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Abstract

Loops are a frequently occurring control structure in scientific applications. When itera-

tions of these loops are independent of one another, it is possible to distribute the workload

among multiple processing elements to execute them in parallel. Various techniques have

been developed to schedule loops such that performance is maximized and the workload

is well balanced among processing elements. These techniques have been implemented in

libraries where each loop is scheduled and executed synchronously. One such library is

LB4MPI, which uses the message passing interface for inter-process communication. This

thesis extends LB4MPI to support asynchronous execution of multiple loops. The perfor-

mance evaluation of the extension showed that in applications with high load imbalance,

the static and dynamic non-adaptive scheduling techniques perform better when loops are

executed asynchronously rather than synchronously. Results also showed that in applica-

tions with low load-imbalance synchronous execution of loops outperforms asynchronous

execution.
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1
Introduction

Loops are a frequently occurring control structure in scientific applications. When the it-

erations of these loops are independent of one another, we have the option to distribute

the iterations among several processing elements (PEs) and execute them in parallel. The

workload of each iteration may be heterogeneous, which can lead to unbalanced load distri-

bution among the PEs and deteriorate the performance gained by parallelization. Di↵erent

loop scheduling techniques were proposed to combat the load imbalance and optimize the

performance of such parallel programs. Libraries have been developed that implement a

variety of scheduling techniques, one of which is LB4MPI [11]. LB4MPI is a Dynamic Loop

Self-Scheduling (DLS) library that utilizes the message passing interface as its channel of

communication and is based on a coordinator-worker model. LB4MPI allows the user to

schedule individual loops with 14 di↵erent techniques to choose from. Once such a loop has

been executed in parallel, the PEs are synchronized. After which, possibly another loop

can be scheduled. With a high load imbalance, the arrival time at this synchronization

point can vary, causing wasted time where faster PEs have to wait idly. This thesis aims

to relax this synchronization in-between scheduled loops and evaluate the possible impact

on performance by extending the LB4MPI library to allow for asynchronous execution of

multiple loops. The chosen approach is to schedule multiple loops at the same time. These

loops are then all worked on together by all PEs simultaneously until all loop iterations have

been scheduled and executed. This approach has two main advantages to possibly increase

performance. (1) It allows PEs that are significantly faster than others to make progress on

other loops without having to wait idly. (2) It allows for more balanced resource utilization

on the computing nodes. This approach of asynchronously executing loops allows PEs to

execute parts of a computationally intensive loop while other PEs execute parts of a mem-

ory intensive loop. The risk of this extension is that the additional overhead produced by

scheduling multiple loops at once could deteriorate the performance. The coordinator may

get overwhelmed by the increased work requests, to which he must respond. The thesis is

structured as follows. Section 2 introduces the concept of loop scheduling and the scheduling

techniques considered in this thesis. Additionally, the Message Passing Interface standard

is shortly described, followed by an introduction to the LB4MPI library. Section 3 section

gives reference to past work relevant to this thesis. Section 4 describes the implementation
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of the extension and how it was verified. Finally, Section 5 presents the experiments car-

ried out, to compare the performance of synchronous to asynchronous execution of multiple

loops.



2
Background

Scheduling is the assignment of workloads or tasks to system resources over a period of time

[16]. Those system resources may be processors, network links, or nodes of a computing

cluster. Scheduling software that performs the scheduling of tasks is often designed to

optimize resource usage and thus the overall performance of the system. Optimally allocating

system resources is non-trivial when the tasks to schedule vary in workload and the system

resources are heterogeneous. In the following, scheduling is addressed in the context of loop

scheduling.

2.1 Loop Scheduling

Loops constitute a significant source of parallelism in scientific applications [17]. When

loop iterations are independent of each other, the loop iterations can split into chunks, and

these chunks are subsequently distributed among workers to be executed in parallel. This

parallelization of loop iterations can lead to a significant increase in performance on high-

performance computing systems. But the increase in performance can, in turn, quickly

deteriorate due to load imbalance. The load imbalance is caused by problem, algorithmic,

or systemic characteristics. Problem or algorithmic characteristics involve irregular work-

loads per loop iteration caused by conditional statements. Systemic characteristics refer

the computational speed of the individual processing elements (PEs), available network

bandwidth, or latency. Changes in such systemic characteristics are also called perturba-

tions [12]. High-performance computing (HPC) systems are often built incrementally and

thus commonly consist of heterogeneous PEs. Additionally, multiple users may have their

applications running simultaneously, increasing the network’s latency.

Di↵erent loop scheduling techniques can be applied to minimize the impact of the

irregularities mentioned above and load imbalances. The scheduling techniques vary in

complexity, and have varying operating costs, referred to as scheduling overhead. Careful

consideration is vital to determine the best fitting technique for a specific application and

high-performance computing system.
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2.2 Loop Scheduling techniques

Scheduling techniques can be divided into two categories, static and dynamic. Each

category has its advantages and disadvantages. They di↵er in what time the scheduling

decisions are made. The following two chapters shortly introduce both categories and the

associated scheduling techniques considered in this work.

2.2.1 Static Loop Scheduling (SLS)

Static loop scheduling techniques resolve scheduling decisions before the applications

are executed. The chunk sizes and assignment to PEs are determined before the execu-

tion, and thus they remain fixed. Static scheduling techniques produce the most negligi-

ble overhead of all considered scheduling techniques as minimal communication and chunk

calculations are required. Parallel applications with low load-imbalance executed on a ho-

mogeneous computing system perform very well with static scheduling, because each PE

receives a similar workload. This thesis considers static block scheduling [20]. The loop

iterations are divided into chunks with size equal to the total number of iterations divided

by the number of PEs, resulting in single chunk per PE.

2.2.2 Dynamic Loop Self-Scheduling (DLS)

Dynamic loop self-scheduling, also known as DLS, assigns chunks of iterations to

PEs when they are free and request work. The assignment and chunk size calculation

happens during the execution. One can di↵erentiate between non-adaptive and adaptive

DLS techniques. The key di↵erence between the two types of techniques is the point when

the information is gathered, upon which the techniques base their scheduling decisions.

Non-adaptive scheduling techniques base their scheduling decisions on information obtained

before execution, while adaptive scheduling techniques base their decisions on information

gathered during the execution [15]. This thesis considers the following dynamic scheduling

techniques:

non-adaptive

Self-Scheduling (SS) [23]
Modified Fixed-Size-Chunking (MFSC) [10]
Guided Self-Scheduling (GSS) [22]
Trapezoid Self-Scheduling (TSS) [24]
Factoring 2 (FAC2) [18]
Weighted Factoring (WF) [19]

adaptive

Adaptive Weighted Factoring (AWF) [9]
Adaptive Weighted Factoring - Batch (AWF-B) [12]
Adaptive Weighted Factoring - Chunk (AWF-C) [12]
Adaptive Weighted Factoring - Batch with scheduling overhead (AWF-D) [12]
Adaptive Weighted Factoring - Chunk with scheduling overhead (AWF-E) [12]
Adaptive Factoring (AF) [8]

Table 2.1: Dynamic scheduling techniques considered in this thesis
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2.2.2.1 Non-Adaptive Scheduling Techniques

Self-scheduling (SS) is a technique where a PE is assigned a chunk with size 1 during

the execution when it becomes idle, and requests work. This technique consistently achieves

a good load balance but not necessarily good overall performance [21]. The drop in perfor-

mance is caused by the significant overhead produced, growing in the number of iterations of

the loop. Each iterate has to be requested individually, resulting in frequent communication

between PEs. SS produces the most overhead of the considered scheduling techniques.

MFSC is a modified version of the fixed-size chunking technique (FSC). Similar to

SS, MFSC and FSC assign chunks of fixed size. To calculate the chunk size in FSC the

scheduling overhead h and the standard deviation � of the loop iterations have to be known.

For MFSC, this requirement of apriori knowledge is no longer necessary. As a result of the

bigger chunk sizes, the scheduling overhead is decreased compared to SS.

Guided self-scheduling (GSS) assigns chunks with variable sizes. The chunk sizes

decrease as more iterations of a loop are scheduled and correspond to the remaining un-

scheduled loop iterations divided by the number of processing elements. The larger chunk

sizes at the beginning allow for reduced overhead, while the decreasing chunk sizes allow for

good load balancing.

Trapezoid self-scheduling (TSS) attempts to achieve good load balance while keeping

the overhead small. TSS assigns chunks in decreasing size like GSS, but unlike GSS, the

chunk size decreases linearly. Due to the linearity of the chunk size calculation, only a small

overhead is induced.

FAC2 is a practical implementation of Factoring (FAC). FAC takes a probabilistic

modeling approach to determine batch sizes. A batch is a part of the total loop iterations,

which subsequently is split into chunks to assign to each PE. The calculated batch sizes of

this technique maximize the probability of load-balanced execution. The model utilizes the

mean of iteration execution time µ and their standard deviation �, which have to be known

before execution. The practical implementation (FAC2) alleviates the need for µ and � and

instead, half of the remaining iterations are assigned to a batch. Chunks sizes are calculated

by dividing the batch size by the number of PEs.

Weighted Factoring (WF) is similar to FAC in that it also divides loop iterations

into batches. This thesis considers the practical implementation of WF, where the batch

sizes are equal to those of FAC2. Unlike Factoring, WF determines the chunk size for each

PE proportional to the weight associated with each PE. The weights must be determined

before the execution and stay unchanged during the program’s execution. The use of weights

results in unequal chunk sizes in a batch.

2.2.2.2 Adaptive Scheduling Techniques

Adaptive techniques make use of statistics gathered during the execution of the pro-

gram. Those statistics include the measured time to execute the assigned chunks and some-

times also the time required for the chunk assignment. This allows the scheduling techniques

to take into account variances in the computing system characteristics, which possibly change

during the execution.
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Adaptive Weighted Factoring evolved from the Weighted Factoring technique. AWF

allows for the weight associated with each PE to change during the execution in contrast

to WF. It is designed for time-stepping applications and adapts the weights after each time

step. The adaptation considers the cumulative performance measured by the loop execution

time during previous time steps.

AWF-B is a variation of AWF where the requirement of a time-stepping application

is removed. Instead, AWF-B adapts the weights after each batch of the scheduled loop. A

batch is a portion of all loop iterations, which gets assigned to PEs in smaller chunks. Like

AWF, the adaptation takes into consideration cumulative performance.

AWF-C is a further variation of AWF where the weights are adapted after each chunk

instead of after each batch Thus AWF-C is adapting its weights even more frequently than

AWF-B and should balance the load better at the cost of increased scheduling overhead.

AWF-D is similar to AWF-B in terms that it does not need to be a time-stepping

application, and the weights are adapted after each batch of iterations. Unlike AWF-B,

AWF-D considers both the cumulative loop execution times and the time required for the

chunk assignment and bookkeeping.

AWF-E is similar to AWF-C, as for both techniques the weights are recomputed after

each chunk execution. Analogously to AWF-D, it considers the cumulative loop execution

times in addition to the time required for the chunk assignment and bookkeeping.

Adaptive Factoring (AF) is a similar approach to the FAC technique. AF dynamically

estimates the mean and standard deviation of the iterate execution times during runtime.

FAC requires these statistics to be known before the execution and assumes them to be

equal on all PEs, whereas AF adapts the weights for each PE during execution.

2.3 Message Passing Interface

The Message Passing Interface (MPI) is a library specification for message-passing,

proposed as a standard by a broadly based committee of vendors, implementors, and users

[2]. MPI allows processes that are possibly distributed among several computing nodes to

exchange messages. The involved processes are referred to as ranks and can be part of

groups, called communicators. The functions relevant in this thesis are shown in Table 2.2.

MPI Send Send a message to a specified rank of a communicator
MPI Recv Receive a message of communicator
MPI Probe Check if a message is available to receive
MPI Gather Gather information from all ranks in a communicator
MPI Barrier Synchronize all ranks in a communicator

Table 2.2: Relevant MPI functions

Most of these functionalities can be synchronous, i.e., blocking, or asynchronous, i.e.,

non-blocking. Sent messages can have a tag specified for the receiver to distinguish among

di↵erent message types. Various proprietary or free implementations of this standard exist.
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2.4 LB4MPI

LB4MPI is a DLS library available both in the C and Fortran programming language,

which utilizes the Message Passing Interface to distribute the workload among PEs. The

library o↵ers users with limited programming experience a tool to easily utilize the schedul-

ing techniques introduced in Section 2.2 to parallelize their applications with only a small

number of changes to their code. LB4MPI is an extension of a load-balancing tool initially

developed as part of a paper by Carino and Banicescu [11] published in 2007. LB4MPI has

been used on multiple occasions to conduct research in dynamic loop scheduling. Eleliemy

and Ciorba [15] proposed a distributed chunk calculation approach which was novel to the

library because it previously only supported a centralized chunk calculation approach. This

thesis extends the C version of LB4MPI with the centralized chunk calculation approach,

which is available open-source [6], and addresses the impact of asynchronous execution of

multiple loops on performance.

As mentioned, LB4MPI utilizes a centralized chunk calculation approach. One MPI

rank is assigned to be foreman and is responsible for calculating chunk sizes and distributing

them among the worker MPI Ranks. In the approach used, the foreman acts as a worker

himself and executes chunks of iterations, periodically checking for new requests. Three types

of messages are exchanged between the MPI ranks. Whenever a worker is ready for a new

chunk, it sends a request message to the foreman, possibly containing statistics necessary to

use adaptive scheduling techniques. In response to request messages, the foreman sends work

messages back to the workers that contain information about the assigned chunk. When

all loop iterations are scheduled, the foreman responds to request messages with an end

message, signaling to the worker that no more work is available. LB4MPI uses an infoDLS

struct for every rank to store information about the MPI environment, and the required

values to utilize the implemented scheduling techniques. Each function mentioned below

takes a pointer to such a struct to read or modify the members. An Illustrative example

usage of the library can be seen in Listing 2.1.

The library o↵ers the following API functions and are briefly described:

• void DLS Parameters Setup( MPI Comm icomm, infoDLS *info, ...);

• void DLS GroupSetup(MPI Comm comm, int, infoDLS *iInfo, infoDLS

*jInfo);

• void DLS StartLoop(infoDLS *info, int firstIter, int lastIter, int method)

• int DLS Terminated(infoDLS *info);

• void DLS StartChunk(infoDLS *info, int *start, int *chunk size)

• void DLS EndChunk(infoDLS *info);

• void DLS EndLoop(infoDLS *info, int *nIter, double *workTime)

• void DLS Finalize(infoDLS *info);

DLS Parameters Setup and DLS Group Setup initialize infoDLS with the pa-

rameters supplied by the user. DLS Group Setup is for a 2-Layer scheduling approach that
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this thesis will not consider. The parameters of DLS Parameters Setup allow a user to tune

the library to a certain computing environment and behavior of the ranks, such as how early

a rank should request the next chunk of work or how many MPI ranks are involved in the

parallel execution.

DLS StartLoop is called before the loop is scheduled. The parameters are used to

initialize the loop-specific values stored in infoDLS, such as the number of total iterations

and the scheduling method used. The foreman additionally sends the first chunk assignment

to all workers before returning.

Calling DLS Terminated returns 1 when an end message was received and 0 when

there is still work. A while loop is constructed with this function call as a stopping condition.

This essentially creates a while True loop until all iterations are scheduled. Inside the while

loop, DLS StartChunk is called. In this function, workers receive work and end messages,

and request messages are received and responded to by the foreman. The work messages

update values in the infoDLS struct, which are subsequently used to update the values of

the supplied parameters indicating the start index of the chunk and the chunk size to be

executed next. After the execution of the chunk, the worker calls DLS EndChunk where

request messages are sent to the foreman. This behavior repeats in the while loop until an

end message is received in DLS StartChunk.

After the while loop, each rank calls DLS EndLoop where the number of iterations

executed and the total work time can be obtained for each worker. This call is also the

point of synchronization where each MPI rank waits for the remaining ranks to leave the

preceding while loop. After this synchronization, more loops could be scheduled before

DLS Finalize has to be called, which frees all the heap-allocated memory used by LB4MPI.

This thesis explores the e↵ect of relaxing the synchronization in DLS EndLoop and allowing

the execution of chunks of multiple loops asynchronously.

1 infoDLS i I n f o ;

2 MPI Init(&argc , &argv ) // i n i t i a l i z e MPI environment

3 DLS Parameters Setup (MPICOMMWORLD, &i In f o , numProcs , requestWhen , breakAfter ,

4 minChunk , h overhead , sigma , nKNL, xeon speed , KNL speed ) ;

5 int s t a r t , chunkSize ;

6 int n I t e r ;

7 double workTime ;

8 DLS StartLoop(& i In f o , f i r s t I t e r 1 , l a s t I t e r 1 , method 1 ) ;

9 while ( ! DLS Terminated(& i I n f o ) ) {
10 DLS StartChunk(& i In f o , &s ta r t , &chunkSize ) ; // ge t chunk s t a r t and s i z e

11 ca l cu l a t e chunk l o op 1 ( s ta r t , chunkSize ) ;

12 DLS EndChunk(& i In f o , &nIte r , &workTime ) ; // p o s s i b l y r e que s t next chunk

13 }
14 DLS EndLoop(& i In f o , &nIte r , &workTime ) ; // workers synchronize here

15 // . .

16 // p o s s i b l y more loops

17 // . . .

18 DLS StartLoop(& i In f o , f i r s t I t e r n , l a s t I t e r n , method n ) ;

19 while ( ! DLS Terminated(& i I n f o ) ) {
20 DLS StartChunk(& i In f o , &s ta r t , &chunkSize ) ; // ge t chunk s t a r t and s i z e

21 ca l cu l a t e chunk l oop n ( s ta r t , chunkSize ) ;

22 DLS EndChunk(& i In f o , &nIte r , &workTime ) ; // p o s s i b l y r e que s t next chunk
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23 }
24 DLS EndLoop(& i In f o , &nIte r , &workTime ) ; // workers synchronize here

25 DLS Final ize (& i I n f o ) ;

26 MPI Final ize ( ) ;

Listing 2.1: Illustrative example how LB4MPI can be used to schedule multiple loops in a

synchronized fashion. Initialization of used variables is omitted due to space reasons.



3
Related Work

Most DLS implementations make use of the master-worker execution model. In each schedul-

ing step, the master calculates the chunk size and assigns it to the PE where the work request

came from. One such implementation is the distributed self-scheduling scheme (DSS) [13]

which is designed for distributed memory systems. In DSS, the master is the central en-

tity, which calculates chunk sizes and assigns them to workers. The speed of the worker is

taken into consideration when calculating the chunk size. A hierarchical distributed self-

scheduling scheme (HDSS) [14] is proposed which di↵ers from DSS in that a global master

assigns work to local masters, which in turn assign work to the workers. The hierarchical

scheme is similar to the two-level dynamic load balancing strategy present in LB4MPI and

aims to improve the scalability of the self-scheduling schemes. Unlike LB4MPI, in DSS and

HDSS, the master is not executing chunks himself and is only responsible for the chunk

calculation. The communication between the MPI ranks is two-sided, meaning both master

and workers send and receive messages.

DLS implementations employing one-sided communication exist as well, such as the

dynamic load balancing library (DLBL) [7]. Like LB4MPI, it uses a master-worker execution

model. The library is a collection of functions referred to as handlers. When the master

receives work requests, it first calculates the chunk size and then calls a specific handler

such that the worker can obtain the assigned work without further communication.

This thesis is motivated by the fact that in the mentioned DLS libraries in this section,

loops are scheduled in a synchronized fashion. This synchronization can accumulate time

spent waiting for slower workers to finish their work due to load imbalance. The approach

of asynchronously scheduling and executing multiple loops is proposed to minimize wasted

time. The synchronous and asynchronous execution of multiple loops is then compared by

their performance.



4
Methodology

4.1 Implementation

The described implementation of LB4MPI in Section 2.4 is limited to holding and main-

taining information about a single loop at a time. This limitation forces us to synchronize

the workers after each loop we want to schedule. Suppose the coordinator, who schedules

the loops, signaled to everyone that the current loop has been completely scheduled while

one rank still has not finished executing his last received chunk. Without synchronization,

the coordinator could already have sent out the first chunk for the next loop. The worker

still executing the chunk of the previous loop would receive both the end message and work

messages and subsequently compute the received chunk for the wrong loop before proceeding

to the next loop.

Loop 1

for ts = 1 to N

Loop 2

Loop L

for l1 = 1 to n1

for l2 = 1 to n2

for lL = 1 to nL
. . .

Rank M 

Rank 0Rank 1

Rank 2

(a) Synchronous execution

Loop 1

for ts = 1 to N

Loop 2

Loop L

for l1 = 1 to n1

for l2 = 1 to n2

for lL = 1 to nL
. . .

Rank M 

Rank 0

Rank 1

Rank 2

(b) Asynchronous execution

Figure 4.1: Example of a time-stepping application with multiple loops. 4.1a shows the
synchronous execution where ranks are synchronized after each loop in a time-step. 4.1b
shows what the extension tries to achieve. Workers can execute chunks of multiple loops
asynchronously and are only synchronized at the end of a time-step.

LB4MPI is extended such that multiple loops can be scheduled at the same time, and
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the chunk executions of the loops interleave, i.e., workers can execute chunks for all loops

until all loops are completely scheduled. The extension maintains backward compatibility

such that applications written using the original version of LB4MPI still function correctly.

The user can choose to execute multiple loops synchronously or asynchronously.

The extension modifies the infoDLS as seen in Listing 4.1 and 4.2. Members of the

struct which hold information specific to a loop are changed to pointers to store information

about multiple loops at once. The required memory for these members is heap-allocated

once it is clear how many loops are to be scheduled.

typedef struct

{
MPI Comm comm, crew ;

int commSize , crewSize ;

int foreman ,myRank , f i r s tRank , lastRank ;

int method ;

int f i r s t I t e r , l a s t I t e r ,N,

i t e r sS chedu l ed ;

int batchSize , batchRem ,

minChunkSize , maxChunkSize ;

int minChunk , breakAfter , requestWhen ,

chunkFSC , chunkMFSC ;

int chunkStart , probeFreq ,

sendRequest , subChunkSize ;

int numChunks ,numENDed, f in i shedOne ;

int myExecs , myIters ;

int rStart , rS i ze , wStart , wSize ,

nextStart , nextS i ze ;

int gotWork , req4WRKsent ,

nextWRKrcvd ;

double kopt0 , workTime ;

double t0 , t1 , sumt1 , sumt2 ,

mySumTimes , mySumSizes ;

double ∗ s t a t s ;

double h overhead ;

double sigma ;

double ∗weights ;

int TSSchunk ;

int TSSdelta ;

int timeStep ;

} infoDLS ;

Listing 4.1: Original infoDLS struct of

the library before the extension. Infor-

mation about a single loop can be held.

typedef struct

{
MPI Comm comm, crew ;

int commSize , crewSize ;

int foreman ,myRank , f i r s tRank , lastRank ;

int *method ;

int * f i r s t I t e r , * l a s t I t e r , *N,

* i t e r sS chedu l ed ;

int *batchSize , *batchRem ,

*minChunkSize , *maxChunkSize ;

int minChunk , breakAfter , requestWhen ,

*chunkFSC , *chunkMFSC ;

int *chunkStart , *probeFreq ,

*sendRequest , *subChunkSize ;

int numChunks , *numENDed, * f in i shedOne ;

int *myExecs , *myIters ;

int *rStart , * rS i ze , *wStart ,∗ wSize ,

*nextStart , *nextS i ze ;

int *gotWork , *req4WRKsent ,

*nextWRKrcvd ;

double *kopt0 , *workTime ;

double *t0 , *t1 , *sumt1 , *sumt2 ,

*mySumTimes , *mySumSizes ;

double ∗ s t a t s ;

double h overhead ;

double sigma ;

double ∗weights ;

int *TSSchunk ;

int *TSSdelta ;

int *timeStep ;

int numLoops;

int curLoop;

double *tExclude;

} infoDLS ;

Listing 4.2: Extended infoDLS struct

where loop specific members are changed

to pointers and 3 new members are added.

Information about multiple loops can be

held.

In addition to the modified members, three new members are introduced to the struct.

The integer numLoops denotes the number of loops to execute asynchronously. The integer

curLoop is used to keep track of which loop a worker is currently computing a chunk for and

a pointer to a double array tExclude helps to keep track of how much time was spent in each

loop. This last addition is only required for AWF-D and AWF-E because they require the

bookkeeping time for each loop to adapt the weights of each worker correctly. An example

program is provided in Listing 4.3 to illustrate the usage of the extended library.

The extension introduces five new API functions:

• void DLS NumLoops(infoDLS *info, int n);
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• void DLS StartMLoops(infoDLS *info, int *firstIters, int *lastIters, int

*imeths);

• int DLS MTerminated(infoDLS *info);

• void DLS TargetLoop(infoDLS *info, int l);

• void DLS EndMLoops(infoDLS *info, int *niters, double *worktime);

DLS NumLoops updates the new member numLoops in the infoDLS struct with the

parameter supplied. This function needs to be called before DLS Parameters Setup such

that the appropriate amount of memory is allocated. If the function is not called before

DLS Parameters Setup, it is assumed one loop is scheduled at a time.

DLS StartMLoops is the new counterpart to DLS StartLoop. The function body of

DLS StartMLoops is an extended version of DLS StartLoop’s function body. The modifi-

cation allows us to initialize one or more loop-specific members of infoDLS in one function

call, such as the starting index and last index for each loop. An arbitrary combination of

the o↵ered scheduling techniques can be chosen when scheduling multiple loops. Since this

extended function can also handle the initialization for only one loop, DLS StartLoop is

modified to call DLS StartMLoops internally.

DLS MTerminated analogously to DLS StartMLoops is the new counterpart to

DLS Terminated. The extended version generalizes the DLS Terminated to work with one

or multiple loops. Using DLS MTerminated as a stopping condition, one iteration of the

while loop computes one chunk of each loop if work is available. DLS MTerminated only

returns 1 if there is no more work available for all the loops scheduled asynchronously. If

only one loop is scheduled at a time, then the behavior of DLS MTerminated is the same as

DLS Terminated. As such, DLS Terminated calls DLS MTerminated internally.

DLS TargetLoop is used to select the loop for which the next chunk start and chunk

size is obtained. This is done by setting the new member curLoop in the infoDLS struct to

the appropriate value. The value is subsequently used by DLS StartChunk to provide the

chunk information for the correct loop. A level of complexity is added to DLS StartChunk

because work, request, and end messages for other than the currently set target loop can

be received in this function. Therefore, each message is extended to specify which loop the

message refers to. This additional information allows updating values in the infoDLS struct

and responding to requests in a targeted manner for each loop. When a work message for

a di↵erent loop than the target loop is received, the worker skips the target loop to avoid

further time probing for messages. The worker continues with a chunk size of 0, therefore

proceeding to the next loop where work may be available now. This skipping of loops will

be of relevance in the discussion in Section 5.5.1.

DLS EndChunk is modified to send request messages if needed for the currently

targeted loop, after which another loop can be targeted to obtain and execute a chunk.

When an end message is received for each asynchronously executed loop, the while loop

breaks—letting the worker proceeds to DLS EndMLoops. This function is the point of

synchronization when multiple loops are executed asynchronously. Suppose an application

contains three loops that should be executed in parallel. Usage of the synchronized version
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of LB4MPI would result in three synchronization points where workers possibly wait idly.

Using the extension to execute the three loops asynchronously would only result in one

synchronization point where workers possibly wait idly. The asynchronous approach allows

progress on all loops simultaneously and should decrease the overall time spent waiting idly.

1 infoDLS i I n f o ;

2 MPI Init(&argc , &argv ) // i n i t i a l i z e MPI environment

3 DLS NumLoops(& i I n f o , n ) ;

4 DLS Parameters Setup (MPICOMMWORLD, &i In f o , numProcs , requestWhen , breakAfter ,

5 minChunk , h overhead , sigma , nKNL, xeon speed , KNL speed ) ;

6 int s t a r t , chunkSize ;

7 int n I t e r s [ n ] ;

8 double workTimes [ n ] ;

9 int f i r s t I t e r s = { 0 , . . . , 0 } ;
10 int l a s t I t e r s = { l a s t I t e r l o o p 1 , . . . , l a s t I t e r l o o p n } ;
11 int methods = {method loop 1 , . . . , method loop n } ;
12 DLS StartLoop(& i In f o , f i r s t I t e r s , l a s t I t e r s , methods ) ;

13 while ( ! DLS MTerminated(& i I n f o ) ) {
14 DLS TargetLoop(& i In f o , 0 ) ;

15 DLS StartChunk(& i In f o , &s ta r t , &chunkSize ) ; // ge t chunk s t a r t and s i z e

16 ca l cu l a t e chunk l o op 1 ( s ta r t , chunkSize ) ;

17 DLS EndChunk(& i In f o , &nIte r , &workTime ) ; // p o s s i b l y r e que s t next chunk

18 // . .

19 // p o s s i b l y more loops

20 // . . .

21 DLS TargetLoop(& i In f o , n−1);

22 DLS StartChunk(& i In f o , &s ta r t , &chunkSize ) ; // ge t chunk s t a r t and s i z e

23 ca l cu l a t e chunk l oop n ( s ta r t , chunkSize ) ;

24 DLS EndChunk(& i In f o , &nIte r , &workTime ) ; // p o s s i b l y r e que s t next chunk

25 }
26 DLS EndMLoops(& i I n f o , n I t e r s , workTimes ) ; // workers synchronize here

27 DLS Final ize (& i I n f o ) ;

28 MPI Final ize ( ) ;

Listing 4.3: Illustrative example how LB4MPI can be used to schedule multiple loops in an

asynchronous fashion. Initialization of used variables is omitted due to space reasons.

4.2 Verification

The extended LB4MPI library is tested with two forms of verification. The first ver-

ification is used to confirm and verify that all loop iterations are scheduled and executed

correctly with and without synchronization. A small parallel application is used, which com-

putes the sum and product of a sequence of numbers in two separate loops. The results of

all workers are combined and checked for correctness. All considered scheduling techniques

pass this verification with synchronization among loops and without.

The second form of verification compares the performance of the original, unmodified

LB4MPI library with the modified version of LB4MPI, where the loops are still scheduled

and executed in a synchronized fashion. This second verification attempts to raise the con-

fidence that no bugs were introduced in the chunk calculations of the scheduling techniques

in the process of the implementation. Comparing the unmodified LB4MPI library to the
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extended version also allows for estimating the additional overhead the modification to the

code produced. This verification is performed with the Mandelbrot application introduced

shortly in Section 5.2. The verification, however, does not guarantee that no bugs exist

when multiple loops are scheduled and executed in an asynchronous fashion. The results of

the second verification are presented in Section 5.5.2, along with the performance results of

the Mandelbrot application used for performance evaluation.

The source code of the modified/new functions is provided Appendix B.1



5
Performance Evaluation and Results

The performance of both the synchronous and asynchronous execution of multiple loops

using LB4MPI is evaluated by a design of factorial experiments presented later. Additionally,

visualizations are presented illustrating the asynchronous execution of multiple loops in

comparison to synchronous execution. Two time-stepping applications are evaluated with

di↵erent properties each.

5.1 Pi-Solver and STREAM Triad

The first application contains two HPC kernels. A kernel is a function with specific

properties. Pi-Solver is a computationally intensive (CPU bound) kernel seen in Listing

5.1. The name suggests that the number pi is estimated with this kernel. This was not the

case in the version used for the evaluation. However, the computationally intensive property

remains and is su�cient for the evaluation. The second kernel is STREAM Triad. STREAM

is a benchmark to measure sustainable memory bandwidth [1]. STREAM Triad is one of

many kernels used in STREAM benchmark and can be seen in Listing 5.2. Three arrays of

equal size are initialized and used for small computations in this kernel. The array size has

to be chosen big enough such that the arrays don’t fit in the cache, and thus main memory

has to be accessed often during execution. This kernel is chosen to complement the CPU

bound kernel with a memory intensive (memory bound) kernel. The combination of the

two kernels has the purpose of investigating whether asynchronous execution of both loops

leads to a performance increase since it allows workers to perform memory intensive tasks

while other workers are executing computationally intensive tasks. Synchronized execution

of both loops forces all workers to either execute CPU bound or memory bound tasks at a

time. The Tasks in this application show a low load imbalance.

for ( int i = 0 ; i < l a s t I t e r ; i++ {
x = ( i +0.5)∗ stepLength ;

sum += 4.0/(1 .0+x∗x ) ;

}

Listing 5.1: Pi-Solver kernel, stepLength is

decreased with timesteps

for ( int i = 0 ; i < a r rayS i z e ; i++) {
A[ i ] = B[ i ] + 2 ∗ C[ i ] ;

}

Listing 5.2: STREAM Triad kernel, each ar-

ray is accessed once per iteration
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5.2 Mandelbrot

The second application is a time-stepping application to compute the Mandelbrot set.

It is a computationally intensive application with a high load imbalance. The original

Mandelbrot set is the set of complex numbers c in the complex plane for which z stays

bounded in equation 5.1 [25]. This application uses equation 5.2. Di↵erent values for c

result in a varying number of iterations needed to check for divergence. A visualization of

the Mandelbrot set produced by the application can be seen in Figure 5.1.

z0 = 0

zn+1 = z2n + c
(5.1)

z0 = 0

zn+1 = z4n + c
(5.2)

Figure 5.1: Mandelbrot set generated with the application used to evaluate performance.
The set is computed 3 times for a total of 960’400 complex numbers. 10’000 max Iterations
to check for divergence are used.

The Mandelbrot set is computed three times in separate loops in each time step. A

di↵erent property characterizes each loop. The first loop has a constant load imbalance over

all time steps, while the load imbalance increases and decreases for the second and third

loop, respectively. The results of the computations are not collected as the execution time

is the metric of interest and not the result itself. This application aims to investigate the

impact of the relaxed synchronization among loops in applications with high load imbalance

on performance.

5.3 Computing System

The computing system on which the performance is evaluated is a small high-performance

computing cluster referred to as miniHPC and is located at the University of Basel. It serves

as a platform for educational purposes while also o↵ering a fully controllable research envi-

ronment for scientific experiments furthering HPC research. The cluster is made up of four
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types of nodes. The nodes are interconnected by Ethernet with 10 Gbit/s speed and an

Intel Omni-Path network with 100 Gbit/s speed. The fast Omni-Path network is structured

in a two-level fat-tree topology, reserved for high-speed communication between nodes. The

experiments are performed on 16 nodes containing two Intel Xeon E5-2640 v4 CPUs. For

further information about miniHPC, the reader is referred to [3].

5.4 Design of Factorial Experiments

The design of factorial experiments is presented in Table 5.1. The Pi-Solver + STREAM

(Triad) application used an array size of 20’000’000 and 100’000’000 iterations per Pi-Solver

loop. The number of time steps is set to 10’000. For the Mandelbrot application, the num-

ber of time steps is set to 200. Each of the three Loops computes the Mandelbrot set for

262’144 complex numbers, and the maximum number of iterations to check for divergence is

set to 10’000. Each scheduling technique is used with and without synchronization among

the loops. SS and AF have been excluded from the Pi-Solver and STREAM Triad experi-

ments due to their excessively high execution times. Each experiment is repeated 20 times.

All scheduling techniques used the default chunk parameter of 1, representing the smallest

chunk size that can be scheduled. The applications are compiled with Intel compiler at ver-

sion 2021.4.0 and executed on 16 Intel Xeon E5-2640 v4 nodes with 16 MPI ranks per node.

This configuration results in a total of 256 ranks per experiment. For each experiment, the

total parallel execution time of all time-steps is measured along the parallel loop execution

time of each loop to evaluate the performance.

Factors Values Properties

Applications

Pi-solver + STREAM (Triad)
T = 10000 |Total loops = 2 |Modified loops = 2
Pi-Solver: N = 100000000
STREAM Triad: N = 20000000

Mandelbrot

T = 200 |max Iterations/pixel = 10000
Total loops = 3 |Modified loops = 3
L1: N = 262144 (constant load-imbalance)
L2: N = 262144 (increasing load-imbalance)
L3: N = 262144 (decreasing load-imbalance)

LB4MPI without
synchronization
among loops Scheduling

techniques

STATIC Straightforward parallelization

SS, MFSC, GSS, TSS, FAC2, WF
Dynamic and non-adaptive self-scheduling techniques
(SS excluded for Pi-Solver+STREAM Triad)LB4MPI with

synchronization
among loops

AWF, AWF-B, AWF-C, AWF-D, AWF-E, AF
Dynamic and adaptive self-scheduling techniques (AF
excluded for Pi-Solver+STREAM Triad)

Chunk parameters default 1
represents the smallest chunk size a rank can obtain with
a given self-scheduling technique

Computing system miniHPC

16 Dual socket Intel Xeon E5-2640v4 nodes
64 GB DDRAM per node
Nonblocking fat-tree topology
Fabric: Intel OmniPath - 100 Gbps
16 MPI ranks per node, Total of 256 MPI ranks

Metrics Performance per loop Parallel loop execution time T loop
par

Table 5.1: Design of factorial experiments resulting in a total of 960 experiments

5.5 Results and Discussion

5.5.1 Pi-Solver and STREAM Triad

Figures 5.2a to 5.2d show the performance results of the Pi-Solver + STREAM Triad

application. In Fig. 5.2a all evaluated scheduling techniques are contained in one boxplot
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as an overview. Overall the static and non-adaptive scheduling techniques performed better

with synchronous and asynchronous execution than the adaptive techniques. The low load-

imbalance of the application can explain this result. When the di↵erence in workload per

iteration is negligible, static scheduling performs the best because of the minimal schedul-

ing overhead. As the produced overhead of the scheduling technique increases, so does the

parallel loop execution time. An outlier that needs addressing is the TSS scheduling tech-

nique. It unexpectedly showed the highest parallel loop execution time of all techniques

while also having the highest variance among the scheduling techniques. Figure 5.2d shows

that most of the parallel loop execution time for TSS was spent in Pi-Solver. Performing

the computations in Pi-Solver takes only a small amount of time compared to STREAM.

Thus, a significant amount of time is spent probing for new messages. This indicates that

the foreman is overwhelmed with requests and negatively impacts the performance due to

delayed work messages. A bug in the code of the library related to TSS can almost certainly

be ruled out, as the comparison of the unmodified and the extended library showed no such

indication as later seen in Section 5.5.2.1.

For this application, the asynchronous execution results in worse performance com-

pared to the synchronous execution in almost all cases. Time spent in Pi-Solver increases

when comparing synchronous to asynchronous executions. Requests referring to either loop

can arrive at any time. Due to the skipping mechanism mentioned in Section 4.1 and the

long probing times for Pi-Solver, almost all work messages for the STREAM kernel are re-

ceived while waiting for Pi-Solver work messages. Thus the average parallel loop execution

time of STREAM in the asynchronous case decreases compared to the synchronous case.

Interestingly AWF-D and AWF-E performed better with asynchronous execution than with

synchronous execution. Both scheduling techniques take chunk assignment time into ac-

count when adapting the weights. This could be the reason for the performance increase as

chunk assignment time constitutes a large part of this application. Whether the combina-

tion of CPU bound and memory bound kernels executed asynchronously leads to better or

worse performance is not conclusive. This could partly be attributed to the high di↵erence

in work time for each kernel with the chosen experiment parameters. More iterations per

time-step of Pi-Solver to increase work time may o↵er more conclusive results.

5.5.2 Mandelbrot

In Figures 5.3a to 5.3d the performance results of the Mandelbrot application are

shown. One can see that, similarly to the Pi-Solver and STREAM application, static and

non-adaptive dynamic scheduling techniques outperform the dynamic adaptive scheduling

techniques. The applications are executed on homogeneous nodes with the same hardware.

Additionally, no perturbations in the systems are present as the experiments are run ex-

clusively with no other applications running on the same node. As a result, the adaptive

scheduling techniques show worse performance, as they work exceptionally well when per-

turbations are present in the system. When no perturbations are present, the additional

scheduling overhead deteriorates the performance. Fig. 5.3b shows that non-adaptive dy-

namic scheduling techniques perform better than static scheduling. The load imbalance
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(a) Boxplot of every evaluated scheduling
techniques.

(b) Boxplot of same results as Figure 5.2a,
only showing static and non-adaptive dy-
namic scheduling techniques. TSS has been
excluded for better scaling in the plot. A plot
with TSS can be found in Appendix A.1a

(c) Boxplot of same results as Figure 5.2a,
only showing adaptive dynamic scheduling
techniques.

(d) Barplot showing the parallel loop exe-
cution time of each individual loop where
the red bars represent the time for Pi-Solver
and the green bars represent the time for
STREAM Triad.

Figure 5.2: Pi-Solver + STREAM Triad performance results. Light blue background corre-
sponds to results with synchronization among loops and light orange background corresponds
to results obtained from the experiments with relaxed synchronization among loops (asyn-
chronous). The x-axis shows the scheduling techniques and the y-axis shows the parallel
loop execution time in seconds.

of this application is quite high, as for each iteration, the workload can vary significantly.

Consequently, the load is distributed better when using dynamic non-adaptive scheduling

techniques. The results show lower parallel loop execution times with static and dynamic

non-adaptive scheduling techniques when loops are executed asynchronously. Due to the

high load imbalance, it is likely that some workers have faster execution times than oth-

ers. When loops are executed synchronously, the faster workers spend time waiting idly to

synchronize with the slower workers. Asynchronous execution allows the workers to make

progress on all loops, eliminating the idle time between loop executions. The only possible

idle time with asynchronous execution is produced in DLS EndMLoops, after each time

step. The overall idle time is reduced by executing loops asynchronously. Fig. 5.3d shows
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that the summed average parallel loop execution time per loop with asynchronous execution

is actually higher than with synchronous execution. This can be explained by the fact that

more time is spent probing for messages with asynchronous execution as the foreman has to

handle more requests at once. The additional probing time is compensated by shorter idle

time of workers, resulting in a better overall performance.

(a) Boxplot of every evaluated scheduling
techniques.

(b) Boxplot of same results as Figure 5.3a,
only showing static and non-adaptive dy-
namic scheduling techniques. SS has been
excluded for better scaling but a plot with
SS included can be found in Appendix A.1b

(c) Boxplot of same results as Figure 5.3a,
only showing adaptive dynamic scheduling
techniques.

(d) Barplot showing the parallel loop exe-
cution time of each individual loop in the
Mandelbrot application where the blue bars
represent the average parallel loop execution
time of loop 1 with constant load imbalance.
Loop 2 has increasing load imbalance over
the times-steps and is represented with the
color red. Loop 3 has decreasing load imbal-
ance over the time-steps and is represented
with the color green.

Figure 5.3: Mandelbrot performance results. Light blue background corresponds to results
with synchronization among loops and light orange corresponds to results obtained from the
experiments with relaxed synchronization among loops. The x-axis shows the scheduling
techniques, and the y-axis shows the parallel loop execution time in seconds.

Dynamic adaptive scheduling techniques show a worse parallel loop execution time
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when executed asynchronously, as seen in Figure 5.3c. Once again, asynchronous execution

leads to more time spent probing for messages. This time is magnified as the chunk calcu-

lation and assignment time of the techniques increases. In this case, the reduced idle time

cannot compensate for the probing time, and as a result, asynchronous execution shows

worse performance.

5.5.2.1 Original and Extended Performance

This section compares the original and the extended version of LB4MPI. The Mandel-

brot application was compiled with both the original and extended library. Five repetitions

of the synchronized version of the Mandelbrot application are compared. The configuration

used is the same as displayed in the table of experiments. The results in Figure 5.4 show

Figure 5.4: Boxplot comparing synchronous execution with the extended library to syn-
chronous execution with the original library. Results for the original library are indicated
by a yellow background while the results of the extended library are indicated by a light blue
background. The x-axis shows the scheduling techniques and the y-axis shows the parallel
loop execution time.

that the additional scheduling overhead produced by the extension is minimal. The almost

equal performance indicates that no bugs were introduced by the extension when executing

loops synchronously. This raises the confidence in the obtained and discussed results.

5.5.3 Scheduling Visualization

Parallel applications are more challenging to understand than sequential applications.

Processes can be at di↵erent points in a program at a specific point in time. This is also

the case when loops are scheduled dynamically. Score-P is a performance measurement

infrastructure for profiling, event tracing, and online analysis of parallel HPC applications
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such as the applications used in this performance analysis [4]. This infrastructure was

utilized to create traces of the applications used in this thesis. The traces are subsequently

visualized with Vampir [5]. It allows seeing the interleaved chunk executions of multiple

loops when loops are executed asynchronously.

(a) Static scheduling, synchronous

(b) Static scheduling, asynchronous

Figure 5.5: Visualization of the Pi-Solver and STREAM application of one time-step. For
both figures static scheduling was used. Orange marks STREAM Triad while green (barely
visible) marks Pi-Solver. Time spent in an MPI Barrier and MPI Probe is indicated by pink
and purple color, respectively. Red indicates MPI Send and light blue indicates MPI Recv.

Figures 5.5a and 5.5b show one time-step of the Pi-Solver and STREAM application.

The execution time of Pi-Solver iterations only takes a fraction of the STEAM iteration

execution time, even if the number of loop iterations for Pi-Solver is increased significantly.

Both figures also show that, as suspected in the discussion of the performance results, a

significant time is spent probing for messages and waiting to synchronize. This could indicate

a poor choice of parameters chosen for the this application supporting the inconclusive result

in Section 5.5.1. Nevertheless, it can be observed that the loops are executed asynchronously

as Fig. 5.5b shows one set of MPI Barriers, while Fig. 5.5a shows two sets of MPI Barriers.

The Mandelbrot application allowed for more illustrative visualizations. Figures 5.6a

and 5.6b show the results of static scheduling. Synchronization among loops shows little dif-

ference in visualizations when comparing scheduling techniques. Asynchronous execution, on

the other hand, produces visualizations that can di↵er drastically with the scheduling tech-

nique applied shown in Figures 5.6b to 5.6d. Static and dynamic non-adaptive techniques

show a clear structure, while adaptive techniques appear quite chaotic. This behaviour can

be explained by adaptive chunk calculation for each worker.

Visualizations of further scheduling techniques are provided in Appendix A.2
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Figure 5.6: Visualization of the Mandelbrot application of one time-step. Blue marks L1, red
marks L2, and green marks L3. Time spent in an MPI Barrier and MPI Probe is indicated
by pink and purple color, respectively.

(a) Static scheduling, synchronous

(b) Static scheduling, asynchronous

(c) FAC2, asynchronous

(d) AWF-B, asynchronous
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Conclusion

The main contributions of this thesis are the extension of LB4MPI, allowing asynchronous

execution of multiple loops, and a performance analysis comparing synchronous to asyn-

chronous execution of multiple loops. The results showed that applications with high load-

imbalance static and dynamic non-adaptive scheduling techniques perform better when the

synchronization between loops is relaxed, and multiple loops are executed asynchronously.

The opposite has been observed for dynamic adaptive scheduling techniques, where asyn-

chronous execution worsens the performance. The results also show that synchronous execu-

tion performs better than asynchronous execution in applications with low load-imbalance

performance. Results regarding the impact on applications’ performance where kernels use

di↵erent system resources were not conclusive.

6.1 Future Work

There are still possible optimizations in the way the extension is implemented. Cur-

rently, when a worker who has no current chunk to execute for the targeted loop, it has

to wait in DLS StartChunk until some message is received. This probing for messages

could be further relaxed such that a worker performs a non-blocking probe and leaves

DLS StartChunk immediately to directly move on to the next loop where work has pos-

sibly already been assigned.

The performance evaluation was conducted where for each experiment, only a single

scheduling technique was used. Evaluating combinations of scheduling techniques in an

experiment was out of scope for this thesis but could present an exciting direction for future

research.

LB4MPI allows tuning the behavior of the workers, such as how early new work is

requested or how often the foreman stops executing chunks to check for new messages. The

experiments used the default parameters. Exploration of di↵erent such parameters may o↵er

further insight.

Additionally, only two quite simple applications were used to evaluate the perfor-

mance. More complex applications with di↵erent properties could be part of future re-

search—especially applications where di↵erent system resources are used.
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A
Figures

A.1 Performance Results

(a) Pi-STREAM, Static and non-adaptive dy-
namic scheduling techniques, including TSS

(b) Mandelbrot, Static and non-adaptive dy-
namic scheduling techniques, including SS

Figure A.1: Performance results including outliers. Blue background corresponds to syn-
chronization among loops and light orange without.

A.2 Scheduling Visualization of mandelbrot application

Figure A.2: Scheduling Visualizations

(a) SS, synchronized (only part of time step shown)
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(b) SS, asynchronous (only part of time step shown)

(c) MFSC, synchronous

(d) MFSC , asynchronous

(e) GSS, synchronous

(f) GSS, asynchronous

(g) TSS, synchronous

(h) TSS, asynchronous
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(i) FAC2, synchronous

(j) WF, synchronous

(k) WF, asynchronous

(l) AWF, synchronous

(m) AWF, asynchronous

(n) AWF-B, synchronous

(o) AWF-C, synchronous
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(p) AWF-C, asynchronous

(q) AWF-D, synchronous

(r) AWF-D, asynchronous

(s) AWF-E, synchronous

(t) AWF-E, asynchronous

(u) AF, synchronous

(v) AF, asynchronous



B
Code

B.1 LB4MPI

1 void DLS NumLoops( infoDLS ∗ in fo , int n)

2 {
3 I n i t i a l i z e d = 1 ;

4 in fo−>numLoops = n ;

5 }

Listing B.1: DLS NumLoops function, used to set the number of loops to execute asyn-

chronously

1 void DLS Parameters Setup ( MPI Comm icomm , infoDLS ∗ in fo , int numProcs ,

2 int requestWhen , int breakAfter , int minChunk , double h overhead ,

3 double sigma , int nKNL, double Xeon speed , double KNL speed )

4 {
5 int tP ;

6 double tota l sum = 0 . 0 ;

7 double co re speed = 0 . 0 ;

8 int i , j ;

9 // check i f in fo−>numLoops was i n i t a l i z e d , i f not we s e t numLoops to d e f a u l t (1 )

10 // o t h e rw i s e i t i s a l r e a d y i n i t i a l i z e d by DLS numLoop

11 i f ( I n i t i a l i z e d == 0)

12 {
13 in fo−>numLoops = 1 ;

14 }
15 MPI Comm size ( icomm , &tP ) ;

16 MPI Comm rank( icomm , &( in fo−>myRank ) ) ;

17 in fo−>comm = icomm ;

18 in fo−>crew = MPI COMM NULL;

19 in fo−>commSize = tP ;

20 in fo−>f i r s tRank = 0 ;

21 in fo−>lastRank = tP−1;

22 in fo−>foreman = 0 ;

23 in fo−>breakAfter = breakAfter ;

24 in fo−>requestWhen= requestWhen ;

25 in fo−>minChunk = minChunk ;

26 // a l l o c a t e memory f o r p o s s i b l y mu l t i p l e l o o p s

27 al locate mem ( in fo , in fo−>numLoops , numProcs ) ;

28

29 // i n i t i a l i z e infoDLS members

30 for ( i =0; i<in fo−>numLoops ; i++)

31 {
32 in fo−>probeFreq [ i ] = −1;

33 in fo−>timeStep [ i ] = 0 ;

34 }
35 i f ( in fo−>comm==MPI COMM NULL) return ;

36

37 // h and sigma f o r FSC o r g i n i a l e qua t i on

38 in fo−>h overhead = h overhead ;
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39 in fo−>sigma = sigma ;

40 // c a l c u l a t e we i g h t s f o r WF . . assume two t y p e s o f p roce s so r s , Xeon and KNL

41 tota l sum = nKNL ∗ KNL speed + (numProcs − nKNL) ∗ Xeon speed ;

42 for ( i = 0 ; i < numProcs ; i++)

43 {
44 i f ( i <(numProcs − nKNL) )

45 { co re speed = Xeon speed ;}
46 else

47 { co re speed = KNL speed ; }
48 for ( j = 0 ; j < in fo−>numLoops ; j++)

49 {
50 // i n i t i a l i z e mu, sigma , and per formance data count

51 in fo−>s t a t s [ 3∗ i+j ∗ in fo−>numLoops ] = −1; //mu

52 in fo−>s t a t s [ 3∗ i+1+j ∗ in fo−>numLoops ] = −1; // sigma

53 in fo−>s t a t s [ 3∗ i+2+j ∗ in fo−>numLoops ] = 0 ; // per formance data count

54 // i n i t i a l i z e we i g h t s

55 in fo−>weights [ i+j ∗ in fo−>numLoops ] = core speed / tota l sum ∗ numProcs ;

56 }
57

58

59 }
60 }

Listing B.2: DLS Parameters Setup function, modified to initialize members of for multiple

loops.

1 void DLS StartMLoops ( infoDLS ∗ in fo , int ∗ f i r s t I t e r , int ∗ l a s t I t e r , int ∗ imeths )

2 {
3 int tS i ze , worker ;

4 int endedLoop ;

5 double K;

6 int i ;

7 double awap , trw ;

8 int numLoops = in fo−>numLoops ;

9

10

11 memcpy( in fo−> f i r s t I t e r , f i r s t I t e r , numLoops∗ s izeof ( int ) ) ;

12 memcpy( in fo−>l a s t I t e r , l a s t I t e r , numLoops∗ s izeof ( int ) ) ;

13 memcpy( in fo−>method , imeths , numLoops∗ s izeof ( int ) ) ;

14

15

16 for ( int l = 0 ; l < in fo−>numLoops ; l++)

17 {
18 in fo−>tExclude [ l ] = 0 . 0 ;

19 in fo−>wSize [ l ] = 0 ; /∗ remaining i t e r a t e s in cu r r en t chunk ∗/
20 in fo−>gotWork [ l ] = 1 ; /∗ . t r u e . ; ∗/
21 in fo−>workTime [ l ] = 0 . 0 ;

22 in fo−>myIters [ l ] = 0 ;

23 in fo−>N[ l ] = l a s t I t e r [ l ] − f i r s t I t e r [ l ] + 1 ;

24 in fo−>timeStep [ l ] = in fo−>timeStep [ l ] + 1 ;

25 // check i f range o f i t e r a t i o n s i s v a l i d and MPI comm e x i s t s ,

26 // o t h e rw i s e con t inue w i th nex t l oop

27 i f ( ( in fo−>comm==MPI COMM NULL) | | ( in fo−>N[ l ]<=0) ) continue ;

28

29 i f ( ( in fo−>method [ l ]>DLS MethodCount−1) | | ( in fo−>method [ l ]<0) )

30 in fo−>method [ l ] = 0 ;

31

32

33

34 in fo−>TSSchunk [ l ] = c e i l ( (double ) in fo−>N[ l ] / ( (double ) 2∗ in fo−>commSize ) ) ;

35 int n = c e i l (2∗ in fo−>N[ l ] / ( in fo−>TSSchunk [ l ]+1 ) ) ; //n=2N/ f+l

36 in fo−>TSSdelta [ l ] = (double ) ( in fo−>TSSchunk [ l ] − 1)/(double ) (n−1);

37 // c a l c u l a t e AWF we i g h t s

38 i f ( ( in fo−>method [ l ] == AWF) && ( in fo−>myRank == info−>foreman ) )

39 {
40 i f ( in fo−>timeStep [ l ] == 1) // f i r s t t imeS tep

41 {
42 for ( i = in fo−>f i r s tRank ; i <= info−>lastRank ; i++)

43 {
44 in fo−>weights [ l ∗ in fo−>numLoops+i ] = 1 . 0 ;

45 }
46 }
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47 else // a l l ranks have wap

48 {
49 awap = 0 . 0 ; // average we i gh t ed per formance

50

51 for ( i = in fo−>f i r s tRank ; i <= info−>lastRank ; i++)

52 {
53 // p r i n t f (” rank %d : %l f ” , i , i n fo−>s t a t [3∗ i ] ) ;

54 awap = awap + in fo−>s t a t s [ l ∗numLoops+3∗ i ] ;

55 }
56 awap = awap/ in fo−>commSize ;

57 trw = 0 . 0 ; // t o t a l r e f we i gh t ( r e fw t ( i ) = awap/ i n f o%s t a t s (3∗ i )

58

59 for ( i = in fo−>f i r s tRank ; i <= info−>lastRank ; i++)

60 {
61 trw = trw + awap/ in fo−>s t a t s [ l ∗numLoops+3∗ i ] ;

62 }
63

64 for ( i = in fo−>f i r s tRank ; i <= info−>lastRank ; i++)

65 {
66 in fo−>weights [ l ∗numLoops+i ] = ( ( awap/ in fo−>s t a t s [ l ∗numLoops+3∗ i ] ) ∗
67 in fo−>commSize )/ trw ;

68 }
69 }
70 }
71 // numChunks doesn ’ t seem to be used anywhere

72 in fo−>numChunks = 0 ;

73 in fo−>myExecs [ l ] = 0 ;

74 in fo−>mySumTimes [ l ] = 0 . 0 ;

75 in fo−>mySumSizes [ l ] = 0 . 0 ;

76 tS i z e = ( in fo−>N[ l ]+ in fo−>commSize−1)/ in fo−>commSize ;

77 in fo−>chunkMFSC [ l ] = (0.55+ tS i z e ∗ l og ( 2 . 0 ) / log ( ( 1 . 0∗ t S i z e ) ) ) ;

78 in fo−>kopt0 [ l ] = sq r t ( 2 . 0 )∗ in fo−>N[ l ] /

79 ( in fo−>commSize∗ sq r t ( l og (1 . 0∗ in fo−>commSize ) ) ) ;

80

81 // c a l c u l a t e FSC chunk

82 K=( sq r t (2)∗ in fo−>N[ l ]∗ in fo−>h overhead )/

83 ( in fo−>sigma∗ in fo−>commSize∗ sq r t ( l og ( in fo−>commSize ) ) ) ;

84 K=pow(K, 2 . 0 / 3 . 0 ) ;

85

86

87

88 in fo−>chunkFSC [ l ] = ( int ) c e i l (K) ;

89 in fo−>nextWRKrcvd [ l ] = 0 ;

90 in fo−>req4WRKsent [ l ] = 0 ;

91 in fo−>f in i shedOne [ l ] = 0 ;

92

93 in fo−>probeFreq [ l ] = max(1 , in fo−>breakAfter ) ;

94 in fo−>sendRequest [ l ] = max(1 , in fo−>requestWhen ) ;

95 i f ( in fo−>myRank == info−>foreman )

96 {
97 in fo−>chunkStart [ l ] = f i r s t I t e r [ l ] ;

98 in fo−>i t e r sS chedu l ed [ l ] = 0 ;

99 in fo−>batchS ize [ l ] = 0 ;

100 in fo−>batchRem [ l ] = 0 ;

101 in fo−>numENDed[ l ] = 0 ;

102

103 i f ( in fo−>minChunk>0)

104 in fo−>minChunkSize [ l ] = in fo−>minChunk ;

105 else

106 /∗ d e f a u l t min chunk s i z e ∗/
107 in fo−>minChunkSize [ l ] = max(1 , in fo−>chunkMFSC [ l ] / 2 ) ;

108 in fo−>maxChunkSize [ l ] = ( in fo−>N[ l ]+2∗ in fo−>commSize−1)/(2∗ in fo−>commSize ) ;

109

110 // s e t curLoop such t h a t t h e chunks f o r t h e r i g h t l oop are s en t

111 in fo−>curLoop = l ;

112 /∗ send i n i t i a l work to each p r o c e s s o r ∗/
113 for ( worker = in fo−>f i r s tRank ; worker <= info−>lastRank ; worker++)

114 {
115 i f ( in fo−>chunkStart [ l ] < in fo−> l a s t I t e r [ l ] )

116 {
117 SendChunk ( in fo , worker ) ;

118 }
119 else
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120 {
121 endedLoop = l ;

122 // end worker

123 MPI Send (&endedLoop , 1 , MPI INT , worker , END TAG, in fo−>comm) ;

124 in fo−>numENDed[ l ]++; // increment ended workers

125 }
126 }
127 }
128 }
129 // r e s e t curLoop to f i r s t l oop by d e f a u l t

130 in fo−>curLoop = 0 ;

131 }

Listing B.3: DLS StartMLoops function, initialized loop-specific members for one or more

loops. Sends out first chunk to every worker.

1 int DLS MTerminated ( infoDLS ∗ i n f o )

2 {
3 int i , done ;

4 MPI Status tStatus ;

5 double t0 ;

6 int numNoIterates = 0 ;

7 int sumGotWork = 0 ;

8 int sumWSize = 0 ;

9 for ( i =0; i<in fo−>numLoops ; i++)

10 {
11 i f ( in fo−>N[ i ] <= 0) {
12 numNoIterates++;

13 }
14 sumGotWork += info−>gotWork [ i ] ;

15 sumWSize += info−>wSize [ i ] ;

16 }
17 i f ( numNoIterates == info−>numLoops )

18 {
19 // a l l l o o p s have no i t e r a t e s !

20 done=1;

21 }
22 else

23 {
24 i f ( ( in fo−>comm==MPI COMM NULL) && ( in fo−>crew !=MPI COMM NULL) )

25 MPI Recv (&done , 1 , MPI INT , 0 , TRMTAG, in fo−>crew , &tStatus ) ;

26 else i f ( ( in fo−>comm!=MPI COMM NULL) && ( in fo−>crew !=MPI COMM NULL) )

27 {
28 done = (sumGotWork==0) && (sumWSize==0);

29 for ( i =1; i<in fo−>crewSize ; i++)

30 MPI Send (&done , 1 , MPI INT , i , TRMTAG, in fo−>crew ) ;

31 }
32 else done = (sumGotWork==0) && (sumWSize==0);

33 }
34 return ( done ) ;

35 }

Listing B.4: DLS MTerminated function, checks whether all loops have been completly

scheduled.

1 void DLS TargetLoop ( infoDLS ∗ in fo , int l )

2 {
3 in fo−>curLoop = l ;

4 }

Listing B.5: DLS TargetLoop function, used to set certain loops as the next target loop.

1 void DLS StartChunk ( infoDLS ∗ in fo , int ∗ chunkStart , int ∗ chunkSize )

2 {
3 int tS i ze , tStart , worker , reqLoop ;

4 int MsgInQueue ; /∗ message came in ∗/
5 int loc , maxRemaining ; /∗ source o f chunk to be migra ted ∗/
6 int i , j , endedLoop , chunkInfo [ 3 ] ;

7 double p e r f I n f o [ 4 ] ;
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8 MPI Status mStatus , tStatus ;

9 int t a r g e t = in fo−>curLoop ;

10 int recvLoop ;

11

12 i f ( in fo−>comm==MPI COMM NULL) { /∗ I ’m j u s t a s imp l e worker ∗/
13 MPI Recv ( chunkInfo , 2 , MPI INT , 0 , WRKTAG, in fo−>crew , &tStatus ) ;

14 ∗ chunkStart = chunkInfo [ 0 ] ;

15 ∗ chunkSize = chunkInfo [ 1 ] ;

16 }
17 else { /∗ I ’m the coord ina to r , or a foreman ∗/
18 i f ( in fo−>wSize [ t a r g e t ] == 0 && info−>gotWork [ t a r g e t ] ) {
19 MPI Probe (MPI ANY SOURCE, MPI ANY TAG, in fo−>comm, &mStatus ) ;

20 MsgInQueue = 1 ; /∗ . t r u e . ∗/
21 }
22 else

23 MPI Iprobe (MPI ANY SOURCE, MPI ANY TAG, in fo−>comm, &MsgInQueue , &mStatus ) ;

24

25 while (MsgInQueue ) {
26

27 switch ( mStatus .MPI TAG ) {
28

29 case (WRKTAG) :

30 MPI Recv ( chunkInfo , 3 , MPI INT , mStatus .MPI SOURCE, WRKTAG, in fo−>comm, &tStatus ) ;

31 // What l oop d id I r e c e i v e work f o r ?

32 recvLoop = chunkInfo [ 2 ] ;

33

34 i f ( in fo−>wSize [ recvLoop ] == 0) { /∗ no pending chunk ∗/
35 in fo−>t0 [ recvLoop ] = MPI Wtime ( ) ; /∗ e l a p s e d t ime f o r chunk s t a r t s here ∗/
36 in fo−>tExclude [ recvLoop ] = 0 . 0 ;

37 in fo−>wStart [ recvLoop ] = chunkInfo [ 0 ] ;

38 in fo−>wSize [ recvLoop ] = chunkInfo [ 1 ] ;

39 in fo−>rS ta r t [ recvLoop ] = in fo−>wStart [ recvLoop ] ;

40 in fo−>r S i z e [ recvLoop ] = in fo−>wSize [ recvLoop ] ;

41 in fo−>req4WRKsent [ recvLoop ] = 0 ; /∗ canc e l r e q u e s t f o r work ∗/
42

43 // s e t in fo−>curLoop to recvLoop to s e t b r ea k s c o r r e c t l y

44 in fo−>curLoop = recvLoop ;

45 SetBreaks ( i n f o ) ;

46 // r e s e t in fo−>curLoop to o r i g i n a l s t a t e

47 in fo−>curLoop = ta rg e t ;

48 in fo−>sumt1 [ recvLoop ] = 0 . 0 ; /∗ f o r mu/wap ∗/
49 in fo−>sumt2 [ recvLoop ] = 0 . 0 ; /∗ f o r sigma ∗/
50 }
51 else { /∗ cu r r en t chunk i s not f i n i s h e d save as nex t chunk ∗/
52 in fo−>nextStar t [ recvLoop ] = chunkInfo [ 0 ] ;

53 in fo−>nextS i ze [ recvLoop ] = chunkInfo [ 1 ] ;

54 in fo−>nextWRKrcvd [ recvLoop ] = 1 ; /∗ . t r u e . ∗/
55 }
56 break ;

57

58 case (REQ TAG) : /∗ r e c e i v e d by foreman on ly ∗/
59 worker = mStatus .MPI SOURCE;

60 MPI Recv ( pe r f In f o , 4 , MPI DOUBLE, worker , REQ TAG, in fo−>comm, &tStatus ) ;

61 // What l oop d id I r e c e i v e a r e q u e s t f o r ?

62 recvLoop = ( int ) p e r f I n f o [ 3 ] ;

63

64

65 i f ( ( in fo−>method [ recvLoop]==AF) | | ( in fo−>method [ recvLoop]==AWF B) | |
66 ( in fo−>method [ recvLoop]==AWF C) | |
67 ( in fo−>method [ recvLoop]==AWFD) | | ( in fo−>method [ recvLoop]==AWF E) ) {
68 l o c = pe r f I n f o [ 2 ] ;

69 in fo−>s t a t s [ 3∗ l o c+2+recvLoop∗ in fo−>numLoops ] =

70 in fo−>s t a t s [ 3∗ l o c+2+recvLoop∗ in fo−>numLoops ]+1 . 0 ;

71 /∗ adap t i v e methods ∗/
72 in fo−>s t a t s [ 3∗ l o c+recvLoop∗ in fo−>numLoops ] = p e r f I n f o [ 0 ] ;

73 in fo−>s t a t s [ 3∗ l o c+1+recvLoop∗ in fo−>numLoops ] = p e r f I n f o [ 1 ] ;

74

75 i f ( in fo−>f in i shedOne [ recvLoop ] != in fo−>commSize ) {
76 /∗ workers t h a t have not f i n i s h e d a f i r s t chunk ∗/
77 /∗ assume the l ow e s t per formance ∗/
78 j = l o c ;

79

80 for ( i=in fo−>f i r s tRank ; i<=info−>lastRank ; i++)
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81 i f ( ( in fo−>s t a t s [ 3∗ i+2+recvLoop∗ in fo−>numLoops ] > 0 . 0 ) &&

82 ( in fo−>s t a t s [ 3∗ i+recvLoop∗ in fo−>numLoops ] <

83 in fo−>s t a t s [ 3∗ j+recvLoop∗ in fo−>numLoops ] ) ) j = i ;

84 in fo−>f in i shedOne [ recvLoop ] = 0 ;

85 for ( i=in fo−>f i r s tRank ; i<=info−>lastRank ; i++)

86 i f ( in fo−>s t a t s [ 3∗ i+2+recvLoop∗ in fo−>numLoops ] == 0 . 0 ) {
87

88 // s e t my s t a t s to t h o s e s t a t s t o minimum

89 in fo−>s t a t s [ 3∗ i+recvLoop∗ in fo−>numLoops ] =

90 in fo−>s t a t s [ 3∗ j+recvLoop∗ in fo−>numLoops ] ;

91 in fo−>s t a t s [ 3∗ i+1+recvLoop∗ in fo−>numLoops ] =

92 in fo−>s t a t s [ 3∗ j+1+recvLoop∗ in fo−>numLoops ] ;

93

94 }
95 else

96 in fo−>f in i shedOne [ recvLoop ] = in fo−>f in i shedOne [ recvLoop ] + 1 ;

97 }
98

99 } /∗ i f (AWF methods ) ∗/
100

101 /∗ any remaining unschedu l ed i t e r a t e s ? ∗/
102 i f ( in fo−>chunkStart [ recvLoop ] <= info−> l a s t I t e r [ recvLoop ] ){
103

104 // s e t curLoop to recvLoop

105 in fo−>curLoop = recvLoop ;

106 SendChunk ( in fo , worker ) ;

107 // r e s e t curLoop

108 in fo−>curLoop = ta rg e t ;

109 }
110 else { /∗ a l l i t e r a t e s s c h edu l e d ∗/
111 in fo−>numENDed[ recvLoop ] = in fo−>numENDed[ recvLoop ] + 1 ;

112 i f ( worker != in fo−>myRank) {
113 endedLoop = recvLoop ;

114 MPI Send (&endedLoop , 1 , MPI INT , worker , END TAG, in fo−>comm) ;

115 }
116 /∗ foreman e x i t s ? ∗/
117 in fo−>gotWork [ recvLoop ] = ( in fo−>numENDed[ recvLoop ] != in fo−>commSize ) ;

118 }
119 break ;

120

121 case (END TAG) : /∗ r e c e i v e d by workers on l y ∗/
122

123 MPI Recv (&endedLoop , 1 , MPI INT , mStatus .MPI SOURCE,

124 mStatus .MPI TAG, in fo−>comm, &tStatus ) ;

125 in fo−>gotWork [ endedLoop ] = 0 ;

126 break ;

127

128 } /∗ sw i t c h ∗/
129 MPI Iprobe (MPI ANY SOURCE, MPI ANY TAG, in fo−>comm, &MsgInQueue , &mStatus ) ;

130 } /∗ wh i l e (MsgInQueue ) ∗/
131

132 ∗ chunkStart = in fo−>wStart [ t a r g e t ] ;

133 ∗ chunkSize = min ( in fo−>wSize [ t a r g e t ] , in fo−>probeFreq [ t a r g e t ] ) ;

134 i f ( in fo−>method [ t a r g e t ] == AF) ∗ chunkSize = min (1 , ∗ chunkSize ) ;

135 in fo−>subChunkSize [ t a r g e t ] = ∗ chunkSize ;

136 i f ( in fo−>subChunkSize [ t a r g e t ] !=0) in fo−>t1 [ t a r g e t ] = MPI Wtime ( ) ;

137

138 /∗ r e l a y chunkStar t , chunkS i z e to icomm ∗/
139 i f ( in fo−>crew !=MPI COMM NULL) {
140 chunkInfo [ 0 ] = ∗ chunkStart ;

141 chunkInfo [ 1 ] = ∗ chunkSize ;

142 chunkInfo [ 2 ] = ta rg e t ;

143 for ( i =1; i<in fo−>crewSize ; i++)

144 MPI Send ( chunkInfo , 3 , MPI INT , i , WRKTAG, in fo−>crew ) ;

145 }
146 } /∗ ( in fo−>comm!=MPI COMM NULL) { ∗/
147 }

Listing B.6: DLS StartChunk function, messages are received and responded to in this

function. Chunk start and size are written into chunkStart and chunkSize.

1 void DLS EndChunk ( infoDLS ∗ i n f o )
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2 {
3 double tk , p e r f I n f o [ 4 ] ;

4 int l o c ;

5 int i , j ;

6 int t a r g e t = in fo−>curLoop ;

7

8 i f ( in fo−>comm==MPI COMM NULL) return ;

9

10 i f ( in fo−>subChunkSize [ t a r g e t ]==0) return ;

11

12 tk = MPI Wtime ( ) ;

13 in fo−>t1 [ t a r g e t ] = tk − in fo−>t1 [ t a r g e t ] ;

14 in fo−>wStart [ t a r g e t ] = in fo−>wStart [ t a r g e t ] + in fo−>subChunkSize [ t a r g e t ] ;

15 in fo−>wSize [ t a r g e t ] = in fo−>wSize [ t a r g e t ] − in fo−>subChunkSize [ t a r g e t ] ;

16 // add t1 to a l l e l emen t s o f tExc l ude e x c e p t f o r t a r g e t l oop

17 // l a t e r used to e x c l u d e t h i s accumulated t ime f o r AWF−D and AWF−E methods

18 for ( i =0; i<in fo−>numLoops ; i++) {
19 i f ( i != ta rg e t ) {
20 in fo−>tExclude [ i ] += in fo−>t1 [ t a r g e t ] ;

21 }
22 }
23

24 in fo−>sumt1 [ t a r g e t ] = in fo−>sumt1 [ t a r g e t ] + in fo−>t1 [ t a r g e t ] ;

25 in fo−>workTime [ t a r g e t ] = in fo−>workTime [ t a r g e t ] + in fo−>t1 [ t a r g e t ] ;

26 i f ( in fo−>method [ t a r g e t ] == AF)

27 in fo−>sumt2 [ t a r g e t ] = in fo−>sumt2 [ t a r g e t ] + in fo−>t1 [ t a r g e t ]∗ in fo−>t1 [ t a r g e t ] ;

28

29 i f ( in fo−>wSize [ t a r g e t ] == 0) { /∗ chunk f i n i s h e d ∗/
30

31 i f ( ( in fo−>method [ t a r g e t ]==AWF B) | | ( in fo−>method [ t a r g e t ]==AWF C) ) {
32 /∗ adap t i v e we i gh t ed f a c t o r i n g , work t ime ∗/
33 in fo−>mySumTimes [ t a r g e t ] = in fo−>mySumTimes [ t a r g e t ] +

34 (1+ in fo−>myExecs [ t a r g e t ] ) ∗ in fo−>sumt1 [ t a r g e t ] ;

35 in fo−>mySumSizes [ t a r g e t ] = in fo−>mySumSizes [ t a r g e t ] +

36 (1.0+ in fo−>myExecs [ t a r g e t ] ) ∗ in fo−>r S i z e [ t a r g e t ] ;

37 }
38 else i f ( ( in fo−>method [ t a r g e t ]==AWFD) | | ( in fo−>method [ t a r g e t ]==AWF E) ) {
39 /∗ adap t i v e we i gh t ed f a c t o r i n g , e l a p s e d t ime ∗/
40 in fo−>mySumTimes [ t a r g e t ] = in fo−>mySumTimes [ t a r g e t ] +

41 (1+ in fo−>myExecs [ t a r g e t ] ) ∗ ( tk−in fo−>t0 [ t a r g e t ]− in fo−>tExclude [ t a r g e t ] ) ;

42 in fo−>mySumSizes [ t a r g e t ] = in fo−>mySumSizes [ t a r g e t ] +

43 (1.0+ in fo−>myExecs [ t a r g e t ] ) ∗ in fo−>r S i z e [ t a r g e t ] ;

44 }
45

46 i f ( in fo−>method [ t a r g e t ] !=AF)

47 {
48 /∗ r e s e t accumu la tor s ∗/
49 in fo−>myIters [ t a r g e t ] = in fo−>myIters [ t a r g e t ] + in fo−>r S i z e [ t a r g e t ] ;

50 in fo−>myExecs [ t a r g e t ] = in fo−>myExecs [ t a r g e t ] + 1 ;

51 in fo−>sumt1 [ t a r g e t ] = 0 . 0 ; /∗ f o r mu ∗/
52 in fo−>sumt2 [ t a r g e t ] = 0 . 0 ; /∗ f o r sigma ∗/
53 in fo−>r S i z e [ t a r g e t ] = 0 ;

54 }
55

56 i f ( in fo−>nextWRKrcvd [ t a r g e t ] ) { /∗ foreman a l r e a d y responded to advance r e q u e s t ∗/
57 in fo−>t0 [ t a r g e t ] = MPI Wtime ( ) ; /∗ e l a p s e d t ime f o r chunk s t a r t s here ∗/
58 in fo−>tExclude [ t a r g e t ] = 0 . 0 ;

59 in fo−>wStart [ t a r g e t ] = in fo−>nextStar t [ t a r g e t ] ;

60 in fo−>wSize [ t a r g e t ] = in fo−>nextS i ze [ t a r g e t ] ;

61 in fo−>rS ta r t [ t a r g e t ] = in fo−>wStart [ t a r g e t ] ;

62 in fo−>r S i z e [ t a r g e t ] = in fo−>wSize [ t a r g e t ] ;

63

64 SetBreaks ( i n f o ) ;

65

66 in fo−>nextS i ze [ t a r g e t ] = 0 ;

67 in fo−>nextWRKrcvd [ t a r g e t ] = 0 ;

68 in fo−>req4WRKsent [ t a r g e t ] = 0 ;

69 }
70 } /∗ i f ( in fo−>wSize == 0) ∗/
71

72

73

74
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75 /∗ send r e q u e s t ? ∗/
76 i f ( ( in fo−>wSize [ t a r g e t ]<=info−>sendRequest [ t a r g e t ] ) && ( in fo−>req4WRKsent [ t a r g e t ]==0) ) {
77 p e r f I n f o [ 3 ] = 1.0∗ in fo−>curLoop ;

78 switch ( in fo−>method [ t a r g e t ] ) {
79 case STATIC:

80 case SS :

81 case FSC:

82 case mFSC:

83 case GSS :

84 case TSS :

85 case FAC:

86 case WF:

87 case AWF:

88 p e r f I n f o [ 0 ] = 0 . 0 ;

89 p e r f I n f o [ 1 ] = 0 . 0 ;

90 p e r f I n f o [ 2 ] = 1 .0∗ in fo−>myRank ;

91 p e r f I n f o [ 3 ] = 1 .0∗ in fo−>curLoop ;

92 break ;

93

94 case AWF B:

95 case AWF C: /∗ mu = ( chunk work t ime )/( chunk s i z e ) ∗/
96 p e r f I n f o [ 0 ] = ( in fo−>mySumTimes [ t a r g e t ] + ( in fo−>myExecs [ t a r g e t ]+1)∗ in fo−>sumt1 [ t a r g e t ] )/

97 ( in fo−>mySumSizes [ t a r g e t ] + 1 .0∗
98 ( in fo−>myExecs [ t a r g e t ]+1)∗( in fo−>r S i z e [ t a r g e t ]− in fo−>wSize [ t a r g e t ] ) ) ;

99 p e r f I n f o [ 1 ] = 0 . 0 ;

100 p e r f I n f o [ 2 ] = 1 .0∗ in fo−>myRank ;

101 p e r f I n f o [ 3 ] = 1 .0∗ t a r g e t ;

102 break ;

103

104 case AF:

105 p e r f I n f o [ 0 ] = in fo−>sumt1 [ t a r g e t ] / ( in fo−>r S i z e [ t a r g e t ]− in fo−>wSize [ t a r g e t ] ) ;

/∗ mu ∗/
106 i f ( ( in fo−>r S i z e [ t a r g e t ]− in fo−>wSize [ t a r g e t ] ) > 1) {
107 p e r f I n f o [ 1 ] = ( in fo−>sumt2 [ t a r g e t ] −
108 p e r f I n f o [ 0 ] ∗ p e r f I n f o [ 0 ] ∗ ( in fo−>r S i z e [ t a r g e t ]− in fo−>wSize [ t a r g e t ] ) ) /

109 ( in fo−>r S i z e [ t a r g e t ]− in fo−>wSize [ t a r g e t ] −1); /∗ sigma ∗/
110 i f ( p e r f I n f o [ 1 ] < 0 . 0 ) p e r f I n f o [ 1 ] = 0 . 0 ;

111 p e r f I n f o [ 1 ] = sq r t ( p e r f I n f o [ 1 ] ) ;

112 }
113 else p e r f I n f o [ 1 ] = 0 . 0 ;

114 p e r f I n f o [ 2 ] = 1 .0∗ in fo−>myRank ;

115 p e r f I n f o [ 3 ] = 1 .0∗ t a r g e t ;

116

117 i f ( in fo−>wSize [ t a r g e t ] == 0)

118 { // r e s e t accumu la tor s

119 in fo−>myIters [ t a r g e t ] = in fo−>myIters [ t a r g e t ] + in fo−>r S i z e [ t a r g e t ] ;

120 in fo−>myExecs [ t a r g e t ] = in fo−>myExecs [ t a r g e t ] + 1 ;

121 in fo−>sumt1 [ t a r g e t ] = 0 . 0 ; // f o r mu

122 in fo−>sumt2 [ t a r g e t ] = 0 . 0 ; // f o r sigma

123 in fo−>r S i z e [ t a r g e t ] = 0 ;

124 }
125 break ;

126

127 case AWFD:

128 case AWF E: /∗ mu = ( chunk e l a p s e d t ime )/( chunk s i z e ) ∗/
129 p e r f I n f o [ 0 ] = ( in fo−>mySumTimes [ t a r g e t ] + ( in fo−>myExecs [ t a r g e t ]+1)∗( tk−in fo−>t0 [ t a r g e t ]−
130 in fo−>tExclude [ t a r g e t ] ) ) /

131 ( in fo−>mySumSizes [ t a r g e t ] + 1 .0∗
132 ( in fo−>myExecs [ t a r g e t ]+1)∗( in fo−>r S i z e [ t a r g e t ]− in fo−>wSize [ t a r g e t ] ) ) ;

133 p e r f I n f o [ 1 ] = 0 . 0 ;

134 p e r f I n f o [ 2 ] = 1 .0∗ in fo−>myRank ;

135 p e r f I n f o [ 3 ] = 1 .0∗ t a r g e t ;

136 break ;

137 }
138

139 i f ( in fo−>myRank == info−>foreman )

140 { // update per formance data

141 i f ( in fo−>method [ t a r g e t ]==AWF B | | in fo−>method [ t a r g e t ]==AWF C | |
142 in fo−>method [ t a r g e t ]==AF | | in fo−>method [ t a r g e t ]==AWFD | |
143 in fo−>method [ t a r g e t ]==AWF E)

144 {
145 l o c = ( int ) p e r f I n f o [ 2 ] ;

146 in fo−>s t a t s [ 3∗ l o c+2+ta rge t ∗ in fo−>numLoops ] =
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147 in fo−>s t a t s [ 3∗ l o c+2+ta rg e t ∗ in fo−>numLoops ]+1 . 0 ;

148 // adap t i v e methods

149 in fo−>s t a t s [ 3∗ l o c+ta rg e t ∗ in fo−>numLoops ] = p e r f I n f o [ 0 ] ;

150 in fo−>s t a t s [ 3∗ l o c+1+ta rge t ∗ in fo−>numLoops ] = p e r f I n f o [ 1 ] ;

151

152 i f ( in fo−>f in i shedOne [ t a r g e t ] != in fo−>commSize )

153 {
154 // workers t h a t have not f i n i s h e d a f i r s t chunk

155 // assume the l ow e s t per formance

156 j = l o c ;

157 for ( i=in fo−>f i r s tRank ; i<=info−>lastRank ; i++)

158 {
159 i f ( ( in fo−>s t a t s [ 3∗ i+2+ta rge t ∗ in fo−>numLoops ] > 0 . 0 ) &&

160 ( in fo−>s t a t s [ 3∗ i+ta rg e t ∗ in fo−>numLoops ] <

161 in fo−>s t a t s [ 3∗ j+ta rg e t ∗ in fo−>numLoops ] ) )

162 j = i ;

163 }
164 in fo−>f in i shedOne [ t a r g e t ] = 0 ;

165 for ( i=in fo−>f i r s tRank ; i<=info−>lastRank ; i++)

166 {
167 i f ( in fo−>s t a t s [ 3∗ i+2+ta rge t ∗ in fo−>numLoops ] == 0 . 0 )

168 {
169 in fo−>s t a t s [ 3∗ i+ta rg e t ∗ in fo−>numLoops ] =

170 in fo−>s t a t s [ 3∗ j+ta rg e t ∗ in fo−>numLoops ] ;

171 in fo−>s t a t s [ 3∗ i+1+ta rge t ∗ in fo−>numLoops ] =

172 in fo−>s t a t s [ 3∗ j+1+ta rg e t ∗ in fo−>numLoops ] ;

173 }
174 else

175 {
176 in fo−>f in i shedOne [ t a r g e t ] = in fo−>f in i shedOne [ t a r g e t ] + 1 ;

177 }
178 }
179 }
180 }
181

182 // g e t more work to myse l f

183 i f ( in fo−>chunkStart [ t a r g e t ] < in fo−> l a s t I t e r [ t a r g e t ] )

184 {
185 in fo−>req4WRKsent [ t a r g e t ] = 1 ;

186 in fo−>nextWRKrcvd [ t a r g e t ] = 0 ;

187 SendChunk ( in fo , in fo−>myRank ) ;

188 }
189 else i f ( in fo−>wSize [ t a r g e t ] == 0 && info−>chunkStart [ t a r g e t ] >= info−> l a s t I t e r [ t a r g e t ] )

190 {
191 // a l l i t e r a t e s s c h edu l e d

192 in fo−>numENDed[ t a r g e t ] = in fo−>numENDed[ t a r g e t ] + 1 ;

193 // foreman e x i t s ?

194 in fo−>gotWork [ t a r g e t ] = in fo−>numENDed[ t a r g e t ] != in fo−>commSize ;

195 }
196 } /∗ i f ( in fo−>myRank == in fo−>foreman ) ∗/
197 else

198 {
199 MPI Send ( pe r f In f o , 4 , MPI DOUBLE, in fo−>foreman , REQ TAG, in fo−>comm) ;

200 in fo−>req4WRKsent [ t a r g e t ] = 1 ; /∗ . t r u e . ∗/
201 in fo−>nextWRKrcvd [ t a r g e t ] = 0 ;

202 }
203 } /∗ i f ( . . . i n fo−>sendReques t . . . ) ∗/
204 }

Listing B.7: DLS EndChunk, collects statistics about chunk execution and new work re-

quests are made in this function.

1 void DLS EndMLoops( infoDLS ∗ in fo , int ∗ n i t e r s , double ∗worktime )

2 {
3 double p e r f I n f o [ in fo−>numLoops ∗ 3 ] ;

4 memset ( pe r f In f o , 0 , in fo−>numLoops∗3∗ s izeof (double ) ) ;

5 int shouldGather = 0 ;

6

7 i f ( in fo−>comm==MPI COMM NULL) return ;

8

9 memcpy( n i t e r s , in fo−>myIters , in fo−>numLoops∗ s izeof ( int ) ) ;

10 memcpy(worktime , in fo−>workTime , in fo−>numLoops∗ s izeof (double ) ) ;
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11

12 for ( int l = 0 ; l < in fo−>numLoops ; l++)

13 {
14 // communicate time−s t e p per formance data f o r AWF

15 i f ( in fo−>method [ l ]==AWF)

16 {
17 // t ime s t e p p i n g a dap t i v e we i gh t ed f a c t o r i n g

18 // mu = ( chunk work t ime )/( chunk s i z e )

19 shouldGather = 1 ;

20 p e r f I n f o [ l ∗3 ] = ( in fo−>mySumTimes [ l ] + ( in fo−>timeStep [ l ] ) ∗ in fo−>workTime [ l ] ) /

21 ( in fo−>mySumSizes [ l ] + 1 . 0∗ ( in fo−>timeStep [ l ] ) ∗ ( in fo−>myIters [ l ] ) ) ;

22 p e r f I n f o [ l ∗3+1] = 0 . 0 ;

23 p e r f I n f o [ l ∗3+2] = 1.0∗ in fo−>timeStep [ l ] ;

24 }
25 }
26

27 i f ( shouldGather == 1)

28 {
29 MPI Gather ( pe r f In f o , 3∗ in fo−>numLoops , MPI DOUBLE PRECISION, in fo−>s ta t s ,

30 3∗ in fo−>numLoops , MPI DOUBLE PRECISION, in fo−>foreman , in fo−>comm) ;

31 }
32 // was commented out s i n c e o t h e rw i s e r e s u l t may be

33 // i n c o r r e c t when us ing two l o o p s and you do not e x p l i c i t e l y s ynch ron i z e t h e mpi ranks

34 MPI Barrier ( in fo−>comm) ; // was commented ˜O l i

35 // r e s e t i n i t i a l i z e d

36 I n i t i a l i z e d = 0 ;

37 }

Listing B.8: DLS EndMLoops function, point of synchronization before a next time step

can be computed. Provides information how many iterations a worker has executed and the

worktime.

1 void SendChunk ( infoDLS ∗ in fo , int worker )

2 {
3 // chunkIn fo s i z e changed to 3 to a l s o send to which l oop t h e chunk b e l o n g s to

4 int chunkSize , chunkInfo [ 3 ] ;

5 int t a r g e t = in fo−>curLoop ;

6 GetChunkSize ( in fo , worker , &chunkSize ) ;

7

8 chunkInfo [ 0 ] = in fo−>chunkStart [ t a r g e t ] ;

9 chunkInfo [ 1 ] = chunkSize ;

10 chunkInfo [ 2 ] = ta rg e t ;

11

12 i f ( worker == info−>foreman )

13 {
14 i f ( in fo−>wSize [ t a r g e t ] == 0) // no pending chunk

15 {
16 in fo−>t0 [ t a r g e t ] = MPI Wtime ( ) ; // e l a p s e d t ime f o r chunk s t a r t s here

17 in fo−>tExclude [ t a r g e t ] = 0 . 0 ;

18 in fo−>wStart [ t a r g e t ] = chunkInfo [ 0 ] ;

19 in fo−>wSize [ t a r g e t ] = chunkInfo [ 1 ] ;

20 in fo−>rS ta r t [ t a r g e t ] = in fo−>wStart [ t a r g e t ] ;

21 in fo−>r S i z e [ t a r g e t ] = in fo−>wSize [ t a r g e t ] ;

22 in fo−>req4WRKsent [ t a r g e t ] = 0 ; // canc e l r e q u e s t f o r work

23

24 SetBreaks ( i n f o ) ;

25

26 in fo−>sumt1 [ t a r g e t ] = 0 . 0 ; // f o r mu/wap

27 in fo−>sumt2 [ t a r g e t ] = 0 . 0 ; // f o r sigma

28 }
29 else // cu r r en t chunk i s not f i n i s h e d save as nex t chunk

30 {
31 in fo−>nextStar t [ t a r g e t ] = chunkInfo [ 0 ] ;

32 in fo−>nextS i ze [ t a r g e t ] = chunkInfo [ 1 ] ;

33 in fo−>nextWRKrcvd [ t a r g e t ] = 1 ;

34 }
35 }
36 else

37 {
38 MPI Send ( chunkInfo , 3 , MPI INT , worker , WRKTAG, in fo−>comm) ;

39 }
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40

41 in fo−>chunkStart [ t a r g e t ] = in fo−>chunkStart [ t a r g e t ] + chunkSize ;

42 in fo−>i t e r sS chedu l ed [ t a r g e t ] = in fo−>i t e r sS chedu l ed [ t a r g e t ] + chunkSize ;

43 }

Listing B.9: SendChunk function, only called by foreman to send new chunks to workers,

also used to assign chunks to the foreman himself.

1 void GetChunkSize ( infoDLS ∗ in fo , int rank , int ∗ chunkSize )

2 {
3 int i , tChunk , rem ;

4 double bigD , bigT , awap , trw , weight , K;

5 // t a r g e t l oop i s l oop f o r which chunk s i z e i s needed

6 int t a r g e t = in fo−>curLoop ;

7 rem = info−>N[ ta rg e t ]− in fo−>i t e r sS chedu l ed [ t a r g e t ] ;

8 switch ( in fo−>method [ t a r g e t ] ) {
9

10 case STATIC:

11 tChunk = c e i l ( (double ) in fo−>N[ ta rg e t ] / (double ) in fo−>commSize ) ;

12 in fo−>batchSize [ t a r g e t ] = tChunk ;

13 in fo−>batchRem [ ta r g e t ] = min ( in fo−>batchS ize [ t a r g e t ] , rem ) ;

14 break ;

15 case SS :

16 tChunk = 1 ;

17 in fo−>batchSize [ t a r g e t ] = tChunk ;

18 in fo−>batchRem [ ta r g e t ] = min ( in fo−>batchS ize [ t a r g e t ] , rem ) ;

19 break ;

20 case FSC:

21 tChunk = min ( in fo−>chunkFSC [ ta rg e t ] , rem ) ;

22 in fo−>batchS ize [ t a r g e t ] = tChunk ;

23 in fo−>batchRem [ ta r g e t ] = min ( in fo−>batchS ize [ t a r g e t ] , rem ) ;

24 break ;

25

26 case mFSC:

27 tChunk = min ( in fo−>chunkMFSC [ ta rg e t ] , rem ) ;

28 in fo−>batchS ize [ t a r g e t ] = tChunk ;

29 in fo−>batchRem [ ta r g e t ] = min ( in fo−>batchS ize [ t a r g e t ] , rem ) ;

30 break ;

31

32 case GSS :

33 tChunk = max( ( rem+info−>commSize−1)/ in fo−>commSize , in fo−>minChunkSize [ t a r g e t ] ) ;

34 tChunk = min ( rem , tChunk ) ;

35 in fo−>batchS ize [ t a r g e t ] = tChunk ;

36 in fo−>batchRem [ ta r g e t ] = min ( in fo−>batchS ize [ t a r g e t ] , rem ) ;

37 break ;

38

39 case TSS :

40 tChunk = in fo−>TSSchunk [ t a r g e t ] ;

41 tChunk = min ( rem , tChunk ) ;

42 tChunk = max( in fo−>minChunkSize [ t a r g e t ] , tChunk ) ;

43 in fo−>TSSchunk [ t a r g e t ] = tChunk − in fo−>TSSdelta [ t a r g e t ] ;

44 in fo−>batchS ize [ t a r g e t ] = tChunk ;

45 in fo−>batchRem [ ta r g e t ] = min ( in fo−>batchS ize [ t a r g e t ] , rem ) ;

46 break ;

47

48 case FAC:

49 i f ( in fo−>batchRem [ ta rg e t ] == 0) {
50 tChunk = max ( in fo−>minChunkSize [ t a r g e t ] , ( rem+2∗ in fo−>commSize−1)

51 /(2∗ in fo−>commSize ) ) ;

52 in fo−>batchSize [ t a r g e t ] = in fo−>commSize∗tChunk ;

53 in fo−>batchRem [ ta r g e t ] = min ( in fo−>batchS ize [ t a r g e t ] , rem ) ;

54 }
55 /∗ e l s e use cu r r en t b a t c h S i z e ∗/
56 tChunk = max( in fo−>minChunkSize [ t a r g e t ] , in fo−>batchSize [ t a r g e t ] / in fo−>commSize ) ;

57 tChunk = min ( rem , tChunk ) ;

58 break ;

59

60 case WF:

61 case AWF:

62 i f ( in fo−>batchRem [ ta r g e t ] == 0) {
63 tChunk = max ( in fo−>minChunkSize [ t a r g e t ] , ( rem+2∗ in fo−>commSize−1)/(2∗ in fo−>commSize ) ) ;

64 in fo−>batchSize [ t a r g e t ] = in fo−>commSize∗tChunk ;
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65 in fo−>batchRem [ ta rg e t ] = min ( in fo−>batchS ize [ t a r g e t ] , rem ) ;

66 }
67 /∗ e l s e use cu r r en t b a t c h S i z e ∗/
68 tChunk = max( in fo−>minChunkSize [ t a r g e t ] , in fo−>batchS ize [ t a r g e t ] /

69 in fo−>commSize ∗( in fo−>weights [ t a r g e t ∗( in fo−>numLoops)+rank ] ) ) ;

70 tChunk = min ( rem , tChunk ) ;

71 break ;

72

73 case AWF B:

74 case AWFD:

75 i f ( in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ rank ] < 0 . 0 ) {
76 tChunk = in fo−>minChunkSize [ t a r g e t ] ;

77 in fo−>batchS ize [ t a r g e t ] = min ( rem , tChunk ) ;

78 in fo−>batchRem [ ta rg e t ] = in fo−>batchS ize [ t a r g e t ] ;

79 }
80 else { /∗ a l l ranks have wap ∗/
81 awap = 0 . 0 ; /∗ average we i gh t ed per formance ∗/
82 for ( i=in fo−>f i r s tRank ; i<=info−>lastRank ; i++)

83 awap = awap + in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ i ] ;

84 awap = awap/ in fo−>commSize ;

85

86 trw = 0 . 0 ; /∗ t o t a l r e f we i g h t ( r e fw t ( i ) = awap/ in fo−>s t a t s [3∗ i ] ∗/
87 for ( i=in fo−>f i r s tRank ; i<=info−>lastRank ; i++)

88 trw = trw + awap/ in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ i ] ;

89

90 /∗ norma l i z ed we i gh t f o r rank ∗/
91 weight = ( ( awap/ in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ rank ] ) ∗ in fo−>commSize )/ trw ;

92

93 i f ( in fo−>batchRem [ ta r g e t ] == 0) {
94 tChunk = max( in fo−>minChunkSize [ t a r g e t ] , ( rem+2∗ in fo−>commSize−1)/(2∗ in fo−>commSize ) ) ;

95 in fo−>batchS ize [ t a r g e t ] = in fo−>commSize∗tChunk ;

96 in fo−>batchRem [ ta r g e t ] = min ( in fo−>batchSize [ t a r g e t ] , rem ) ;

97 }
98 /∗ e l s e use cu r r en t b a t c h S i z e ∗/
99 tChunk = weight ∗( in fo−>batchS ize [ t a r g e t ] / in fo−>commSize ) + 0 . 5 5 ;

100 tChunk = max( in fo−>minChunkSize [ t a r g e t ] , tChunk ) ;

101 tChunk = min ( rem , tChunk ) ;

102 }
103 break ;

104

105 case AWF C:

106 case AWF E:

107 i f ( in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ rank ] < 0 . 0 )

108 tChunk = in fo−>minChunkSize [ t a r g e t ] ;

109 else { /∗ a l l ranks have wap ∗/
110 awap = 0 . 0 ; /∗ average we i gh t ed per formance ∗/
111 for ( i=in fo−>f i r s tRank ; i<=info−>lastRank ; i++)

112 awap = awap + in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ i ] ;

113 awap = awap/ in fo−>commSize ;

114

115 trw = 0 . 0 ; /∗ t o t a l r e f we i g h t ( r e fw t ( i ) = awap/ in fo−>s t a t s [3∗ i ) ∗/
116 for ( i=in fo−>f i r s tRank ; i<=info−>lastRank ; i++)

117 trw = trw + awap/ in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ i ] ;

118

119 /∗ norma l i z ed we i gh t f o r rank ∗/
120 weight = ( ( awap/ in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ rank ] ) ∗ in fo−>commSize )/ trw ;

121 tChunk = weight ∗ ( ( rem+2∗ in fo−>commSize−1)/(2∗ in fo−>commSize ) ) + 0 . 5 5 ;

122 }
123 tChunk = max( in fo−>minChunkSize [ t a r g e t ] , tChunk ) ;

124 in fo−>batchS ize [ t a r g e t ] = tChunk ;

125 in fo−>batchRem [ ta r g e t ] = min ( rem , tChunk ) ;

126 break ;

127

128 case AF:

129 i f ( in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ rank ] < 0 . 0 )

130 tChunk = in fo−>minChunkSize [ t a r g e t ] ;

131 else {
132 bigD = 0 . 0 ;

133 bigT = 0 . 0 ;

134 for ( i=in fo−>f i r s tRank ; i<=info−>lastRank ; i++) {
135 bigD = bigD + info−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ i +1]/

136 in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ i ] ;

137 bigT = bigT + 1.0/ in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ i ] ;
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138 }
139 bigT = 1.0/ bigT ;

140 /∗ compute chunk s i z e f o r rank ∗/
141 tChunk = 0.55 + (0 . 5∗ ( bigD + 2.0∗ bigT∗rem −
142 sq r t ( bigD ∗( bigD + 4.0∗ bigT∗rem ) ) ) / in fo−>s t a t s [ t a r g e t ∗( in fo−>numLoops)+3∗ rank ] ) ;

143 tChunk = min ( in fo−>maxChunkSize [ t a r g e t ] , tChunk ) ;

144 }
145 tChunk = max( in fo−>minChunkSize [ t a r g e t ] , tChunk ) ;

146 in fo−>batchS ize [ t a r g e t ] = tChunk ;

147 in fo−>batchRem [ ta r g e t ] = min ( in fo−>batchS ize [ t a r g e t ] , rem ) ;

148 break ;

149

150 default :

151 p r i n t f ( ”Unsupported DLS technique , f a l l back to STATIC\n” ) ;

152 tChunk = ( in fo−>N[ ta rg e t ]+ in fo−>commSize−1)/ in fo−>commSize ;

153 i = in fo−>N[ ta rg e t ] % in fo−>commSize ;

154 i f ( ( i >0) && ( rank>=i ) ) tChunk=tChunk−1;

155 tChunk = min ( tChunk , rem ) ;

156 in fo−>batchS ize [ t a r g e t ] = tChunk ;

157 in fo−>batchRem [ ta r g e t ] = min ( in fo−>batchS ize [ t a r g e t ] , rem ) ;

158

159 }
160

161 ∗ chunkSize = min ( in fo−>batchRem [ ta r g e t ] , tChunk ) ;

162

163 /∗ a d j u s t remaining in ba t ch ∗/
164 in fo−>batchRem [ ta r g e t ] = in fo−>batchRem [ ta r g e t ] − ∗ chunkSize ;

165 i f ( ( in fo−>batchRem [ ta rg e t ] > 0) && ( in fo−>batchRem [ ta r g e t ] <= info−>minChunkSize [ t a r g e t ] ) ) {
166 ∗ chunkSize = ∗ chunkSize + in fo−>batchRem [ ta r g e t ] ;

167 in fo−>batchRem [ ta rg e t ]= 0 ;

168 }
169 }

Listing B.10: GetChunkSize function, calculates the chunk sizes to assign according to the

chosen scheduling technique for a certain loop.

1 void SetBreaks ( infoDLS ∗ i n f o )

2 {
3 // assumpt ion : curLoop has been s e t a c c o r d i n g l y

4 i f ( in fo−>myRank == info−>foreman ) {
5 /∗ when to check f o r messages ∗/
6 i f ( in fo−>breakAfter <0)

7 in fo−>probeFreq [ in fo−>curLoop ] = max( 1 , ( in fo−>wSize [ in fo−>curLoop ]+

8 in fo−>commSize−1)/ in fo−>commSize/4 ) ;

9 else

10 in fo−>probeFreq [ in fo−>curLoop ] = max( 1 , in fo−>breakAfter ) ;

11

12 /∗ how many i t e r a t e s l e f t b e f o r e r e q u e s t i n g nex t chunk ∗/
13 i f ( in fo−>requestWhen<0)

14 in fo−>sendRequest [ in fo−>curLoop ] = in fo−>probeFreq [ in fo−>curLoop ] ;

15 else

16 in fo−>sendRequest [ in fo−>curLoop ] = in fo−>requestWhen ;

17 }
18 else { /∗ not t h e foreman ∗/
19

20 /∗ how many i t e r a t e s l e f t b e f o r e r e q u e s t i n g nex t chunk ∗/
21 i f ( in fo−>requestWhen<0)

22 in fo−>sendRequest [ in fo−>curLoop ] = max( 1 , (15∗ in fo−>wSize [ in fo−>curLoop ] )/100 ) ;

23 else

24 in fo−>sendRequest [ in fo−>curLoop ] = in fo−>requestWhen ;

25

26 /∗ when to check f o r messages ∗/
27 in fo−>probeFreq [ in fo−>curLoop ] = max( 1 , in fo−>wSize [ in fo−>curLoop]−
28 in fo−>sendRequest [ in fo−>curLoop ] ) ;

29

30 }
31 }

Listing B.11: SetBreaks function, allows to ”interrupt” executions of chunks to check for

messages or send work requests.
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