-2019 2019

NO splatt
Tensor
Factorization 10252 C 0 9135 0 1117 yes yes no no no distributed dynamic 20 09-05-2018 2018

NO sw4lite-RAJA SPH 38510 C, Fortran 7874 0 28774 1862 yes yes no yes no distributed static 4.9 03-15-2019 2019

UK Mini-App
Consortium TeaLeaf

Linear heat
conduction
equation 3989 Fortran 3959 11 0 19 yes yes no no no distributed static 0.344 06-02-2015 2015

NO thornado_mini

Equation
Radiative
Transfer 10368 Fortran 10368 0 0 0 yes yes no no no distributed static 16 09-09-2018 2018

NO Trillinos

Package of
Scientific
Problem 3828846 C++ 175022 379380 1540325 1734119 yes yes no yes no distributed dynamic 792 08-06-2020 2020

NO tycho2 MD 6341 C++ 0 0 4991 1350 yes yes no no no distributed dynamic 182 06-01-2021 2021
NO vlasiator MD 44095 C++ 0 0 30662 13433 yes yes yes yes yes distributed dynamic 51 04-26-2021 2021
NO vmd MD 190943 C, C++ 0 10593 151812 28538 yes yes yes yes yes distributed static 22 10-13-2020 2020

Appendix 40

A.2 Processed ControlTable[74]

NO WRF MD 1139122 Fortran 1073300 56279 0 9543 yes yes no no no distributed static 500 07-22-2020 2020

NO yambo

Time-
Dependent
Density
Functional
Theory 99987 C, Fortran 96164 3228 0 595 yes yes no no no distributed static 8.7 07-20-2020 2020

SPEC CPU 2017 510.parest_r
Biomedical
Imaging 359012 C++ 0 0 106968 252044 no yes no no no unknown unknown 30 01-01-2017 2017

SPEC CPU 2017 520.omnetpp_r

Discrete Event
simulation -
computer
network 85732 C++ 0 0 72727 13005 no yes no no no unknown unknown 58 01-01-2017 2017

NO arbor-0.3 MD 86336 C++ 0 0 43506 42830 no yes no yes no distributed dynamic 7.2 01-26-2022 2022
ExMatEx ASPA-master Adaptive Sampling 29119 C++ 0 0 12956 16163 no yes no no no replicated static 5.5 01-23-2014 2014
NO Caffe-MPI GPU Clusters 68871 C++ 0 0 46110 22761 no yes no yes no distributed static 23 02-05-2018 2018
NO Elemental Linear Algebra 275609 C++ 0 10260 129772 135577 no yes no no no distributed dynamic 21 02-07-2017 2017
NO Gadget SPH 12823 C++ 57 12063 0 703 no yes no no no distributed dynamic 30 01-05-2005 2005
NO hemelb SPH 28856 C++ 0 0 11353 17503 no yes no no no distributed dynamic 23 06-20-2022 2022
NO horovod AI 13313 C++ 0 0 9414 3899 no yes no yes no distributed dynamic 4.3 04-21-2022 2022
CORAL-2 Laghos SPH 8230 C++ 0 0 7494 736 no yes no no no distributed static 0.928 04-10-2021 2021

NO meshkit
Mesh
generation 156659 C++ 0 0 92285 64374 no yes no no no distributed static 46 12-09-2019 2019

NO metag_partitioning
Metagenomic
Assembler 12021 C, C++ 0 8113 298 3610 no yes no no no distributed static 9 09-29-2016 2016

Mantevo miniXyce
Linear Circuit
Simulator 1661 C++ 0 0 1446 215 no yes no no no distributed static 0.388 07-06-2016 2016

NO MITgcm SPH 369484 C, Fortran 305819 10386 0 53279 no yes no no no unknown unknown 329 04-27-2022 2022
NO MLSL-IntelMLSL AI 28139 C, C++ 0 9075 6043 13021 no yes no no no distributed dynamic 113 10-01-2018 2018

NO mxx
Template
library for MPI 27391 C++ 0 0 7238 20153 no yes no no no distributed static 2.8 04-13-2022 2022

NO Nek5000 CFD 201433 C, Fortran 180695 15442 0 720 no yes no no no distributed static 20.8 05-13-2022 2022
NO phyml Phylogenetics 76383 C 0 66832 0 4062 no yes no no yes distributed static 5.6 03-21-2019 2019
NO PrincetonCBEMDMPIMD 2785 C++ 0 0 2465 320 no yes no no no distributed static 34 01-17-2013 2013

B
Appendix

B.1 Script to get automatic information

#!/usr /bin /env python

import sys

import os

import re

import argparse

import subproces s

Miss ing OpenMP pragmas − to be dec ided

pragma omp s i n g l e

pragma omp ba r r i e r

! $omp ba r r i e r

omp ordered

omp l i n e a r

#

#

Global v a r i a b l e s

appname = ” t ”

p r i n t c sv = 0

loops

openMPLoops = 0

openMPLoopsC = 0

openMPLoopsF = 0

SIMD

Appendix 43

openMPSimd = 0

openMPSimdLoop = 0

schedu le

openMPSchedule Implic it = 0

openMPSchedule NOT Implicit = 0

openMPScheduleStatic = 0

openMPScheduleGuided = 0

openMPScheduleDynamic = 0

openMPScheduleAuto = 0

openMPScheduleRuntime = 0

openMPScheduleStaticChunk = 0

openMPScheduleGuidedChunk = 0

openMPScheduleDynamicChunk = 0

openMPScheduleAutoChunk = 0

tasks

openMPTasks = 0

openMPTaskwait = 0

openmMPTaskFinal = 0

openmMPTaskMergeable = 0

openMPTaskPriority = 0

openMPTaskDepend = 0

openMPTaskyield = 0

openMPTaskgroup = 0

openMPTaskloop = 0

ta rg e t

openMPTarget = 0

openMPReqRevOfload = 0

openMPDevicetype = 0

openMPMap = 0

openMPDefaultMap = 0

other

openMPTeams = 0

openMPNoWait = 0

openMPCollapse = 0

openMPSingle = 0

openMPSections = 0

openMPMaster = 0

openMPProc bind = 0

openMPThreadprivate = 0

Appendix 44

openMPCritical = 0

openMPDeclare = 0

openACCPragmas = 0

CUDASymbols = 0

OpenCLSymbols = 0

c l i n e s = 0

cpp l i n e s = 0

c cpp h e ad e r l i n e s = 0

f o r t r a n l i n e s = 0

t o t a l l i n e s o f c o d e = 0

Matches OpenACC in C

openacc c r e = re . compi le (r ”(?P<openacc >ˆ[\ s]∗(\#pragma) [\ s]+(acc)

) ”)

Matches CUDA g l o b a l k e rne l

c ud a g l o b a l k e r n e l r e = re . compi le (r ”(?P<cuda kerne l >(g l o b a l)

[\ s]+) ”)

Matches CUDA d e v i c e ke rne l

c uda d ev i c e k e r n e l r e = re . compi le (r ”(?P<cuda kerne l >(d e v i c e)

[\ s]+) ”)

Matches OpenCL g l o b a l

o p e n c l g l o b a l r e = re . compi le (r ”(?P<openc l g l oba l >(g l o b a l) [\ s]+)

”)

Matches OpenCL k e r n e l

o p e n c l k e r n e l r e = re . compi le (r ”(?P<cuda kerne l >(k e r n e l) [\ s]+) ”)

Matches OpenACC in Fortran

opena c c f o r t r an r e = re . compi le (r ”(?P<openacc >ˆ[\ s] ∗ (\ ! \ $ (ACC| acc)
)) ”)

###############################

Regexp f o r l oops OpenMP

###############################

C and C++ openmp c re = re . compi le (r ”(?P<openmp>ˆ[\ s]∗(\#pragma)

[\ s]+(omp)) ”) openmp c re = re . compi le (r ”(

?P<openmp>ˆ[\ s]∗(\#pragma) [\ s]+(omp) [.] ∗ [\ s]∗\w+[\ s]+ f o r) |(\#
pragma [\ s]+omp[\ s]+ f o r) ” , re .IGNORECASE)

Appendix 45

openmp c re = re . compi le (r ”(?P<openmp>\#(.+)?\bpragma\b.+\bomp\b
.+\ bfo r \b) ” , re .IGNORECASE)

FORTRAN

openmp fortran re = re . compi le (r ”(?P<openmp>ˆ[\ s] ∗ (\ ! \ $ (OMP|omp)

)) ”)

openmp fortran re = re . compi le (r ”(?P<openmp>ˆ[\ s] ∗ (\ ! \$OMP[.] ∗ [\
s]∗\w+[\ s]+DO) | (\ ! \$OMP[\ s]+DO)) ” , re .IGNORECASE)

openmp fortran re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\bdo
\b) ” , re .IGNORECASE)

##

Regexp f o r ta sk s and taskwai t OpenMP

##

regext a l l t a sk s

openmp tasks re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\ btask
\b |\#(.+) ?\bpragma\b.+\bomp\b.+\ btask \b) ” ,

re .IGNORECASE)

regex end task f o r t r an

openmp endTask re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
bend\b.+\ btask \b) ” , re .IGNORECASE)

regex taskwai t

openmp taskwait re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
btaskwait \b |\#(.+) ?\bpragma\b.+\bomp\b.+\ btaskwait \b) ” ,

re .IGNORECASE)

regex task f i n a l

openmp task f ina l r e = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\ btask \b.+\ b f i n a l \b |\#(.+) ?\
bpragma\b.+\bomp\b.+\ btask \b.+\ b f i n a l \b) ” , re .IGNORECASE)

regex task mergeable

openmp taskmergeable re = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\ btask \b.+\bmergeable\b |\#(.+)

?\bpragma\b.+\bomp\b.+\btask \b.+\bmergeable\b) ” ,
re .IGNORECASE)

regex end task p r i o r i t y

openmp taskpr i o r i ty r e = re . compi le (

Appendix 46

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\ btask \b.+\ bp r i o r i t y \b |\#(.+) ?\
bpragma\b.+\bomp\b.+\ btask \b.+\ bp r i o r i t y \b) ” ,

re .IGNORECASE)

regex task depend

openmp taskdepend re = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\ btask \b.+\bdepend\b |\#(.+) ?\
bpragma\b.+\bomp\b.+\ btask \b.+\bdepend\b) ” ,

re .IGNORECASE)

regex t a s ky i e l d

openmp tasky i e ld re = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\ bta sky i e l d \b |\#(.+) ?\bpragma\b
.+\bomp\b.+\ bta sky i e l d \b) ” , re .IGNORECASE)

regex taskgroup and task loop

openmp tasksgroup re = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\btaskgroup \b |\#(.+) ?\bpragma\b
.+\bomp\b.+\btaskgroup \b) ” , re .IGNORECASE)

openmp tasks loop re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
btask loop \b |\#(.+) ?\bpragma\b.+\bomp\b.+\ btask loop \b) ” ,

re .IGNORECASE)

regex END taskgroup and task loop

openmp endTaskgroup re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b
.+\bend\b.+\btaskgroup \b) ” , re .IGNORECASE)

openmp endTaskloop re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b
.+\bend\b.+\ btask loop \b) ” , re .IGNORECASE)

###

Regexp f o r t a r g e t − dev i c e OpenMP

###

openmp target re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
btarge t \b |\#(.+) ?\bpragma\b.+\bomp\b.+\ btarge t \b) ” ,

re .IGNORECASE)

openmp endTarget re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
bend\b.+\ btarge t \b) ” , re .IGNORECASE)

openmp recrevo f l oad re = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\ br equ i r e s \b.+\ b r e v e r s e o f f l o a d

\b |\#(.+) ?\bpragma\b.+\bomp\b.+\ br equ i r e s \b . ”
r”+\b r e v e r s e o f f l o a d \b) ” , re .IGNORECASE)

Appendix 47

openmp devicetype re = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\ bdev i ce type \b |\#(.+) ?\bpragma

\b.+\bomp\b.+\ bdev i ce type \b) ” , re .IGNORECASE)

openmp map re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\bmap\b
|\#(.+) ?\bpragma\b.+\bomp\b.+\bmap\b) ” , re .IGNORECASE)

openmp defaultmap re = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\bdefaultmap\b |\#(.+) ?\bpragma\
b.+\bomp\b.+\bdefaultmap\b) ” , re .IGNORECASE)

#################################

Regexp f o r d e c l a r e OpenMP

#################################

openmp dec lare re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
bdec l a r e \b |\#(.+) ?\bpragma\b.+\bomp\b.+\ bdec l a r e \b) ” ,

re .IGNORECASE)

##################################

Regexp f o r schedu le OpenMP

##################################

openmp schedu l e s t a t i c r e = re . compi le (r ’ (?P<openmp>schedu le \ ((\ s
+)? s t a t i c (\ s+)?\)) ’ , r e .IGNORECASE)

openmp schedule gu ided re = re . compi le (r ’ (?P<openmp>schedu le \ ((\ s
+)? guided (\ s+)?\)) ’ , r e .IGNORECASE)

openmp schedule dynamic re = re . compi le (r ’ (?P<openmp>schedu le \ ((\ s
+)?dynamic (\ s+)?\)) ’ , r e .IGNORECASE)

openmp schedule auto re = re . compi le (r ’ (?P<openmp>schedu le \ ((\ s+)?

auto (\ s+)?\)) ’ , r e .IGNORECASE)

openmp schedule runt ime re = re . compi le (r ’ (?P<openmp>schedu le \ ((\ s
+)? runtime (\ s+)?\)) ’ , r e .IGNORECASE)

openmp schedu l e s ta t i c chunk re = re . compi le (r ’ (?P<openmp>schedu le

\ ((\ s+)? s t a t i c , (\ s+)?\w+(\ s+)?\)) ’ , r e .IGNORECASE)

openmp schedule guided chunk re = re . compi le (r ’ (?P<openmp>schedu le

\ ((\ s+)? guided , (\ s+)?\w+(\ s+)?\)) ’ , r e .IGNORECASE)

openmp schedule dynamic chunk re = re . compi le (r ’ (?P<openmp>

schedu le \ ((\ s+)?dynamic , (\ s+)?\w+(\ s+)?\)) ’ , r e .IGNORECASE)

openmp schedule auto chunk re = re . compi le (r ’ (?P<openmp>schedu le

\ ((\ s+)?auto , (\ s+)?\w+(\ s+)?\)) ’ , r e .IGNORECASE)

###########################

Regexp OpenMP teams

Appendix 48

###########################

openmp teams re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
bteams\b |\#(.+) ?\bpragma\b.+\bomp\b.+\bteams\b) ” ,

re .IGNORECASE)

############################

Regexp OpenMP nowait

############################

openmp nowait re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
bnowait\b |\#(.+) ?\bpragma\b.+\bomp\b.+\bnowait\b) ” ,

re .IGNORECASE)

##############################

Regexp OpenMP co l l a p s e

##############################

openmp co l l apse re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
bco l l ap s e \b |\#(.+) ?\bpragma\b.+\bomp\b.+\ bco l l ap s e \b) ” ,

re .IGNORECASE)

##########################

Regexp OpenMP simd

##########################

openmp simd re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\bsimd\
b |\#(.+) ?\bpragma\b.+\bomp\b.+\bsimd\b) ” ,

re .IGNORECASE)

openmp for s imd re = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\bdo\b.+\bsimd\b |\#(.+) ?\
bpragma\b.+\bomp\b.+\ bfo r \b.+\bsimd\b) ” , re .IGNORECASE)

############################

Regexp OpenMP s i n g l e

############################

openmp s ing l e re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
b s i n g l e \b |\#(.+) ?\bpragma\b.+\bomp\b.+\ b s i n g l e \b) ” ,

re .IGNORECASE)

##############################

Appendix 49

Regexp OpenMP s e c t i o n s

##############################

openmp sect ions re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
bse c t i on \b |\#(.+) ?\bpragma\b.+\bomp\b.+\ bse c t i on \b) ” ,

re .IGNORECASE)

############################

Regexp OpenMP master

############################

openmp master re = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
bmaster\b |\#(.+) ?\bpragma\b.+\bomp\b.+\bmaster\b) ” ,

re .IGNORECASE)

###############################

Regexp OpenMP proc b ind

###############################

openmp proc bind re = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\ bproc bind \b |\#(.+) ?\bpragma\b
.+\bomp\b.+\ bproc bind \b) ” , re .IGNORECASE)

##################################

Regexp OpenMP threadpr ived

##################################

openmp threadpr ivate re = re . compi le (

r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\ bthreadpr ivate \b |\#(.+) ?\
bpragma\b.+\bomp\b.+\ bthreadpr ivate \b) ” , re .IGNORECASE)

##############################

Regexp OpenMP c r i t i c a l

##############################

openmp c r i t i c a l r e = re . compi le (r ”(?P<openmp>\!\$ (.+) ?\bomp\b.+\
b c r i t i c a l \b |\#(.+) ?\bpragma\b.+\bomp\b.+\ b c r i t i c a l \b) ” ,

re .IGNORECASE)

#######################

Regexp f o r Cloc

#######################

Appendix 50

c l o c c r e = re . compi le (r ”(ˆC[\ s]+[0−9]+[\ s]+[0−9]+[\ s]+[0−9]+[\ s
]+[0−9]+) ”)

c l o c c pp r e = re . compi le (r ”(ˆC\+\+[\ s]+[0−9]+[\ s]+[0−9]+[\ s
]+[0−9]+[\ s]+[0−9]+) ”)

c l o c c c pp h e ad e r r e = re . compi le (r ”(ˆ(C\/C\+\+ Header) [\ s
]+[0−9]+[\ s]+[0−9]+[\ s]+[0−9]+[\ s]+[0−9]+) ”)

c l o c f o r t r a n r e = re . compi le (r ”(ˆ(Fortran [0−9]+) [\ s]+[0−9]+[\ s
]+[0−9]+[\ s]+[0−9]+[\ s]+[0−9]+) ”)

###########################

Control v a r i a b l e s

###########################

outputFileName = None

inputPath = ”./”

verbose = False

Max s i z e o f an MPI Cal l in terms o f l i n e s

maxBufferSize = 10

de f checkOpenMP(l i n e) :

loops

g l oba l openMPLoopsF

g l oba l openMPLoopsC

g l oba l openMPLoops

Simd

g l oba l openMPSimd

g l oba l openMPSimdLoop

schedu le

g l oba l openMPScheduleStatic

g l oba l openMPScheduleGuided

g l oba l openMPScheduleDynamic

g l oba l openMPScheduleAuto

g l oba l openMPScheduleRuntime

g l oba l openMPScheduleStaticChunk

g l oba l openMPScheduleGuidedChunk

g l oba l openMPScheduleDynamicChunk

g l oba l openMPScheduleAutoChunk

tasks

g l oba l openMPTasks

g l oba l openMPTaskwait

g l oba l openmMPTaskMergeable

g l oba l openmMPTaskFinal

Appendix 51

g l oba l openMPTaskPriority

g l oba l openMPTaskDepend

g l oba l openMPTaskyield

g l oba l openMPTaskgroup

g l oba l openMPTaskloop

ta rg e t − dev i c e s

g l oba l openMPTarget

g l oba l openMPDevicetype

g l oba l openMPReqRevOfload

g l oba l openMPMap

g l oba l openMPDefaultMap

othe r s

g l oba l openMPTeams

g l oba l openMPNoWait

g l oba l openMPCollapse

g l oba l openMPSingle

g l oba l openMPSections

g l oba l openMPMaster

g l oba l openMPProc bind

g l oba l openMPThreadprivate

g l oba l openMPCritical

g l oba l openMPDeclare

Matching OpenMP Loops

C C++

loopsC = openmp c re . s earch (l i n e)

FORTRAN

loopsF = openmp fortran re . s earch (l i n e)

SIMD

simdConstruct = openmp simd re . search (l i n e)

simdClause = openmp for s imd re . search (l i n e)

Matching OpenMP Tasks

endTasksConstruct = openmp endTask re . s earch (l i n e)

tasksConstruct = openmp tasks re . s earch (l i n e)

taskwaitConstruct = openmp taskwait re . s earch (l i n e)

t a s k f i n a lC l au s e = openmp task f ina l r e . s earch (l i n e)

taskmergeableClause = openmp taskmergeable re . s earch (l i n e)

t a s kp r i o r i t yC l au s e = openmp taskpr i o r i ty r e . s earch (l i n e)

taskdependClause = openmp taskdepend re . s earch (l i n e)

t a sky i e l dC lau s e = openmp tasky ie ld re . s earch (l i n e)

Appendix 52

taskGroupConstruct = openmp tasksgroup re . s earch (l i n e)

taskLoopConstruct = openmp tasks loop re . s earch (l i n e)

endTaskGroupConstruct = openmp endTaskgroup re . s earch (l i n e)

endTaskLoopConstruct = openmp endTaskloop re . s earch (l i n e)

Matching OpenMP Target − Devices

ta rge tConst ruc t = openmp target re . s earch (l i n e)

endTargetConstruct = openmp endTarget re . s earch (l i n e)

r e c r e vo f l o adD i r e c t i v eC l au s e = openmp recrevo f l oad re . s earch (

l i n e)

dev ice typeClause = openmp devicetype re . s earch (l i n e)

mapClause = openmp master re . s earch (l i n e)

defaultmapClause = openmp defaultmap re . s earch (l i n e)

Matching OpenMP SCHEDULE c l au s e s

s c s t a t i c = openmp schedu l e s t a t i c r e . s earch (l i n e)

scgu ided = openmp schedule gu ided re . s earch (l i n e)

scdynamic = openmp schedule dynamic re . s earch (l i n e)

scauto = openmp schedule auto re . s earch (l i n e)

scrunt ime = openmp schedule runt ime re . s earch (l i n e)

scstat icChunk = openmp schedu l e s ta t i c chunk re . s earch (l i n e)

scguidedChunk = openmp schedule guided chunk re . s earch (l i n e)

scdynamicChunk = openmp schedule dynamic chunk re . s earch (l i n e)

scautoChunk = openmp schedule auto chunk re . s earch (l i n e)

Matching OpenMP teams c l au s e s

teamClause = openmp teams re . s earch (l i n e)

Matching OpenMP nowait

nowaitClause = openmp nowait re . s earch (l i n e)

Matching OpenMP co l l a p s e

co l l ap s eC l au s e = openmp co l l apse re . s earch (l i n e)

Matching OpenMP s i n g l e

s i n g l eC l au s e = openmp s ing l e re . s earch (l i n e)

Matching OpenMP s e c t i o n s

s e c t i onC laus e = openmp sect ions re . s earch (l i n e)

Appendix 53

Matching OpenMP master

masterClause = openmp master re . s earch (l i n e)

Matching OpenMP proc b ind

proc b indClause = openmp proc bind re . s earch (l i n e)

Matching OpenMP threadpr iva t e

threadpr iva teC lause = openmp threadpr ivate re . s earch (l i n e)

Matching OpenMP c r i t i c a l

c r i t i c a l C l a u s e = openmp c r i t i c a l r e . s earch (l i n e)

Matching OpenMP dec l a r e

d e c l a r eD i r e c t i v e = openmp dec lare re . s earch (l i n e)

Count loops

i f loopsC != None :

openMPLoopsC = openMPLoopsC + 1

i f loopsF != None :

openMPLoopsF = openMPLoopsF + 1

SIMD

i f simdConstruct != None :

openMPSimd = openMPSimd + 1

i f simdClause != None :

openMPSimdLoop = openMPSimdLoop + 1

Count ta sk s

i f ta sksConst ruct != None :

openMPTasks = openMPTasks + 1

i f endTasksConstruct != None :

openMPTasks = openMPTasks − 1

Count ta sk s c l a u s e s

i f taskwaitConstruct != None :

openMPTaskwait = openMPTaskwait + 1

i f t a s k f i n a lC l au s e != None :

openmMPTaskFinal = openmMPTaskFinal + 1

Appendix 54

i f taskmergeableClause != None :

openmMPTaskMergeable = openmMPTaskMergeable + 1

i f t a s kp r i o r i t yC l au s e != None :

openMPTaskPriority = openMPTaskPriority + 1

i f taskdependClause != None :

openMPTaskDepend = openMPTaskDepend + 1

i f t a sky i e l dC lau s e != None :

openMPTaskyield = openMPTaskyield + 1

Count taskgroup and task loop

i f taskGroupConstruct != None :

openMPTaskgroup = openMPTaskgroup + 1

i f endTaskGroupConstruct != None :

openMPTaskgroup = openMPTaskgroup − 1

i f taskLoopConstruct != None :

openMPTaskloop = openMPTaskloop + 1

i f endTaskLoopConstruct != None :

openMPTaskloop = openMPTaskloop − 1

Count t a r g e t − dev i c e s

i f ta rge tConst ruc t != None :

openMPTarget = openMPTarget + 1

i f endTargetConstruct != None :

openMPTarget = openMPTarget − 1

i f r e c r e vo f l o adD i r e c t i v eC l au s e != None :

openMPReqRevOfload = openMPReqRevOfload + 1

i f dev ice typeClause != None :

openMPDevicetype = openMPDevicetype + 1

i f mapClause != None :

openMPMap = openMPMap + 1

Appendix 55

i f defaultmapClause != None :

openMPDefaultMap = openMPDefaultMap + 1

Count schedu le

i f s c s t a t i c != None :

openMPScheduleStatic = openMPScheduleStatic + 1

i f scgu ided != None :

openMPScheduleGuided = openMPScheduleGuided + 1

i f scdynamic != None :

openMPScheduleDynamic = openMPScheduleDynamic + 1

i f scauto != None :

openMPScheduleAuto = openMPScheduleAuto + 1

i f scrunt ime != None :

openMPScheduleRuntime = openMPScheduleRuntime + 1

i f scstat icChunk != None :

openMPScheduleStaticChunk = openMPScheduleStaticChunk + 1

i f scguidedChunk != None :

openMPScheduleGuidedChunk = openMPScheduleGuidedChunk + 1

i f scdynamicChunk != None :

openMPScheduleDynamicChunk = openMPScheduleDynamicChunk +

1

i f scautoChunk != None :

openMPScheduleAutoChunk = openMPScheduleAutoChunk + 1

Count teams

i f teamClause != None :

openMPTeams = openMPTeams + 1

Count nowait

i f nowaitClause != None :

openMPNoWait = openMPNoWait + 1

Count c o l l a p s e

i f c o l l ap s eC l au s e != None :

openMPCollapse = openMPCollapse + 1

Count s i n g l e

i f s i n g l eC l au s e != None :

openMPSingle = openMPSingle + 1

Count s e c t i o n s

i f s e c t i onC laus e != None :

Appendix 56

openMPSections = openMPSections + 1

Count master

i f masterClause != None :

openMPMaster = openMPMaster + 1

Count proc b ind

i f proc b indClause != None :

openMPProc bind = openMPProc bind + 1

Count th r eadpr iva t e

i f th readpr ivateC lause != None :

openMPThreadprivate = openMPThreadprivate + 1

Count c r i t i c a l

i f c r i t i c a l C l a u s e != None :

openMPCritical = openMPCritical + 1

Count de c l a r e

i f d e c l a r eD i r e c t i v e != None :

openMPDeclare = openMPDeclare + 1

Main

de f main () :

parseArgs ()

input = sys . argv [1]

input = inputPath

printOut ([” Analyzing ” , input , ” . . . ”])

Check i f input e x i s t

i f os . path . e x i s t s (input) :

Traver t r e e i f input i s a d i r e c t o r y

i f os . path . i s d i r (input) :

This loop t r a v e r s e s the e n t i r e d i r e c t o r y t r e e

rootDir = input

f o r dirName , subd i rL i s t , f i l e L i s t in os . walk (rootDir) :

f o r fname in f i l e L i s t :

Ful l path o f the f i l e

f i l ePa t h = dirName + ”/” + fname

Appendix 57

printOut ([f i l ePa t h])

ana l y z eF i l e (f i l ePa t h)

e l s e : ## th i s i s a f i l e

pr in t input

ana l y z eF i l e (input)

e l s e :

p r i n t (” Error : ” , input , ” does not e x i s t ”)

e x i t ()

c l o c s t a t i s t i c s

g e tC l o c S t a t i s t i c s (input)

openMPLoopsF i s d iv ided by 2 s i n c e in FORTRAN i t always

appear twice f o r every loop e . g . DO . . . END DO

g loba l openMPLoops , openMPSchedule Implic it ,

openMPSchedule NOT Implicit

openMPLoops = (openMPLoopsF / 2) + openMPLoopsC

ca l c u l a t e how many loops use the schedu le c l au s e .

openMPSchedule NOT Implicit = openMPScheduleStatic +

openMPScheduleGuided + openMPScheduleDynamic + \
openMPScheduleRuntime +

openMPScheduleStaticChunk +

openMPScheduleGuidedChunk +

\
openMPScheduleDynamicChunk +

openMPScheduleAuto +

openMPScheduleAutoChunk

ca l c u l a t e how many loops do not use the schedu le c l au s e

openMPSchedule Implic it = openMPLoops −
openMPSchedule NOT Implicit

Print r e s u l t s

g l oba l p r i n t c sv

i f p r i n t c sv == 0 :

p r i n tRe su l t s ()

e l s e :

printResultsCSV ()

Helper Functions

Appendix 58

de f parseArgs () :

g l oba l inputPath , outputFileName , verbose , appname , p r i n t c sv

par s e r = argparse . ArgumentParser ()

par s e r . add argument (” path ” , type=str ,

he lp=” f i l e or d i r e c t o r y to ana lyze ”)

par s e r . add argument(”−a ” , ”−−app” , he lp=”name o f app l i c a t i o n ” ,

type=s t r)

par s e r . add argument(”−c ” , ”−−csv ” , he lp=”pr in t in CSV” , type=

s t r)

par s e r . add argument(”−o ” , ”−−output ” , he lp=”name o f output

f i l e ” , type=s t r)

par s e r . add argument(”−v” , ”−−verbose ” , he lp=”pr in t what the

s c r i p t does ” , a c t i on=”s t o r e t r u e ”)

args = par s e r . p a r s e a r g s ()

inputPath = args . path

i f a rgs . output :

outputFileName = args . output

i f a rgs . verbose :

verbose = True

i f a rgs . app :

appname = args . app

i f a rgs . csv :

p r i n t c sv = args . csv

Wrapper o f p r i n t func t i on

out : a l i s t o f s t r i n g s , e . g . , [” h e l l o ” , ”world ”]

de f printOut (outL i s t) :

g l oba l verbose

i f verbose :

p r i n t (” ” . j o i n (outL i s t))

This i s the main func t i on to analyze a f i l e

de f ana l y z eF i l e (f i l ePa t h) :

fd = open (f i l ePa th , ’ r ’)

f i l e L i n e s = fd . r e a d l i n e s ()

f o r i in range (l en (f i l e L i n e s)) :

pr in t (” t e s t”+ f i l e L i n e s [i])

Check f o r languages

Appendix 59

checkOpenMP(f i l e L i n e s [i])

checkOpenACC(f i l e L i n e s [i])

checkCUDA(f i l e L i n e s [i])

checkOpenCL(f i l e L i n e s [i])

fd . c l o s e ()

de f printResultsCSV () :

g l oba l appname , outputFileName , openACCPragmas , CUDAkernels ,

c l i n e s , cpp l i n e s , c cpp heade r l i n e s , f o r t r a n l i n e s ,\
t o t a l l i n e s o f c o d e

out = ””

i f outputFileName != None :

i f not os . path . e x i s t s (outputFileName) :

out = ”app , \
OPENMP loop , \
OPENMP task , \
OPENMP taskloop , \
OPENMP taskgroup , \
OPENMP taskwait , \
OPENMP taskfinal , \
OPENMP taskmergeable , \
OPENMP taskpriority , \
OPENMP taskdepend , \
OPENMP taskyield , \
OPENMP target , \
OPENMP req rev offload , \
OPENMP device type , \
OPENMPmap, \
OPENMP defaultmap , \
OPENMP declare , \
OPENMP scimplicit , \
OPENMP scstatic , \
OPENMP scguided , \
OPENMP scdynamic , \
OPENMP scauto , \
OPENMP scruntime , \
OPENMP scstatic chunk , \
OPENMP scguided chunk , \
OPENMP scdynamic chunk , \
OPENMP scauto chunk , \
OPENMP teams , \
OPENMP nowait , \

Appendix 60

OPENMP collapse , \
OPENMP single , \
OPENMP sections , \
OPENMP master , \
OPENMP proc bind , \
OPENMP threadprivate , \
OPENMP critical , \
OPENMP simd, \
OPENMP simd loop , \
OPENACC, \
CUDA, \
OPENCL, \
C LINES , \
CPP LINES , \
C CPP H LINES , \
FORTRAN LINES, \
LINES OF CODE \n”

printOut ([”∗∗∗ OpenMP Usage ∗∗∗”])
We save output in to a s t r i n g

f o r k in MPI CALLS TABLE. keys () :

l i n e = ” ” + ”\”” + k + ”\”” + ” : ” + s t r (

MPI CALLS TABLE[k]) + ” ,\n”
out = out + l i n e

out = out + s t r (appname) + ’ , ’ # App

out = out + s t r (openMPLoops) + ’ , ’ # Al l OMP loops cons t ruc t

out = out + s t r (openMPTasks) + ’ , ’ # Al l OMP tasks cons t ruc t

out = out + s t r (openMPTaskloop) + ’ , ’ # Al l OMP task l oops

cons t ruc t

out = out + s t r (openMPTaskgroup) + ’ , ’ # Al l OMP taskgroup

cons t ruc t

out = out + s t r (openMPTaskwait) + ’ , ’ # Al l OMP taskwai t

cons t ruc t

out = out + s t r (openmMPTaskFinal) + ’ , ’ # Al l OMP t a s k f i n a l

c l au s e

out = out + s t r (openmMPTaskMergeable) + ’ , ’ # Al l OMP task

mergeable c l au s e

out = out + s t r (openMPTaskPriority) + ’ , ’ # Al l OMP task

p r i t o r i t y

out = out + s t r (openMPTaskDepend) + ’ , ’ # Al l OMP task

depend

Appendix 61

out = out + s t r (openMPTaskyield) + ’ , ’ # Al l OMP ta s ky i e l d

out = out + s t r (openMPTarget) + ’ , ’ # Al l OMP ta rg e t

out = out + s t r (openMPReqRevOfload) + ’ , ’

out = out + s t r (openMPDevicetype) + ’ , ’

out = out + s t r (openMPMap) + ’ , ’

out = out + s t r (openMPDefaultMap) + ’ , ’

out = out + s t r (openMPDeclare) + ’ , ’

out = out + s t r (openMPSchedule Implic it) + ’ , ’ # Number o f

l oops without schedu le c l au s e

out = out + s t r (openMPScheduleStatic) + ’ , ’ # Number o f

l oops with s t a t i c schedu le c l au s e

out = out + s t r (openMPScheduleGuided) + ’ , ’ # Number o f

l oops with guided schedu le c l au s e

out = out + s t r (openMPScheduleDynamic) + ’ , ’ # Number o f

l oops with dynamic schedu le c l au s e

out = out + s t r (openMPScheduleAuto) + ’ , ’ # Number o f l oops

with auto schedu le c l au s e

out = out + s t r (openMPScheduleRuntime) + ’ , ’ # Number o f

l oops with runtime schedu le c l au s e

out = out + s t r (

openMPScheduleStaticChunk) + ’ , ’ # Number o f l oops with

s t a t i c schedu le c l au s e with chunks ize paramenter

out = out + s t r (

openMPScheduleGuidedChunk) + ’ , ’ # Number o f l oops with

guided schedu le c l au s e with chunks ize paramenter

out = out + s t r (

openMPScheduleDynamicChunk) + ’ , ’ # Number o f l oops with

dynamic schedu le c l au s e with chunks ize paramenter

out = out + s t r (

openMPScheduleAutoChunk) + ’ , ’ # Number o f l oops with

auto schedu le c l au s e with chunks ize paramenter

out = out + s t r (openMPTeams) + ’ , ’ # Al l OMP teams

out = out + s t r (openMPNoWait) + ’ , ’ # Al l OMP nowait

out = out + s t r (openMPCollapse) + ’ , ’ # Al l OMP co l l a p s e

out = out + s t r (openMPSingle) + ’ , ’ # Al l OMP s i n g l e

out = out + s t r (openMPSections) + ’ , ’ # Al l OMP s e c t i o n s

out = out + s t r (openMPMaster) + ’ , ’ # Al l OMP master

out = out + s t r (openMPProc bind) + ’ , ’ # Al l OMP proc b ind

out = out + s t r (openMPThreadprivate) + ’ , ’ # Al l OMP thread

pr i va t e

out = out + s t r (openMPCritical) + ’ , ’ # Al l OMP c r i t i c a l

out = out + s t r (openMPSimd) + ’ , ’

out = out + s t r (openMPSimdLoop) + ’ , ’

Appendix 62

out = out + s t r (openACCPragmas) + ’ , ’

out = out + s t r (CUDASymbols) + ’ , ’

out = out + s t r (OpenCLSymbols) + ’ , ’

out = out + s t r (c l i n e s) + ’ , ’

out = out + s t r (c pp l i n e s) + ’ , ’

out = out + s t r (c c pp h e ad e r l i n e s) + ’ , ’

out = out + s t r (f o r t r a n l i n e s) + ’ , ’

For cons i s t ency , l e t ’ s make LINES OF CODE the l a s t one

out = out + s t r (t o t a l l i n e s o f c o d e) + ’\n ’
out = out + ”}”

p r in t (out)

i f outputFileName != None :

saveResultsCSV (out)

de f saveResultsCSV (out) :

fd = open (outputFileName , ’ a ’)

fd . wr i t e (out)

fd . c l o s e ()

Print r e s u l t s to stdout

de f p r i n tRe su l t s () :

g l oba l outputFileName , openACCPragmas , CUDAkernels , c l i n e s ,

cpp l i n e s , c cpp heade r l i n e s , \
f o r t r a n l i n e s , t o t a l l i n e s o f c o d e

printOut ([”∗∗∗ OpenMP Usage ∗∗∗”])

We save output in to a s t r i n g

out = ”{\n”
f o r k in MPI CALLS TABLE. keys () :

l i n e = ” ” + ”\”” + k + ”\”” + ” : ” + s t r (

MPI CALLS TABLE[k]) + ” ,\n”
out = out + l i n e

out = out + ’ ”OPENMP loop” : ’ + s t r (openMPLoops) + ’ ,\n ’ #

Al l OMP loops cons t ruc t

out = out + ’ ”OPENMP task” : ’ + s t r (openMPTasks) + ’ ,\n ’ #

Al l OMP tasks cons t ruc t

Appendix 63

out = out + ’ ”OPENMP taskloop ” : ’ + s t r (openMPTaskloop) +

’ ,\n ’ # Al l OMP task l oops cons t ruc t

out = out + ’ ”OPENMP taskgroup ” : ’ + s t r (openMPTaskgroup) +

’ ,\n ’ # Al l OMP taskgroup cons t ruc t

out = out + ’ ”OPENMP taskwait ” : ’ + s t r (openMPTaskwait) +

’ ,\n ’ # Al l OMP taskwai t cons t ruc t

out = out + ’ ”OPENMP taskfinal ” : ’ + s t r (openmMPTaskFinal) +

’ ,\n ’ # Al l OMP t a s k f i n a l c l au s e

out = out + ’ ”OPENMP taskmergeable ” : ’ + s t r (

openmMPTaskMergeable) + ’ ,\n ’ # Al l OMP task mergeable

c l au s e

out = out + ’ ”OPENMP taskpriority ” : ’ + s t r (

openMPTaskPriority) + ’ ,\n ’ # Al l OMP task p r i t o r i t y

out = out + ’ ”OPENMP taskdepend ” : ’ + s t r (openMPTaskDepend)

+ ’ ,\n ’ # Al l OMP task depend

out = out + ’ ”OPENMP taskyield ” : ’ + s t r (openMPTaskyield) +

’ ,\n ’ # Al l OMP ta s ky i e l d

out = out + ’ ”OPENMP target ” : ’ + s t r (openMPTarget) + ’ ,\n ’
Al l OMP ta rg e t

out = out + ’ ”OPENMP req rev offload ” : ’ + s t r (

openMPReqRevOfload) + ’ ,\n ’
out = out + ’ ”OPENMP device type ” : ’ + s t r (openMPDevicetype)

+ ’ ,\n ’
out = out + ’ ”OPENMPmap” : ’ + s t r (openMPMap) + ’ ,\n ’
out = out + ’ ”OPENMP defaultmap ” : ’ + s t r (openMPDefaultMap)

+ ’ ,\n ’
out = out + ’ ”OPENMP declare ” : ’ + s t r (openMPDeclare) + ’ ,\n

’

out = out + ’ ”OPENMP scimplicit ” : ’ + s t r (

openMPSchedule Implic it) + ’ ,\n ’ # Number o f l oops

without schedu le c l au s e

out = out + ’ ”OPENMP scstatic ” : ’ + s t r (

openMPScheduleStatic) + ’ ,\n ’ # Number o f l oops with

s t a t i c schedu le c l au s e

out = out + ’ ”OPENMP scguided ” : ’ + s t r (

openMPScheduleGuided) + ’ ,\n ’ # Number o f l oops with

guided schedu le c l au s e

out = out + ’ ”OPENMP scdynamic ” : ’ + s t r (

openMPScheduleDynamic) + ’ ,\n ’ # Number o f l oops with

dynamic schedu le c l au s e

out = out + ’ ”OPENMP scauto ” : ’ + s t r (openMPScheduleAuto) +

’ ,\n ’ # Number o f l oops with dynamic schedu le c l au s e

out = out + ’ ”OPENMP scruntime ” : ’ + s t r (

Appendix 64

openMPScheduleRuntime) + ’ ,\n ’ # Number o f l oops with

runtime schedu le c l au s e

out = out + ’ ”OPENMP scstatic chunk ” : ’ + s t r (

openMPScheduleStaticChunk) + ’ ,\n ’ # Number o f l oops with

s t a t i c schedu le c l au s e with chunks ize paramenter

out = out + ’ ”OPENMP scguided chunk ” : ’ + s t r (

openMPScheduleGuidedChunk) + ’ ,\n ’ # Number o f l oops with

guided schedu le c l au s e with chunks ize paramenter

out = out + ’ ”OPENMP scdynamic chunk ” : ’ + s t r (

openMPScheduleDynamicChunk) + ’ ,\n ’ # Number o f l oops

with dynamic schedu le c l au s e with chunks ize paramenter

out = out + ’ ”OPENMP scauto chunk ” : ’ + s t r (

openMPScheduleAutoChunk) + ’ ,\n ’ # Number o f l oops with

dynamic schedu le c l au s e with chunks ize paramenter

out = out + ’ ”OPENMP teams” : ’ + s t r (openMPTeams) + ’ ,\n ’ #

Al l OMP teams

out = out + ’ ”OPENMP nowait ” : ’ + s t r (openMPNoWait) + ’ ,\n ’
Al l OMP nowait

out = out + ’ ”OPENMP collapse ” : ’ + s t r (openMPCollapse) +

’ ,\n ’ # Al l OMP co l l a p s e

out = out + ’ ”OPENMP single ” : ’ + s t r (openMPSingle) + ’ ,\n ’
Al l OMP s i n g l e

out = out + ’ ”OPENMP sections ” : ’ + s t r (openMPSections) +

’ ,\n ’ # Al l OMP s e c t i o n s

out = out + ’ ”OPENMP master ” : ’ + s t r (openMPMaster) + ’ ,\n ’
Al l OMP master

out = out + ’ ”OPENMP proc bind ” : ’ + s t r (openMPProc bind) +

’ ,\n ’ # Al l OMP proc b ind

out = out + ’ ”OPENMP threadprivate ” : ’ + s t r (

openMPThreadprivate) + ’ ,\n ’ # Al l OMP thread pr i va t e

out = out + ’ ”OPENMP critical ” : ’ + s t r (openMPCritical) +

’ ,\n ’ # Al l OMP c r i t i c a l

out = out + ’ ”OPENMP simd” : ’ + s t r (openMPSimd) + ’ ,\n ’ #

Al l OMP c r i t i c a l

out = out + ’ ”OPENMP loop simd ” : ’ + s t r (openMPSimdLoop) +

’ ,\n ’ # Al l OMP c r i t i c a l

out = out + ’ ”OPENACC” : ’ + s t r (openACCPragmas) + ’ ,\n ’
out = out + ’ ”CUDA” : ’ + s t r (CUDASymbols) + ’ ,\n ’
out = out + ’ ”OPENCL” : ’ + s t r (OpenCLSymbols) + ’ ,\n ’

out = out + ’ ”C LINES” : ’ + s t r (c l i n e s) + ’ ,\n ’
out = out + ’ ”CPP LINES” : ’ + s t r (c pp l i n e s) + ’ ,\n ’

Appendix 65

out = out + ’ ”C CPP H LINES” : ’ + s t r (c c pp h e ad e r l i n e s) +

’ ,\n ’
out = out + ’ ”FORTRAN LINES” : ’ + s t r (f o r t r a n l i n e s) + ’ ,\n ’

For cons i s t ency , l e t ’ s make LINES OF CODE the l a s t one

out = out + ’ ”LINES OF CODE” : ’ + s t r (t o t a l l i n e s o f c o d e) +

’\n ’
out = out + ”}”

p r in t (out)

i f outputFileName != None :

saveResu l t s (out)

Save r e s u l t s i n to a f i l e

de f saveResu l t s (out) :

fd = open (outputFileName , ’w’)

fd . wr i t e (out)

fd . c l o s e ()

Language de t e c t i on

de f checkOpenACC(l i n e) :

g l oba l openACCPragmas

Matching C OpenACC

r e s u l t 1 = openacc c r e . s earch (l i n e)

Matching Fortran OpenACC

r e s u l t 2 = opena c c f o r t r an r e . s earch (l i n e)

i f r e s u l t 1 != None or r e s u l t 2 != None :

openACCPragmas = openACCPragmas + 1

de f checkCUDA(l i n e) :

g l oba l CUDASymbols

r e s u l t 1 = cuda g l o b a l k e r n e l r e . s earch (l i n e)

r e s u l t 2 = cuda d ev i c e k e r n e l r e . s earch (l i n e)

i f r e s u l t 1 != None or r e s u l t 2 != None :

CUDASymbols = CUDASymbols + 1

Appendix 66

de f checkOpenCL(l i n e) :

g l oba l OpenCLSymbols

r e s u l t 1 = op en c l g l o b a l r e . s earch (l i n e)

r e s u l t 2 = op en c l k e r n e l r e . s earch (l i n e)

i f r e s u l t 1 != None or r e s u l t 2 != None :

OpenCLSymbols = OpenCLSymbols + 1

Cloc c a l l i n g and par s ing

de f g e tC l o c S t a t i s t i c s (input) :

g l oba l c l i n e s , cpp l i n e s , c cpp heade r l i n e s , f o r t r a n l i n e s ,

t o t a l l i n e s o f c o d e

printOut ([” Ca l l i ng c l o c . . . ”])

d i r pa th = os . path . dirname (os . path . r ea lpa th (f i l e))

cmd = [d i r pa th + ”/ c l o c ” , input]

cmdOutput = subproces s . check output (cmd)

f o r l i n e in cmdOutput . s p l i t (”\n”) :
t e s t c = c l o c c r e . s earch (l i n e)

t e s t cpp = c l o c c pp r e . s earch (l i n e)

t e s t c cpp heade r = c l o c c c pp h e ad e r r e . s earch (l i n e)

t e s t f o r t r a n = c l o c f o r t r a n r e . s earch (l i n e)

i f t e s t c != None :

c l i n e s = in t (l i n e . s p l i t () [− 1 :] [0])

e l i f t e s t cpp != None :

c pp l i n e s = in t (l i n e . s p l i t () [− 1 :] [0])

e l i f t e s t c cpp heade r != None :

c c pp h e ad e r l i n e s = in t (l i n e . s p l i t () [− 1 :] [0])

e l i f t e s t f o r t r a n != None :

f o r t r a n l i n e s = f o r t r a n l i n e s + in t (l i n e . s p l i t ()

[− 1 :] [0])

e l i f ”SUM:” in l i n e :

t o t a l l i n e s o f c o d e = in t (l i n e . s p l i t () [− 1 :] [0])

main ()

	Table of Contents
	1 Introduction
	2 Methods
	2.1 Investigation of Open Source HPC applications
	2.1.1 Benchmark suite, Name, Link, Domain and description
	2.1.2 Lines of Code and Programming Langua
	2.1.3 OpenMP, MPI, OpenACC, CUDA, OpenCL
	2.1.4 Data Distribution and Location of Data Distribution
	2.1.5 Process Level Scheduling and Location of the Process Level Scheduling
	2.1.6 Release Date, Version, new Version, and new Release date
	2.1.7 Storage
	2.1.8 Notes
	2.1.9 A/M, A, M

	2.2 Approach
	2.2.1 Retrieve the application
	2.2.2 Grep for MPI_Init
	2.2.3 Use of IDE
	2.2.4 Domain Decomposition and Process Level Scheduling
	2.2.5 Extract other data
	2.2.5.1 Retrieve the storage in MB

	2.2.6 Challenges in Code Analysis

	3 Analyzed open source HPC Applications
	3.1 No benchmark suite
	3.2 LLNL ASC Proxy Apps
	3.3 Mantevo
	3.4 ExaGraph
	3.5 Fiber Mini App
	3.6 SPEC CPU 2017
	3.7 Chatterbug
	3.8 CORAL-2
	3.9 Rodinia 3.1
	3.10 UK Mini-App Consortium
	3.11 SPEC CPU 2017
	3.12 ExMatEx

	4 Data Processing
	4.1 Data preparation
	4.2 Data-input

	5 Results
	5.1 Generic information
	5.2 Information about the Length of Code and Storage
	5.3 Parallel programming paradigm, decomposition and scheduling at process level
	5.4 Paradigms and Programming Language over years
	5.5 Domains in Programming Languages
	5.6 Trends over years in Paradigms and Programming language

	6 Conclusion
	Bibliography
	A Appendix
	A.1 ControlTablecontroltable
	A.2 Processed ControlTableprocessedcontroltable

	B Appendix
	B.1 Script to get automatic information

