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Abstract

The evolution of today’s system of supercomputers has created two main issues: the load
imbalance and the poor management of data locality of parallel applications. Therefore
with the increase in the number of cores and the decrease of the memory size per core,
performance is strongly correlated with load balancing and locality of data. In this thesis,
we deal with the problem by considering the task-to-nodes mapping of parallel applications.
Parallel application’s performance is influenced by the mapping (known also as placement) of
the processes onto the computing nodes, the frequency and volume of exchanges among the
processing elements, the network capacity, and the routing protocol, among others. A poor
mapping of application processes degrades performance and wastes computing resources
and also increases energy consumption. Mapping processes in an application- and topology-
aware manner is expected to minimize application performance degradation and optimize
system resource usage. Both goals are critical for advancing scientific discovery and the
efficient use of high-performance parallel and distributed computing systems. The mapping
of an application is a well-known NP-complete problem, according to [19], therefore we will
consider using heuristic strategies to achieve a sub-optimal solution. This master thesis
focuses on using LibTopoMap [18][19], a generic mapping developed for arbitrary networks
with the mapping library. A combination of this library with the algorithms from MapLib
[31][27] guarantees a wide coverage of network topologies, mapping algorithms w.r.t the
underlying architecture of the supercomputer. The extension of the libraries, therefore,
grants the support for more mapping algorithms and more processor network topologies.
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1. Introduction

In the first chapter of this work, we define the motivation, goals, and present a brief summary
of this scientific work. We present some basic insights about high-performance computing
(HPC) systems and their contribution to solving scientifically-hard computations, which

simulate reality by using mathematical formulation.

1.1 High-Performance Computing

HPC is the ability of systems to perform complex calculations and process data very fast.
These systems are made of supercomputers that execute tasks at high performance. Large-
scale scientific applications such as weather prediction, computational chemistry, financial
risk modelling, and machine/deep learning require a lot of computing power to be executed.
Therefore the need for HPC systems is growing day by day. These systems have three main

components:
1. Compute
2. Network
3. Storage

Compute nodes are connected in what is known as a cluster. These nodes are responsible
for the execution of tasks. They communicate with each other using the network, which
might be of different structures, and they use the storage to store the results coming from
the execution of the application. As the number of nodes increases, also the complexity of
the HPC systems increases. These nodes need to be configured to work as one entity during
the computation.

The nodes, known also as hardware computing units (HCUs), execute the tasks in a dis-
tributed fashion and compute the results in parallel. To achieve the highest performance, the
scientific applications are also designed and implemented with parallel architecture in mind.
It is still ongoing work to achieve the best performance from the systems in proportion to
the HCUs.

Today, different parallel programming paradigms exist. The most known of which is MPI
[17] and OpenMP [10]. Message Passing Interface (MPI) is a communication protocol for
programming in parallel computer systems. It creates the possibility for the parallel pro-
cesses to use their memory and exchange messages to share the data. Open Multi-Processing
(OpenMP) is a multi-threaded implementation technique that makes use of shared mem-
ory. It consists of threads, which use the same memory to access the same data. Hybrid
implementation of MPI and OpenMP is possible, with MPI responsible for inter-node (node-
to-node) and OpenMP for intra-node (in-node) parallelism.
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1.2 Motivation

As we move towards the exascale era of supercomputers, we observe an increased number of
HCUs and the number of cores per HCU. The increase of the computing elements, therefore,
increases the complexity of the entire system. To handle the complexity problem of such
systems we have to consider solving different problems, which among researchers are known
as bottlenecks.

Once an application is designed to be performed in parallel different components should
be taken into account. One of the most important ones is data decomposition. Data
decomposition is the process to divide the application computation into smaller tasks that
may be executed in parallel [16]. A programmer should take into consideration also the
distribution of the input, output, intermediate data, the mapping of the task to software
processing elements (SPEs), the synchronization of the processors that execute a parallel
application, and so on.

The mechanism by which tasks are assigned to processes for execution is called mapping [16].
It is shown that the way how the tasks are mapped into the processes affects the overall
performance of the system w.r.t an application. One of the key aspects that are shown
to have a huge impact on the performance of the system is the communication between
processes or also known as inter-node communication. When an application is decomposed,
different parts of this application will be considered to be computed in different nodes. These
parts of the application can have dependencies between each other or even in the best case,
they have to come up with a mutual result. Sequential mapping is commonly used to map
tasks to nodes for execution. This leads to a non-efficient usage of the components because
the communication between SPEs is not considered while mapping. Therefore, parts of the
application or widely known as tasks, that depend on each other are mapped into HCUs
that might be located far from one another.

The optimization of the processes-to-nodes placement, by taking into consideration the
processes communication, is the motivation for this work. The goal can be achieved by
mapping tasks that are dependant on each other, to HCUs that are located closer to one
another. In the following section, a more detailed description of the mapping problem is
defined.

In this thesis, we enhance two libraries, to support more mapping algorithms and/or in-
terconnection network topologies. A configurable point-to-point (P2P) communication ap-
plication, named COMAP, is created. We make use of the strong sides of each library to
achieve an optimized task-to-nodes mapping. We exploit the usage of LibTopoMap in the
created application. MapLib is enhanced to support two indirect topologies: dragonfly and
two-level fat tree.

The work is organized as follows. In Chapter 2, the background information about the
problem is presented. The related work is carefully reviewed in Chapter 3. The methods
used in this work are presented in Chapter 4. Results and discussion over them are shown
in Chapter 5. Chapter 6 concludes the work and sets the path for future work(s) on this
topic.



2. Background

This chapter provides fundamental information about the purpose of this work. It is com-
pounded by different parts such as the mapping problem, evaluation metrics, strategies
for process-to-nodes mapping, mapping enforcement techniques, interconnection network

topologies, tools, and programming frameworks.

2.1 The mapping problem

The mapping problem can be considered as a graph embedding problem [6]. Moreover, the
mapping problem can be seen as a minimization problem that tends to minimize different
metrics [6]. Regarding this, process-to-nodes mapping is considered to be an important
aspect of optimizing the efficient use of HPC systems. In the literature, two different types
of mapping strategies have been mainly defined: 1)topology-aware, and 2)topology-oblivious
mapping. Topology-aware process mapping consists of mapping the processes w.r.t the
communication pattern (matrix) of an application, on the underlying hardware architec-
ture. The topology-oblivious strategy takes into consideration neither the communication
matrices nor the underlying hardware architecture [27]. The first approach is usually used
to evaluate the mapping of a real-world scenario, where the underlying architecture has a lot
of impact on the performance of the application. While the second approach is mainly used
to evaluate the mapping strategies/algorithms while taking into consideration a broader
number of interconnection network topologies. In both cases, an efficient mapping would
result in preventing the communication between processes via slow network channels and
would reduce the message’s long transmission paths.

The communication of the processes in a parallel application can be represented as a graph,
G = (V, E), where vertices V represent the set of processors while the edges E, which can
be represented as E C VzV, denotes the communication pairs [6] [19] [5]. We use the logical
communication representation to denote the volume of communication from process u to
process v, and the physical communication which is known as the interconnection network
topology [19]. The logical communication graph, is represented with G = (Vi, w¢), where
Vi is a set of processes while wg is the weight of the edge that connects two processes
u,v € Vg [18]. On the other hand, the physical communication graph is denoted with
H = (Vy,Cy,cu,Ry), where V is a set of physical nodes (processing units or switches).
If u € Vi then Cy(u) is the number of processes that can be hosted at w (this represents
multi-core processors); Cy(u) = 0 if u contains no processors (e.g., is a switch). cg(uv)
is the capacity (bandwidth) of the link connecting u to v (zero if there is no such link).
The function Ry represents the routing algorithm [19]. To understand better the mapping
problem, let us assume that we have executed an application whose communication matrix,

defined as a process graph, is shown in Figure 2.1.
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Figure 2.1: Process graph of an application.

The process graph (Figure 2.1) presents the SPEs that communicate with each other (as
vertices connected by an edge) and the volume of their communication (as edge weights).
As we can see, process 1 communicates with process 12, with a communication volume
equal to 50. In this example, this is considered intensive communication. On the other side,
process 10 communicates with process 11 with a communication volume equal to 10, which
depicts a lower communication intensity. The process graph is overlaid onto what is known
as a systems’ graph. It is a representation of the interconnection network topology of a
system. Figure 2.2 shows the system graph of miniHPC [3] that is the system used for the

experiments in this work.

@@@@é@@@éé $@$®$@®@£@@
Figure 2.2: System graph of an interconnection network topology (miniHPC [3]).

The system is compounded from 22 computing elements (nodes), and 4 routing elements
(switches). The number of links, between the switches and nodes, are shown in the bi-
directional links.
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So far, we presented the process graph of an application and the graph of a system. The
default (initial) mapping of processes to nodes is achieved from the scheduler of the operating
system. It consists of one-to-one mapping of processes to nodes, in a sequential increasing
order of ids, which is presented in Figure 2.3. We use the term rank to refer to a process.
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Figure 2.3: Default mapping from the scheduler of the operating system.

In Figure 2.3 we can see that each process (MPI rank) is assigned to a node. Since we had 16
processes in the process graph, 16 nodes are occupied and 6 nodes are still free on the system
(grey-coloured). Rank 1 and 12, according to the process graph in Figure 2.1, communicate
intensively with each other but still, they are mapped on nodes physically far from one
another. On the other side, rank 10 and 11, representing a low-intensity communication
(Figure 2.1), are mapped on nodes closed to each other. Logically, the time needed for the
communication in the application would be high as well as the execution time. The default
mapping can be optimized by using different mapping strategies (more details in Section
2.2). In Figure 2.4, the optimized mapping derived from the greedy mapping algorithm is
presented.

-
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Figure 2.4: Optimized mapping with greedy mapping strategy.

As we can see from Figure 2.4, rank 1 and 12 are mapped to nodes that are close to each
other. While on the other hand, rank 10 and 11, are mapped to nodes that are far from
each other.

With this example, we wanted to visually present the mapping problem and how it is treated
in this work. In the next section, we provide some more information about the mapping
strategies that are used during the experimentation phase of this thesis.
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2.2 Strategies for processes-to-nodes mapping

Hoefler et al., in [19], show that the mapping problem is NP-complete. This means that the
problem cannot be approximated well [20]. Therefore to deal with the problem and to be
able to come up with a sub-optimal solution different strategies have been followed. In this
thesis, we distinguish different strategy categories such as 1)greedy, 2)graph partitioning,

3)graph similarity, and 4)graph isomorphism.

2.2.1 Greedy

It is one of the most common heuristics used to solve graph problems. The algorithm starts
with a vertex in H (known as the physical communication or systems’ graph) and maps
it greedily starting with the heaviest vertex in G (known as the logical communication or
process graph). It continues to map the heaviest vertices in H and G together until it reaches
the end of the execution. It gives priority to the vertices that communicate more with each
other and it does this recursively by using a greedy approach. Some of the algorithms that
fall into this category are Peano, Hilbert, Gray, sweep and scanSFC, greedy, FHGreedy,
greedyALLC, and topo-aware which are supported from MapLib [27].

2.2.2 Graph partitioning

Another strategy that we use in this work is graph partitioning. It basically, cuts the physical
(H) and logical (G) communication graph into smaller parts. In this work, we consider
bi-partitioning, which means that we divide the graph into two equal halves recursively
by determining the minimum over edge weights. This method is also known as bisection
mapping. Another algorithm that falls into this category is PacMap[33].

2.2.3 Graph similarity

Graph similarity approach, used to map processes to nodes, is a well-known technique.
The basic idea is to bring adjacency matrices between the system and process graph into a
similar shape. Reverse Cuthill McKee (RCM) [9] algorithm is used to solve the reduction
of bandwidth problem in a heuristic way.

2.2.4 Graph isomorphism

Graph isomorphism, in terms of the mapping problem, is just the one-to-one correspondence
between the edges and the vertices of the physical (H) and logical (G) communication
graphs. The algorithm that falls into this category is known as Bokhari algorithm [6], which
corresponds to the first research study on this topic.

2.3 Mapping enforcement techniques
During the mapping process, the processes are assigned to computing units. Based on the
mapping algorithm and application we apply a certain placement policy. There are different

techniques to enforce such policy, but we present two of them: 1)resource binding, and
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2)rank reordering.

2.3.1 Resource binding

Resource binding is a technique to bind SPEs to HCUs [20]. In different systems, different
commands are used to do this work. The only issue is portability across different systems
and architecture. To solve this issue we use HwLoc [7], a tool used to gather the hardware
information which is not dependant on the system that is being used. By doing so, we
actually tell the operating system which processing element would belong to which hardware
unit. If we leave the operating system to decide, then we might have cache misses and
therefore we cannot get the most out of the system. Even though binding is a process that
is not correlated with the programming framework, so it is outside of the implementation,

it can affect the performance of the systems for the given applications.

2.3.2 Rank reordering

The second technique which is commonly used among researchers is rank reordering. In-
difference to resource binding, it does not tell the operating system what to do but it just
changes the ids of the SPEs. Therefore, rank reordering is not related to any tool because
it can be defined within the programming framework and we can see its common usage
in MPI. That is the main reason why we consider rank reordering because it gives us the
flexibility to work on different systems without having to worry about the operating system
scheduler or the underlying architecture. Even though, according to [20], a poor scheduling
decision effect can apply also for the application using only rank reordering. We assume
that the interference of the operating system’s scheduler will be minimal but it might be a

very useful study case to be considered as future work.

2.4 Interconnection network topologies

In this section, we give some information about the different network topologies that we
use in this work. We categorize these topologies, based on their communication style, into
two main groups, direct and indirect topologies. In direct network topologies, nodes are
connected directly with their neighbouring nodes network interface card (NIC). While in
the indirect network topologies, nodes are not connected directly to each other but are
connected with switches, which are responsible for the information routing through the

network from one node to another.

2.4.1 Direct topologies
In this work we consider two direct network topologies to run our experiments. The first
topology is 3-dimensional (3D) torus, where one node is connected directly with its 6 neigh-

bours. A graphical illustration of such network topology is used shown in Figure 2.5
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Figure 2.5: 3D torus network topology (2D representation)

The second direct topology that we consider in this work is a 3-dimensional (3D) mesh. This
topology is similar to torus but it differs from the number of connections that each node
has. Most of the nodes, or better saying 2/3 of them, connect directly with 4 other nodes.
In contrast, 1/3 of the nodes or the nodes located in the middle, connect with 5 other nodes.
In Figure 2.6, we can see a visualization of the topology.
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Figure 2.6: 3D mesh network topology (2D representation)

2.4.2 Indirect topologies

Regarding the indirect topologies, in this work, we consider two-level fat tree and dragon-
fly topology. Two-level fat-tree network topology is non-blocking (due to the equality of
input and output channels for each switch) and is the same used in miniHPC [3], which is
the cluster of the HPC research team at the University of Basel. The storage, login and
knights landing (KNL) nodes are not considered in the experimental setup. More detailed
information about the experimental setup and systems will be described later in this work.
In Figure 2.7, it is shown the two-level fat-tree network topology that we have used for our

work.
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Figure 2.7: Two-level fat-tree network topology

As we can see in Figure 2.7, this topology is compounded from 26 elements. These elements
are divided into 22 computing nodes (HCUs) and 4 routing elements (switches). In the
representation, each node is connected directly with the switches (either switch 1 or 2), but
for visibility purposes the connections are grouped. The other indirect network topology

that we consider in this work is dragonfly [26], presented in Figure 2.8.
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Figure 2.8: Dragonfly network topology.
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This network topology uses a group of high-radix routers as virtual routers to increase the
radix effect on a network [26]. It is a hierarchical network with three levels: slot, chassis
and group. It consists of 2 groups, 2 chassis, and 5 slots per chassis. The composition of
the slots in each chassis is achieved from 4 computing nodes and 1 switch. The connection
in the topology is switch-based, where all the switches are connected to each other, via

inter-chassis and inter-group connection links.

2.5 Communication evaluation metrics
This section is dedicated to the metrics used to evaluate the performance of the processes-
to-nodes mapping achieved by different heuristic strategies. We consider two categories of

these metrics:
1. Physical communication metrics.

2. Logical communication metrics.

2.5.1 Physical communication metrics

The most used communication evaluation metrics in the literature are congestion and di-
lation [19][21][27]. Dilation is mainly defined as the maximum or the sum of the pairwise
distance of neighbours from H to G [27][20]. While congestion represents the communica-
tion pairs that use a certain link in the interconnection network. The main goal is to reduce
the maximum congestion or better known as worst-case congestion. Also, a lower dilation
value leads to improved performance and implicitly to a communication energy consumption
reduction [27]. As we could show in the previous sections, processes-to-nodes mapping takes
into consideration two types of communication patterns. The logical communication pattern
is a weighted, directed graph that defines the volume of communication between processes
(by the weight of the edge when the communication occurs) or 0 when the communication
does not occur [18]. The physical communication pattern represents the network intercon-
nection of physical nodes (processors and switches) [18]. Based on these communications,

the calculations for the two main metrics, dilation and congestion, are computed.

e Dilation(uv): the average length of the path taken by a message sent from u to v
[18].

Dilation(uv) = Z Ru (L)) | (2.1)
u,vEVe

where:

Ry (T (p) fraction of the traffic from u to v that is routed through p when a
mapping exists

| p| length of the path p

I' function that maps Vg — Vg

There are different calculations for dilation while in this work we use those defined in

Equation 2.1 which is the same used in LibTopoMap. This metric can be also known
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as the number of hops. This is an important aspect to be pointed out because it might lead
to confusion among researchers. To solve this confusion, we use the term dilation for both
notations, as suggested in LibTopoMap.

Congestion of a link uwv of the interconnection network is the ratio between the amount of
traffic on that link and the capacity of the link.[18]

e Congestion(uv) is computed by the traffic on the link and its capacity as follows:

— Traffic(uv):

Trafficw) = Y wow)- (Y Ra@@Ie)E) @2

u, eV peP(I(u)l(v)):ecp

where:

we(uv) the weight of the edge connecting u to v. Represents the volume of
communication from u to v (0 if there is no connection)
Ry (L)L) (p) fraction of the traffic from u to v that is routed through p, when
a mapping exists
I' function that maps Vi — Vi

— Congestion(uv):

Congestion(uv) = Traffic(w)

cp (uv)

where:

cy(uv) capacity of the link connecting edge (uv)

In this thesis, we will consider the worst-case congestion. The maximum overall congestions
for each vertex of the graph is considered as congestion results. The same measure is also
done when reordering the communicator (if the worst congestion of the initial mapping is

higher than the worst congestion of the reordered communicator).

Congestion(I') = maz,, Congestion(uv) (2.3)

2.5.2 Logical communication metrics
In this subsection, we present the measurements that can be done to the communication that
happens between SPEs used during the execution of the application. Some of the metrics

used in this work, which are also used in MapLib [31][27], are:

e Inter-process logical communication (IePLC), which defines the number of exchanged
messages between any two SPEs. This metric is independent of the mapping strategy
and is a property of the process graph. In LibTopoMap, it is considered to be the

weight of the edges in the process graph.

e Intra-node logical communication (IaNLC) shows the total number of messages ex-
changed between processes that are mapped onto the same physical node. We calculate
this value, using LibTopoMap, as the sum of exchanged messages between processes

that are mapped onto the same physical node.
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e Inter-node logical communication (IeNLC) is the sum of all exchanged messages be-
tween nodes resulting from the mapping of the communication pairs but neglecting
the network topology. In LibTopoMap, this metric corresponds to P2P exchanged
messages divided by the number of HCUs.

2.6 Tools

In this section, we give some information about the tools that are used in this thesis. We
divide these tools/software into two main categories: graph partitioning and hardware in-

formation software.

2.6.1 Graph partitioning software

The first type of software considered in this thesis are graph partitioning software. They are
mainly used to partition graphs which would make it easier to solve scientific computing
problems in parallel. After the partitioning of the scientific computing problems as graphs
then we can apply different heuristics to solve the problem sub-optimally. METIS [24] and
ParMETIS [30] (its parallel version) are considered in this thesis. In difference to METIS,
ParMETIS uses parallel multilevel k-way graph partitioning technique based on a MPI
implementation. Another graph partitioning software that we use is SCOTCH [29]. This
software deals with tree-structured data to perform the mapping [20]. It is also based on

dual recursive bi-partitioning.

2.6.2 Hardware information software

As briefly mentioned before, in this category we make use of the Portable Hardware Locality
(HwLoc) software [7] to gather the hardware information about the underlying architecture.
Therefore, we guarantee the portability of our solution, since HwLoc is not architecture- or
system-bounded. It is a software that solves the issue of scheduling policy of the operating
system. It provides a portable abstraction (across operating systems, versions, architectures,
etc.) of the hierarchical topology of modern architectures, including NUMA memory nodes,
sockets, shared caches, cores, and simultaneous multi-threading [1].

2.7 Programming frameworks

In this section, some information about the most common programming frameworks used
to solve the mapping problem is presented. We use the MPI framework for this thesis, but
some basic information about the other existing paradigms is presented in the following
subsections.

2.7.1 Message Passing Interface
The Message Passing Interface (MPI) is a communication protocol that relies on distributed
memory model connected with a flat network [14]. It is designed for parallel computing sys-
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tems which address the problems of scalability, high performance and portability. It is used
widely on certain classes of parallel machines, especially those with distributed memory
[14]. In this work, we work with MPI 2.2, which supports the virtual topology build-
ing and management. It provides two variants of distributed graph constructor interface:
MPI_Dist_graph_create and MPI_Dist_graph_create_adjacent function. The first function is
general while the second one is an adjacent specification. Both functions are collective,
meaning that all processes in the old communicator must perform the call. We use the first

variant because we are focused on a generic approach to deal with virtual topologies.

2.7.2 Other programming paradigms

Another programming paradigm that deals with the issue of virtual topologies is CHARM++
[23]. It enables users to easily expose and express much of the parallelism in their algorithms
while automating many of the requirements for high performance and scalability. It permits
writing parallel programs in units that are natural to the domain, without having to deal
with processors and threads. CHARM++ rather uses finer-grain objects and dispatches the
computation onto small migratable tasks called chares [22]. These chares, in addition to their
assigned data and their ability to exchange messages asynchronously, are also characterized
by their CPU load, their I/O communication volume and some other useful parameters [22].
In our implementation, we do not consider using CHARM++ but it might be an interesting

paradigm to be considered as future work.



3. Related Work

Topology mapping problem is an interesting topic among researchers. Different researches
go beyond on-node mapping and consider also the in-node mapping as a second scale for per-
formance gains. Therefore, the complexity of parallel application can be efficiently exploited
with the right task mapping algorithm.

The initial study for the problem was made from Bokhari et al.,[6], where the task to nodes
mapping was considered as a graph embedding problem. By using this approach, a mapping
algorithm called MAPPER, a pairwise interchange algorithm, was introduced.
Communication- and topology-aware mapping.

MAPPER [6], is an algorithm that tries to solve the mapping problem while considering
the topology of the system. It consists of calculation done into two main steps. In the first
step, it considers all possible pairs of nodes that communicate with each other in the system.
The nodes are considered pairs if their communication gives the highest cardinality of the
mapping graph. In the second step, some random (probabilistic) jumps are made to solve
the issue of the dead-ends. If a better mapping is found during the random jumps from
the algorithms, then the first step is being called, otherwise the algorithm terminates. The
algorithm employs rank reordering technique to do the mapping and tries to permute the
adjacency matrix of the graph problem that matches more closely the adjacency matrix of a
Finite Element Machine (FEM). This machine is an array of microcomputers interconnected
in an eight-nearest neighbor interconnection pattern [6]. Bokhari et al., consider the direct

interconnection network topologies with different sizes for their experiments.

Hoefler et al., [18] present LibTopoMap, a generic mapping library. Their approach consists
of three phases: 1)gathering the applications communication information among processes,
2)defining the architecture of underlying hardware, 3)computing and enforcing the process
placement. To create the graphs from the application communication pattern and the un-
derlying hardware architecture different partitioning libraries are used. LibTopoMap uses
METIS [30] and for SCOTCH [29] to achieve an initial optimized partitioning and ParMETIS
[30] (parallel version of METIS) to balance the partitions if necessary. It is worth mention-
ing that the gathering of the applications communication pattern and the construction of
the architecture of the underlying hardware needs to be done by the programmer explicitly.
Communication- and topology-aware mapping.

Hoefler et al., make use of different algorithms such as: greedy, recursive bisection, Re-
verse Cuthill-McKee (RCM)[9] and Threshold Accepting (TA). Greedy starts the mapping
of a random process to a random node and it maps recursively the heaviest communicating
processes to nodes that are physically close to each other. The other algorithm, recursive
bisection mapping, is based on splitting the minimum weighted edge-cut of the logical and
physical communication graph. The recursive bisection mapping is considered as graph par-
titioning strategy, shown in Table 3.1. The Reverse Cuthill-McKee (RCM) [9], is a heuristic
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used to solve the bandwidth reduction problem, which is a problem equivalent to the map-
ping problem according to [6]. RCM turns, the adjacency matrices between the physical
and logical communication graphs, into similar shape, to achieve the mapping. The last
algorithm consider in LibTopoMap is known as Threshold Accepting(TA) [12]. It is used to
optimize the initial solutions achieved by the mapping algorithms and to solve the problem
of local minimas. They also show that the benefit of topology mapping grows with the net-
work size. Their mapping strategies have shown to reduce network congestion up to 80%,
reduce average dilation up to 50%, and improve benchmark communication performance by
18%. LibTopoMap has place for improvement regarding the mapping algorithms, which is
considered in this thesis. On the other hand also the network topologies are programmer-
dependant, which means that the programmer is responsible for gathering the underlying
architecture information, and we would improve it by using HwLoc [7] (which is a software
that can retrieve the underlying architecture for us). To support LibTopoMap with algo-
rithms, we use MapLib [31][27], which is a library that provides different mapping algorithms
that would enhance the mapping abilities of the LibTopoMap library.

In [21], Jeannot et al., propose a distributed library called TopoMatch, which is an extended
version of TreeMatch.

Communication- and topology-aware

Its main mapping algorithm is TreeMatch, which uses a tree for modelling the hardware.
There are two main steps to generate a mapping, which consist of: 1)generating all possi-
ble combinations for a given set of processes (tasks) and 2) selecting the best independent
combination. The first step, creates pairs of processes that might have dependencies among
each other. In the second step, the pair processes that have the lowest amount of com-
munication reduced, are combined together, greedily, as the best independent combination.
In TreeMatch, the topology tree is processed upward and processes are recursively grouped
according to the arity of the next considered level. To avoid the combinatiorial explosion
of the algorithm runtime, two mechanisms are introduced, namely: arity division of the
tree and speeding up the group building [21]. Arity division of the tree is used to decom-
pose a level of the tree into several levels, which then consists on a speed improvement of
group building procedure and search simplification due to the fact of have large number of
groups. Another algorithm considered in TopoMatch is greedy k-partitioning, which is an
extended greedy version of the k-way partitioning algorithm used in METIS [24]. It is shown
that with different mapping techniques, 25% gain in communication time is being achieved.
TopoMatch uses a three step approach for achieving the remapping, which are the same
steps as the ones presented for LibTopoMap with small differences. HwLoc is used to gather
the hardware information and TreeMatch algorithm is used to compute the reordering. This
library is distributed which means that each node reorders only its local MPI processes.

In [27], Korndorfer et al., present a library of mapping algorithms, namely MapLib. This
library consists of mapping algorithms from the literature, and generates mapping for 3-D
topologies such as: mesh, torus, and HAEC Boz [13].

Communication- and topology-oblivious mapping.
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Five algorithms considering the space filling curves (SFCs), are used in MapLib. This algo-
rithms are: Paeno, Hilbert, Gray, sweep and scan. These algorithms map multi-dimensional
spaces onto one-dimensional spaces [28][27]. Sweep is used a default reference mapping
to evaluate the quality and performance improvement achieved by all other mappings in
MapLib [27]. In Table 3.1, you can see that all these algorithms (SFCs) are greedy algo-
rithms based on the categorization of strategies for processes-to-nodes mapping defined in
Section 2.

Communication- and topology-aware mapping.

MapLib makes use also of algorithms that take into consideration the interconnection net-
work topology. The first one is topo-aware [4], which groups the intensive-communicating
processes together in one task. As a second step, the algorithm maps these tasks to nodes
on the underlying hardware w.r.t their communication intensity. The tasks that communi-
cate more together are placed onto processors that are physically closer. Greedy algorithms
are also considered in MapLib, specifically: greedy [18] (also considered in LibTopoMap),
FHgreedy [11], and greedyALLC [15]. Greedy starts the mapping of a random process to
a random node and it maps recursively the heaviest communicating processes to nodes
that are physically close to each other. Fhgreedy start also by selecting a random process
and mapping it to a node but it takes into consideration the amount of communication
that processes have with each other. If two processes communicate often with each other
then they are mapped in neighbouring nodes. While greedyALLC initially makes pairs of
intensive-communication processes and uses these pairs to map them to nodes. Another
type of mapping considered in MapLib is bipartition. It is a recursive solution to improve
the node mappings on torus and mesh topologies [34]. It makes use of the directive of
k-way partitioning (introduced in [25], to divide the application communication graph and
the topology into two parts (bipartition = two-partitions). The last algorithm supported in
MapLib is, Partitioning and Center Mapping ( PaCMap) [33]. It is a graph-based algorithm
that simultaneously carries out job allocation and task mapping to reduce communication
overhead [33]. Firstly, it partitions the communication graph into k process groups where
the size of the group is selected by considering the nodes of the cluster. METIS [24] k-way
partitioning algorithm is used to achieve the partitioning while also in PaCMap processes
that highly communicate with each other are mapped to the same process group. In the
next step, PaCMap selects a center process group from the already partitioned graph and
maps it to the selected center node in the cluster [33]. The algorithm finishes when all the

tasks are mapped based on the interconnection network topology.

Somroo et al. [32], present BindMe, a thread binding library, which tries to determine the
best mapping policy for the tasks of an application to the nodes of the architecture. It
is a similar work to ours but it just considers the tree-like network topologies, while we
will consider any network topology with any underlying architecture. It consists of getting
the communication matrix of the application and applying different mapping algorithms to
improve the communication time between cores.

Communication- and topology-aware mapping. They use different algorithms to

achieve the mapping. The first one is TreeMatch [21] algorithm that is used in TopoMatch.
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EagerMap (8] is another greedy algorithm used to map processes-to-nodes in BindMe library.
It creates pairs of processes based on the intensity of the communication that the processes
have with each other. In the next step, a tree topology is used to determine the group of
processes in each level. This procedure is also applied to generate a mapping for a given
interconnection network topology in EagerMap. ChoiceMap uses the application communi-
cation matrix and the interconnection network topology of the underlying architecture to
determine the mapping which treats every process equally. Every process has its own choice
list which is based on the communication intensity. The processes are paired by considering

their nearest and mutual prioritized choices.

____ Library name
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Table 3.1: Characteristics of existing libraries.

Table 3.1 contains information about the characteristics of the existing libraries. It includes
the information about the different types of strategies used for process-to-nodes mapping,
interconnecting network topologies, metric(s), tools or software and mapping enforcement

techniques as defined in the background section.

This work consists of making use of two different libraries (LibTopoMap and MapLib) and
their characteristics, to come up with an enhanced version of these libraries. Therefore, this

work makes the following contributions:

e Provides a configurable P2P communication application, named COMAP.

1 Bokhari is the same algorithm named MAPPER in [6].

Dilation is measured as hop-Byte, which is the product of the size of all the communications times their

respective number of hops once mapped.

3 Communication reduction value is used as a locality measure. It represents the amount of communication
that the thread pair has to perform with all the other threads.
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e Use LibTopoMap, as a generic approach, to map COMAP.
e Enhance LibTopoMap with different network topologies.
e Evaluate the performance measures of COMAP on LibTopoMap.

e Enhance MapLib to support more network topologies.



4. Methods

In this work we use LibTopoMap, as a generic mapping library, to map processes to nodes.
LibTopoMap provides a package to be downloaded which includes the mapper and an exam-
ple application (reader.cc). In Appendix A.1.1.1 we show the steps on how LibTopoMap can
be installed. The example application (reader.cc) considers two parameters as input. These
two parameters consist of a matrix file (in compressed sparse row (CSR) matrix, taken from
SuiteSparse [2] matrix collection) and a file describing the interconnection network topology
(as shown in Figure A.1, A.2, A.3, A.4). Initially, the matrix file is read by reader.cc. It
decomposes the data to be processed from each SPE based on indexes. ParMETIS [25] is
used to partition the data loaded on each SPE. With this information, a distributed graph
communicator is created which is then used by LibTopoMap, alongside the topology file, to
map the processes to nodes with different mapping strategies. In case a better (lower maxi-
mum congestion) mapping of SPEs to HCU is found, LibTopoMap returns a new identifier
for each SPE (MPI rank).

During the initial phase of this study, we observed that LibTopoMap maps the processes of
the distributed graph communicator into the nodes defined in the network file. The com-
munication of the processes is necessary to create a distributed graph communicator. It
includes the information about the neighbour, the number of neighbours, and the volume of
communication for each process. For this reason, we created COMAP, a configurable P2P
application. COMAP takes into consideration different parameters that configure different
aspects of the communication. It considers blocking or non-blocking communication method.
Furthermore, one can define the number of exchanges and/or number of messages. Lastly, it

supports two types of communication patterns, nearest neighbour (NN) and odd-even (OE).

COMAP accepts the parameters as integers (eg., 1, 2, 3, ...). The first parameter is the
method of communication, 1 for blocking and 2 for non-blocking communication. The second
parameter defines the number of exchanges which can be a value from 1 to the number of
desired exchanges. The third parameter defines the number of messages. It can be a number
from 1 to the number of desired messages to be exchanged. The last parameter defines the
type of communication which is 1 for NN or 2 for OE. It is important to know that to be able
to use the application with LibTopoMap, we need to add another parameter. This parameter
is the file that defines the network topology of the system. In Figure A.1, an example of the
two-level fat-tree topology file is shown. An example of the execution command of COMAP

is shown below.
./OOMAP physicalTopology .map 1 100 100 1

Sometimes, it is not possible to run the mapper on the target system. Therefore, LibTopoMap

supports a simulation mode, where the user specifies a mapping of processes to nodes in a
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so-called "fake file”. This means that the naming of the nodes is not checked from the sys-
tem but from another file. Some examples of such "fake files”, known also as node naming
file, can be found in Figure A.2 (a), A.3 (a), and A4 (a). An example of the execution
command of COMAP, while using the simulation mode, is shown below.

./OOMAP physicalTopology .map 1 100 100 1 physicalTopology.fake

In Figure 4.1, we present the execution steps we followed during this work.

Figure 4.1: Execution steps

During the execution of the application, we extract the communication information. This
information consists of the processes neighbours, the number of neighbours, and the volume
of the communication for every process. At the end of the communication phase of the
application, we create a distributed graph communicator with MPIX_ Dist_graph_create()
function. It considers different input parameters:

e old communicator,
e number of source nodes for which this process specifies edges,
e array containing the n source nodes for which this process specifies edges,

e array specifying the number of destinations for each source node in the source node

array,
e destination nodes for the source nodes in the source node array,
e weights for source to destination edges,

e hints on optimization and interpretation of weights,

e the process may be reordered (true) or not (false).

It returns a handle to a new communicator to which the distributed graph topology informa-
tion is attached. As a next step, we call LibTopoMap API, named TPM_Topomnap(), which
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requires the distributed graph communicator, the network topology file, and a variable to
return the new id for the MPI rank. LibTopoMap applies different mapping strategies such
as greedy, RCM 9], and recursive to optimize the initial mapping. In case an optimization is
possible, the MPI ranks get a new id, otherwise nothing changes. With the new ids, we cre-
ate the reordered communicator, while using the MPI_comm_split() function. This functions
takes as an input the distributed graph communicator and the new ids for each process to
produce a new (reordered) communicator. In the end, we perform the same communication

of the application to measure the execution time.



5. Results & Discussion

In this chapter, we present the system, the design of the experiments table, and the results

of the experiments performed in this work.

5.1 System

All the experiments were executed using miniHPC cluster [3], provider from HPC research
group at the University of Basel. The miniHPC has a peak performance of 28.9 double
precision TFLOP/s. The miniHPC has two types of nodes, Intel Xeon nodes and Intel Xeon
Phi Knights Landing (KNL) nodes. The Intel Xeon nodes amount to 22 computing nodes,
1 login node, and 1 node for storage. The Intel Xeon Phi nodes amount to 4 computing
nodes. All nodes are interconnected through two different types of interconnection networks.
The first network is an Ethernet network with 10 Gbit/s speed, reserved for users and
administrators access. The second network is the fastest network, an Intel Omni-Path
network with 100 Gbit/s speed, reserved for the high-speed communication between the
computing nodes. The topology of this second network interconnects the 28 nodes (24
Xeons and 4 KNLs) of the miniHPC cluster via a two-level fat-tree topology [3]. It is
important to know that during the experiments we used only the Xeon nodes.

5.2 Design of experiments

The design of the experiments is an important process in every research work. In this
work, the factorial design of the experiment table consists of different combinations between
the mapping strategies, the combination of the number of HCUs and SPEs, and intercon-
nection network topologies. Also, during the experimental phase, different communication

evaluation metrics are extracted.

Factors Values Properties
A pobnt-le-polnt application (hat has the followlng configurations:
a} Method of communication = 1 (blocking)
Application COMAP ) Number of exchanges = 100
) Number of me = = 100,
jon pattern = 1 [nearest neighbeour (NNJ)
Greedy algorithuns Greedy iy iug pr 4 o nodes close to cack oller recursively.
Mapping strategles [0 0 eeursive Dieetion ased on aplitiing the inlomm welghted cdge-cul of Use Togleal and plysical
jon graph.
Graplh stmilarity Reverse CuthillMelee (RCM) Map by turnbng the adjacency matrios between the physical and logical communication grapls
into similar shape.
Network topalogies | et Twerlevel fat-tree, Dragonily Switch-Dased contcclion belween Lhe eompuilng nodes.
Direct 3D Torus, 3D Mesh Direct eonnection between the compuiing nodes without Laving swilches.
Totel Broadwell E5-2640 vd (2 sockels, 10 cores each)
Computing nodes i HPC-Broadwell #HOU = 4, 8, 16
#SPUs/HCU = 2,48 16
Pliysical Congestion Comgeation[T) = mat e, Comgestion{un)
Communieation communication metsies | Dilation Diluation{ut] = sty wev, ALl 18]
evaluation Losieal Tter-process logieal communication (1ePLC) | wetght:vi € Buy
metrics N~ Toira-node Togical commnumieation [TaNLC] FIPFTs p (&l
communication metrics
Inter-node loghcal communication (1eNLC) [eNLC = ¥ exchanged messuges

Table 5.1: Factorial design of experiments.
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5.3 Performance analysis
In this section, we present the performance analysis of the experiments. Each subsection

contains the results of the experiments executed while using the network topologies defined
in Table 5.1.

5.3.1 Experiments using two-level fat-tree network topology

In this subsection, we present the results extracted while executing COMAP, on miniHPC
[3] system while using the two-level fat-tree network topology of the system. Measurements
for congestion assume the capacity of the links on the physical network topology is 1. The
capacity of the links corresponds to network bandwidth, which we assume is not a bottleneck
for the communication in this case. Another important aspect of the experiments is the load
(balance or imbalance) in communication between processes.

Scenario 1: consists of a load-balanced communication between processes. In terms of
communication, it means that all the processes communicate the same volume of information
to each other. In Figure 5.1, the measurements for congestion are presented.
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Figure 5.1: Maximum congestion results on different #HCU-#SPE combinations using two-
level fat-tree network topology.

Figure 5.1 presents the results that we extracted from the experiments executed in miniHPC
with a combination of different numbers of SPEs and HCUs. LibTopoMap calculates the
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optimization of processes to nodes placement based on congestion value. Due to this fact and
the load-balanced communication between processes, no optimization was found. In some
cases, the mapping achieved from the heuristic strategies performs worse than the initial
mapping. This is expected behaviour due to the characteristics of the experimentation. The
results regarding dilation are presented in Figure 5.2.
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Figure 5.2: Dilation results on different #HCU-#SPE combinations using two-level fat-tree
network topology.

Dilation, as shown in Equation 2.1, is the average length of the path taken from a message
sent from one SPE to another. We can observe from these results (Figure 5.2) that in
all different experiments the mapping strategies perform the same as the initial mapping.
A reason for this is that the topology used in these experiments (two-level fat-tree) has a
maximum dilation of 4, meaning that from the largest distance between nodes is 4 hops/links.
Also, from the results, we can see that when the number of SPEs increases, dilation reaches
its maximal value. In it is important to have a further investigation on the dilation values
when the total number of SPEs is 32. When the number of HCUs is equal to 8 and the
number of SPEs per HCU is equal to 4, dilation is equal to 2. On the other side, when the
number of HCUs is equal to 4 and the number of SPEs per HCU is equal to 8, the dilation
is equal to 4. That is an example case when one would have to further investigate to find
the reason behind these results. In this work, we measure also some logical communication
evaluation metrics as shown in Subsection 2.5.2. Therefore, the results regarding logical
communication are shown in Figure 5.3.
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Figure 5.3: Results extracted while using two-level fat-tree network topology.

Inter-process logical communication (IePLC) shows the number of exchanged messages be-
tween any pair of SPEs. As we can see from the results, the number of exchanged messages
between pairs of SPEs is uniform and all SPEs communicate the same amount of messages.
Intra-node logical communication (IaNLC) shows the sum of exchanged messages of SPEs
mapped onto the same HCU. It is calculated by multiplying the P2P exchanged messages
by the number of SPEs divided by 2. In Figure 5.3, the inter-node logical communication
(IeNLC) is presented. It presents the sum of exchanged messages between nodes during
execution without considering the physical topology. It is calculated as a multiplication
of the number of HCUs with the number of P2P exchanged messages. It is important to
mention that during the calculation of the [aNLC, we considered all combinations of HCUs
and SPEs. This is because when the number of SPEs differs on different HCUs, the results
would be different. During the calculation of IeNLC, we consider that only one process on
each node performs inter-node communication, which comes as a result of the NN pattern
of communication.

Scenario 2: defines a communication that has a high load imbalance, meaning that each
process communicates a different volume of information to another process. As we could
witness from the experiments in scenario 1, no optimization of processes to nodes mapping
was possible. For this reason, we differentiate the volume of communication sent by each
process. We modified COMAP to send vectors of different sizes as the information sent via
the MPI communicator. A hash map type of data structure is created, which consists of two

variables, process id and the number of elements in the vector. The rank of the process is
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necessary to know which vector will then be transmitted via the MPI communicator. On the
other side, the number of elements in the vector for each process is based on the following
formula:

size of the vector = 70 + (10 = rank)

This formula allows us to have a different volume of information to be sent from each process
which therefore would create an imbalance in communication. Another important change
is that the number of exchanged messages for each SPE would be a fixed number, which in
this case was 30. It is important to know that the number of exchanged messages can be
flexibly changed and configured by using the command line arguments. The congestion (in
the implementation) is calculated as:

congestion = sizeof(vector[0]) * vector.size()

Congestion is the value that is extracted from multiplying the size (in bytes) of an element
in the vector of the SPE and the number of elements in the same vector. We considered the
capacity of link 1, in this case as we also did for the executions in scenario 1. Figure 5.4

shows the results extracted from the experiments regarding congestion.
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Figure 5.4: Maximum congestion results on different #HCU-#SPE combinations using two-
level fat-tree network topology.

In Figure 5.4, we can see the results extracted from the execution with a different number
of HCUS and SPEs per HCU. As we can see, due to the way how we calculate the size of
the vector for each SPE, the size of the maximum congestion increases proportionally with
the number of SPEs used. We can see that when the number of HCUs is small the mapping
strategies outperform the initial mapping. As the number of HCUs and therefore also the
number SPEs grow, the performance, w.r.t maximum congestion, of the mapping strategies

decreases. RCM and Greedy mapping strategies have higher maximum congestion than the
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initial mapping when the number of SPEs is equal to 32 (16 HCUs and 2 SPEs per HCU).
It is important to know when the value of congestion is higher it means that we could not
get a better mapping than the initial one. From the pattern of the results, we can also say
that while the number of HCUs, which corresponds to physical units, is small the strategies
are able to reduce the congestion. Some of the experiments failed to produce results and
therefore are not shown in Figure 5.4. This is due to the limitations of ParMETIS, explained
in Subsection 4.1. In Figure 5.5, we present the results extracted from the experiments for
dilation.
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Figure 5.5: Dilation results on different #HCU-#SPE combinations using two-level fat-tree
network topology.

We can see that regarding the dilation, there is no change. This is the case, as mentioned in
scenario 1 results, because of the interconnection network topology. It is important to know
that also in this case the dilation is showing the average length of the path taken from a
message in the network topology.

Due to the characteristics of the experiments in this scenario, we measure the communication
time of the application with the initial mapping and also with the optimized mappings from

the heuristics. These results are presented in Figure 5.6.
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Figure 5.6: Communication time of the application using initial and reordered communica-
tor.

The results in Figure 5.6 consist of communication times of COMAP while using the initial
and reordered communicator. The reordered communicator is the one that is being con-
structed from the reordering of the process ids in LibTopoMap while using the mapping
strategies. To extract these results, each execution was repeated 30 times. It is also im-
portant to know that an average of initial communication times was taken into account to
ensure the correct value (not being disrupted from some other tasks or operating system).
On the other side, also an average time was considered from all mapping strategies used in
these experiments. From the results, we can see a speedup of more than 50%, in terms of
communication time, when the number of SPEs is small. The average speedup that was
achieved during the experiments, is around 25%. The communicator taken from the RCM
mapping strategy shows a smaller communication time in all the cases. The communicator
taken from the Recursive mapping strategy performs well (in terms of communication time),
except for the case when 4 HCUs and 8 SPEs per HCU. These results might be still prone to
different disruptions coming from the operating system or the network of the HPC system.
We can distinguish from these results that not always a reordered communicator performs
better than the initial one. The cause of this is not trivial but to be able to understand

better, a communication that will take more time to be done is needed.

5.3.2 Experiments using a file describing 3D torus network topology

As mentioned in [18], LibTopoMap allows a simulation mode where the user specifies a
mapping of processes to nodes within a file. This allows us to perform experiments on
different network topologies other then the system’s topology. It is important to know that
the experiments in this subsection were performed on a system that uses two-level fat-tree
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network topology. LibTopoMap allows to achieve a mapping based on files that describes the
network topology of system that might be different from the system where the experiments
are performed (explained in Chapter 4). A representation of 3D torus network topology is
presented in Figure 2.5, while the configuration file used for these experiments is shown in
Figure A.2. The results of the experiments performed while using a file that describes 3D
torus network topology are shown in Figure 5.7.
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Figure 5.7: Results extracted using a file describing 3D torus network topology (executed
on two-level fat-tree topology system).

We can see from the results (Figure 5.7) that we do not differentiate anymore the number of
SPEs per HCU, due to the characteristics of the experiments (explained above). From the
results, we can derive a limitation of RCM and Recursive mapping strategies. These strate-
gies require the process graph to have lower or the same cardinality as the physical topology
graph. Therefore, we can observe that when having more processes (32) than the physical
nodes (27, in this case), these two mapping strategies fail to achieve the mapping of pro-
cesses to nodes. Another interesting aspect, derived from the results, shows that congestion
and dilation are not correlated with each other. As we can see the initial mapping performs
worse than greedy, RCM, and recursive mapping strategy, in terms of minimum congestion,
for 8 and 16 processes, while the dilation is the same. Furthermore, we can see that the
dilation metric measured from the RCM mapping strategy is maximal and outperformed
all other mapping strategies, including the initial mapping. Furthermore, we expect these
experiments to be performed on systems that use 3D torus network topology and extract
accurate results. We performed these experiments to test the ability of LibTopoMap to

achieve a mapping using arbitrary network topologies and systems.

5.3.3 Experiments using a file describing dragonfly network topology

In this subsection, we present the results that were extracted while executing the experiments
using a file describing dragonfly network topology on a system that uses two-level fat-tree
network topology (miniHPC). Dragonfly topology is constructed to have 2 groups, 2 chassis,
and 5 slots per chassis, as represented in Figure 2.8. The slots are compounded from 4
computing nodes and 1 switch which is used for the routing. All the switches are connected

with each other to form the inter-chassis and inter-group connections.
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Figure 5.8: Results extracted while using dragonfly network topology

In Figure 5.8, the results were executed while using the dragonfly network topology. We
can see similar behaviour of the mapping strategies as in the torus network topology. RCM
and Recursive do not achieve any optimization of the mapping due to the constraint of the
mapping strategies when COMAP is executed using 32 and 64 SPEs. Initial and greedy
mapping show the same results regarding congestion and dilation. This means that we
could not get any optimization from the initial mapping done from the operating system.
Furthermore, these results comply with the same limitations as the ones mentioned in torus
network topology results.

5.3.4 Experiments using a file describing 3D mesh network topology

It is important to know that the experiments in this Subsection were performed on a sys-
tem that uses a two-level fat-tree network topology. LibTopoMap measures the congestion
and dilation values for topologies that are different from the underlying systems’ topology.
During our experiments with mesh topology, we could not retrieve any results. Due to the
nature of the topology and the underlying topology that we used, no mapping of processes
to nodes could be possible. These experiments must be performed on a system that uses
mesh network topology to be able to do some performance analysis.



6. Conclusion & Future Work(s)

In this chapter, we conclude the work by addressing the limitations, conclusion(s), and

future work(s).

6.1 Limitations & challenges

The mapping problem is still a hot topic among researchers but still, there are some limita-
tions and challenges that need to be addressed.

ParMETIS (v3.1.1)[25]: is used in LibTopoMap to partition the process and network
topology graphs. During the experiments, we experienced an integer overflow that is trig-
gered from ParMETIS when trying to achieve an edge cut on a weight that is a large number.
This error consists of a type (idztype) used in ParMETIS which allows operations until a
certain value of integers. As seen in the results section, we were not able to scale up the
number of SPEs used during the executions because of this limitation.

Mapping strategies: used in this work are greedy, RCM, and Recursive. We experienced
some limitations while taking into consideration different mapping strategies. As we could
see from the results section, some of the mapping strategies could not achieve a mapping due
to their nature. These strategies require a number of SPEs to be lower or equal to the number
of HCUs in the system. To evaluate better the mapping of processes, general heuristics, like
greedy, solve the limitations when using multiple SPEs on a HCU on LibTopoMap. A big
challenge was raised also when we tried to implement greedyALLC and PaCMap algorithms.
Both these algorithms required the same constraints regarding the number of SPEs and
HCUs which made it not possible to retrieve any results using these mapping strategies. To
address this challenge, a slight change in the implementation of the algorithms is needed
without changing the way how the algorithm works.

System: used in this work is miniHPC. Therefore, we consider having only one system to
perform experiments as a limitation. We made use of miniHPC [3], which uses a two-level
fat tree network topology. To be able to evaluate different interconnection network topolo-
gies, we would have to run experiments on systems that use 3D torus, mesh, and dragonfly.

Only then we could come up with clearer conclusions.

6.2 Conclusion(s)

In this work, we made use of LibTopoMap [18], a generic library that uses different mapping
strategies to optimize the placement of processes to nodes in a HPC system. One of the
most important pieces of knowledge extracted during this work is the way how LibTopoMap
[18] can be used inside an MPI application so that its optimizations can then be in place

to measure the performance gains. We also created COMAP, a configurable MPI commu-
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nication application. It can be used in different scenarios since it supports load-balanced or
-imbalanced communication. During the experiments, we were able to achieve an average
of 20% of speedup on the communication time between SPEs with the reordered commu-
nicator from the mapping strategies. Furthermore, we experimented with different network
topologies, to show the possible benefits to have the systems running on those strategies.

6.3 Future work(s)

One important aspect would be to address the limitations and challenges that we face during
this work. We all are aware of the fact that since the mapping problem is a NP-complete
problem, the sub-optimal solutions have a high variety. Therefore, it is difficult to come
up with a solution that might satisfy all required aspects. Even though one optimization
that can be done to have a broader usage of the LibTopoMap or TopoMatch, is to enhance
the workflow used to achieve the mapping. We propose to have the communication matrix
of the application and use it in LibTopoMap to achieve an optimization of processes to
nodes mapping. In the end, the process ids can be bound to the underlying architecture
and the application can be re-executed for performance analysis. With this strategy, one
can test the benefits of process binding but on the other side, it can be considered as a
limitation of the generality of the solution. This is a trade-off to be considered. Another
future work would be to make use of a variety of applications, whose communication is
stochastic, to be able to better evaluate the performance gains of the mapping strategies,
systems, and interconnection network topologies. In this case, one would have to make
changes to the existing libraries to be able to extract the communication and create the
necessary inputs that are used to achieve the mapping. Lastly, it is crucial to fix the
limitation from ParMETIS, to be able to scale the number of SPEs, used to execute the
experiments, up. This could be possibly solved by making LibTopoMap work with the latest
versions of METIS and ParMETIS.
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A. Appendix

A.1 Installing and understanding the libraries
In this section, we introduce the steps that are needed to install the libraries: LibTopoMap,
TopoMatch, and Maplib.

A.1.1 LibTopoMap

In this subsection, we show the necessary information that could be extracted from this work
during the working process with LibTopoMap. It contains information about the installation
process, the configuration files, and the library’s main APL

A.1.1.1  Installation
To install LibTopoMap in miniHPC, the following steps were performed:

1. Download LibTopoMap package:
wget hitps://htor.inf.ethz.ch/research/mpitopo/libtopomap /libtopomap-0.9.tgz

2. Unpack the package:
tar -zuf libtopomap-0.9.1gz

3. Create a directory for ParMETIS inside libtopomap-0.9:
mkdir MPIParMETIS

4. Change to that directory:
cd MPIParMETIS

5. Get ParMETIS v3.1.1:
wget hitp://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/OLD/ParMetis-3.1.1.tar.gz

6. Unpack ParMETIS:
tar -zvf ParMetis-3.1.1.tar.gz

7. Get METIS v4.0.1:
wget hitp://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/OLD/metis-4.0.1.tar.gz

8. Unpack METIS:
tar -zvf metis-4.0.1.tar.gz

9. Load the C++ compiler in order to compile ParMETIS

10. Change the directory to ParMETIS:
cd ParMetis-3.1.1

11. Compile ParMETIS:

make
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12. Change directory to METIS:
cd metis-4.0

13. Open the file proto.h:

vi Lib/proto.h

14. Add the diff lines from https://htor.inf.ethz.ch/research/mpitopo/libtopomap/metis_
4.0-extern_c-patch.diff to this file. Specifically, when there is + sign in front, those
lines should be added.

15. Change the directory to LibTopoMap directory

16. Compile LibTopoMap:

make

17. Refer to https://htor.inf.ethz.ch/research/mpitopo/libtopomap/ for testing the library.

A.1.1.2 Configuration files

To achieve the mapping of processes-to-nodes, LibTopoMap takes in consideration network
topology files. These files can be separated into two categories:

1. HPC system’s interconnection network topology

e The system which one performs the experiments must have its components (nodes)
connect using this network topology configuration. This is known as topology-

aware mapping.
2. Simulation interconnection network topology.

e This means that the library will not take into consideration the underlying net-
work topology to execute the experiments, but only the provided network topol-
ogy. It is known as topology-oblivious mapping.

We performed our executions using miniHPC, which has a network topology structure de-
fined as a two-level fat-tree. in Figure,A.1 we show a network topology file that represents
the system’s topology that can be interpreted by LibTopoMap.
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Figure A.1: The two-level fat-tree network connection file

The second part of the network topology files that are used in this work consists of different
interconnection network topologies such as 3-D torus, 3-D mesh, dragonfly. Since these
topologies do not take into consideration the system’s underlying network topology, we had
to make use of the functionality of LibTopoMap that is known as node naming. We define
node naming files that are then used in the network connection file so that the network

topology can be used.
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In Figure A.2, the files used to perform the experiments using a 3D torus network topology

are shown.
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Figure A.4: Configuration file for Dragonfly network topology.

A representation of the file used to perform experiments using dragonfly network topology

is shown in Figure A.4. This topology has the following characteristics:
e 5 slots which consist of 4 computing nodes and 1 switch,
e 2 chassis per group. Each chassis allocates 5 slots (4 computing nodes and 1 switch),

e 2 groups, where each group has 2 chassis.

A.1.1.83 LibTopoMap API

This subsection contains the most important information about LibTopoMap APIL. In Figure
A.5, we can see the main API that is exposed in LibTopoMap which is used to map processes-
to-nodes.
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Figure A.5: LibTopoMap API representation

Figure A.5 shows the main files, functions, algorithms, and data structures that are being
used in LibTopoMap.

libtopomap.hpp is the file that contains the definition of the functions that are being used
in libtopomap.cpp. In this file, we can see that the main function TPM_Mapping() is defined.
This function is used to map the logical process to a physical topology graph. We can also
see that inside this function, multiple functions are also called. These functions perform
operations such as: mapping the graphs by using different mapping strategies, writing the
communication graph into output files, benchmarking the time needed for the remapping
to happen (in case there is a remapping done). It also contains algorithms that are used
to calculate the distances between physical nodes in the physical topology such as Dijkstra
Single-Source-Shortest-Path (SSSP) algorithm.

topoparser.cpp is the file that contains the information about the physical and logical
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topologies. It checks the physical node names that exist in the system and returns to the
main function that uses this information to achieve the mapping.

test.cpp is the file that tests the installation/compilation of the library.

A.1.2 TopoMatch

In this subsection, we show the necessary information that could be extracted from this work
during the working process with TopoMatch. It contains information about the installation

process and the library’s main APL

A.1.2.1 Installation

In order to install TopoMatch in miniHPC, the following steps were performed:

1. Clone the repository of TopoMatch
git clone https://gitlab.inria.fr /ejeannot /topomatch.git

2. Clone the repository for SCOTCH v6.0
git clone https://qgitlab.inria.fr/scotch/scotch. git

3. Install SCOTCH under my user account by following INSTALL.txt
note: should consider the make prefic=/home/myself/usr/ install

4. Clone the repository of HwLoc
git clone https://github.com/open-mpi/hwloc.git

5. Install HwLoc under my user account by following README file ( also here the —prefix
flag was used to install under my user account )

6. Configure TopoMatch to use SCOTCH
./eonfigure SCOTCH_DIR=/dir/to/Scotch/install

7. Compile TopoMatch

make

8. Perform the tests to check if the compilation went fine

make check

9. Install TopoMatch under your user
make —prefiz=path/you/want/to_install install
When no root permission is available, one should install in a path that has access

otherwise, permission errors will appear.

After the installation of the library, some example experiments were executed to get some
initial insights into how the library works. To execute the example we used the following

command:

../ src/topomatch /mapping —t ./topologies /16.tgt —¢ ./com_patterns/16.mat
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where,
../src/topomatch/mapping is the mapping example (that calls the TopoMatch API that
perform that mapping with different algorithms). This file calls:

1. tm_load_topology(arch_filename, arch file_type), that reads the topology defined in a
.tgt (tree like topology) or .xml (topology retrieved from HwLoc) file.

2. tm_load_aff mat(com filename), that reads the communication pattern of the appli-
cation. In the example matrices, the cell value of the matrix expresses the affinity

between processes.

3. tm_compute_mapping(toplogy, aff mat, NULL, NULL), that computes the mapping of
the communication pattern using TopoMatch algorithm with the given topology.

In Figure A.6, it is shown an image of the process communication pattern (for 16 processes,
which represent the affinity between processes) in a) and the tree-like topology in b). I still
have to understand how the tree is defined in this case.

tleaf 4 2 560 2 100 2 50 2 10

((a)) Process communication pattern ((b)) Tree like topology

Figure A.6: Parameters that TopoMatch example considers

The output of the execution is shown Figure A.7. There are three main algorithms used,
namely TopoMatch, Packed, and Round-Robin (RR). The output shows the processes (how
processes, starting from 0 (left-to-right), are mapped on the nodes).

TopoMatch: ©,4,8,12,13,9,2,6,3,14,15,1,10,11,7,5 : 4.86549e+06
Packed: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 : 7.17535e+07

RR: ©,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 : 7.17535e+07

Figure A.7: The output of the mapping in TopoMatch

A.1.2.2 TopoMatch API

This subsection contains the most important information about TopoMatch API. In Figure
A 8, we can see the main API that is exposed in TopoMatch which is used to map processes-
to-nodes.
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Figure A.8: TopoMatch API representation

mapping.c: in this file, all the directives for the mappings are set, with different types of
flags. This file contains a test method that makes use of all the methods in the API that
create the mapping. It takes into consideration the architecture file, the process-affinity
matrix file and it returns a mapping of the processes to nodes, by using TopoMatch, Round-
Robin and Packed algorithm, and information about the metrics that are being measured.
tm_topology.c: in this file different methods to construct the topologies are located. It
takes into consideration the topology files that are passed as arguments and it constructs
the TopoMatch topology, tree-like topology.

k-partitioning.c: this class is responsible for making use of partitioning the topology, by
using scotch. It returns a graph as a topology. It uses different methods to partition the
graph.

tm _scotch.c: this class makes it possible to use convert the topology graph to Scotch
format. In this way, it can use Scotch to build the mapping, among other strategies.

tm _solution.c: this class is responsible for computing the results for the different metrics
used in TopoMatch and also to display the solution.
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A.1.3 MapLib

During this work, we enhanced MapLib to support two indirect network topologies, two-level
fat tree and dragonfly. The existing mapping strategies, implemented in MapLib, consider
only the direct network topologies. For this reason, the new topologies could not be tested.

Even though, one can visualize these strategies with the following command:

python3 visualize_topology.py —t dragonfly —s 5 —¢ 2 —g 2

or

python3 visualize_topology .py —t fattree —p 5

The first command is used to visualize dragonfly network topology by defining the topology
name (-t), the number of slots (-s), the number of chassis (-¢), and the number of groups
(-g) in the topology. The second command is used to visualize two-level fat-tree network
topology by defining the topology name (-t) and the number of ports for each switch (-p).



