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Abstract

Modern data analysis involves several stages, from big data management through high-

performance computing to machine learning training. Combined, those form an integrated

data analysis (IDA) pipeline. Although systems of those areas share many runtime tech-

niques, the software stacks di↵er considerably. As a result, various programs, languages,

and data representations are used in each data analysis step. DAPHNE is an open system

infrastructure that provides all necessary tools for such IDA pipelines. So far, it has not

been possible to evaluate DAPHNE with existing benchmarking applications, as it employs

a domain-specific language (DSL) named DaphneDSL. This thesis surveys existing bench-

mark suits for implementable benchmarks and rewrites them accordingly. The process

reveals several functionality limitations of DaphneDSL, aggravating or rendering impossi-

ble an implementation. Performance evaluation of the rewritten application against their

reference is not conclusive and questions the comparability in general.
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1
Introduction

Data analysis has become one of the essential elements of modern research. The process

involves several stages, from big data management through high-performance computing to

machine learning training. Combined, these steps form an integrated data analysis (IDA)

pipeline. Systems of this area share many compilation and runtime techniques [10]. Nev-

ertheless, the software stacks di↵er considerably, resulting in various programs, languages,

programming paradigms, and data formats used in each process step. The DAPHNE project

aims to o↵er an open system infrastructure to provide all necessary tools for an IDA pipeline.

In March 2022, the first prototype [40] was released. Even though some performance exper-

iments were done for DAPHNE [10], a component that is missing so far is benchmarking. A

benchmark is a standardized problem that serves as a basis for evaluating an infrastructure.

The metrics collected during this assessment compare the systems under test against each

other. There exist numerous known benchmark suites with many heterogeneous test appli-

cations. However, those are unusable as the DAPHNE system employs a domain-specific

language (DSL) named DaphneDSL. The purpose of this thesis is to provide the means

to benchmark DAPHNE. The questions to be answered: to what extent is it possible to

rewrite existing benchmarks with DaphneDSL, and how are the implementations perform-

ing against their reference application? The process of finding a response is fourfold. First,

find applications from existing benchmark suites to be implemented with DaphneDSL. Sec-

ond, identify the advantages and limitations of the DAPHNE software infrastructure. Third,

rewrite the selected benchmarks with DaphneDSL; fourth, evaluate the new implementa-

tions against their originals by designing factorial experiments. The thesis is structured

as follows. Section 2 presents the collected information about existing benchmark appli-

cations, followed by an overview of the DAPHNE system and DaphneDSL in section 3.

Section 4 elaborates on the benchmark-to-rewrite selection process, explains revealed issues,

and describes the implementations. Finally, section 5 covers the experiments carried out to

compare the DaphneDSL implementation with the reference benchmarks and discusses the

obtained results.
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Background

A benchmark is ”a standardized problem or test that serves as a basis for evaluation or

comparison” [30]. It also refers to the process of obtaining quantitative measures for a

meaningful comparison across multiple systems [23]. Many benchmarks exist targeting big

data (BD), high-performance computing (HPC), or machine learning (ML) systems [23]. In

this work, ten are considered to some extend. HiBench [24], BigDataBench [3] and BigBench

[16] are examples of BD benchmarks. HPC Challenge [19], HPCG [17], HPL-AI [21], UEABS

[42] and SPEC [35] belong to the group of HPC benchmarks, whereas DeepBench [2] and

MLPerf [28] are ML benchmarks.

All suites are listed in Table 2.1 together with their main target domain, the covered

topics and the number of individual benchmarks o↵ered. The remaining part of this chapter

briefly describes each suite.

2.1 BD Benchmarks

2.1.1 HiBench

HiBench [24] is a BD benchmarking suite o↵ering 29 workloads from 6 categories: Micro,

Machine Learning, SQL, Web search, Graph, and Streaming. Micro benchmarks test a sin-

gle functionality. In the case of HiBench, methods like sorting or word count are assessed.

Those are making use of strings rather than numbers as input data. The other fields covered

by HiBench are testing more complex tasks. Among others, classification, regression, and

clustering are included in the ML benchmarks, by far the largest category. All implemen-

tations use third-party software (e.g., Hadoop, Spark). In particular, data generation and

workload handling rely on methods provided by these additional software packages

2.1.2 BigDataBench

The current version 5.0 [3] is a unified and scalable BD and AI benchmark suite [15]. The

main idea is to consider BD and AI workloads as a combination of di↵erent computation

units called ”data motifs”: Matrix, Sampling, Logic, Transform, Set, Graph, Sort, and

Statistic Computation. In contrast to the traditional methodology of creating new bench-
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Table 2.1: Summary of the 10 benchmark suites, including main domain, the covered
topics and the number of benchmarks from each topic.

Suite Main domain Covered topic
Number of

benchmarks

HiBench BD

Micro 6

Machine Learning 13

SQL 3

Websearch 2

Graph 1

Streaming 4

BigDataBench V5.0 BD

Micro 27

Component 16

Application 2

BigBench BD Product retailer 1

HPC Challenge HPC Basic operations 6

HPCG HPC Basic operations 1

HPL-AI HPC Solving linear system 1

UEABS HPC Existing applications 13

SPEC HPC

Cloud 1

CPU 1

Graphics and Workstation 6

HPC: OpenMP, MPI 4

Java Client/Server 4

Storage 1

Power 1

Virtualization 2

DeepBench ML Basic operations 5

MLPerf Training ML

Vision 4

Language 2

Commerce 1

Research 1

marks for every possible workload, BigDataBench uses combinations of the eight data motifs

to represent BD and AI workloads.

The suite includes micro benchmarks, each covering a single data motif, component

benchmarks consisting of data motif combinations, and end-to-end application benchmarks.

The latter is made of combined component benchmarks. Furthermore, BigDataBench con-

tains real-world data sets like Wikipedia entries or Amazon movie reviews together with the

big data generator suite (BDGS) used to generate the input for the benchmarks.

The micro benchmarks [6] are using di↵erent workloads and are available for several
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software stacks like Hadoop, Spark, TenserFlow, or Hive. While the implementations work-

ing with Hadoop or Spark call the corresponding software’s desired methods directly through

shells, Sort, Grep, WordCount, MD5, RandSample, and FFT are using the Message Passing

Interface (MPI) framework and are written in C++. In contrast to the first five, generating

data with the BDGS, FFT has its own data generator written in C.

Similar to the micro implementations, the provided component benchmarks are based

on di↵erent software stacks [5]. Among those using MPI are naive Bayes, K-means, or

breadth-first search. Similar to FFT, K-means has its own data generator written in C++.

The scripts used to run K-means are written in C. As metrics, the I/O and computation

time are reported. For detailed instruction on how to run all the benchmarks together with

an overview, the reader is referred to [4].

2.1.3 BigBench

BigBench is a big end-to-end data benchmark proposal [16] covering the variety, velocity,

and volume aspects of data from a product retailer. The workload is designed around a set

of queries covering di↵erent categories of BD analytics proposed by McKinsey. BigBench

combines structured data like sales, semi-structured data (e.g., web logs), and unstructured

data like reviews. The original proposal is the basis of TPCx-BB [41]. The Transaction Pro-

cessing Performance Council (TPC) is a non-profit corporation founded in 1988 focusing on

providing data-centric benchmark standards to the industry. TPCx-BB executes analytical

queries in the context of retailers, measuring BD systems’ performance. The source code is

available under a license agreement only.1

2.2 HPC Benchmarks

2.2.1 HPC Challenge

HPC Challenge [26], as the name indicates, an HPC domain benchmark, is designed to

measure a range of memory access patterns. The source code [20] is freely available. HPC

Challenge suite consists of several tests, including:

• HPL - the High Performance Linpack benchmark solves a system of linear equations

measuring the floating point rate.

• DGEMM - double precision real matrix multiplication, measuring the floating point

rate.

• PTRANS - testing the communications between pairs of processors using a parallel

matrix transpose exercise.

• FFT - measures the floating point rate of a complex one-dimensional Discrete Fourier

Transformation (DTF).

1
https://www.tpc.org/tpc documents current versions/download programs/tools-download-request5.

asp?bm type=TPCX-BB&bm vers=1.5.2&mode=CURRENT-ONLY

https://www.tpc.org/tpc_documents_current_versions/download_programs/tools-download-request5.asp?bm_type=TPCX-BB&bm_vers=1.5.2&mode=CURRENT-ONLY
https://www.tpc.org/tpc_documents_current_versions/download_programs/tools-download-request5.asp?bm_type=TPCX-BB&bm_vers=1.5.2&mode=CURRENT-ONLY
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Moreover, the suite contains a relatively unique test in the sense of the stressed com-

ponent. STREAM measures the sustainable memory bandwidth (Bytes/s) for simple vector

kernels copy, scale, add, and a combination of the last two called triad. The idea originates

in the fact that CPUs have become much faster than the computer memory system, resulting

in the memory bandwidth being the bottleneck of the system rather than the computational

performance [29]. The source code is written in C and uses MPI.

Released originally by DARPA (Defense Advanced Research Projects Agency) High

Productivity Computing Systems, HPC Challenge helps define performance boundaries of

computing systems and tests the performance of HPC architectures.

2.2.2 HPCG

The high-performance conjugate-gradient benchmark [17] is intended to represent today’s

applications performance better than HPL [13]. HPL solves systems of linear equations

employing Gaussian elimination, heavily relying on dense matrix multiplications showing

stride memory access. In contrast, scientific computations governed by partial di↵erential

equations (PDE) tend to exhibit irregular memory access patterns [13]. For this reason,

the computation to data-access ratio is very low for PDE algorithms compared to matrix

multiplications where computation dominates rather than data access.

To account for the di↵erence between the applications, HPCG applies a multigrid pre-

conditioned conjugate-gradient algorithm to solve a three-dimensional PDE model problem

represented by a sparse linear system. The equation at each point in the three-dimensional

domain depends on the values of 26 surrounding neighbors [13], showing the importance

of memory bandwidth rather than computing power. Besides basic operations like sparse

matrix-vector multiplications and dot products, the algorithm uses Gauss-Seidel precondi-

tioning for the conjugate-gradient solver on each multigrid level. The source code of the

reference implementation [18] is freely available and written in C++.

2.2.3 HPL-AI

HPL-AI [21] seeks to highlight the convergence of HPC and AI workloads. Traditional algo-

rithms for modeling phenomena in physics or biology require 64-bit accuracy. In contrast,

ML applications desire 32-bit or even lower floating-point precision formats. This lesser

demand delivers higher performance levels and energy savings.

HPL-AI is solving a linear system with LU decomposition in 32-bit precision (float).

The results then are transformed back to 64-bit precision (double). The reference imple-

mentation [22] is written in C and is freely accessible.

2.2.4 UEABS

Another representative of the HPC domain is the Unified European Applications Benchmark

Suite [42], a collection of 13 application codes with the objective to be run on Tier-1 (up to

1’000 cores) and Tire-0 (up to 10’000 cores) sized systems. Each has its own workload of

several sizes to match the system under test. All applications are existing software packages
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used in various fields, like physics (e.g., ALYA) or chemistry (e.g., CP2K). One example

is named TensorFlow, after the open-source machine learning platform. This benchmark

provides three test cases of di↵erent-sized networks, all using DeepGalaxy2 which trains a

deep neural network to classify galaxy merges in the universe. It is written in Python and

built with TensorFlow. The dataset used is freely available.

2.2.5 SPEC

The Standard Performance Evaluation Corporation o↵ers tools to evaluate the performance

and energy e�ciency of computer systems [35]. Currently, there are 20 di↵erent benchmarks

from eight topics available: HPC, cloud, CPU, graphics and workstation performance, stor-

age, power as well as Java performance. The four benchmarks dedicated to HPC are SPEC

ACCEL, SPEChpc 2021, SPEC OMP 2012, and SPEC MPI 2007. As it is a commercial

tool, the source code is not freely available.

2.3 ML Benchmarks

2.3.1 DeepBench

DeepBench [2] is an ML benchmark suite designed to test four basic operations crucial

for deep learning. This includes general matrix multiply (GEMM), convolutions, recurrent

layers, and all-reduce. DeepBench provides source code to benchmark those operations for

hardware suppliers like Intel, NVIDIA, ARM, or AMD. While the NVIDIA examples are

written in CUDA, the others are implemented in C++.

In fact, DeepBench uses vendor-supplied libraries. For instance, the Intel GEMM

benchmark relies on Intels Math Kernel Library3 (MKL) to perform matrix multiplications.

Alongside the benchmark for dense matrices, one for sparse matrices is available.

2.3.2 MLPerf

As the name indicates, MLPerf is a machine learning benchmark suite that started in 2018.

Nowadays, it is part of the MLCommons association [32], which provides training [28] and

inference [34] benchmarks. Here, only the first is discussed in detail, focusing on the training

stage of ML models, whereas the latter considers the inference stage, meaning the usage of

a model on live data to produce output.

The MLPerf training benchmark addresses the unique challenges of benchmarking

deep learning (DL) training [28]. For example, there is a trade-o↵ between quality and

performance optimization during the training process, which is not observable until the end

of an entire training session. Another source of variation is the minibatch size. Larger

minibatches can lower training time on distributed systems. However, they adversely a↵ect

learning dynamics and might need more epochs to reach the same accuracy. A certain

2
https://github.com/maxwelltsai/DeepGalaxy

3
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/

top/blas-and-sparse-blas-routines/blas-routines/blas-level-3-routines/gemm.html

https://github.com/maxwelltsai/DeepGalaxy
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/blas-and-sparse-blas-routines/blas-routines/blas-level-3-routines/gemm.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/blas-and-sparse-blas-routines/blas-routines/blas-level-3-routines/gemm.html
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stochastic influence like random weight initialization in DL training is also present, resulting

in run-to-run variation for the same model with identical hyperparameters. Finally, multiple

software frameworks for ML have emerged, distinctly executing similar computations. All

these factors increase benchmarking complexity of DL training.

MLPerf v2.0 o↵ers eight training benchmarks from four topics: vision, language, re-

search and commerce [32]. The performance metric is the time-to-train necessary to reach

a defined quality target. This includes auxiliary operations needed for training such mod-

els but neglects overhead like system initialization time. The source code for the reference

benchmarks is available [33], and workloads are provided.

2.4 Convergence

The brief description of each benchmark suite shows the heterogeneity of the field. Bench-

marks range from testing a single calculation to covering the full range of ML tasks, including

data handling and training. The suites are grouped according to their main domain. How-

ever, an underlying tendency exists to cover not only one but two domains with a single

benchmark. Hence, a convergence of domains [23].

An example is HiBench and the contained ML benchmarks. Despite providing ML

purposes, the metrics used do not reflect ML performance [23]. Similar to HiBench are

the component benchmarks of BigDataBench. Alongside BD character, they have an ML

training aspect. Another interesting case with convergence is HPL-AI, with its underlying

idea to do calculations at single precision before converting the result to double precision.

Based on the collected information, the next step is to decide which application is

implemented in DaphneDSL. Before that, a brief introduction to the DAPHNE system is

given in the next section.



3
Related Work

DAPHNE, denoting ”integrated Data Analysis Pipelines for large-scale data management,

High-performance computing, and machiNE learning” [37], aims to be an open and exten-

sible system infrastructure for developing and executing IDA pipelines [10]. The prototype

[40] has been publicly accessible since March 2022. The DAPHNE system architecture is

shown in Figure 3.1. It is built from scratch in C++ utilizing MLIR, a multi-level interme-

diate representation (IR) aiming to tackle the challenges in programming language design

when developing domain-specific IRs [25]. In addition, DAPHNE uses existing runtime

libraries such as the basic linear algebra subprogram kernels [9].

Figure 3.1: The DAPHNE system infrastructure. [10]

DAPHNE supports parallelism over hardware devices with the built-in vectorized ex-

ecution engine [10]. Operations on a matrix are compiled into operator pipelines. The

operator pipeline forms a vectorized task with its input data, the output, and a combine

method. The inputs are neighboring row partitions of the matrix. Vectorized execution

then appends tasks to queues executed by CPU workers, with a task being the scheduling

unit. An illustration of the process can be found in [10], Figure 3. Not yet supported are

parallel loop constructs [10].
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Users may interact with DAPHNE via the Python API DaphneLIB or through a

domain-specific language (DSL) similar to Python NumPy, or R. DaphneDSL [38] supports

built-in operations and functions conditional flow control and abstract data types. A text

file with a DSL program (e.g., script.daphne) is parsed into DaphneIR using ANTLR4 [1],

for which a DSL grammar file and built-in methods are available [11]. Both were important

sources of information because, at the time of writing this report, the DaphneDSL code

documentation was only finished to a certain degree [12]. .



4
Methodology

The first objective is to find benchmarks to be implemented in DaphneDSL. Three exclusion

and three selection criteria are defined to choose from the benchmark variety covered in

section 2. Based on those, the benchmarks to rewrite are determined in a two-stage process.

This section elaborates on those criteria before describing the two stages. Subsequently,

current DaphneDSL limitations are presented. The last part of this section is dedicated to

the implementation as well as details about the selected benchmarks.

4.1 Criteria

One of the most important requirements when considering the implementability of a certain

benchmark is detailed knowledge about the performed operations. In order to comprehend

the program parts of a benchmark, it is necessary to have access to the source code. Another

important aspect is the variety of topics addressed by benchmarks. The fact that DAPHNE

is still an ongoing project leads to a focus on testing simple tasks rather than full applications.

More precisely, benchmarks not related to basic operation or functionality are discarded. A

further exclusion argument, the reference implementation is building on third-party software

like Hadoop or TensorFlow, seeing that those are not available in DaphneDSL.

Regarding the selection of benchmarks, it is desirable to implement those having some

convergence, thus stressing two domains instead of one. Another criterion is based on the

fact that DAPHNE aims to support IDA pipelines. Given the importance of simple matrix

operations in many algorithms, the performance of such functionality in DAPHNE is of high

interest. In other words, they are chosen first. At last, to ensure some variety, benchmarks

testing not covered features are favored.

To summarize, the benchmark evaluation criteria are:

1. Exclusive: The Source code is not freely available without license agreement.

2. Exclusive: The benchmark is not testing basic operations or functionality.

3. Exclusive: The benchmark is building on third-party software.

4. Selecting: The benchmark combines two or more benchmarking domains.
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5. Selecting: Favoring benchmarks testing operations common in linear algebra.

6. Selecting: The benchmark covers a feature not considered so far.

4.2 First Stage: Excluding Benchmarks

The exclusion stage starts with ruling out those violating the first criteria. This holds for

TPC BigBench and SPEC. Consequently, the benchmarks provided by any of those suites

are not considered for implementation.

The next step is to focus on those testing a basic operation or functionality, thus

applying criterion two. As mentioned, micro benchmarks are meant to test some basic

functionality. As shown in Table 2.1, UEABS and MLPerf Training measure performance

with applications or rather complex ML tasks and are therefore excluded. In addition, all

but the micro benchmarks from HiBench and BigDataBench are not taken into account

because they are not dedicated to a basic operation.

Many suites use a third-party software, notably those with a certain ML purpose, such

as MLPerf, BigDataBench, and HiBench. However, those were already excluded from fur-

ther consideration as not testing basic operations. Consequently, this criterion is primarily

satisfied. One exception is the micro benchmarks from HiBench and BigDataBench. Hi-

Bench, for instance, is using Hadoop or Spark. Since part of the Hadoop source code was

untraceable, the micro benchmarks from HiBench are not considered any further.

In the case of BigDataBench, owing to the dependence on TensorFlow or Hive, all but

those using MPI are neglected. In addition, the Connected Component benchmark is left

out as it relies on the parallel boost graph library4. Lastly, the DeepBench suite is discarded

as well. Even though testing simple operations like GEMM, the benchmarks are built on

vendor-supplied libraries, thus violating the not-third-party criterion.

The result of the first process stage is a list with benchmarks displayed in Table 4.1

together with some information about the language and the total number of lines of code.

It is worthwhile noting that this is a summary, with the LOC being the sum of all necessary

scripts. The extended list, including references to the source code, can be found in Table

A.1.

4.3 Second Stage: Selecting Benchmarks

By applying criteria four to six, the benchmarks to rewrite are selected. Regarding the

fourth, HPL-AI is the only remaining benchmark with convergence and hence is the first

to be rewritten. Speaking of criterion five, STREAM tests scalar multiplication as well as

matrix additions while PTRANS tests parallel matrix transposing, both building blocks for

many algorithms. Even though having comparatively high numbers of lines of codes, those

two benchmarks are chosen too. Considering criterion six, the decision was in a fervor of

Sort. In contrast to other benchmarks, Sort is working on strings. Testing this DaphneDSL

4
https://github.com/BenchCouncil/BigDataBench V5.0 BigData MicroBenchmark/tree/main/MPI/

MPI Connect/parallel-bgl-0.7.0

https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/tree/main/MPI/MPI_Connect/parallel-bgl-0.7.0
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/tree/main/MPI/MPI_Connect/parallel-bgl-0.7.0
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Table 4.1: List of benchmarks after exclusion stage.

Suite Benchmark Domain Language LOC

HPL-AI Solve Linear System HPC, ML C 744

BigDataBench Sort BD C++ 856

BigDataBench Grep BD C++ 488

BigDataBench WordCount BD C++ 513

BigDataBench MD5 BD C++ 614

BigDataBench RandSample BD C++ 523

BigDataBench FFT BD C, C++ 209

HPC Challenge DGEMM HPC C 157

HPC Challenge STREAM HPC C 714

HPC Challenge PTRANS HPC C 1612

HPC Challenge FFT HPC C 1259

HPC Challenge RandomAccess HPC C 1861

HPC Challenge HPL HPC C 1923

HPCG conjugate-gradient HPC C 1470

Note: LOC is the sum of lines of code. See Table A.1 for the LOC count breakdown.

feature is not covered so far. Interestingly, Fast Fourier Transformation (FFT) is provided

by multiple suites and is selected likewise.

Additionally, a benchmark is included, which is not part of the list. Computing the

Mandelbrot set is a frequently used performance test within the High Performance Comput-

ing group of the University of Basel. Implementing this has the further advantage of testing

the handling of complex numbers in DaphneDSL.

Altogether, the benchmarks considered for implementation in DaphneDSL are HPL-

AI, STREAM, PTRANS, FFT, Sort, and Mandelbrot. A hitherto ignored aspect is the

available functionality in DaphneDSL itself. Given that DAPHNE is an ongoing project,

limitations and possible flaws must be considered.

4.4 Issues with DaphneDSL

The benchmark implementation revealed several issues, which are categorized into two

groups. The first includes commands that should work but did not (i.e., bugs). The second

covers missing features, meaning functionality that would simplify working with DaphneDSL

but is not available yet (i.e, nice to have). For all cases, issues have been opened on the

GitHub repository of the DAPHNE prototype [40]. All opened issues are listed in Table

A.2 together with their category and the current status. A minimal working example to

reproduce each issue can be found in section C.1.1. Section C.1.2 provides code fragments

with ideas and suggestions on how a nice to have functionality could be implemented. This

report only covers newly opened issues related to this thesis. Not surprisingly, there are

many more for an ongoing project like DAPHNE. In fact, when writing this report, there is
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a total of 119 open issues.

Among the missing features is a function to return the object type. In particular,

when working with casting, it is helpful to determine the type. Hence, a typeof() func-

tion would simplify coding and debugging. Code C.15 illustrates how this could work in

DaphneDSL based on know R functionality. Another example is that of matrix literals.

In the early stages of this project, DaphneDSL did not support setting up matrices with

predefined non-sequential values. This was a tremendous limitation, notably when working

with linear systems during the implementation of HPL-AI, as a given matrix had to be

combined element-wise (Code C.13). This is supported by now and can be used as shown

in Code C.14. Even though the non-availability of certain methods had increased di�culty,

bugs had much more significant implications.

On the one hand, some flaws could be resolved in little time by the DAPHNE developer

team, like the ’rbind row check’ bug displayed in Code C.1 where rbind() was wrongly

verifying the number of rows instead of the number of columns when combining two matrices.

Additionally, certain bugs could be circumvented, like the parsing of n � 1 (Code C.2) or

the proper indexing in loops (Code C.5).

On the other hand, certain issues had a direct e↵ect on benchmark implementabil-

ity. Above all, the ’shape change in loops’ issue is shown in Code C.9. The bug prevents

changing matrices inside a loop. Hence, modifying an element of a matrix with variable

indices is not feasible in DaphneDSL. Furthermore, combining a changed entry with the un-

changed array is currently not supported. In consequence, implementing benchmarks based

on iterative updating array elements is unachievable. Such processes are part of all selected

benchmarks, meaning the presence of this issue is aggravating or rendering impossible an

implementation. Later is true for FFT. Moreover, there is an additional limitation directly

impacting a selected benchmark. Currently, DaphneDSL does not support strings; thus,

Sort is not implementable. Consequently, the list of rewritten benchmarks is reduced to

HPL-AI, STREAM, PTRANS, and Mandelbrot.

4.5 Implementation

The DaphneDSL benchmarks use several metrics to evaluate execution performance. In

addition, those are collected for the distinct elements performed by each application. Table

4.2 lists the program parts for each benchmark together with the used metric.

4.5.1 HPL-AI

The HPL-AI mixed precision benchmark [21] uses LU decomposition to solve a linear system

Ax = b with A and b being of size n ⇥ n and n ⇥ 1, respectively. The unique feature is

that solving is done in single precision. A and b in double precision are cast to 32-bit

representations before executing the solving procedure. Subsequently, the single precision

solution vector x32 is converted back to 64-bit. The resulting x64 is not the exact solution

to the initial double precision problem. To reinstate accuracy, HPL-AI uses the Generalized

Minimal Residual Method [7]. GMRES solves Ax = b based on iterative adapting the initial
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guess, here the x64.

GMRES and LU-decomposition can not be adapted in DaphneDSL as the methods

are based on iterative computation. Nonetheless, HPL-AI was implemented. The LU-

decomposition was simply replaced by solve() from DaphneDSL, whereas GRMES was

substituted with a di↵erent procedure. By default, the reference implementation uses a

strictly diagonally dominant symmetric matrix A. In such a case, the system can be se-

quentially solved with Gauss-Seidel [8] based on an initial guess of x. Given a linear system

Ax = b, A can be decomposed as A = L +D + U with L the lower triangular part, D the

diagonal, and U the upper triangular part. Then it holds that

(L+D)xk+1 = b� Uxk (4.1)

) xk+1 = (L+D)�1(b� Uxk), (4.2)

with (L + D)�1 being the inverse of (L + D) and k the number of the iteration. It is

noteworthy that Gauss-Seidel is still based on iterations but, in contrast to GMRES, does

not update individual entries of x but rather x as a whole in each update cycle. This is

feasible in DaphneDSL. As no inverse function is available in DaphneDSL, solve() is use

to get xk+1 in equation 4.1.

The entire script is displayed in Code C.17. Apart from the di↵erence regarding the

last part, the implementation is in accordance with the reference benchmark. However,

DaphneDSL uses matrix functionality, unlike in the original code, where the computations

are conducted by means of loops over array elements. Similar to the reference implementa-

tion, the DaphneDSL benchmark measures performance via execution time. Two arguments

are passed to the benchmark: the linear system’s size n and the maximum number of iter-

ations allowed for Gauss-Seidel max iter.

4.5.2 STREAM

STREAM is executing four basic vector operations. Copy, scale, add, and so-called triad,

a combination of scale and add. The uniqueness is the way those are performed. On each

call, the vectors a, b and c are used in all four operations, meaning the next calculation is

based on the results from the first. The operations are

c = a copy,

b = c ⇤ scalar scale,

c = a+ b add,

a = b+ c ⇤ scalar triad,

with a=1, b=2, c=0 and scalar=0.42 as initial values [20]. The four operations are exe-

cuted multiple times, each depending on the result of the previous iteration. Performance

is measured with the average, minimum and maximum execution time calculated over all

repetitions, not including the first. Furthermore, the throughput of each operation is mea-

sured based on the array size and the minimal execution time. The array size is determined

by the number of elements in each vector multiplied by eight, the size of a 64-bit float.
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The implementation can be found in Code C.18. The arguments are the desired number of

iterations ntimes together with array elements, the size of a,b and c.

In the same way as the reference implementation, the DaphneDSL version contains

a verification. Given the fact that the result is deterministic on the number of iterations,

the final values can be tested for correctness. Equal to HPL-AI, STREAM implementation

is based on matrix operations other than the reference benchmark. This distinction might

question comparability.

4.5.3 Mandelbrot

The Mandelbrot set [43] is defined as the points C in the complex plane, for which the

recursively defined series

zk+1 = z2k + C (4.3)

with z0 = 0 is bounded under a maximal number of iterations k max. The visualization of

the Mandelbrot set in Figure 4.1 is based on coloring the pixels in the complex plane, where

the x-axis represents the real number and the y-axis the imaginary unit of the complex

number C. The colors symbolize how quickly equation 4.3 diverges. An integer value called

count [43] represents the largest k such that |zk| <= 2. Di↵erent colors represent di↵erent

counts, where the black area shows complex numbers remaining below the limit for a given

k max.

Speaking of the reference benchmark [27], Mandelbrot is very interesting in relation

to scheduling as each pixel in the complex plane is checked for going beyond the limit.

As done for each pixel, the calculation for a point is stopped on reaching the boundary.

However, iterations on matrix elements are not possible in DaphneDSL. In addition, there

Figure 4.1: Visualization of the Mandelbrot set for 3500⇥3500 pixel complex plane with
real numbers x=[-2.25, +1.25], imaginary unit y=[-1.75, +1.75] and maximum number of
iterations k=2’000. Counts computed with DaphneDSL, visualization with Python.
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is no current way to represent complex numbers. Consequently, the implementation is very

di↵erent from the reference benchmark.

Firstly, the complex plane has to be specified with two matrices, one for the real part

and the second for the imaginary unit. The real part matrix, for instance, has the same

value on each row of one column representing the x-axis. Combined with the y-axis, those

two matrices represent a pixel in the complex plane, and complex number operations are

defined accordingly. Secondly, as there is no way to update elements of an array in a loop,

all calculations are based on matrix operations and not on pixel-wise iterations. Lastly, for

the same reason, all pixels must be evaluated in each iteration. In fact, that represents a

violation of the underlying idea of the Mandelbrot benchmark, as a calculation for a pixel

is not stopped when the complex number exceeds the limit.

Despite those shortcomings, Mandelbrot is implemented in DaphneDSL (Code C.19).

The script takes two arguments. The number of Pixels n in each direction and a file f set

where the matrix with the calculated counts is written to. The axis limits (x=[-2.25, +1.25],

y=[-1.75, +1.75]) and the maximum number of iterations (2’000) are set as to match the

reference implementation. For performance measurement, the execution time is reported.

Verification is done by means of visualizing the Mandelbrot set with Python based on the

exported counts.

4.5.4 PTRANS

The writing of this benchmark is straightforward, given that elements of arrays are un-

changeable within loops. This limitation leaves no alternative as to use the provided trans-

pose function. In other words, the essential part of PTRANS in DaphneDSL narrows down

to one line. This contrasts the reference benchmark with more than 1’600 lines of code

Table 4.2: DaphneDSL benchmarks: The program parts together with the reported metric.

Benchmark Program part Metric

HPL-AI

Initialization Execution time (s)

Convert to single Execution time (s)

Solve single Execution time (s)

Convert to double Execution time (s)

Gauss-Seidel Execution time (s); Iterations needed

STREAM

Initialization Execution time (s)

Copy n times Avg, min, max execution time (s); Throughput (GB/s)

Scale n times Avg, min, max execution time (s); Throughput (GB/s)

Add n times Avg, min, max execution time (s); Throughput (GB/s)

Triad n times Avg, min, max execution time (s); Throughput (GB/s)

Mandelbrot
Initialization Execution time (s)

Iteration Execution time (s)

PTRANS
Initialization Execution time (s)

Iteration Execution time (s)
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(Table 4.1). The PTRANS routine in DaphneDSL is provided in Code C.20. The size of

the square matrix to be transposed can be set with the argument n. In order to guarantee

the correct result, the column sums of the input array are compared to the row sums of the

resulting matrix. Execution time is measured and reported as a performance metric.



5
Experiments and Results

The performance evaluation of the DaphneDSL implementation against the reference bench-

mark is conducted by a design of factorial experiments. However, executing the reference

implementation of PTRANS and HPL-AI on the computing system was impossible. There-

fore, those two are not compared with their corresponding DaphneDSL benchmark.

5.1 Experiments

5.1.1 Scheduling Techniques

DAPHNE supports twelve di↵erent task partitioning schemes. A brief description is pre-

sented below. The full details, including formulas to determine the chuck size, are available

in [14].

• Block Static (STATIC): Straightforward technique dividing tasks into chunks of equal

size.

• Modified static (MSTATIC): Similar to STATIC, but using 4 times the number of

chunks to divide tasks.

• Dynamic self-scheduling (SS): Chunk size is one task.

• Modified fixed-size chunk (MFSC): Modified version of fixed size self-scheduling (FSC).

FCS assumes to know execution time before execution. MFSC does not require this

profiling information [39].

• Guided self-scheduling (GSS): To balance execution among all units, GSS assigns

decreasing chunk sizes.

• Trapezoid self-scheduling (TSS): Similar to GSS assigning decreasing chunk sizes but

using a linear function to decrement chuck sizes.

• Factoring (FAC2): FAC assigns remaining loop iterations in batches of equally-sized

chunks. FAC2 is a modification only assigning half of the remaining iterations.
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• Trapezoid factoring self-scheduling(TFSS): Combines characteristics of FAC and TSS,

schedules loop iterations in batches of equally-sized chunks like FAC, and decreases

chunk size linearly like TSS.

• Fixed-increase self-scheduling (FISS): Using an increasing chuck size pattern.

• Variable-increase self-scheduling (VISS): A technique similar to FAC2 but increasing

chunk sizes instead of decreasing them.

• Performance loop-based self-scheduling (PLS): The first part of a loop is scheduled

statically, whereas the second part uses GSS. The amount of iterations for static

scheduling is determined by PLS utilizing the static workload ratio, dividing the min-

imum by the maximum iteration execution time.

• Probabilistic self-scheduling (PSS): Scheduling of the number of iterations based on

remaining iterations and the number of processors expected to be available in the

future [39].

An illustrative list of chunk size patterns resulting from using di↵erent calculation tech-

niques can be found in [14], Table 2. All those partitioning schemes are representatives of

non-adaptive dynamic loop self-scheduling (DLS) techniques. They require certain informa-

tion before application execution. In contrast to adaptive scheduling, they do not adjust

scheduling decisions based on newly obtain information while executing [14]

5.1.2 Computing System

The performance evaluation is conducted on a small high-performance computing cluster at

the University of Basel, the miniHPC [31]. The cluster serves two purposes. First, to o↵er

students an instrument to achieve high-performance computations as part of teaching paral-

lel programming, and second, an experimental platform to conduct scientific investigations

in HPC. The miniHPC has 30 nodes of 4 di↵erent types. The experiments are executed on

22 computing nodes. A node has 2 Intel Xeon E5-2640 v4 CPUs. Each CPU o↵ers 10 cores,

64 GB RAM, and 25 MB level 3 cache.

5.1.3 Design of Factorial Experiments

The design of factorial experiments is presented in Table 5.1. The applications tested are

the four DaphneDSL implementations alongside two original benchmarks. The OpenMP

versions of Mandelbrot [27] and STREAM [36] are adapted to be useable with di↵erent

scheduling techniques, namely STATIC, SS and GSS. All 12 available run time partition

schemes were included in the experiments for the DAPHNE implementations. The scalar

coe�cient for STREAM is modified to match the DaphneDSL implementation and to be

equal to the one used in the current version of STREAM [20]. The reference applications

are compiled using Intel compiler 2021.4.0.

The parameters play an important part, notably the problem size, which is the number

of array elements used for each benchmark. One criterion was to use enough entries to

exceed the available cache size. This is to assure main memory has to be used rather
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Table 5.1: Design of factorial experiments resulting in a total of 7’380 experiments.

Factor Value Properties

Application

DaphneDSL
STREAM

array elements = 2500000 | 30M | 130M
ntimes = 10
LOC: 263

Reference STREAM
N = 2500000 | 30M | 130M
NTIMES = 10
LOC: 586

DaphneDSL
Mandelbrot

n = 500⇥ 500 | 30500⇥ 30500
n iter = 20000
LOC: 141

Reference Mandelbrot
Pixels = 500⇥ 500 | 30500⇥ 30500
max iterations/pixel = 20000
LOC: 317

DaphneDSL HPL-AI
n = 500⇥ 500 | 30500⇥ 30500
max iter = n
LOC: 221

DaphneDSL PTRANS
n = 500⇥ 500 | 30500⇥ 30500
LOC: 104

Scheduling techniques
Non-adaptive
dynamic loop
self-scheduling

All: STATIC, SS, GSS
Additional DAPHNE: MSTATIC,
MFSC, TSS, FAC2, TFSS,
FISS, VISS, PLS, PSS

Metrics
Program part
performance

Execution time (s)

Computing system 1 miniHPC node
2 CPU Xeon E5-2640v4, 2.4GHz; 10
cores, 64GB RAM, 25 MB L3 cache each

Computing resources Cores 4, 8, 20

Validity Repetitions 20

than only the fast, accessible cache, in other words, to guarantee cache misses. Given the

fact that one miniHPC node provides 50 MB of level three cache, the dimensions of the

matrices in Mandelbrot, PTRANS and HPL-AI were set to 30500⇥ 30500, with eight bytes

per entry, which is equal to an array size of roughly 93 MB. Alongside this ”large” problem,

a ”small” problem size of 500 ⇥ 500 is part of the factorial properties. The idea is to

analyze the behaviour when using arrays fitting into the cache. Regarding STREAM, the

recommendation is to use data structured at least four times as large as the available cache

([36], code comments). Moreover, to meet the time calibration output of 20 clock ticks,

the array size must be half of a chip’s throughput capacity during 200 milliseconds. The

suggestion is to use matrices with 1 GB, or 128M entries [36]. Therefore, vectors with sizes

30M and 130M are used for STREAM. The small problem size is set to 250’000.

The experimental runs are conducted using 4, 8 and 20 cores. In total, there are 369

factorial combinations. In order to increase the validity of the results, each experiment is

repeated 20 times leading to an overall number of 7’380. For each experiment, the execution

time in seconds of the corresponding program part (see Table 4.2) serves as a performance

evaluation metric.
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5.2 Results

Only two reference benchmarks were executable on miniHPC. Hence, solely Mandelbrot and

STREAM can be evaluated against their reference implementation. Moreover, an overall

assessment of the DaphneDSL implementations was part of the analysis.

5.2.1 DaphneDSL vs. Reference

5.2.1.1 Mandelbrot

The results for DaphneDSL and the reference benchmark are shown in Figure 5.1. Displayed

is the total execution time, including all program parts (i.e., initialization and iteration) for

both implementations and various experiment settings. From the di↵erent scales of the

y-axis, it is evident that the newly written DaphneDSL applications are outperformed by

the original. This result is no surprise, since the DaphneDSL implementation performs all

iterations, whereas the reference benchmark stops once a complex pixel passes the stability

bound.

Figure 5.1: Mandelbrot benchmark: Total (i.e., including all program parts) execution
time comparison between DaphneDSL implementation (left) and the original one (right) for
di↵erent problem sizes. The maximum number of iterations is set to 2’000 in both cases.
Colors according to the number of CPUs used. The bar height represents the median of 20
repetitions. The error is the 95% confidence intervals computed with bootstrapping. Plots
created with Pythons Seaborn and Matplotlib libraries.

Controlling for this unavoidable dissimilarity is possible by comparing the number

of actually performed iterations. The output of DaphneDSL Mandelbrot produces a ma-

trix containing the counts, the number of iterations before a complex number exceeds the
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limit. The counts plus 1 equals the number of iterations for each pixel performed by the

reference implementation. Comparing the counts with the total number of computations of

the DaphneDSL code, gives an understanding of the amount of unnecessary loop executions

done by DAPHNE. The ratio of needed and maximum number of iterations for both problem

sizes is roughly 13%. In other words, 87% of DAPHNE loop executions are dispensable.

However, even when naively correcting the execution time of DaphneDSL Mandelbrot

for needless iterations, the values are still higher than the reference implementation. Ad-

mittedly, this is not a valid procedure as the execution time is driven by more than just

a pure number of iterations (e.g., cache misses, scheduling). Nevertheless, it decreases the

order of magnitude the reference benchmark outperforms the DaphneDSL implementation.

In conclusion, our implementation of Mandelbrot appears less performing than the reference

implementation. However, the comparability of those two is not given.

5.2.1.2 STREAM

The outcome of the experiments is presented by employing a heatmap and can be seen in

Figure 5.2. The average execution time of the STREAM iterations with its four operations is

displayed. The number in the squares is the median over the 20 experiments for di↵erent fac-

tor combinations. From the blue-colored tiles, it can be seen that DaphneDSL outperforms

the reference implementation, at least for add, copy, and scale. Conversely, the reference is

faster for triad, especially in combination with dynamic self scheduling (SS). Interestingly,

DaphneDSL STREAM becomes slower with an increasing number of CPUs when using SS.

This is observed for the more extensive array with 130M entries (Figure B.4). In fact, not

all experiments finished in the allowed amount of time. In particular, the combination of

DaphneDSL, dynamic self scheduling, and 20 CPUs resulted in an execution time exceeding

the limit of three hours, leading to cancellation by the batch scheduling system on miniHPC.

A reason is presented in Subsection 5.2.2.

To return to the subject. STREAM shows inconclusive results. DaphneDSL has, in

most cases, a far better performance regarding execution time than the reference implemen-

tation. For copy, scale, and add, vectorized execution by DAPHNE is faster than parallel

loop processing of OpenMP. The opposite is observed in the case of triad. Interestingly, the

execution time for the reference benchmark is similar for all program parts. Therefore, the

change in performance ranking is related to DAPHNE. The STREAM results for the small

problem size in Figure B.2 show the same pattern, leading to the conclusion that this is not

caused by an increased number of cache misses, as the small problem size fits into the cache.

Moreover, this behaviour is independent of the used scheduling technique. Another expla-

nation, the used function in DaphneDSL is not vectorized, meaning not executed parallel. A

known example is solve(). Given that add and scale are fast, there is no reason to assume

that triad is not executed in a vectorized manner. Thus, the cause remains unknown. The

not conclusive results underline the statement that the comparability of the DaphneDSL

implementation and the reference benchmark is questionable. Both have distinct ways to

enable parallelism; hence a straightforward interpretation of the findings is inappropriate.
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Figure 5.2: STREAM benchmark with array size 30Mx1: Number in squares is the median
over 20 repetitions of the average execution time in seconds when executing STREAM with
NTIMES = 10. Each row represents one STREAM operation (e.g., add, triad) for either
the DaphneDSL or the reference implementation together with the CPUs used. Coloring
according to execution time. Boxes without a number represent non-existing factor combi-
nations. Plots created with Pythons Seaborn and Matplotlib libraries.

5.2.2 General DAPHNE Performance

To complement the result section, the performance of the four DaphneDSL benchmarks is

analyzed further. The heatmaps with execution times for all factor combinations are to find

in Figures B.3, B.4, B.5 and B.6. An illustrative example is depicted in Figure 5.3. Two

points need to be emphasized. First, the execution time of DaphneDSL seems not driven by

the number of CPUs used. The only reason for such behaviour is the small share of parallel

execution time. In other words, the sequential time, as well as the overhead of scheduling,

dominates the execution time resulting in no gain from using additional processing units; on

the contrary, the performance has deteriorated. That is true for HPL-AI, where solving the
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system at single precision and Gauss-Seidel use DaphneDSLs’ solve(), a function known

to be not vectorized. Second, self scheduling is performing worse the more CPUs are used.

This observation is not new and has been encountered running STREAM. SS has the highest

scheduling overhead of the available techniques [14]. With more CPUs, more scheduling is

needed; consequently, the large overhead of self scheduling negatively a↵ects performance.

Figure 5.3: DaphneDSL small problem size: Total execution time including all program
parts of HPL-AI (top) and PTRANS (bottom) for di↵erent CPUs. Colors according to the
scheduling technique. The bar height represents the median of 20 repetitions. The error
is the 95% confidence intervals computed with bootstrapping. Plots created with Pythons
Seaborn and Matplotlib libraries.



6
Conclusion

The main contribution of this thesis is the implementation of benchmarks in DaphneDSL.

Referring back to the question from the introduction, the revealed issues and limitations

make it di�cult or, in some instances, impossible to rewrite a benchmark application in

DaphneDSL per a reference implementation. Furthermore, the inconclusive results for per-

formance evaluation show that a direct comparison with the reference benchmark is at least

questionable. The reason is the distinction in parallelism. DaphneDSL is intended to work

with matrices using vectorized execution, whereas all considered benchmarks rely on parallel

loop execution. Even in the absence of all issues, this circumstance prevents a comparable

implementation of a reference benchmark with DaphneDSL.

6.1 Future Work

Further work is certainly required the moment some of the issues are resolved. Implementing

Mandelbrot based on loops allows for verification that DaphneDSL is indeed slower than

the reference benchmark, at least in a single CPU experiment without parallelism. So far,

the results are deteriorated by the number of unnecessary iterations executed by the new

implementation. At any rate, the Mandelbrot implementation has to be rewritten once

parallel loop processing is supported in DAPHNE.

A more exciting direction for future work is the consideration of more complex reference

benchmarks. This thesis has focused on applications testing basic tasks. The next logical

step is to drop this criterion. As DAPHNE aims to provide means for IDA pipelines, candi-

dates are the ML topics from HiBench or the component benchmarks from BigDataBench.
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A.1 Detailed Benchmark List

Table A.1: Benchmarks and their main scripts

Suite Benchmark Domain Metrics Scripts LOC

HPL-AI

Solving

Linear

System

HPC

ML

run time

GFLOPs

hpl-ai.c 134

matgen.c 94

convert.c 26

sgetrf nopiv.c 68

blas.c 214

gmres.c 208

BigData

Bench
Sort BD run time

gen random text.cpp2 214

mpi sort.cpp

ExternSort.h

101

541

BigData

Bench
Grep BD run time

gen random text.cpp2 214

mpi grep.cpp 274

BigData

Bench
WordCount BD run time

gen random text.cpp2 214

mpi wordcount.cpp 299

BigData

Bench
MD5 BD run time

gen random text.cpp2 214

mpi md5.cpp

md5.h

307

93

BigData

Bench
RandSample BD run time

gen random text.cpp2 214

mpi randsample.cpp 309

Continued on next page

https://bitbucket.org/icl/hpl-ai/src/main/hpl-ai.c
https://bitbucket.org/icl/hpl-ai/src/main/matgen.c
https://bitbucket.org/icl/hpl-ai/src/main/convert.c
https://bitbucket.org/icl/hpl-ai/src/main/sgetrf_nopiv.c
https://bitbucket.org/icl/hpl-ai/src/main/blas.c
https://bitbucket.org/icl/hpl-ai/src/main/gmres.c
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/tree/main/MPI/MPI_Sort
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/BigDataGeneratorSuite/Text_datagen/gen_random_text.cpp
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/MPI_Sort/mpi_sort.cpp
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/MPI_Sort/ExternSort.h
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/tree/main/MPI/MPI_Grep
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/BigDataGeneratorSuite/Text_datagen/gen_random_text.cpp
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/MPI_Grep/mpi_grep.cpp
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/tree/main/MPI/MPI_WordCount
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/BigDataGeneratorSuite/Text_datagen/gen_random_text.cpp
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/MPI_WordCount/mpi_wordcount.cpp
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/tree/main/MPI/MPI_MD5
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/BigDataGeneratorSuite/Text_datagen/gen_random_text.cpp
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/MPI_MD5/mpi-md5.cpp
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/MPI_MD5/md5.h
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/tree/main/MPI/mpiRandSample
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/BigDataGeneratorSuite/Text_datagen/gen_random_text.cpp
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/mpiRandSample/mpi-randsample.cpp
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Table A.1: Benchmarks and their main scripts (Continued)

Suite Benchmark Domain Metrics Scripts LOC

BigData

Bench
FFT BD run time

generate-matrix-float.c

generate-matrix-int.c

change-tripleMatrix-T.c

37

37

52

mpiFFT.ccp 83

HPC

Challenge
DGEMM1 HPC

run time

GFLOPs
tstdgemm.c 157

HPC

Challenge
PTRANS1 HPC

run time

GB/s

pdmatgen.c 602

pdtrans.c 925

pdmatcomp.c 85

HPC

Challenge

Random

Access1
HPC

G updates

per second

MPIRandomAccess.c 906

time bound.c 546

buckets.c

pool.c

heap.c

131

83

195

HPC

Challenge
FFT1 HPC

run time

GFLOPs

mpi↵t.c 252

wrapmpi↵tw.c 147

↵t235.c 860

HPC

Challenge
STREAM1 HPC

run time

GB/s
stream.c 714

HPC

Challenge
HPL1 HPC

run time

GFLOPs

HPL pddriver.c 301

HPL pdinfo.c.c 1167

HPL pdtest.c 455

HPCG
Conjugate-

gradient
HPC

run time

FLOP count

GFLOPs

GB/s

main.cpp 380

GenerateProblem ref.cpp

GenerateCoarseProblem.cpp

219

111

ComputeSPMV ref.cpp 72

ComputeMG ref.cpp 64

ComputeSYMGS ref.cpp 104

OptimizeProblem.cpp 107

ReportResults.cpp 413

1
Called with https://github.com/icl-utk-edu/hpcc/blob/main/src/hpcc.c

2
Not including the list of 7’762 words: lda wiki1w.voca

Note: LOC includes main scripts and header files containing methods. Shell code for execution

and files providing data structures are omitted.

Source: [6, 18, 20, 22]

https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/tree/main/MPI/mpiFFT
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/mpiFFT/genData-Matrix/generate-matrix-float.c
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/mpiFFT/genData-Matrix/generate-matrix-int.c
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/mpiFFT/genData-Matrix/change-tripleMatrix-T.c
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/mpiFFT/mpiFFT.cpp
https://github.com/icl-utk-edu/hpcc/blob/main/DGEMM/tstdgemm.c
https://github.com/icl-utk-edu/hpcc/blob/main/PTRANS/pdmatgen.c
https://github.com/icl-utk-edu/hpcc/blob/main/PTRANS/pdtrans.c
https://github.com/icl-utk-edu/hpcc/blob/main/PTRANS/pdmatcmp.c
https://github.com/icl-utk-edu/hpcc/blob/main/RandomAccess/MPIRandomAccess.c
https://github.com/icl-utk-edu/hpcc/blob/main/RandomAccess/time_bound.c
https://github.com/icl-utk-edu/hpcc/blob/main/RandomAccess/buckets.c
https://github.com/icl-utk-edu/hpcc/blob/main/RandomAccess/pool.c
https://github.com/icl-utk-edu/hpcc/blob/main/RandomAccess/heap.c
https://github.com/icl-utk-edu/hpcc/blob/main/FFT/mpifft.c
https://github.com/icl-utk-edu/hpcc/blob/main/FFT/wrapmpifftw.c
https://github.com/icl-utk-edu/hpcc/blob/main/FFT/fft235.c
https://github.com/icl-utk-edu/hpcc/blob/main/STREAM/stream.c
https://github.com/icl-utk-edu/hpcc/blob/main/hpl/testing/ptest/HPL_pddriver.c
https://github.com/icl-utk-edu/hpcc/blob/main/hpl/testing/ptest/HPL_pdinfo.c
https://github.com/icl-utk-edu/hpcc/blob/main/hpl/testing/ptest/HPL_pdtest.c
https://github.com/hpcg-benchmark/hpcg/blob/master/src/main.cpp
https://github.com/hpcg-benchmark/hpcg/blob/master/src/GenerateProblem_ref.cpp
%20https://github.com/hpcg-benchmark/hpcg/blob/master/src/GenerateCoarseProblem.cpp
https://github.com/hpcg-benchmark/hpcg/blob/master/src/ComputeSPMV_ref.cpp
https://github.com/hpcg-benchmark/hpcg/blob/master/src/ComputeMG_ref.cpp
https://github.com/hpcg-benchmark/hpcg/blob/master/src/ComputeSYMGS_ref.cpp
https://github.com/hpcg-benchmark/hpcg/blob/master/src/OptimizeProblem.cpp
https://github.com/hpcg-benchmark/hpcg/blob/master/src/ReportResults.cpp
https://github.com/icl-utk-edu/hpcc/blob/main/src/hpcc.c
https://github.com/BenchCouncil/BigDataBench_V5.0_BigData_MicroBenchmark/blob/main/MPI/BigDataGeneratorSuite/Text_datagen/lda_wiki1w/lda_wiki1w.voca
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A.2 Issue List

Table A.2: List of DaphneDSL issues.

GitHub Issue Description MWE Type Status

#350 Rbind row check
rbind() checking number of
rows instead of columns

C.1 Bug Closed

#186 Parsing n� 1
Parsing only works if there is
a space after the �, i.e., n� 1

C.2 Bug Open

#351
Printing with
variables

Printing with calculated
variables behaving di↵erently
than with assigned variables

C.3 Bug Open

#352
Integer matrix
multiplication

Integer matrix multiplication
not working

C.4 Bug
Pull
request

#353 Right indexing

Right indexing with variables
in loops is di↵erent from
outside and is not working in
functions

C.5 Bug Open

#354 Left indexing
Left indexing with variables in
loops is not working properly

C.6 Bug Open

#355
Return from
nrow()

Retrun value from nrow() not
usable in operation

C.7 Bug Open

#356
Type casting
matrix

Type casting of matrices not
working

C.8 Bug Closed

#371
Shape change in
loops

Combining matrices or
changing matrix elements in
loops is not possible

C.9 Bug Open

#393
Built-in functions
sum() and
mean()

sum() works column and row
wise while mean() is only
working column wise

C.10 Bug Closed

#395
Built-in function
stddev()

stddev() works only column
wise

C.11 Bug Open

#396
Built-in function
var()

var() is not supported C.12 Bug Open

#357 typeof() function
Function returning the type
of an object

C.15
Nice to
have

Open

#358 Matrix literals
Simple way to create a not
random value matrix

C.13
Nice to
have

Closed

#203
Left scalar
multiplication

Multiplying a matrix with a
scalar from left is not
supported yet. Only right
multiplication is possible.

C.16
Nice to
have

Open

https://github.com/daphne-eu/daphne/issues/350
https://github.com/daphne-eu/daphne/issues/186
https://github.com/daphne-eu/daphne/issues/351
https://github.com/daphne-eu/daphne/issues/352
https://github.com/daphne-eu/daphne/issues/353
https://github.com/daphne-eu/daphne/issues/354
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B.1 Results

Figure B.1: Mandelbrot benchmark: Number in squares is the median over 20 repetitions
of the total execution time including all program parts in seconds when executing Mandel-
brot with 2’000 iterations. Each row represents a factor combination of benchmark, problem
size and used CPUs. Coloring according to execution time. Boxes without a number repre-
sent non existing factor combinations. Plots created with Pythons Seaborn and Matplotlib
libraries.
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Figure B.2: STREAM benchmark with array size 250’000x1: Number in squares is the me-
dian over 20 repetitions of the average execution time in seconds when executing STREAM
with NTIMES = 10. Each row represents one operation (e.g., add, triad) of STREAM for
either the DaphneDSL or the reference implementation together with the CPUs used. Col-
oring according to execution time. Boxes without a number represent non existing factor
combinations. Plots created with Pythons Seaborn and Matplotlib libraries.



Figures 35

Figure B.3: Mandelbrot benchmark: Number in squares is the median over 20 repetitions
of the total execution time in seconds including all program parts when executing with 2’000
iterations. Each row is a di↵erent factor combination of problem size and CPUs. Coloring
according to execution time. Plots created with Pythons Seaborn and Matplotlib libraries.

Figure B.4: STREAM benchmark: Number in squares is the median over 20 repetitions
of the average execution time in seconds including all program parts when executing with
NTIMES = 10. Each row is a di↵erent factor combination of problem size and CPUs.
Coloring according to execution time. Empty boxes experiment did not finish. Plots created
with Pythons Seaborn and Matplotlib libraries.
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Figure B.5: PTRANS benchmark: Number in squares is the median over 20 repetitions
of the total execution time in seconds including all program parts. Each row is a di↵erent
factor combination of problem size and CPUs. Coloring according to execution time. Plots
created with Pythons Seaborn and Matplotlib libraries.

Figure B.6: HPL-AI benchmark: Number in squares is the median over 20 repetitions
of the total execution time in seconds including all program parts. Each row is a di↵erent
factor combination of problem size and CPUs. Coloring according to execution time. Plots
created with Pythons Seaborn and Matplotlib libraries.
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Code

C.1 DaphneDSL Issues

C.1.1 Bugs

Code C.1: Example to generate rbind() row check bug.

1 # Rbind is checking for number of rows instead of columns

2 r = rand(1,5,0,1,1,-1);

3 r2 = rand(1,5,1,2,1,-1);

4 r3 = rand(1,5,2,3,1,-1);

5 print(r);

6 print(r2);

7 print(r3);

8 r = rbind(r,r2);

9 print(r);

10 r = rbind(r,r3);

11 # Output:

12 # Pass error: shape inference:

13 # inferNumColsFromArgs() requires that arguments have the same number

14 # of columns, but there is one with 2 and one with 1 columns

Code C.2: Example to generate parsing n� 1 bug.

1 # Parsing n-1

2 n=5;

3 print(n+1);

4 print(n - 1);

5 print(n- 1);

6 print(-1);

7 # not working

8 print(n-1);
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Code C.3: Example to generate printing with variables bug.

1 # Printing with variables from computation

2 # working

3 time_convert = 200;

4 print("Time spend: " + time_convert + " seconds");

5 # this is not working correctly:

6 time_convert = 200 - 20;

7 print("Time spend:" + time_convert + " seconds");

8 # Output

9 # Time spend: 200 seconds

10 # 180Time spend: seconds

Code C.4: Example to generate integer matrix multiplication bug.

1 # Integer matrix multiplication

2 # working with double

3 d1 = reshape(seq(1.0,5.0,1.0),1,5);

4 print(d1);

5 d2 = reshape(seq(1.0,5.0,1.0),5,1);

6 print(d2);

7 print(d1 @ d2);

8 # not working with integer

9 i1 = reshape(seq(1,5,1),1,5);

10 print(i1);

11 i2 = reshape(seq(1,5,1),5,1);

12 print(i2);

13 print(i1 @ i2);

Code C.5: Example for right indexing bug.

1 # Right indexing with variables is working differently in loops/function than

2 m = rand(5,5,0.0,1.0,1,-1);

3 # working

4 i = 1;

5 print(m[i,i]);

6 # not working

7 for (i in 0:2) {

8 print(m[i,i]);

9 }

10 # working, but not the most obvious way

11 for (i in 0:2) {

12 pos_i = seq(i,i,1);

13 print(pos_i);

14 print(m[pos_i,pos_i]);

15 }

16 # not working in functions at all

17 def print_mat(mat :matrix) {

18 print(mat[0,0]);

19 }

20 print_mat(m);
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Code C.6: Example for left indexing bug.

1 # Left indexing with variables is working differently in loops/functions

2 # all working

3 A = rand(5,5,0.0,1.0,1,-1);

4 print(A);

5 A[0,0] = fill(10.0,1,1);

6 print(A);

7 B = rand(1,5,1.0,2.0,1,-1);

8 print(B);

9 A[4,:] = B;

10 print(A);

11 i = 3;

12 C = rand(1,4,2.0,3.0,1,-1);

13 A[i,1:] = C;

14 print(A);

15 # in loops

16 for (i in 0:2) {

17 # working

18 A = rand(5,5,0.0,1.0,1,-1);

19 A[0,0] = fill(10.0,1,1);

20 # working

21 B = rand(1,5,1.0,2.0,1,-1);

22 A[4,:] = B;

23 # not working

24 C = rand(1,4,2.0,3.0,1,-1);

25 A[i,1:] = C;

26 # Output: JIT session error: Symbols not found:

27 # not working

28 A[fill(i,1,1),1:] = C;

29 # Output: Parser error: left indexing with positions

30 # as a data object is not supported (yet)

31 }

32 # Workarround, we use ’:’ operator (inclusive:exclusive)

33 # Hence i:(i + 1) is just index i.

34 # working in functions

35 def change_element(A : matrix<f64>, i : si64) {

36 C = rand(1,5,2.0,3.0,1,-1);

37 A[i:(i+1),:] = C;

38 return A;

39 }

40 A = rand(5,5,0.0,1.0,1,-1);

41 A = change_element(A,3);

42 print(A);

43 # In loops resulting in type/shape change issue #371

44 A = rand(5,5,0.0,1.0,1,-1);

45 for (i in 1:10) {

46 A[i:(i + 1),0:1] = fill(0.0,1,1);

47 # Output: Pass error:

48 # the type/shape of a variable must not be changed within the body of a for

-loop

49 }
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Code C.7: Example to generate return from nrow() bug.

1 # result from nrow() is not usable in operations

2 m = rand(5,5,0.0,1.0,1,-1);

3 n = nrow(m);

4 print(n); # working

5 print(n+1); # not working

6 # Output:

7 # error: ’daphne.ewAdd’ op operand #0 must be matrix of numeric

8 # or placeholder for an unknown type values or numeric, but got ’index’

9 # Workarround: Casting

10 n = as.si64(nrow(A));

Code C.8: Example to generate matrix type casting bug.

1 # Type casting matrices not working

2 A = rand(5,5,0.0,1.0,1,-1);

3 print(A);

4 B = as.matrix.f32(A);

5 # Output:

6 # JIT session error: Symbols not found:

7 #[ _cast__DenseMatrix_float__DenseMatrix_double ]

Code C.9: Example to generate shape change in loop error.

1 # shape change within loops

2 m = fill(0.0,1,1);

3 iter = 1;

4 while (iter < 11) {

5 e = fill(0.0,1,1);

6 m = rbind(m,e);

7 # Output: Pass error:

8 # the type/shape of a variable must not be changed within the body of a for

-loop

9 iter = iter + 1;

10 }

11 m = fill(0.0,1,1);

12 for (iter in 1:10) {

13 e = fill(0.0,1,1);

14 m = cbind(m,e);

15 # Output: Pass error:

16 # the type/shape of a variable must not be changed within the body of a for

-loop

17 }

18 A = rand(5,5,0.0,1.0,1,-1);

19 for (i in 1:10) {

20 A[i:(i + 1),0:1] = fill(0.0,1,1);

21 # Output: Pass error:

22 # the type/shape of a variable must not be changed within the body of a for

-loop

23 }
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24 # idea, use functions and then call with loops

25 def via_operator(row : si64, col : si64, A : matrix<f64>, value : f64) ->

matrix<f64> {

26 # Working with : operator

27 A[row:(row + 1),col:(col + 1)] = fill(value,1,1);

28 return A;

29 }

30 # This function was designed to not use left indexing at all but

31 # slicing into 4 blocks arround the value to replace

32 # and recombining it.

33 def via_bind(row : si64, col : si64, A : matrix<f64>, value : f64) -> matrix<

f64> {

34 n_row = nrow(A);

35 n_col = ncol(A);

36 # all left of it

37 A_l = A[:,0:col]; # its exclusive, 0:2 cols 0:1

38 # all right of it

39 A_r = A[:,(col + 1):n_col];

40 # all above

41 A_a = A[0:row,col:(col + 1)];

42 # all below

43 A_b = A[(row + 1):n_row,col:(col + 1)];

44 # value in 1x1

45 value = fill(value,1,1);

46 # putback together

47 val_col = rbind(A_a,value);

48 val_col = rbind(val_col, A_b);

49 B = cbind(A_l,val_col);

50 B = cbind(B, A_r);

51 return B;

52 }

53 # Function calls working

54 A = rand(5,5,0.0,1.0,1,-1);

55 B = via_bind(1,2,A,2.1);

56 C = via_operator(1,2,A,5.1);

57 print(A);

58 print(B);

59 print(C);

60 # but not possible in loops

61 for (i in 1:10) {

62 A = via_bind(1,2,A,2.1);

63 # Output: Pass error:

64 # the type/shape of a variable must not be changed within the body of a for

-loop

65 }

66 for (i in 1:10) {

67 A = via_operator(1,2,A,2.1);

68 # Output: Pass error:

69 # the type/shape of a variable must not be changed within the body of a for

-loop

70 }
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Code C.10: Example of sum() and only colum wise working mean().

1 # Built-in function issues

2 m = fill(2.0,5,2);

3 print(m);

4 # the built in functions sum and mean us arguments

5 # 0 = row wise, 1 = column wise, none = all

6 # sum working

7 print(sum(m)); # overall

8 print(sum(m, 0)); # row wise

9 print(sum(m, 1)); # column wise

10 # mean working

11 print(mean(m, 1)); # cloumn wise

12 # mean not working

13 print(mean(m)); # overall

14 print(mean(m, 0)); # row wise

Code C.11: Example for only working column wise stddev().

1 # Built-in function issues

2 m = fill(2.0,5,2);

3 print(m);

4 # the built in functions stddev us arguments

5 # 0 = row wise, 1 = column wise, none = all

6 # stddev working

7 print(stddev(m, 1)); # cloumn wise

8 # stddev not working

9 print(stddev(m, 0)); # row wise

10 print(stddev(m)); # overall

Code C.12: Example of not supported var() built-in function.

1 # Built-in function issues

2 m = fill(2.0,5,2);

3 print(m);

4 # the built in functions var is not working

5 # 0 = row wise, 1 = column wise, none = all

6 # var not working

7 print(var(m)); # overall

8 print(var(m, 1)); # cloumn wise

9 print(var(m, 0)); # row wise
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C.1.2 Nice To Have

Code C.13: Example how to generate a matrix literal.

1 # create a simple matrix (like Matlab) with some desired values

2 # or at least vector, as reshape exists (like in R)

3 # The goal is to create a magic 5x5 matrix

4 # matlab

5 m = [17 24 1 8 15, 23 57 14 16, ...];

6 # R

7 v = c(17 2 4 1 8 15 23 5 7 14 16 ...);

8 m = reshape(m,5,2)

9 # or with matrix command

10 m = matrix(17 2 4 1 8 15 23 5 7 14 16 ...);

11 # Workaround:

12 # Generate 5x5 matrix...

13 mat = fill(0.0,5,5);

14 # ... and set each element

15 mat[0,0] = fill(17.0,1,1);

16 mat[0,1] = fill(24.0,1,1);

17 mat[0,2] = fill(1.0,1,1);

18 mat[0,3] = fill(8.0,1,1);

19 mat[0,4] = fill(15.0,1,1);

20 mat[1,0] = fill(23.0,1,1);

21 mat[1,1] = fill(5.0,1,1);

22 mat[1,2] = fill(7.0,1,1);

23 mat[1,3] = fill(14.0,1,1);

24 mat[1,4] = fill(16.0,1,1);

25 mat[2,0] = fill(4.0,1,1);

26 mat[2,1] = fill(6.0,1,1);

27 mat[2,2] = fill(13.0,1,1);

28 mat[2,3] = fill(20.0,1,1);

29 mat[2,4] = fill(22.0,1,1);

30 mat[3,0] = fill(10.0,1,1);

31 mat[3,1] = fill(12.0,1,1);

32 mat[3,2] = fill(19.0,1,1);

33 mat[3,3] = fill(21.0,1,1);

34 mat[3,4] = fill(3.0,1,1);

35 mat[4,0] = fill(11.0,1,1);

36 mat[4,1] = fill(18.0,1,1);

37 mat[4,2] = fill(25.0,1,1);

38 mat[4,3] = fill(2.0,1,1);

39 mat[4,4] = fill(9.0,1,1);
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Code C.14: Implemented way to create matrix literals.

1 # Working version for matrix literals.

2 mat = [17, 24, 1, 8, 15, 6];

3 mat = reshape(mat,2,3);

4 print(mat);

5 # Output:

6 # DenseMatrix(2x3, int64_t)

7 # 17 24 1

8 # 8 15 6

Code C.15: Example how to use a typeof() function.

1 # type function for objects returning the type/typeof similar as in R

2 f = 5.0;

3 typeof(f); # --> f64

4 d = reshape(seq(1.0,5.0,1.0),5,1);

5 typeof(d1); # --> matrix double

6 i = reshape(seq(1,5,1),1,5);

7 typeof(i); # --> matrix int64

Code C.16: Example of left and right scalar multiplication.

1 # Left scalar multiplication

2 X = fill(1.0,10,10);

3 y = fill(2.0,10,1);

4 # not working

5 r = 1.5 * X @ y + 0.001;

6 # Output:

7 # JIT session error: Symbols not found:

8 # [ _ewMul__double__DenseMatrix_double__double ]

9 # JIT-Engine invocation failed:

10 # Failed to materialize symbols:

11 # { (main, { _mlir__mlir_ciface_main, _mlir_ciface_main, main, _mlir_main })

}

12 # Program aborted due to an unhandled Error:

13 # Right scalar multiplication is working

14 r = X @ y * 1.5 + 0.001;

15 print(r);
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C.2 Implementation

C.2.1 HPL-AI

Code C.17: HPL-AI benchmark implementation.

1 # ------------------------------------------------

2 #

3 # Licensed to the Apache Software Foundation (ASF) under one

4 # or more contributor license agreements. See the NOTICE file

5 # distributed with this work for additional information

6 # regarding copyright ownership. The ASF licenses this file

7 # to you under the Apache License, Version 2.0 (the

8 # "License"); you may not use this file except in compliance

9 # with the License. You may obtain a copy of the License at

10 #

11 # http://www.apache.org/licenses/LICENSE-2.0

12 #

13 # Unless required by applicable law or agreed to in writing,

14 # software distributed under the License is distributed on an

15 # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

16 # KIND, either express or implied. See the License for the

17 # specific language governing permissions and limitations

18 # under the License.

19 #

20 # Modifications Copyright 2022 The DAPHNE Consortium

21 #

22 # ------------------------------------------------

23

24 # Script to perform HPL-AI Mixed-Precision benchmark for DAPHNE

25 # Details on the benchmark https://www.hpl-ai.org/doc/index/.

26 # Reference Impelmentation: https://bitbucket.org/icl/hpl-ai/src/main/

27

28 # Instead of GMRES which uses iterative updating of matrix elements

29 # (see https://www.netlib.org/templates/matlab/gmres.m), a functionality

30 # not supported yet (https://github.com/daphne-eu/daphne/issues/354),

31 # Gauss-Seidel is used which is working with matrix operations.

32 # (https://mathworld.wolfram.com/Gauss-SeidelMethod.html)

33

34 # GS is converging for strictly diagonally dominant square matrices

35 # which is given in the reference benchmark implementation.

36

37 # INPUT PARAMETERS:

38 # ------------------------------------------------

39 # NAME TYPE DEFAULT MEANING

40 # ------------------------------------------------

41 # n Integer --- Size of Linear System

42 # max_iter Integer --- Maximum GS interations

43 # ------------------------------------------------

44 #

45 # OUTPUT:

46 # ------------------------------------------------

47 # NAME TYPE DEFAULT MEANING

48 # ------------------------------------------------
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49 # Reports execution time of each program part in seconds

50 # ------------------------------------------------

51

52 # ------------------------------------------------

53 # Global arguments

54 # ------------------------------------------------

55 # desired size

56 n = $n; # from command line input n=?

57 # maximum allowed iterations for GS

58 max_iter = $max_iter;

59

60 # Gauss-Seidel converges in n steps, thus set max_iter accordingly

61 if (max_iter > n) {

62 max_iter = n - 1;

63 }

64

65 # calculate epsilon

66 epsilon = 1.0;

67 while ((1.0 + 0.5 * epsilon) != 1.0 ){

68 epsilon = 0.5 * epsilon;

69 }

70 eps = epsilon / 2.0;

71 # threshold for iterative improvement as in original

72 threshold = 16.0;

73

74 # scaling factors for ns to second

75 ns_s = 1000000000.0;

76

77

78 # ------------------------------------------------

79 # Functions

80 # ------------------------------------------------

81

82 # Infinity norm: max(Row sum of absolut values of vector)

83 # outmost sum needed to make it f64

84 # else matrixf64 is returned

85 def norm(a : matrix<f64>) -> f64 {

86 return sum(aggMax(sum(abs(a),0),1));

87 }

88

89

90 # Infinity norm: max(Row sum of absolut values of matrix)

91 def normMat(B : matrix<f64>) -> f64 {

92 return sum(aggMax(sum(abs(B),0),1));

93 }

94

95 # ------------------------------------------------

96 # Routine

97 # ------------------------------------------------

98

99 print("===================");

100 print("Running HPL-AI");

101

102 time_start = now();
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103

104 # Intialize Linear System

105 # strictly diagonally dominant square A

106 A_f64 = rand(n,n,as.f64(-0.5),as.f64(0.5),1,1);

107 row_sum = sum(abs(A_f64),0);

108 A_row_sum = diagMatrix(row_sum);

109 A_diag = A_f64 * diagMatrix(fill(1.0,n,n));

110 # the diagonal of the hpl-ai matrix is the sum of

111 # the absolute values of the off-diagonals on the same row.

112 A_f64 = A_f64 - A_diag + A_row_sum;

113 # vector b

114 b_f64 = rand(n,1,as.f64(-0.5),as.f64(0.5),1,2);

115

116

117 time_initialize = now() - time_start;

118 print("-------------------");

119 print("Initialization time:");

120 print(as.f64(time_initialize) / ns_s);

121 print("-------------------");

122

123 # Convert A and b to single

124 time_convert = now();

125

126 A_f32 = as.matrix.f32(A_f64);

127 b_f32 = as.matrix.f32(b_f64);

128

129 time_convert = now() - time_convert;

130 print("Convert to f32 time:");

131 print(as.f64(time_convert) / ns_s);

132 print("-------------------");

133

134

135 # Solving System

136 time_solve = now();

137

138 x_f32 = solve(A_f32,b_f32);

139

140 time_solve = now() - time_solve;

141 print("Solve f32 system time:");

142 print(as.f64(time_solve) / ns_s);

143 print("-------------------");

144

145

146 # Convert x to double

147 time_convert = now();

148

149 x_f64 = as.matrix.f64(x_f32);

150

151 time_convert = now() - time_convert;

152 print("Convert to f64 time:");

153 print(as.f64(time_convert) / ns_s);

154 print("-------------------");

155

156
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157 # Restate precision:

158 # Gauss-Seidel

159 # Given: Ax = b

160 # with A = L + D + U it holds that

161 # x(k+1) = (D+L)ˆ(-1) @ (b - U @ x(k))

162 # as transpose is not provided in DaphneDSL, we use solve

163 # (D+L) @ x(k+1) = b - U @ x(k)

164 time_solve = now();

165

166 # Make A = L + D + U

167 D = A_f64 * diagMatrix(fill(1.0,n,1));

168 L = A_f64 * lowerTri(A_f64, false, false);

169 U = A_f64 * upperTri(A_f64, false, false);

170 i = 0;

171

172 # checking convergence with the linear system error

173 # analogous to reference benchmark

174 resid = b_f64 - (A_f64 @ x_f64);

175 divisor = normMat(A_f64) * norm(x_f64) + norm(b_f64);

176 error = norm(resid) / divisor / as.f64(n) / eps;

177

178 # iterative improvement: Gauss-Seidel

179 while ((i < max_iter) && as.si64(error >= threshold)) {

180

181 DL = D + L;

182 Uxb = b_f64 - U @ x_f64;

183 x_f64 = solve(DL, Uxb);

184

185 i = i + 1;

186

187 resid = b_f64 - (A_f64 @ x_f64);

188 divisor = normMat(A_f64) * norm(x_f64) + norm(b_f64);

189 error = norm(resid) / divisor / as.f64(n) / eps;

190

191 }

192

193 time_solve = now() - time_solve;

194

195

196 if (i == max_iter) {

197 print("Gauss-Seidel did not coverge with:");

198 print(i);

199 print("iterations");

200 print("-------------------");

201 print("HPL-AI not finished.");

202 } else {

203 print("Gauss-Seidel converged with:");

204 print(i);

205 print("iterations in (s)");

206 print(as.f64(time_solve) / ns_s);

207 print("-------------------");

208 print("HPL-AI finished.");

209 print("-------------------");

210 print("Norm of residual r = b - Ax:");
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211 print("Double precision:");

212 resid = b_f64 - (A_f64 @ x_f64);

213 t = norm(resid);

214 print(t);

215 print("Single precision:");

216 resid = b_f64 - (A_f64 @ as.matrix.f64(x_f32));

217 t = norm(resid);

218 print(t);

219 }

220

221 print("===================");

C.2.2 STREAM

Code C.18: STREAM benchmark implementation.

1 # ------------------------------------------------

2 #

3 # Licensed to the Apache Software Foundation (ASF) under one

4 # or more contributor license agreements. See the NOTICE file

5 # distributed with this work for additional information

6 # regarding copyright ownership. The ASF licenses this file

7 # to you under the Apache License, Version 2.0 (the

8 # "License"); you may not use this file except in compliance

9 # with the License. You may obtain a copy of the License at

10 #

11 # http://www.apache.org/licenses/LICENSE-2.0

12 #

13 # Unless required by applicable law or agreed to in writing,

14 # software distributed under the License is distributed on an

15 # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

16 # KIND, either express or implied. See the License for the

17 # specific language governing permissions and limitations

18 # under the License.

19 #

20 # Modifications Copyright 2022 The DAPHNE Consortium

21 #

22 # ------------------------------------------------

23

24

25 # Script to perform STREAM benchmark for DAPHNE

26 # Details on the benchmark: https://icl.utk.edu/hpcc/

27 # Reference Impelmentation:

28 # https://github.com/icl-utk-edu/hpcc/blob/main/STREAM/stream.c

29 # Stand alone openMP version including a main method:

30 # https://www.cs.virginia.edu/stream/FTP/Code/stream.c

31

32

33 # INPUT PARAMETERS:

34 # ------------------------------------------------

35 # NAME TYPE DEFAULT MEANING

36 # ------------------------------------------------
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37 # array_elements Integer --- Size of input vectors

38 # ntimes Integer --- Number of times to repeate the experiment

39 # ------------------------------------------------

40 #

41 # OUTPUT:

42 # ------------------------------------------------

43 # NAME TYPE DEFAULT MEANING

44 # ------------------------------------------------

45 # Reports average, minimal and maximal execution time in seconds

46 # Rports throughput in GB/s

47 # ------------------------------------------------

48

49 # ------------------------------------------------

50 # Functions

51 # ------------------------------------------------

52

53 # ------------------------------------------------

54 # Global arguments

55 # ------------------------------------------------

56 # desired size

57 array_elements = $array_elements; # from command line input array_elements=?

58 ntimes = $ntimes; # from command line input ntimes=?

59

60 # scaling factors for ns to second and bytes to GiBs

61 GiBs = 1024.0 * 1024.0 * 1024.0;

62 ns_s = 1000000000.0;

63

64 # initial values from original implementation

65 ai = 1.0;

66 bi = 2.0;

67 ci = 0.0;

68 scalar = 0.42;

69

70 # set tolerance (’epsilon’) as in multiLogReg.daphne

71 # example for GitHub DAPHNE repo

72 tol = 0.000001;

73

74 # ------------------------------------------------

75 # Routine

76 # ------------------------------------------------

77

78 print("===================");

79 print("Running STREAM");

80

81 time_start = now();

82

83 # generating vectors

84 # with values as in original implementation

85 a = fill(ai,array_elements,1);

86 b = fill(bi,array_elements,1);

87 c = fill(ci,array_elements,1);

88

89

90 # generate element result for later check
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91 # first single ai

92 for (k in 1:ntimes) {

93 # Copy

94 ci = ai;

95 # Scale

96 bi = ci * scalar;

97 # Add

98 ci = ai + bi;

99 # Triad

100 ai = bi + ci * scalar;

101 }

102

103 # sum all ai

104 ai_sum = 0.0;

105 for (k in 1:array_elements) {

106 ai_sum = ai_sum + ai;

107 }

108

109

110 # as indexing is not possible in DaphneDSL loops yet

111 # https://github.com/daphne-eu/daphne/issues/354

112 # we need variables insted of an array to measure time

113 time_copy_total = 0;

114 # as.si64(inf) returns negativ number, devide it with -2

115 # ui64(inf) would work, but min(a,b) needs same type

116 # and now() returns si64 which is the integer default type

117 time_copy_min = as.si64(inf) / -2;

118 time_copy_max = 0;

119 time_scale_total = 0;

120 time_scale_min = as.si64(inf) / -2;

121 time_scale_max = 0;

122 time_add_total = 0;

123 time_add_min = as.si64(inf) / -2;

124 time_add_max = 0;

125 time_triad_total = 0;

126 time_triad_min = as.si64(inf) / -2;

127 time_triad_max = 0;

128

129 time_initialize = now() - time_start;

130 print("-------------------");

131 print("Initialization time:");

132 print(as.f64(time_initialize) / ns_s);

133 print("-------------------");

134

135 for (k in 1:ntimes) {

136

137 # as in original implementation, first iteration

138 # is not measured, reset all time counters if k == 2

139 if (k == 2) {

140 time_copy_total = 0;

141 time_copy_min = as.si64(inf) / -2;

142 time_copy_max = 0;

143 time_scale_total = 0;

144 time_scale_min = as.si64(inf) / -2;
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145 time_scale_max = 0;

146 time_add_total = 0;

147 time_add_min = as.si64(inf) / -2;

148 time_add_max = 0;

149 time_triad_total = 0;

150 time_triad_min = as.si64(inf) / -2;

151 time_triad_max = 0;

152 }

153

154

155 # Copy

156 time_start = now();

157 c = a;

158

159 # Copy timing

160 time_copy = now() - time_start;

161 time_copy_total = time_copy_total + time_copy;

162 time_copy_min = min(time_copy, time_copy_min);

163 time_copy_max = max(time_copy, time_copy_max);

164

165

166 # Scale

167 time_start = now();

168 b = c * scalar;

169

170 # Scale Timing

171 time_scale = now() - time_start;

172 time_scale_total = time_scale_total + time_scale;

173 time_scale_min = min(time_scale, time_scale_min);

174 time_scale_max = max(time_scale, time_scale_max);

175

176

177 # Add

178 time_start = now();

179 c = a + b;

180

181 # Add Timing

182 time_add = now() - time_start;

183 time_add_total = time_add_total + time_add;

184 time_add_min = min(time_add, time_add_min);

185 time_add_max = max(time_add, time_add_max);

186

187

188 # Triad

189 time_start = now();

190 a = b + c * scalar;

191

192 # Triad Timing

193 time_triad = now() - time_start;

194 time_triad_total = time_triad_total + time_triad;

195 time_triad_min = min(time_triad, time_triad_min);

196 time_triad_max = max(time_triad, time_triad_max);

197

198 }
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199

200 # quality check

201 a_sum = sum(a);

202

203 # calculate throughput

204 # as in original use min time

205 # for copy and scale 2 arrays

206 copy_throughput = (as.f64(array_elements * 2 * 8) / GiBs) / as.f64(

time_copy_min);

207 scale_throughput = (as.f64(array_elements * 2 * 8) / GiBs) / as.f64(

time_scale_min);

208 # for add and triad 3 arrays

209 add_throughput = (as.f64(array_elements * 3 * 8) / GiBs) / as.f64(

time_add_min);

210 triad_throughput = (as.f64(array_elements * 3 * 8) / GiBs) / as.f64(

time_triad_min);

211

212 # print results if passed

213 if (abs(a_sum - ai_sum) <= tol) {

214

215 print("STREAM run results are correct.");

216 print("-------------------");

217

218 print("Copy execution time seconds: (avg, min, max):");

219 print((as.f64(time_copy_total) / (as.f64(ntimes - 1))) / ns_s); # skip

first iteration

220 print(as.f64(time_copy_min) / ns_s);

221 print(as.f64(time_copy_max) / ns_s);

222 print("-------------------");

223

224 print("Copy throughput (GB/s):");

225 print(copy_throughput * ns_s); # convert to seconds

226 print("-------------------");

227

228 print("Scale execution time seconds: (avg, min, max):");

229 print((as.f64(time_scale_total) / (as.f64(ntimes - 1))) / ns_s);

230 print(as.f64(time_scale_min) / ns_s);

231 print(as.f64(time_scale_max) / ns_s);

232 print("-------------------");

233

234 print("Scale throughput (GB/s):");

235 print(scale_throughput * ns_s); # convert to seconds

236 print("-------------------");

237

238 print("Add execution time seconds: (avg, min, max):");

239 print((as.f64(time_add_total) / (as.f64(ntimes - 1))) / ns_s);

240 print(as.f64(time_add_min) / ns_s);

241 print(as.f64(time_add_max) / ns_s);

242 print("-------------------");

243

244 print("Add throughput (GB/s):");

245 print(add_throughput * ns_s); # convert to seconds

246 print("-------------------");

247
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248 print("Triad execution time seconds: (avg, min, max):");

249 print((as.f64(time_triad_total) / (as.f64(ntimes - 1))) / ns_s);

250 print(as.f64(time_triad_min) / ns_s);

251 print(as.f64(time_triad_max) / ns_s);

252 print("-------------------");

253

254 print("Triad throughput (GB/s):");

255 print(triad_throughput * ns_s); # convert to seconds

256

257 } else {

258

259 print("STREAM run result is wrong.");

260 print("No execution times are displayed.");

261

262 }

263 print("===================");

C.2.3 Mandelbrot

Code C.19: Mandelbrot benchmark implementation.

1 # ------------------------------------------------

2 #

3 # Licensed to the Apache Software Foundation (ASF) under one

4 # or more contributor license agreements. See the NOTICE file

5 # distributed with this work for additional information

6 # regarding copyright ownership. The ASF licenses this file

7 # to you under the Apache License, Version 2.0 (the

8 # "License"); you may not use this file except in compliance

9 # with the License. You may obtain a copy of the License at

10 #

11 # http://www.apache.org/licenses/LICENSE-2.0

12 #

13 # Unless required by applicable law or agreed to in writing,

14 # software distributed under the License is distributed on an

15 # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

16 # KIND, either express or implied. See the License for the

17 # specific language governing permissions and limitations

18 # under the License.

19 #

20 # Modifications Copyright 2022 The DAPHNE Consortium

21 #

22 # ------------------------------------------------

23

24 # Script to perform Mandelbrot benchmark for DAPHNE

25 # Following the reference implementation

26 # https://people.sc.fsu.edu/˜jburkardt/c_src/mandelbrot_openmp/

mandelbrot_openmp.c

27

28

29 # INPUT PARAMETERS:

30 # ------------------------------------------------
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31 # NAME TYPE DEFAULT MEANING

32 # ------------------------------------------------

33 # n integer --- Pixels resulting in n x n grid

34 # f_set string --- Outputfile name for Mandelbrot

35 # ------------------------------------------------

36

37 # The x and y range is fixed, but the number of grid steps changes with n

38 # An example of output file wit path: f_set=\"../mandelbrot_set.csv\"

39

40 # OUTPUT:

41 # ------------------------------------------------

42 # Mandelbrot set (.csv)

43 # Reports execution time in seconds

44 # ------------------------------------------------

45

46 # ------------------------------------------------

47 # Global arguments

48 # ------------------------------------------------

49 # Width of base pixel grid

50 width = $n;

51 # Hight of base pixel grid

52 height = $n;

53 # Number of iterations

54 n_iter = 2000;

55

56 # scaling factors for ns to second

57 ns_s = 1000000000.0;

58

59 # set boundary for sequence stability

60 tol = 2.0;

61

62 # borders for real and imaginary axis of grid

63 x_min = -2.25;

64 x_max = 1.25;

65 y_min = -1.75;

66 y_max = 1.75;

67

68

69 # ------------------------------------------------

70 # Routine

71 # ------------------------------------------------

72

73 print("===================");

74 print("Running Mandelbrot");

75

76 time_start = now();

77

78 # vectors of ones

79 ones_x = fill(1.0,height,1); # hight x 1

80 ones_y = fill(1.0,1,width); # 1 x width

81

82 # calculate step size given width and height

83 step_x = (x_max - x_min) / as.f64(width - 1);

84 step_y = (y_min - y_max) / as.f64(height - 1);
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85

86 # generate seq vecotrs for x and y axis

87 x = seq(x_min,x_max,step_x);

88 y = seq(y_max,y_min,step_y);

89

90 # make real and imaginary part matrices for c

91 # real is just the x-pixel coordinates

92 # each column has the same x-value

93 # imaginary the y-pixel coordinates

94 # each row has the same y-value

95 c_re = ones_x @ t(x); # hi x 1 @ 1 x width

96 c_im = y @ ones_y; # hi x 1 @ 1 x width

97

98 # generate starting z matrices

99 z_re = fill(0.0,height,width);

100 z_im = fill(0.0,height,width);

101 # k matriz for bound check

102 k = fill(0.0,height,width);

103

104 time_initialize = now() - time_start;

105 print("-------------------");

106 print("Initialization time:");

107 print(as.f64(time_initialize) / ns_s);

108 print("-------------------");

109

110 time_intermediate = now();

111

112 for (i in 1:n_iter) {

113

114 # square z

115 # rule: (x + yi)(u + vi) = (xu - yv) + (xv + yu)i

116 z_re_t = z_re * z_re - z_im * z_im;

117 z_im_t = z_re * z_im + z_im * z_re;

118

119 # add c

120 z_re = z_re_t + c_re;

121 z_im = z_im_t + c_im;

122

123 # out of bound check

124 # absolut value is the euklidian norm

125 z_abs = sqrt(z_re * z_re + z_im * z_im);

126 # if not out of bound, add 1 to k

127 k = k + (z_abs <= tol);

128

129 }

130

131 time_loop = now() - time_intermediate;

132 print("Loop time:");

133 print(as.f64(time_loop) / ns_s);

134 print("-------------------");

135

136 # Export matrix with values k, which iteration run out of bound

137 writeMatrix(as.matrix.si64(k),$f_set);

138
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139

140 print("Mandlebrot finished. Mandelbrot set written to specified file.");

141 print("===================");

C.2.4 PTRANS

Code C.20: PTRANS benchmark implementation.

1 # ------------------------------------------------

2 #

3 # Licensed to the Apache Software Foundation (ASF) under one

4 # or more contributor license agreements. See the NOTICE file

5 # distributed with this work for additional information

6 # regarding copyright ownership. The ASF licenses this file

7 # to you under the Apache License, Version 2.0 (the

8 # "License"); you may not use this file except in compliance

9 # with the License. You may obtain a copy of the License at

10 #

11 # http://www.apache.org/licenses/LICENSE-2.0

12 #

13 # Unless required by applicable law or agreed to in writing,

14 # software distributed under the License is distributed on an

15 # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

16 # KIND, either express or implied. See the License for the

17 # specific language governing permissions and limitations

18 # under the License.

19 #

20 # Modifications Copyright 2022 The DAPHNE Consortium

21 #

22 # ------------------------------------------------

23

24 # Script to perform PTRANS benchmark for DAPHNE

25 # Details on the benchmark: https://icl.utk.edu/hpcc/

26 # Reference Impelmentation:

27 #https://github.com/icl-utk-edu/hpcc/blob/main/PTRANS/pdtrans.c

28

29 # INPUT PARAMETERS:

30 # ------------------------------------------------

31 # NAME TYPE DEFAULT MEANING

32 # ------------------------------------------------

33 # n Integer --- Size of input matrix

34 # ------------------------------------------------

35 #

36 # OUTPUT:

37 # ------------------------------------------------

38 # NAME TYPE DEFAULT MEANING

39 # ------------------------------------------------

40 # Reports execution time

41 # ------------------------------------------------

42

43 # ------------------------------------------------

44 # Global arguments
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45 # ------------------------------------------------

46 # desired size

47 n = $n; # from command line input n=?

48

49 # set tolerance (’epsilon’) as in multiLogReg.daphne

50 # example for GitHub DAPHNE repo

51 tol = 0.000001;

52

53 # scaling factors for ns to second

54 ns_s = 1000000000.0;

55

56 # ------------------------------------------------

57 # Routine

58 # ------------------------------------------------

59

60 print("===================");

61 print("Running PTRANS");

62

63 time_start = now();

64

65 # generating matrix

66 A = rand(n,n,0.0,1.0,1,-1);

67 check_sum = 0.0;

68

69 # for checking

70 A_sum = sum(A,1); # col sums of A

71

72 time_initialize = now() - time_start;

73 print("-------------------");

74 print("Initialization time:");

75 print(as.f64(time_initialize) / ns_s);

76 print("-------------------");

77

78 # Transpose

79 time_start = now();

80 B = t(A);

81

82 # Transpose timing

83 time_transpose = now() - time_start;

84

85 # check results with row sums being equal to A column sum

86 B_sum = t(sum(B,0)); # row sum as row vector

87 check = (abs(A_sum - B_sum) > tol); # matrix with zeros if abs() is below tol

88 check_sum = check_sum + sum(check); # add sum matrix to check sum, should be

zero if correct

89

90

91 if (check_sum == 0.0) {

92

93 print("PTRANS run results are correct.");

94 print("-------------------");

95 print("Transpose execution time:");

96 print(as.f64(time_transpose) / ns_s);

97
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98 } else {

99

100 print("PTRANS run result is wrong.");

101 print("No execution times are displayed.");

102

103 }

104 print("===================");
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