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Abstract

Most Operating systems for HPC clusters are based on Linux. The role of the OS sched-
uler is to assign execution time to processes. The OS scheduler may introduce overhead by
enforcing thread migrations or context switches. The role of the OS scheduler is to allocate
processing time to all processes executing on a system. For this, the scheduler can swap
or stop processes according to the scheduling policies. We investigate if there is a relation
between the application thread level scheduling and the overhead that the OS may cause.
For that, we use many scheduling techniques at the application thread level. For the mea-
surements, we use the tools PAPI, perf, and Likwid. In our measurements, we investigated
the OS overhead on different applications, with three parallelization methods. We used a
set of thread scheduling techniques with several thread configurations on different comput-
ing nodes. We show that all these aspects are important and can, in some combinations,
positively or negatively influence the performance of applications.
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Introduction

In the last decades, many cores per node and many nodes per system became normal for
high-performance computer clusters. To fully use all these CPUs, parallel applications rely
on the Operating System (OS) scheduler to assign their threads to the optimal CPU. Linux
uses the completely fair scheduler. This scheduler gives every process an equal share of
the processing time. When the time for one process is up, the scheduler interrupts the
application and enforces a context switch. To balance the load on different cores, the
scheduler can also move threads to a different processor. Threads that wait for data or are
idle for other reasons, will be swapped for other threads that request execution time.

All these interruptions by the OS scheduler cause overhead to the executing application.
Before resuming to execute, the cache needs to be loaded. This takes some time during which
no progress is made. The influence of OS scheduling is not clear.

To investigate this, we used the performance measurement tools PAPI, perf, and Lik-
wid. Perf provides good recordings of OS scheduling events. With PAPI and Likwid detailed
measurements of the important part of an application are possible. With these tools, we
recorded context switches, thread migrations, idle time as well as cache and memory per-
formance. Furthermore, we investigated the overhead that these tools introduce.

For this master thesis, we analyzed how the OS noise affects different parallel applica-
tions. We analyze memory- and compute-bound applications with different degrees of load
imbalance. This is important because different applications react differently to other thread
scheduling techniques or thread configurations. We investigated how the parallelization
methods OpenMP, MPI, and hybrid MPI and OpenMP react to OS noise. To investigate
how different OpenMP thread scheduling techniques behave regarding OS noise, we used
many scheduling techniques provided by LBAOMP and Auto4dOMP. We also examined the
influence the thread scheduling techniques have on the performance of applications. For
this, we leave some cores idle, so that the OS can use them.

We show that all these factors are important for an efficient execution of a parallel
application. In some combinations the measured influence is high. Other combinations
result in relatively low overhead.

In chapter 2 we explain the Linux scheduler with its policy and introduce the perfor-
mance measurement tools we used. In chapter 3 we discuss related work. We explain how
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we performed our experiments in chapter 4. We present the results of our measurement in

chapter 5 We end with the conclusion and future work in 6.



Background

In this chapter, we introduce the basics of the Linux OS and its scheduling system 2.1.
We identify potential sources of noise that the OS generates 2.1.2 . Then we present the
parallelization techniques MPI and OpenMP 2.2. We end this chapter with the performance
measurement tools we to used for our experiments 2.3.

The terms tread, process, program, and task are often used ambiguously in literature.
Therefore, we use the same definition as Gouicem et al. in this work [16]. A thread is
the smallest entity. It consists of an instruction pointer, a stack pointer, and registers. A
process consists of memory mapping, file descriptors, sockets, etc. A process contains at
least one thread. Threads from the same process share the process resources. This makes
communication among these threads easy. Communication between processes relies on the
inter-process communication mechanisms of the OS. A program or application consists of
at least one process. All processes work together to fulfill the goal of the program. Figure
2.1 illustrates a multi-process program. In literature, the term task is used for threads and

processes depending on the context. Because of this, we will not use this term in this work.

Process Process
Thread Thread Thread

Figure 2.1: Illustration of multi-processing and multi-threading. This figure is taken from
Gouciem et al. [16].
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2.1 Linux Operating System

Operating Systems (OS) are an independent layer between hardware and applications [25]
[32][15][13][16]. They allow the execution of the same code on different hardware. The
applications do not have direct access to the hardware. Applications communicate to the
OS through system calls. The OS communicates to the hardware with control registers.
These three layers are independent of each other except for these interfaces.

There are two types of kernels. Microkernels introduce less OS noise but do not offer
all OS services. Services like process management, memory allocation, or virtual file systems
have to be implemented in userspace or are absent. Monolithic kernels, like Linux, deliver
all these services but they introduce more overhead. Microkernels often support only a few
hardware architectures.

Linux uses, as most Operating systems today, preemptive multitasking. This means
that it can interrupt an executing process and let other processes run. An alternative to
preemptive multitasking is cooperative multitasking where a process has to voluntarily free
the processor. Today this approach is rarely used because the OS can not enforce a context
switch. If a process executes for a long time and does not interrupt voluntarily, the whole

system is blocked.

2.1.1 Linux Operating System Scheduler

For Linux and any multitasking operating system, the scheduler is a key component for
correct and efficient work [25][32]. The OS scheduler administrates the scarce resource of
execution time on the processor. It decides which thread can execute when and for how
long. On an imaginary computing system where only one thread is executing, this single
thread could occupy the processor until it finished. But on real systems, this is not normal.
Often there are a lot of different threads that compete for resources like execution time,
memory, network bandwidth, etc. It is not possible to execute more than one thread at a
time on one processor.

Multitasking OS address this problem by interleaving the execution of several threads
on one processor. This gives the impression that several threads are executed at the same
time. This also allows for parallel applications where several threads of the same application
are executed at the same time. The scheduler can interrupt executing threads and let another
thread run. This allows threads to react to events like user input or loaded data in a short
time. Also, no idle thread should occupy the processor when another runnable thread is
waiting. In this case, the scheduler should preempt the idle thread and let another one
execute.

The kernel uses a hardware clock to generate periodic interrupts, this time interval is
also called tick. These ticks call a kernel routine that handles OS activities. For example,
the OS daemons and the scheduler can execute during these events. The OS also looks for
pending signals or network data that arrived. During these ticks, the scheduler can decide
whether the execution time of the currently running thread is used up and start a context
switch to another thread.

On multiprocessor systems, the scheduler must not only decide which thread can run
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when but also where. The scheduler has to decide on which processor a thread should
execute. Resources that are shared between the cores, for example, memory, become an
issue. Not all processors can access these resources at the same time. Also, threads from the
same process may profit from the loaded cache if they run on the same CPU. The scheduler
has to account for all these problems. There are two main scheduler options for multi-
core systems, partitioned scheduling and global scheduling [7]. In partitioned scheduling,
every processor has its own ready queue. Therefore, a CPU may be idle while on other
CPUs there are waiting threads. Load balancing is harder with partitioned scheduling.
The optimal placement of threads among the processors is an NP-Hard problem. Global
schedulers have one queue for the entire system. This makes load balancing easier. But a
global scheduler has to account for the cost of migration from one processor to another.
For parallel applications on multi-core systems load imbalance is an issue. The sched-
uler has to use all processors equally. For this load balancing is necessary. When the
scheduler decides to move one process to an idle CPU. The moved process has to reload the
cache which delays the restart on the new CPU. Each interrupt and migration introduces
direct overhead. When no process is executing no progress is made. But also the indirect

overhead is introduced because the cache needs to be loaded.

2.1.1.1 Scheduling Policies

The scheduling policy determines the behavior of the whole system. Depending on the use
of the system, the scheduler can prefer one sort of process over others. There are different
types of processes with different needs. Input-/ Qutput- (I/O) bounded processes often need
very short computing time until they have to wait again for the next event. This event can
be loading and storing data to the disk, waiting for a network packet to arrive, or waiting
for the next user input. When this event occurs they have to react fast to optimally use the
bandwidth to the disk or network, or to give the user the requested output. On the other
hand processor bounded processes execute for long times until they have to wait for an 1/0
event or barriers. The scheduler policy has to balance the needs of the two process types.
1/0 bounded processes need a short latency and processor bounded processes need high
throughput. These requirements are in conflict, with each other. If the scheduler preempts
processes often then each process must not wait for long until it can execute again. This
improves the latency. But each context switch costs time to load memory to the cache. This
time is not spent executing a process, which reduces the throughput that processor bounded
processes aim for. To address all needs the scheduler has to guarantee low latency and high
throughput at the same time, which is not possible. Like other UNIX systems, Linux prefers
1/0- bounded processes over processor bounded processes.

To determine how long a thread should execute on a processor, some schedulers cal-
culate a timeslice. This is the allocated time a thread can execute. The timeslice has a
lower bound, to prevent performance degeneration of the system, because each swap has
an overhead. While a thread executes its timeslice is reduced. When it reaches zero the
scheduler preempts the thread and starts another one. If a thread preempts voluntarily, for
example, to wait for an [/O event, it can save up its timeslice for later.

Not all threads are equally important. The scheduler should prefer some threads over
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others. To differ between such threads, each thread is assigned a priority. Threads with
higher priority should execute before threads with lower priority. At the same time, low
priority threads should not starve, should get some processing time. In Linux, there are two
different priority values. A Nice value between -20 and +19. A large Nice value corresponds
to lower priority. The second priority range is the real-time priority, normally between 0
and 99. A large real-time priority value corresponds to a higher priority.

2.1.1.2 Linux Scheduler Framework

Linux kernel 2.6.23 introduced a scheduler framework which is divided into two components,
a set of Scheduling Classes and a Scheduling Core [15]. Scheduling Classes select the next
thread to execute according to their policy. These classes are objects that provide scheduling
policies for threads they hold. Each processor can have several Scheduling Classes which
contain a list of runnable threads. By default, there is a class, with the highest priority,
for real-time threads. Normal threads belong to the Complete Fair Scheduler (CFS) class,
CFS is explained in the next section. Idle tasks are in a separate class. The Scheduler
Core is called when the scheduler looks for the next thread. The Scheduler Core looks
for the Scheduler Class with the highest priority which has runnable threads in its queue.
This Scheduler Class can then decide which of its thread can execute next. This framework
guarantees that no thread with low priority is scheduled if there is a runnable thread in a
Scheduling Class with higher priority. It also allows having several scheduling policies for

different tasks at the same time.

2.1.1.3 Complete Fair Scheduler

Before the Linux kernel 2.6, there were several problems with the scheduler [19]. In Linux
version 2.4 - 2.6 several different scheduling algorithms were tried, but they had severe
drawbacks. For example, the O(n)-scheduler, the name is derived from its complexity O(n),
has an overhead that grows too big, if there are too many threads. At a high load, a
significant part of the computation power is spent only to schedule the next threads.

The completely fair scheduler (CFS) was introduced to Linux by Ingo Molnar in 2007
to the Linux kernel version 2.6.23. It has a complexity of O(1). CFS simulates a real
multitasking processor. The CFS does not allocate a hard timeslice to a thread. Instead,
each thread receives a share of the processor. The scheduler allocates 1/n of the total
processor time to a thread. Where n the total number of runnable threads is. The allocated
processing time depends on the load of the system. If there are more threads, the allocated
time reduces accordingly. CFS uses the Nice value as weight. The share of a low-priority
thread is smaller than that of a higher priority thread. To simulate a real multi-thread
system, this timeslice should be infinitely small. But to prevent too many switches this
share of computing time has a lower bound. To guarantee that in a given time interval
each thread can execute, CFS has a target latency. A smaller target latency results in
better interactivity for I/O-bounded processes. If there are too many threads, the allocated
timeslice would become too small and the threads would switch too often. To prevent this,

CFS has a minimal granularity. This is the minimal time that a thread should execute to
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prevent that the switching costs affect the performance of the whole system. The default
minimal granularity is 1 millisecond. Each thread has a virtual runtime. This is the execution
time normalized by the number of runnable threads. To determine the next thread, the CFS
has a red-black-tree (rbtree) ordered to the runtime of each thread. With this, the next
thread is found in the left-most leave of the rbtree. This is the thread that had the least
time on the processor. CFS uses dynamic load balancing. In regular time intervals, CFS
moves thread from CPUs with high loads to CPUs with less load.

2.1.2 Operating System noise

General Operating Systems are designed for high interactivity and the scheduler is respon-
sible for time-sharing computing time on the CPU [2][15]. The OS should provide a smooth
user experience. There are potentially thousands of threads that share very few processors.
This requires frequent interrupts to change the executing thread. The frequency of these
swaps determines the interactivity, of a system. For higher interactivity, a higher frequency
is needed. Linux uses normally 250 to 1000 Hz for desktop systems and 100 Hz for server
systems.

On HPC clusters there is normally only one application running. Interrupts occur
because of OS processes like daemons and timer ticks [37]. For an HPC application, any
activity not directly related to itself is overhead. It is shown that the most overhead comes
from timer interrupts [4]. During each tick the kernel does some work, for example, daemons
can execute, the scheduler decides whether the current thread can execute again or another
thread should run. All this additional work delays the application. It introduces direct
overhead by occupying the processor for some time and not letting the application execute.
It also generates indirect overhead by loading its own data to the cache, which replaces the
data of the application.

Processor bounded processes are more affected by this overhead than I/O bounded
processes. [/O bounded processes often need a short execution time. This is often shorter
than the frequency, in which timer ticks occur. Although this overhead occurs for all ap-
plications, parallel applications are more affected by this overhead than sequential ones.
Interrupts occur on all processors at different times. This leads to load imbalance between
the different threads of the application. In the worst case, one thread is interrupted before
every synchronization (see figure 2.2).

These interrupts do not only generate overhead but are also responsible for performance
variation. The execution time for the same application can vary depending on how often
and when it was interrupted. Also, CPU migration, sparked by the scheduler, affects the
performance of applications.
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Figure 2.2: In the worst case, a parallel application is slowed down by noise between every
synchronization barrier. All threads have to wait for the one thread that is slowed down by
noise. A lot of time, threads are idle and waste executing time. This is an example of why
parallel applications suffer heavily from OS noise and how noise leads to load imbalance.
This figure is taken from Betti et al. [4]

2.1.2.1  Context Switch

A Context Switch is the process of stopping an executing thread to let another thread run.
This is necessary that several threads can share one processor in a multitasking operating
system. For a context switch, the register and memory map of the old thread is stored in the
memory so that it can be restored later and continue its work. The state of the next thread
has to be loaded from memory before it can start. In Linux, the switch between threads
from the same process is not as expensive as switching between different processes. This
is because threads from the same process share the same virtual memory map. A context
switch can be triggered, when the scheduler preempts a thread to let another thread execute.
It is also possible that a thread voluntarily frees the processor. For example as a result of an
interrupt for disc storage access or to synchronize with other threads. Overhead of context
switches occur because it takes time to store and load the data from memory. This time
is not spent executing. Additionally, the cache has to be loaded for the new thread. This
takes some time until the new thread can execute with the best performance.

2.1.2.2 Timer Interrupt

Normally the processor is shared by multiple threads. To share the processing resource,
the OS has to interrupt a thread regularly to let the scheduler decide who can run next
[2]. Preemptive Operating systems achieve this with on-chip timers which interrupt the
CPU at regular intervals. Linux uses normally 100 Hz for server systems. At each of these
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intervals, several OS-level bookkeeping operations can take place. Also, the scheduler may
trigger a context switch if the executing thread used its time up. This timer interrupts
takes place many times a second even if they are not necessary. I/O bounded processes
are not highly affected by timer interrupts. Parallel HPC applications suffer from these
interrupts because some threads experience less overhead than others. This leads to load
imbalance and additional waiting time at the next barrier (see figure 2.2). Cache pollution
is also an issue because the kernel operations load some data to the cache which affects the

performance of the application afterward.

2.2 Parallel Programming

In this section, we introduce the parallelization techniques Message Passing Interface (MPI)
and Open Multi-Processing (OpenMP). MPI allows parallelization of processes. OpenMP
is used for thread-level parallelization. MPI often needs a restructure of the code, which
OpenMP does not need. However, MPI delivers higher performance than OpenMP. Often
these two approaches are combined on a computer cluster for better performance than using
just one. In this case, MPI is normally used for parallelism between nodes and OpenMP for

parallelism inside a node on CPUs.

221 MPI

The Message Passing Interface (MPI) is designed for application on MIMD distributed mem-
ory systems [12][34]. It is the de-facto standard communication protocol among processes.
The first MPI version was released in 1994, the latest version MPI 4.0 in 2021. The MPI
standard defines the semantic and syntax of library routines. These routines can be used
in C, C++, and Fortran. There are several open-source MPI implementations available.
The goals for MPI are high performance, scalability, and portability. The communication

protocol of MPI supports point-to-point as well as collective communication.

2.2.2 OpenMP

Open Multi-Processing (OpenMP) is an application programming interface (API) that en-
ables shared-memory multiprocessing [8]. OpenMP supports the programming languages C,
C++, and Fortran and is supported on most operating systems, including Linux, Windows,
macQOS, Solaris, AIX, and HP-UX. There exist many compilers for OpenMP. The first ver-
sion of OpenMP was introduced by the OpenMP Architecture Review Board (ARB) in 1997
[5]. In November 2020 the current version 5.1 was released. OpenMP consists of compiler di-
rectives and library routines to express shared-memory parallelism. It is a simple interface
to develop multi-threaded applications. In OpenMP a primary thread forks sub-threads.
The code section that should be executed in parallel is marked with a compiler directive.
The system shares the work among threads. After the execution of the parallel section, the
sub-threads join the primary thread. Because the threads share the memory space, each
thread has direct access to the memory of each other thread. To manage correct execution it
is possible to declare certain parts of the memory private for each thread. OpenMP supports
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task- and data parallelism.

2.2.2.1 OpenMP Standard Scheduling Techniques

The OpenMP standard specifies three loop scheduling techniques: static, dynamic, and
guided [26][28]. The used scheduling technique is determined by the programmer. It can
influence the performance of the application because each scheduling technique has different
performance and overhead characteristics. The scheduling technique provides a hint for how
iterations of the corresponding OpenMP loop should be assigned to the individual threads.
Static is the basic scheduling technique. It divides the work into equal parts. Each thread
has to do the same number of loop iterations. This scheduling technique has the smallest
overhead but it can lead to load imbalance between the threads. The scheduling technique
dynamic assigns some loop iterations to each thread. When a thread finished its iteration
it requests more work until all iterations are assigned to a thread. This method introduces
some overhead to the execution time because the work allocation is not done at compile time.
Guided scheduling is a self-scheduling method similar to dynamic. The difference is the size
of the chunks. In the beginning, the chunk size is large. The chunk size is proportional
to the number of unassigned chunks and the number of threads. The chunk size decreases

exponentially during the execution to reduce the overhead during the execution.

2.2.2.2 LB40OMP and Auto4OMP

The standard loop scheduling techniques of OpenMP do not deliver the best performance.
Other scheduling methods are better but it is not easy to find out which technique to use.
LB40OMP is a dynamic load balancing library and extends LLVM OpenMP RTL version 8.0
[24][22]. It implements 14 dynamic and some adaptive scheduling algorithms which add more
scheduling options to OpenMP. There are also features for performance measurements of
the performance of specific loops to analyze the load balancing and loop scheduling. Thread
execution time, which reports the execution time per loop, allows to detect load imbalance.
For performance analysis, there is also a calculated chunk size for each thread. LB4OMP
allows a fair comparison between different scheduling techniques.

The scheduling techniques, that are implemented in LB4OMP and we used in our ex-
periments are practical variant of factoring FAC2, adaptive factoring AF and static_steal.
FAC2 is a dynamic but non adaptive self-scheduling technique. AF is a dynamic and adap-
tive technique.

Since dynamic and adaptive loop scheduling adds overhead, the authors measured
the overhead of the different scheduling techniques of LB4OMP. The best combination of
scheduling techniques depends on the application and system but it outperforms a single
scheduling technique in most cases. Often adaptive scheduling techniques outperform the
non-adaptive. Other experiments show that most scheduling techniques achieve good load
balance but this results not always in better performance because the scheduling technique
introduces additional overhead. The chunk parameter also impacts the performance. Too
small chunk sizes introduce a higher scheduling overhead while too large chunks result in load
imbalance. The best chunk parameter always improves the performance. But to find this
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value, extensive experimentation is needed for each loop and system. Therefore, dynamically
adaptive scheduling techniques promise better performance without manual tuning.
AutodOMP extends the OpenMP runtime library with improved scheduling algorithm
selection methods [23]. AutodOMP does not require a careful selection of the best scheduling
algorithm and chunk size. It replaces the scheduling option auto of OpenMP. In Auto4dOMP
there are four scheduling algorithm selection methods. RandomSel selects the scheduling
algorithm randomly. EzhaustiveSel selects the best performing scheduling algorithm. Bina-
rySel improves the selection time of ExhaustiveSel with binary search. For BinarySel the
scheduling algorithms have to be ordered by their introduced overhead. ExpertSel uses fuzzy
logic and expert rules to select the best-performing scheduling algorithm. They also consider
GAC, the schedule(auto) algorithm from LLVM OpenMP runtime library. Auto4dOMP can
change the used scheduling algorithm during the execution. Expert chunk of Auto4dOMP
selects the chunk size based on the number of loop iteration and the number of threads. To
low chunk size result in more scheduling overhead, to large chunk size result in more load
imbalance. A scheduling algorithm has to satisfy the following properties for AutodOMP. A
scheduling algorithm should not need user input. To reduce overhead the algorithm should
use lightweight synchronization. The last requirement is that the algorithm should not
need time-stepping loops to adapt to application performance. The performance analysis
shows that BinarySel and RandomSel can cause severe overhead because they may choose
a non-ideal scheduling algorithm. ExpertSel and ExhaustiveSel improve the application
performance. Also, the expert chunk size improves the performance of applications.

2.3 Performance Measurement Tools

In this section, we present the performance measurement tools we used for our experiments.
We explain how we used these tools in chapter 4. To understand the behavior of OS noise, we
use tools that make the actions of the computing system observable [29]. The measurement
tools interrupt the applications to record events or count hardware counters.

There are two types of performance measurement tools, profiling, and tracing. Profiling
updates summary statistics of events. This has a relatively low impact because it saves only
a few data to a profile data file. Tracing records log of timestamped events and their
associated attributes. This has a higher overhead but allows a more detailed analysis of the
application.

The tools we used are Perf, PAPI, and Likwid. These are mostly profiling tools, but it
is also possible to trace an application with them. We only used the profiling measurements.
All three tools are often used to record the performance of applications. It is not easy to
measure the performance of the scheduler or other OS components [16]. Perf is the only tool
of these three that is designed to help developers of the OS improve the performance of their
code. The measurement conducted during the execution, should not affect the performance
of the application. The measurement tool should introduce as little overhead as possible.
All three tools are designed to keep their influence low.

The Linux kernel provides several ways to understand the behavior of applications
[16]. Besides Perf, there are other tools. Ftrace is a tracing tool for kernel tracepoint events.
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These are hard-coded events in the kernel code. They allow among other things to find out
the time that the kernel spends in different functions. The procfs pseudo-file system provides
aggregated values or snapshots of the current state of the system. Ftrace is a tracing tool
so we did not use it. In the preparation of this master thesis, we planned to use Pin. We
did not use it because it does not provide any additional use that Perf Papi and Likwid do

not provide.

2.3.1 PAPI

The Performance Application Programming Interface (PAPI) provides platform and OS
independent access to hardware performance counters [33][9]. PAPI supports a wide range
of different performance counters on many parts of a computer system, for example, CPU,
GPU, memory, power, network interface cards, and many more. These counters can observe
different events. These counters are small sets of registers that count events. Examples
for predefined events are cache coherence, cycle and instruction counts, pipeline status, and
many more.

The PAPI project originated at the University of Tennessee’s Innovative Computing
Laboratory. Many additions and improvements are still published [38]. The latest version
PAPI 6.0.0 was published in March 2020.

PAPI has two interfaces to the hardware counters. A high-level interface for simpler
measurements. It allows the user to start and stop recording counters. The low-level in-
terface that manages hardware events. Some of which may be machine-specific. PAPI also
provides access to native events. Because PAPI is used inside the code, it is possible to
record the performance of a small part of an application, not the whole execution. This al-
lows the analysis of the most important loops separately from the rest. Another advantage
of PAPI is that the user can decide what to do with the measurements. For simple testing,
it is sufficient to plot the measured values. It is also possible to store the data directly to a
file.

2.3.2 Pert

Perf is a Linux kernel tools for performance analysis [11][30][17][40]. Perf was introduced
to the Linux kernel version 2.6.31 in 2009. As the rest of the kernel Perf is open source.
The idea of Perf was to have a built-in tool to make use of the performance counters of the
Linux kernel. It is also possible to use Perf as a tracing tool. Perf is a tool to observe the
performance of applications or a system.

Most events can be monitored via the Perf command in the terminal. Some features
are not supported by Perf commands but are accessible with the FTrace interface. Perf uses
events from many parts of the system. Hardware events come from the CPU performance
monitoring counters (PMC). PMC depends on the hardware on which the system runs.
Typically it is only possible to record a few PMC at the same time. They contain among
many others CPU cycles and cache misses on all levels. Software events are low-level events
that are based on kernel counters like CPU migrations and page faults. Kernel tracepoint

events are instrumentation points on the kernel level. They are hardcoded in points of
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interest in the kernel. They allow tracing high-level behavior of the system for example
network events, file or disk I/O events, or system calls. These events are grouped into
tracepoint libraries, for example, socket events are called "sock”, CPU scheduler events
"sched”, or "kmem” for kernel memory allocation events. Other events are tracepoints for
user-level programs. These events are hardcoded into the source code of applications, usually
with macros. Many applications can be compiled with the Dtrace flag to support DTrace.
The static tracing interface is more stable and easier to use than dynamic tracing. But it is

possible to enable dynamic tracing on a system without restarting it.

nigrated: strean-ope

Figure 2.3: An output for the command perf timehist with the application stream, executed
on Broadwell

Figure 2.3 shows the output of the command perf timehist for the application Stream on
Broadwell. This is not from the very beginning, there were other events before the shown
events. This output shows how the threads are distributed among the cores. The first column
of the perf timehist output is the timestamp. The first awake of stream in this example
happened at 14715035.960848. In this execution, the first timestamp is 14715035.782999
and the last 14715070.928144. So the total execution took 35.145145 seconds. This is from
the first recorded event to the last. Perf recorded the whole execution of the application.
In this time is the overhead of perf included. Perf wakes up several times to store the
recorded events. The second column is the CPU ID. Then there is a CPU visualization.
This visualizes where the events occurred. The fourth entry is the task name and the task
ID (TID or PID) After that are the wait time, sch delay (scheduler delay), and run time.
The data we are mostly interested in. The last entry is some additional information about
the events.

As an example, we look at how a thread of the application Stream is migrated to
CPU 3. We see at 14715035.960890 that on processor 2, the wakeup for the migration
process happens. Then at 14715035.960893, 3 ms later, processor 2 begins the context
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switch and stops the application. The application was executed for 14 ms. The next event
at 14715035.960896 shows the migration from CPU 2 to CPU 3. This is followed by a
relatively long idle time on CPU 3. This time is needed to load data. The next event
is again on CPU 2 at 14715035.960904. There the migration process is terminated. Perf
reports a scheduler delay of 3 ms and a runtime of 11 ms. The scheduler delay is the time
between the wakeup of the migration process and the termination of Stream. The runtime is
of the migration is between the termination of Stream and the termination of the migration.

2.3.3 Likwid

Likwid is a command-line tool for Linux and supports many architectures [36] [39]. It
provides several sub tools. They are designed to address four problems. Likwid-topology
probes the hardware thread, cache, and NUMA topology. It shows how processors share
the cache hierarchy and the cache sizes, how processor IDs are mapped to the CPU cores.
Also, details about the NUMA domains and memory sizes are shown. This is an easy way to
see how the system is built. It is also possible to use this information inside an application
code. To optimize the execution to different systems. Likwid-perfctr is a tool for hardware
performance counters. In wrapper mode, it can be used to measure the whole execution of
an application. With flags of the marker API, Likwid measures the performance between
two points in the application code. There are some predefined event sets with the most
common measurements. It is also possible to create custom event sets. Likwid-pin allows
to pin multithreaded applications on the command line. It is possible to pin the threads to
specific CPUs with the process ID. Other options include pinning to nodes, sockets, cache
groups, or memory domains. Likwid-pin supports all threading models that are based on
POSIX threads. It also works for MPI and OpenMP hybrid parallelism. Likwid-bench is a
benchmarking platform to measure the performance of the system.

In our measurements we used the likwid-perfctr commands. This measures the counter
specified by the -g flag. Likwid records the counters of the CPU to which the application is
pinned with the likwid-pin tool. The output shows some information about the system on
which the measurement was executed. Then follows the output of the application. The last
part is the results of the measurement. Depending on the counter group, the data for every
single CPU is shown. First are the counters for the events then the derived metrics. For all
counter groups at the end is a summary with the averages, sum, minimum, and maximum
of the measured metrics. In figure 2.4 is the output of a measurement with Likwid. The
application was executed on Broadwell with 10 CPUs. The output from Likwid shows the
event counters that Likwid recorded for every CPU that was used. The second table is a
summary of these events. The third table shows the derived metrics for every CPU and the
last table is the summary of these metrics.
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Figure 2.4: Output for the command likwid-perfctr for the counter group MEM, with the
application Mandelbrot, executed on Broadwell with 10 CPUs.



Related Work

In this chapter, we present many papers that are related to Linux scheduler improvements
and observation. First, we introduce several papers that present an improvement to the
Linux scheduler. Then we have a look at other performance measurements. In the end, we
discuss what we will do differently.

Betti et al. [4] introduced CAOS (Cluster Advanced Operating System). This is an
extension to the Linux kernel, which addresses the problem of temporal synchronization
in HPC clusters. CAOS replaces the local timers on nodes with NetTick. NetTick is a
global timekeeping architecture, in which network signals replace the local time devices.
The master node sends a heartbeat signal to all nodes. This message is treated as a timer
interrupt. This allows the cluster to synchronize the activities on all nodes, see figure 2.2
where this synchronization does not happen. Normally each node has its own time device.
The different devices may not exactly be synchronized.

Betti et al. showed in several experiments, that CAOS can reduce the OS noise gen-
erated by timer interrupts and the scheduler events. Timer interrupts generate a high-
frequency noise and are the main source of OS noise. The local timer raises an interrupt,
which the kernel executes. Often there are no pending operations to execute. NetTick re-
duces this noise. Network tasklets generate also OS noise, this is less frequent but larger.
NetTick can only prevent the noise from timer interrupts. The performance of the HPC
application is not reduced by the removal of the timer interrupts. Another source of noise
are OS daemons. The OS may schedule a daemon instead of the HPC application. This de-
lays the computing on different nodes. NetSched can schedule these background operations
during the synchronization phase of the HPC application. For their measurements, they
used Fixed Time Quanta (FTQ). FTQ measures the numbers of basic operations done in
a fixed time quantum. This benchmark samples the number of basic operations that were
performed in a time interval. The difference to the theoretical maximum number of basic
operations is due to other activities that were not performed by the benchmark. They report
that timer interrupts are indeed the main source of overhead for parallel applications. Also,
other programs like daemon cause significant overhead. They show that NetTicks improve
the performance of different clusters.

Gioiosa et al. [15] present High-Performance Linux (HPL) to address the problems of
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the standard Linux kernel with modern HPC clusters. HPL is based on Linux version 2.6.34.
It is designed to improve the performance of HPC applications on clusters by reducing the
noise that the OS generates. It also reduces the variability of the performance of parallel
applications. The Linux OS introduces some overhead. This overhead is not synchronous on
all nodes which introduces performance variation. The scalability of many cores is affected
by performance variation if the impact of this overhead increases with the number of cores.
Gioiosa et al. use Perf to measure the impact that the Linux OS has on the performance of
HPC applications. They report that the execution time increases with the number of context
switches and CPU migrations. As in [4] they report that the main sources for overhead in
an HPC application are timer interrupts and scheduler events.

To address these problems Gioiosa et al. [15] introduce a new HPC scheduling class
between the Real-Time and CFS classes from the standard Linux scheduler. Because the
scheduler will not schedule any task from a lower scheduling class if there is any runnable
task in a higher class. HPC tasks from the HPC scheduler are not interrupted by tasks
from CFS. This could not be achieved by simply giving HPC tasks a higher priority in CFS
because the dynamic priority decreases while the process executes. This dynamic priority
can change every tick. Therefore, CFS may preempt an HPC task. A higher priority does
not guarantee that a process will not be preempted. It is also not good enough to schedule
HPC tasks with the real-time scheduler. In this case, the scheduler would not select tasks
from CF'S until all tasks in the RT scheduler finished, which would improve the performance
variability a bit. But process preemption is not eliminated completely. Load balancing can
force process migration. The Real-Time scheduler has more problems with load balancing
than CFS. If a CPU has no runnable real-time task because all tasks scheduled for this CPU
are idle, it tries to pull another real-time task from another CPU. Another scenario is when
the numbers of real-time tasks are odd or do not map well to the numbers of nodes, the lead
will always be imbalanced. This triggers a lot of task migrations to balance the load which
degrades the performance of the whole system.

HPL addresses these issues. It prefers HPC tasks over other processes but performs
no load balancing if this is not required for performance improvements. HPL schedules non-
HPC tasks synchronously when the HPC application does not use the CPU. They measure
the numbers of CPU migrations and context switches with perf. In their experiments,
HPL reduces the scheduler overhead severely. This reduces the OS noise and improves the
performance variability of the HPC applications. Gioiosa et al. focus on the scheduler
influence. They do not address micro-noise from local timer interrupts. HPL use NetSched
[4] to reduce periodic timer interrupts.

Jones [20] describes a kernel scheduling algorithm that improves the scalability of an
HPC system with many nodes. The performance of parallel applications degenerates with
OS jitter. This is generated by different OS activities that run during the execution of
an HPC application. If these interrupts happen at random on the different nodes, then
the threads have to wait longer on synchronization barriers. This impacts the scalability
of an OS. The scalability of an OS describes its ability to support a parallel application
without introducing scaling issues that come with larger systems. A cascading effect occurs
when a slower process impacts all other processes. Often the OS can slow down a single
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process, all other processes have to wait for that slower one at the next barrier. Jones
addresses this problem with coordinated scheduling. The OS processes are scheduled at
the same time among different nodes. This increases the time when all HPC processes
can make progress at the same time without interruptions. The amount of non-application
threads execute stays the same, but their impact on the performance of the HPC application
is reduced. Coordinated scheduling can be dynamically turned on and off with a system
call. During coordinated scheduling, a single OS instance manages all processes. Jones
performed measurements on a benchmark. The results show a significant improvement in
the performance of the benchmark as well as the variability of the results.

The problem of increasing system noise by larger clusters was also analyzed by Tsafir
et al. [37]. They provide a probabilistic argument that under certain conditions the delay
OS noises introduce is linearly proportional to the cluster size. For their measurements,
they used micro benchmarking to estimate the time to execute an empty loop many times.
This yields the granularity of the application. But this benchmark uses very little memory
which results in very optimistic values. For kernel profiling, they used the kernel logger
KLogger. They compare the noise that is introduced by different schedulers to make sure
that the noise is not introduced by system daemons. The main source of fine-grained noise
is system interrupts. Also, the frequency of these interrupts has an high influence on the
performance variability. They experimented with different tick rates and show that lower
tick rates reduce the variability. This variance is mostly due to the indirect overhead by
cache misses.

To show that cache misses are the main reason for performance variability the per-
formed measurements with a disabled cache. When adjusting for ticks and network inter-
rupts there is no variability left. They conclude that the performance variability is caused
by ticks and network interrupts and cache misses they cause. On high-performance clusters,
there is often dedicated hardware, that deals with network interrupts so that the perfor-
mance of HPC application is not affected by the network communication. As Petrini et al.
[27] they draw a connection between the computation granularity and the overhead. When
the noise frequency is much smaller than the granularity the overhead becomes smaller. Also,
the hardware has an impact on the overhead. On several different systems, the amount of
L1 and L2 cache misses differs. This can be influenced by the size of the cache or memory
and bus speed. Also interesting is that the frequency of the ticks has a high influence on L1
cache misses but not on L2 cache misses. Tsafir et al. argue that removing ticks promises
better results than synchronizing ticks. Because synchronization among nodes has again
additional overhead. A sufficient alternative to timers would be smart timers. Smart timers
combine accurate timing with reduced overhead by aggregating nearby events and avoiding
unnecessary ticks.

Gouicem et al. [16] show three ways to improve schedulers. To ease the development of
new schedulers they developed a domain-specific language (DSL) Ipanema. With their DSL
they developed schedulers that have smaller footprints and have comparable performance to
the current CFS. For the analysis of the newly developed scheduler, they also implemented
a set of monitoring and visualization tools. These tools use the given Linux kernel events as

well as additional events. They show that modern processors suffer from frequency inversion.
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On modern CPUs, dynamic voltage and frequency scaling can lead to busy cores that run
with lower frequency than idle cores. This behavior is due to the long frequency transition
latency of the processor and the scheduler that does not correctly account for the frequency
of the processors. The third contribution is a feature model of schedulers, which allows
the implementation of modular schedulers. There are also methodologies to evaluate these
schedulers. With that, they extract a scheduler frame, a set of features that influence a
given application. Which they used to design application-specific schedulers automatically.

Petrini et al. [27] describe how they improved the effective performance of the super-
computer ASCI Q. ASCI Q [31] was in 2003 the second in the list of top 500 supercomputers.
They describe several different techniques and tools to analyze the performance of the sys-
tem. One technique is to use an application with different system configurations and to
measure how it performs. For this purpose they used SAGE, an application paralyzed with
MPI. To gain insight into the performance of an application they used micro benchmarking.
This measures the performance of a part of the application. With software simulation of the
physical system, they examined questions that they could not do on the system due to time
constraints of ASCI Q. Example for this are different cluster configurations. They also used
analytical modeling to predict the expected performance of an application on hypothetical
machines. They show that the performance of the application executed on more than 256
nodes improved when they used fewer processors per node. On ASCI Q) each node had four
processors. Although they used fewer cores in this experiment, which results in 25% less
processing power, they reported better performance. This is because the OS noise does not
interfere with the computation of the application. This delay influences the performance of
all nodes when they wait for the slowest node at the next barrier (See figure 2.2).

Another problem was, that there was high variability in the performance for the indi-
vidual cycles. To address this, they improved the synchronization phase of the application,
which did not reduce the overhead significantly. With more experiments, they could rule out
that computational noise on the processor is the source of the overhead, but they discovered
a pattern in the noise on node-level. Not all applications are affected the same by each noise
frequency. Fine-grained applications are more affected by fine-grained noise. Coarse-grained
applications are more affected by low-frequency noise. Applications that do communicate
less frequently are less affected by high-frequency noise because they become co-scheduled.
On the other hand, fine-grained applications are more affected by this noise. Petrini et al.
reduced noise by removing unnecessary daemons and reducing the frequency of heartbeats
that are necessary for the correct functioning of the system.

In contrast to [4][15][20][37][16][27] we did not introduce a new feature to the Linux
scheduler. We focused on the analysis of the noise the OS scheduler and other OS activities
generate and how this affects the performance of parallel applications.

Akkan et al. [2] review measurements to reduce interruptions to the HPC application
with compile and runtime measurements on an unmodified Linux kernel. To measure the
effect of kernel-induced noise they used a series of benchmarks. Another way to find infor-
mation about the system interrupts is in the file /proc/interrupts. There is a list of the total
accumulated counts of interrupt sources since the last system boot. The highest number
is usually Local Timer Interrupts. At each of those time ticks, several tasks are executed
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that often are not relevant for the HPC application. For example, scheduling accounting
and possible preemption of the executing task, global kernel time updates, expired timers
are executed bottom half handlers.

Akkan et al. analyzed existing ways to reduce this OS noise. An easy way to reduce
load balancing is to pin each application process to a CPU with the job launcher. But
this does not pin system services to a CPU. These tasks are therefore often migrated for
load balancing. It is possible to use one or several CPUs less than are available, to leave
them for the OS tasks [27]. This reduces the computing power for the application, but it
decreases the migration overhead. HPC job launchers, for example, SLURM, use kernel
Control Groups (cgroups) to create virtual partitions for a set of CPUs. This prevents
interference with other jobs and system services. It is also possible to turn off scheduler
load balancing in cgroups. They used Fixed Work Quantum (FWQ) benchmark to measure
the system noise under different conditions. They reported the least noise with scheduler
load balancing explicitly turned off. Simply pinning tasks to a CPU does not provide the
same results. To identify events they used ftrace. To improve the performance of the HPC
application they modified the Linux kernel. The tickless Linux moves all tasks that are not
related to the HPC application to dedicated OS CPUs. They remove clock tick from cores
that are dedicated to the HPC application.

Akkan et al. [2] isolate the application from OS jitter with dedicated cores that execute
OS tasks. The reduction in interrupts increases the performance of the HPC application.
They also describe how they customized the Linux kernel to resemble a lightweight ker-
nel. This reduces the number of interrupts for the application, which is a major source of
overhead. They state that most drawbacks that come without clock ticks on application
cores can be prevented by allowing the bottom half processing on OS cores. Additionally,
allowing I/O processes to execute on OS processors fully parallelizes the communication of
the application. The drawback of this is that not all functionalities of a normal kernel are
supported. Without ticks, not all bottom half handlers are processed. This did not allow
the application to make progress when using the Ethernet network. They used the PAPI
tool to measure the numbers of cache misses with this modified kernel. Without ticks the
application experiences no L1 cache misses.

Akhmetova et al. [1] investigate the interplay between task granularity and scheduling
overhead. Task-based programming models is a promising approach for HPC application.
The workload is divided into small tasks, which define basic units of computation. The
number of tasks is much larger than the number of processors so there are very few idle
cores. These tasks are mapped to the processors by the runtime scheduler. There are
many different schedulers that can be chosen. Simpler schedulers have a smaller runtime
overhead but more sophisticated schedulers may increase the application performance by
considering the task locality or power efficiency. But this requires more execution time
for scheduling which increases the overhead. For the systematic analysis of the impact
of the task granularity, they have an algorithm that analyses the directed acyclic graph
(DAG) of the application and aggregates it into corresponding coarser-grained tasks. The
DAG is generated by Prometheus, a system emulator for task-based applications [21]. The
experiments were performed with a system emulator. The optimal granularity depends on
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the scheduler overhead. It varies between 1.2 * 10* and 10 = 10* cycles. Larger granularity
leaves the system idle and smaller granularity introduces too much scheduling overhead.

Gioiosa et al. [14] describe the methods to analyze and evaluate the impact of system
calls. They use benchmarks to identify the impact of system events. With the estimated
time the benchmark should theoretically take, and the measured time they calculated the
overhead, noise introduced. With the profiling tool OProfile, they find the source of relevant
events. Not all noise sources have the same impact. Some interrupting functions are called
more frequently than others. For example, the timer interrupt handler is one of the most
frequent events. On Symmetric multiprocessing (SMP) systems there are two timers, the
global timer and the local timer for each CPU. Each is called many times per second.

Dursun et al. studied the effect of the Linux OS on the execution of parallel applications
with Perf [10]. For that, he recorded the tracepoint events of the scheduler during the
execution. In the Perf output, there are many threads that interrupt the application. Also,
the OpenMP threads migrate between CPUs. This migration can be prevented by binding
the threads to a specific CPU. The analysis of the GNU and Clang compiler shows that the
OpenMP scheduling techniques guided and auto do not provide good load balance. They
concluded that the influence of the Linux scheduler is greater than the overhead caused
by the preemption, context switches, and migration of OpenMP threads. Building on these
results we want to investigate different scheduling methods. Not only the standard OpenMP
scheduling methods. We also want to find out what the influence of the measurement tools
on the applications is.

In this master thesis, we investigated how the Linux OS affects parallel applica-
tions. This work builds on [2][1][14][10] but we investigate how different parallelization-
and scheduling techniques react to OS noise. For the measurements, we use different tools

and different applications.
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In this chapter we explain how we performed the measurements. A summary of our mea-
surements is in table 5.1. In section 4.1 we present the applications and explain why we
have chosen them. We introduce the computing node in 4.2 and also show how the arith-
metic intensity for the applications changes for different systems. In section 4.3 we explain
the different thread configurations for the experiments. We show how we used Likwid and
Perf for our experiments in section 4.4. We end this chapter with the measurements of the
overhead that is introduced by the measurement tools. We show these results in section
4.4.3.

4.1 Applications
For our experiments, we used four applications. The goal was to investigate applications with
different properties. Mandelbrot calculates the Mandelbrot set. This is computationally
intensive and therefore, Mandelbrot is compute-bound. The load of the different threads is
imbalanced. The application Stream loads a lot of data and does very little computation
with it. We only used the kernel triad. So the loaded data is only used for one computation.
Stream is memory-bound. Merge is a combination of Mandelbrot and Stream. In each
step, it executes Mandelbrot and Stream. This simulates a real application where there are
alternating phases of computation and loading data. We did not use this application for all
experiments. The last application is SPH_.EXA [6]. It simulates how fluids behave under
complex physical conditions. SPH_EXA is computational demanding. We chose it as an
example for real applications that load and store a lot of data and also are computational
demanding. With our configuration SPH_EXA is less imbalanced than Mandelbrot. On
some computing systems SPH_EXA is compute-bound on others memory-bound. In section
4.2 we show on which computing systems these applications are memory- and computation-
bound.

We want to investigate how the OS influences application with different properties. So
we have applications that are highly imbalanced, as well as balanced ones. We also have
compute- and memory bound applications.
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4.2 Computing Nodes

We conducted all experiments on miniHPC. There are different nodes that we used. The
Broadwell nodes have an Intel Xeon Broadwell EN/EP/EX processor with two sockets and
10 cores per socket. There is only one thread per core. The L1 cache has 32kB, L2 256kB,
and L3 25MB The Cascadelake node has an Intel Cascadelake SP processor with two sockets
and 28 cores per socket. Each core has two threads. So there are 112 hardware threads in
total. The L1 cache has 32kB, 1.2 1MB, and 1.3 38 MB Broadwell and Cascadelake have the
same NUMA topology with one NUMA domain for each socket. There is also a GPU on the
Cascadelake node, but we did not use it for this work. The KNL nodes have an Intel Xeon
Phi (Knights Landing) (Co)Processor with only one socket, but 64 cores with 4 threads. So
in total 256 hardware threads. The L1 cache has 32kb and L2 1MB. KNL has no L3 cache.
There are two NUMA domains, both with all processors.

To measure if the applications we use are memory-bound or compute-bound we use the
roofline model [41] [35]. The roofline model compares the arithmetic intensity, on the x-axis,
with the performance, on the y-axis. The arithmetic intensity is the number of floating-point
operations per byte loaded. The roofline is different for every system. The horizontal line in
roofline plots shows the peak floating-point performance of a system. Although it would be
possible to look these values up in the manuals provided by the producer, we measured the
maximum achieved floating-point instructions per second with benchmarks. For this, we
used the benchmarks provided by Likwid. The performance of any kernel can not be higher
than the roofline, because this is the limit that the hardware can achieve. The diagonal
line in a roofline plot shows the maximum performance of the memory system for a given
operational intensity. These two lines create the roofline. This line shows the maximum

performance a system can achieve. The formula for this roofline is:

PeakPer formance
Maz.Per formance = ] ) ]
PeakMemoryBandwidth x OperationalIntensity

The point where the two lines intersect is called the ridge point. The ridge point indicates
the operational intensity that an application needs to be compute-bound. Applications
with higher operational intensity than the ridge point are compute-bound. Applications
with lower operational intensity are memory-bound. Memory bounded applications can not
reach the maximum performance because they have to wait for data.

To verify that the applications we chose are indeed memory- respectively compute-
bound. we measure the operational intensity and performance on the different systems for
the applications. In figure 4.1 we show the results for the applications Mandelbrot, Stream,
and SPH_EXA on all three nodes. As expected the application Mandelbrot is compute-
bound and Stream is memory-bound on all systems. On Broadwell and Cascadelake nodes
the application SPH_EXA is memory-bound. On KNL nodes SPH_EXA is compute-bound.
This highlights that the same application can behave differently on other computing systems.
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Figure 4.1: Each plot shows the roofline model for one computing system with the applica-

tions Stream, Mandelbrot, and SPH_EXA (once parallelized only with OpenMP and once
with MPI and OpenMP).

4.2.1 Roofline Plot for SPH_EXA Kernels

To understand the bahaviour of SPH_EXA bether, we analyzed the individual kernels. The
results are shown in figure 4.2. All kernels of SPH_EXA are compute-bound. But the arith-
metic intensity differs widely between the kernels. The highest arithmetic intensity was mea-
sured for the kernel sph::computeMomentumAndEnergylAD. The kernels domain.update,
domain.synchronizeHalos, domain.buildTree, sph::computeTimestep,sph::computePositions,

and sph::computeTotalEnergy have too similar operational intensity and performance, so
that they appear as one point.
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Figure 4.2: In this graph, we show the performance of the different kernels of SPH_EXA on
a Broadwell node.

4.3 Thread Configurations
In our experiments, we want to investigate if the placement of OpenMP threads affects the
application. According to Petrini et al. [27] an application performs better if some CPU
cores are left idle. The idea is that these idle cores can be used by the OS. The scheduler
does not need to interrupt a thread from the application. All OS processes can be scheduled
on the unused cores and do not interrupt the application. This should reduce the number of
interrupts for the application. Fewer interrupts lead to better performance which may make
up for the lost computing power. Note that we executed our measurements only on one
node. These nodes have more cores. ASCI QQ had four cores per node. We used Broadwell
nodes with 20 cores, Cascadelake nodes with 56 nodes, and KNL nodes with 64 cores. So
the performance loss for the application is not so big.

To analyze the behavior with idle cores, we investigate different thread configurations.
The baseline is to use all available cores. This is what is normally done, to execute HPC
applications. The application makes use of the full available computation power of a node.
To make sure, that the scheduler does not move threads between the cores, we use OpenMP
pinning. Then we have measurements with one idle core. So the application can use all cores
except one. The third measurements were conducted with two idle cores. On Broadwell and
Cascadelake nodes there was one idle core on each socket. KNL nodes have only one socket.
So we selected two cores in different cache groups. With the command likwid-topology it is
easy to see which cores belong to which cache group. The last configuration is to leave one
socket idle. This will probably never lead to a shorter execution but we wanted to see if an
idle socket reduces to OS overhead because there are cache groups that are not used by the
application. On KNL we used half of the cores with half of the cache groups.
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4.4 Performance Measurements

To measure the impact of the operating system we used three tools PAPI, perf, and Likwid.
We already introduced the background of these tools in section 2.3. For most of our exper-
iments, we used perf and Likwid. We did not use PAPI that much, because Likwid used
with the marker API can perform the same kind of detailed measurement that we planned
to do with PAPI. Also because the counter group is defined at execution time in the Likwid
command it is also easier to measure different counters than with PAPI. With PAPI every-
thing is defined at compile time. In order to change the counters for the measurement, it is
necessary to change the the code and recompile it.

PAPI uses events and Likwid uses counter groups. The hardware counters that these
tools use depend on the hardware on which they execute. The nodes have different counters
available. So not every measurement is available on every system. For example, on Cas-
cadelake, only a few metrics for the L1 cache are available. Perf is built into the Linux OS.
The measurements for which we used it did not depend on the system. Therefore, we could

use perf in the same way on all three nodes.

4.41 Measurements with Perf

We recorded thread migration, context switches, and idle time events with perf [17]. For this,
We used the command perf sched record to register all events listed in the design of factorial
experiments. With the flag -a we recorded events on all CPUs in the system. With -R we
collected the raw sample records from all counters for later analysis. This analysis was done
with perf sched timehist and perf sched latency. The record command dumps all events in a
binary file for later analysis. Timehist shows the individual schedule events. For each event
it displays wait time, sch delay, and runtime. All measurements are in milliseconds. Wait
time is the time between a sched-out and the next sched-in event. Also the time a process
waited to wake up, while other processes were executed. For the first event of each process
on a CPU, the wait time is zero. There is no time elapsed since the last event of this process.
Sch delay (scheduler delay) is the time between wake-up and actually executing. This is the
scheduler latency, the time the scheduler needs to assign the next thread. Runtime is the
time needed for this event. For an application it is the time it could execute until the next
interrupt.

We recorded this data for different events: thread migration, context switches, and idle
time. These events are initiated by the scheduler. Migration is the movement of a thread
from one processor to another. During a context switch, the running process is stopped and
frees the processor. Another process can start executing on this processor. The idle time is
a time interval in which no computation takes place. The CPU is unused and this time is

wasted.

4.4.2 Measurements with Likwid Counters
For the memory and cache measurements, we used Likwid. On Broadwell we used the
counter group ICACHE, L2, L2Cache, L3, L3Cache, TLB_DATA, and TLB_INST. On Cas-

cadelake, ICACHE, for L1 cache counters, is not available and we could not replace it with



Methodology 27

a custom-made counter group. KNL does not have an L3 cache, so these counters are not
available on this system. With these counter groups, we measured the metrics listed in
the design of factorial experiments. For these measurements, we used the likwid-perfctr
command. These commands require as input the counter group, the application with its
parameters, and thread pin configurations. Pinning is done the same way as with the likwid-
pin tool. Pinning is necessary when using Likwid because Likwid needs to know where the
application executes.

The Likwid counter groups have several metrics, we observed. The cache request rate,
miss rate, and miss ratio are the same for all three cache levels. The cache request rate
is calculated by the number of Cache requests divided by the number of instructions. So
this is the number of data access per instructions. It shows how much data is required
by an application. The cache miss rate is the fraction of cache misses by the number of
instructions. This gives the measure of how often data needs to be loaded from higher cache
levels. Cache miss ratio is the fraction of Cache misses to the number of cache accesses.
This indicates how many cache accesses are needed to load data from memory or higher
cache levels. The cache miss rate is often determined by the algorithm. The cache miss
ratio can be optimized with better cache reuse.

The L2 cache bandwidth is computed by the number of cache lines loaded from L2 to
the L1 data cache and the writebacks from the L1 data cache to L2 cache. The bandwidth
is measured in MBytes/s. The L2 data volume is the data volume transferred between
L2 and L1. Data volume is measured in GBytes. The L3 cache bandwidth and L3 data
volume are computed analogously for data transfer between L3 and L2. The counters L&
load bandwidth, L3 load data volume, L3 evict bandwidth, and L3 evict data volume differ
between data loaded from L3 to L2 cache and data that is released from L2 to L3. Cache
eviction is a procedure where data from the cache is released. Likwid counts only the cache
counters from cache groups that belong to the assigned cores. Cores not specified in the
pinning instruction are not considered. If several cores have access to the same cache, and
only one of these cores is used by Likwid, then these cache counters are measured.

Memory data volume is the sum of Memory read data volume and Memory write
data volume, Memory bandwidth is the sum of Memory read bandwidth and Memory write
bandwidth. Likwid can measure the memory only per socket, not for individual cores. As
with the cache data volume, the memory data volume is measured in GBytes and the memory
data bandwidth in MBytes/s. Likwid differs between the total amount of bandwidth and
data volume and the read and writes to the memory.

The translation lookaside buffer (TLB) stores the translation of virtual memory ad-
dresses to physical memory addresses [3]. TLB reduces the time to access memory. Some
systems have several layers of TLBs, similar to the cache. We measure only the lowest TLB
layer. Often the TLB are separated for data- and instruction addresses. When a process
does not find an entry for searched memory, a page fault exception is raised. This exception
is normally handled by the OS. L1 DTLB load misses, L1 DTLB store misses, and L1 ITLB
misses is the number of TLB misses during the measurement. L1 DTLB load miss rate, L1
DTLB store miss rate, and LI ITLB miss rate is the rate of TLB misses per instructions.
L1 DTLB load miss duration, L1 DTLB store miss duration, and L1 ITLB miss duration
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measure the time in CPU cycles to find the memory address. For these counters, Likwid
distinguishes between the data TLB (DTLB) and instruction TLB (ITLB). For DTLB on
Broadwell and Cascadelake, there is also differed between misses that occur loading and
storing reading data.

4.4.3 Overhead of Measurement

To estimate what impact our measurements have on the performance of parallel applications,
we measured the execution time of applications while using the different tools. We use the
tools perf, PAPI, and Likwid. We compare the execution time with measurements to the
execution time without any measurements. We call this native execution later on. This
native execution has no additional overhead besides the original application. With these
measurements, we do not compare the overhead of the different tools because we do not
measure the same things. It is hard to measure the exact same things, with different tools.

The following graphs show the execution time (on the y-axis) for the applications
Mandelbrot and stream. They are executed with different scheduling techniques, with and
without expert chunk parameters. For each of these parameters, we have measurements for
native executions, without any additional measurements, as well as executions with PAPI,
perf, and Likwid measurements. The red dotted line is the median execution time without
measurements. This is our baseline. On top of the graph, there is the overhead in percent
that the measurement tools introduce. All measurements were executed on Intel Broadwell
CPUs and repeated 20 times. To avoid any differences between the nodes on miniHPC all
experiments were conducted on node 8. The time measurement comes from the walltime
measured during the execution of the application.

In figure 4.3, we see that in most cases the execution time of the application Mandelbrot
with no measurements is the lowest. This is as expected because there is no additional work
in these executions. The overhead that the tools introduce is between 0% and 5%. With
expert chunks, there is less difference between the scheduling techniques. Especially the
execution time with dynamic and RandomSel is similar to the other results. We see a very
consistent overhead of the measurement tools. PAPI has an overhead between 0.2% and
1%, except for the executions with GAC where the overhead is 2.6%. The overhead of perf
is around 0.5% and Likwid around 1.2%.
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Figure 4.3: Overhead of the measurement tools PAPI, perf, and Likwid with the application
Mandelbrot executed on Broadwell. On the top Graph with expert chunks disabled and on
the bottom one with expert chunks enabled. The number on top of each graph is the average
overhead introduced by the measurement compared to executions without measurements.
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Figure 4.4: Overhead of the measurement tools PAPI, perf, and Likwid with the application
Stream. On the top Graph with expert chunks disabled and on the bottom one with expert
chunks enabled. The number on top of each graph is the average overhead introduced by
the measurement compared to executions without measurements.

In contrast to Mandelbrot which is compute-bound, Stream is memory-bound. Memory-
bound applications are more affected by the measurements, as we can see in figure 4.4.
The measurement tools read the hardware counter and periodically store this data in the
memory. This uses some of the available memory bandwidth. The application can not use
the memory bandwidth fully. Therefore, the measurement tools introduce a much larger

overhead compared to the executions with Mandelbrot. The scheduling techniques dynamic
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and ExhaustiveSell are much worse than the other techniques. Expert chunks do not reduce
the overhead as much as with the application Mandlebrot. The overhead depends more
on the used scheduling technique. The lowest overhead is measured with the scheduling
techniques static and ExpertSel.

The execution time with PAPI and perf measurements is also not much higher. In
contrast Measurements with Likwid introduces an overhead of up to 20%. The reason for
this difference is that the measurement with Likwid is more extensive than with perf or
PAPI. We measured fewer counters with perf and PAPI than with Likwid. We tried to
use similar measurements, but Likwid’s counter groups contain more counters than those of
PAPI. A fair comparison is not easy. Small measurements do not influence the performance
much. In some cases, the execution time is even smaller with the measurements with PAPL.
But this is probably caused by random deviation because there is only a very small difference
between the execution time of the native execution and the execution with PAPI.
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In this chapter, we present the results of the experiments we conducted on miniHPC. We
measured the executions of the applications Mandelbrot, Stream, SPH_EXA, and Merge on
Broadwell, Cascadelake, and KNL nodes. In the heat maps, we compare different thread
scheduling techniques with and without expert chunks on the x-axis with applications, com-
puting systems, thread configurations, and parallelization methods on the y-axis. We re-
peated the experiments on Broadwell and Cascadelake five times, on KNL only three times,
because of time constraints. Table 5.1 summarizes the factors of our experiments. We ex-
plained these factors in chapter 4. We split up the data into two parts to make it a bit
clearer. In section 5.1 we evaluate the results for different thread configurations and in sec-
tion 5.2 are the result for the different parallelization methods. In both sections, we compare
the different applications, computing systems, and thread level scheduling techniques. In

section 5.3 we summarize and discuss the measurements.

5.1 Results for Thread Configurations

In this section we present the data for the different thread configurations, with the appli-
cations Mandelbrot, Stream, SPH_EXA, and Merge, executed on Broadwell, Cascadelake,
and KNL. We also compare different thread-level scheduling techniques with and without
expert chunks.

In this section, we show the result for the measurements with different thread config-
urations. The first configuration is not particularly labeled. It is a normal execution on all
available cores on a given computing system. With one idle core, the application is executed
with one thread less than with the thirst configuration. With two idle cores, the application
is executed with two cores less. And with one socket idle, the application executes on only
one socket. On KNL the configuration is a bit different because there is only one socket.
We described this in section 4.3

First we show the results measured with perf for the thread migration events 5.1.1,
then the context switch events 5.1.2 and the idle time events 5.1.3. After this, we present
the data for the measurements with Likwid for the cache and memory performance in 5.1.4.
We end this section with a summary of what we learned about the tread configurations 5.3.4



Evaluation of OS Scheduler Events

33

Table 5.1: Design of Factorial Experiments

Factors Values Properties
Broadwell maxiter=1000; pixels=512; x0=0; y0=0; size=0.5
Mandelbrot Cascadelake maxiter=1000; pixels=1000; x0=0; v0=0; size=0.5
KNL maxiter=100; pixels=512; x0=0; y0=0; size=0.5
Broadwell Array size=2,000,000,000
Stream Cascadelake Array size=2,000,000,000
KNL Array size=2500,000.000
Applications Broadwell -n 100 -5 10 -w 100
SPH.EXA Cascadelake -n 100 -5 10 -w 100
KNL -n 100 -5 1 -w 100
Merge compute-h. maxiter=1000; pixels=512; x0=0; y0=0;
& memory-h. Broadwell size=0.5; Array size=2,000,000,000
maxiter=1000; pixels=1000; x0=0; y0=0;
Caseadelale size=0.5; Array size=2,000,000,000
static Straightforward parallelization
OpenMP standard dynamic, guided Diynamic and non-adaptive
. static_steal An extension of static
Thread level LLVM OpenMP RTL —rae A variant of guided sell-seheduling
scheduling technigues LB4OMP mFACZ Dynamic and non-adaptive self-scheduling
mAF Diynamic and adaptive self-scheduling techniques
AutodOMP RandomSel, ExhaustiveSel, Automated DLS algorithm selection across application

BinarySel, ExpertSel

loops and time-steps application loops and time-step

Expert Chunk

Yes

Auntomatically caleulated

No Naive size 1
miniHPC-Broadwell Ifntcl Broadwell E5-2640 v4
Computing nodes _ (2 sockets, 10 cores per socket)
miniHPC-GPUJ Intel Cascadelake (2 sockets, 28 cores per socket)
miniHPC-KNL Intel Xeon Phi KNL 7210 (1 socket, 64 cores]
All threads pinned All systems OMPPROCBIND="close” , OMP PLACES="cores"
Broadwell OMP_PLACES="{0,1.2,3.4,5,6,7,8,0,10,11,12,13,14,15.16,17,18}"
One core idle Cascadelake OMP_PLACES="{0....55}"
KNL OMP_PLACES="{0.....62}"
Thread Configuration Broadwell OMP_PLACES="{0,1.2,3.4,5.6.7,8, 10,11,12,13,14,15,16,17.18}"
Two cores idle Cascadelake OMP_PLACES="{0,...27.29..
KKL OMP_PLACES="{0.....31,33,....62}"
Broadwell OMP_PLACES="{0.1,2,3,4,5.6,7.8,9}"
One socket idle Cascadelake OMP_PLACES="{0,...,27}"
KNL OMP_PLACES="{0,...,32}"
OpenMP OMPPROCBIND="close™ OMP_PLACES="cores”
Parallelization MFI 1 Process per available Core
Hybrid: OpenMP& MPI 2 MPI Ranks, with halve of the available cores each
L1 request rate
L1 miss rate
L1 miss ratio
L2 bandwidth [MBytes/s|
L2 data volume [GBytes|
L2 request rate
L2 miss rate
L2 miss ratio
L3 bandwidth [MBytess|
L3 data volume [GBytes|
L3 evict bandwidth [MBytes/s|
L3 evict data volume [GBytes|
L3 load bandwidth [MBytes/s|
L3 load data volume [GBytes|
L3 request rate
L3 miss rate
L3 miss ratio
Memory bandwidth [MBytes/s|
Memory and cache performance | Memory data volume [GBytes|
Metrics Memory read bandwidth [MBytes/s|

Memory read data volume [GBytes|
Memory write bandwidth [MBytes/s|
Memory write data volume [GBytes|
L1 DTLB load misses

L1 DTLB load miss rate

L1 DTLB load miss duration

L1 DTLB store misses

L1 DTLB store miss rate

L1 DTLB store miss duration

L1 ITLB misses

L1 ITLB miss rate

L1 ITLB miss duration

L1 ITLB miss duration

Thread migration

walt time [ms|
scheduler delay [ms)|
run time [ms]
Number of events

Context switches

walt time [ms]
scheduler delay [ms)|
run time [ms]
Number of events

Idle time

wait time [ms]
run time [ms]
Number of events
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Figure 5.1: Average wait time for thread migration events for the different applications
on Broadwell, Cascadelake, and KNL. With different thread configurations and scheduling
techniques.

In figure 5.1, we have the average wait time for thread migration events. This is the time
spent waiting until the scheduler lets the application execute. We observe that SPH_EXA
has the highest wait times. These high numbers are caused by some outliers, which have
a reported wait time of several seconds. For the application Stream, some scheduling tech-
niques lead to higher wait times. For static and dynamic there is a higher wait time with
expert chunks than without. On KNL idle cores lead to higher wait times, this is opposite to
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Broadwell. On Broadwell, the wait time is lower when one or two cores are idle, compared

to executions with all cores. On Cascadelake a loot of zero values is reported.
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Figure 5.2: Average scheduler delay for thread migration events for the different applications
on Broadwell, Cascadelake, and KNL. With different thread configurations and scheduling
techniques.

In figure 5.2 we see the average scheduler latency. The thread migration delay is mostly near
zero, except for Stream on KNL with all cores. There are some outliers for the scheduling
techniques static, dynamic, ExhaustiveSel, and ExpertSel with and without expert chunks.

Except for these outliers, there are no values above 1 ms.
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Figure 5.3: Average runtime for thread migration events for the different applications on
Broadwell, Cascadelake, and KNL. With different thread configurations and scheduling tech-

niques.

In figure 5.3 we see the average duration of a migration event. Between the different ap-
plications, thread configurations and scheduling techniques is no big difference. Migrations
on KNL take longer than on the other systems. So the time for thread migration depends
mostly on the computing system. Some measurements on Cascadelake were reported as

0.000 ms. We do not think that these are the correct times. Why perf reports zero values

for some thread configurations and not for others, needs to be explored in future work.
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Figure 5.4: The Number of thread migration events for the application SPH_EXA on Broad-
well, Cascadelake, and KNL. With different thread configurations and scheduling techniques.

Figure 5.4 shows the number of thread migration events for SPH_EXA. The results for the
other applications are in the next plot (figure 5.5). We divided this plot because the data
for SPH EXA on KNL dominates the heatmap.

We see that the highest number of thread migration events occur for SPH_ EXA on
KNL (figure 5.4). SPH_EXA has the longest execution time of all applications and KNL
is the slowest system in our set. Therefore, SPH_ EXA on KNL had the longest execution
time. We expected that there are more migrations when the application executes longer
because there are periodical interrupts by the OS. The longer an application executes the
more interrupts occur.

On KNL for all applications, with more idle cores fewer thread migrations take place.
We think that this indicates, that the OS uses these idle cores. Since the threads of the
applications are pinned most of the migrations should be for other processes. The processes
of the OS execute on the idle cores and are not migrated as much. The data for Broadwell
does not support this hypothesis. On Broadwell, more thread migrations are reported with
one or two idle cores than with all cores utilized. But with one idle socket, there are only
very few migrations for Stream and SPH _EXA.

For SPH_EXA on Cascadelake with thread configurations, two idle threads, and an idle
socket, there are many results with zero migrations. This is implausible. On Cascadelake
Mandelbrot has much more thread migrations with idle cores than when using all cores.
Stream has the fewest thread migration on Cascadelake with one idle core. So it might be
highly dependent on the computing system which thread configuration leads to fewer thread
migrations.

For Mandelbrot and Stream different scheduling techniques have more thread migra-
tions. For Mandelbrot it is guided, mFAC2,GAC, and RandomSel. For Stream, it is static,
dynamic, and ExhaustiveSel. The expert chunk does not make a difference.
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Figure 5.5: The Number of thread migration events for the applications Mandelbrot and
Stream on Broadwell, Cascadelake, and KNL. With different thread configurations and
scheduling techniques.
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5.1.2 Context Switches
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Figure 5.6: Average wait time for context switches events for the different applications
on Broadwell, Cascadelake, and KNL. With different thread configurations and scheduling

techniques.

In figure 5.6 we see the average time between context switches. The average wait time for
context switches for the applications Stream and SPH_EXA is higher on KNL than on the
other nodes. For Mandelbrot, this is the other way round. This is similar to the switch

runtime, see figure 5.8.
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Figure 5.7: The average delay for context switches events for the different applications
on Broadwell, Cascadelake, and KNL. With different thread configurations and scheduling
techniques.

The average switch delay (figure 5.7) is the highest on Cascadelake compared to the other
systems. The scheduling technique mFAC2 with and without expert chunks has the highest
OS scheduler latency. It seems that for different applications different scheduling techniques

perform well.
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Figure 5.8: Average runtime for context switches events for the different applications on

Broadwell, Cascadelake, and KNL. With different thread configurations and scheduling tech-
niques.

The runtime of context switches (figure 5.8) is, as the wait time (figure 5.6) for the ap-
plications Stream and SPH _EXA higher on KNL than on the other systems. Opposite to
Mandelbrot, which has the lowest switch runtimes on KNL We are still investigating the
reason why the context switches on KNL perform so differently for different applications.
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Figure 5.9: The number of context switch events for the different applications on Broadwell.
With different thread configurations and scheduling techniques.
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Figure 5.10: The number of context switch events for the different applications on Cascade-
lake. With different thread configurations and scheduling techniques.
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Figure 5.11: The number of context switch events for the different applications on KNL.
With different thread configurations and scheduling techniques. Here we removed the out-
liers that dominate the plot above.

In figures 5.9 - 5.11 we have the number of context switches. There are two outliers, one
with Mandelbrot on Cascadelake and the other with Stream on KNL. These two outliers
have much more switches than the other measurements. On KNL there are fewer context
switches when there are some idle cores. This is similar to the number of thread migrations
on KNL (figure 5.5). The other systems behave differently. On Broadwell, the fewest
context switches are reported for executions with one idle socket. On Cascadelake there
are much more Switches with two idle cores than with other thread configurations. So the
different systems behave differently for different thread configurations regarding the number
of switches.

There is some difference between the applications. SPH_EXA executed for a longer
time than the other application. Context switches, similar to thread migrations, happen
over time because the OS is executing some processes. We expect that applications with
longer execution times have more context switches. But Stream has more context switches
than Mandelbrot. Although the execution time of Stream is shorter. A possible explanation
for this behavior is that Stream waits for data and at this time another process is scheduled

to execute. There is no big difference between the scheduling techniques.
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5.1.3 Idle Time
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Figure 5.12: Average wait time for idle time events for the different applications on Broad-
well, Cascadelake, and KNL. With different thread configurations and scheduling techniques.

The average wait time (figure 5.12) for idle events is the time between two idle events. This
should be high for good performance. It is good when fewer idle events occur. There are
some outliers for Stream on KNL and one on Cascadelake. This is surprising, we expected
that Stream had relatively frequent idle time, to wait for data. For a better overview of the
other data, we have a separate plot without the outliers (figure 5.13). There we observe that
Mandelbrot has a very low wait time between idle events on KNL, while SPH_EXA has a
high wait time on KNL. On Broadwell and Cascadelake this is the other way round.
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Figure 5.14: Average runtime for idle time events for the different applications on Broadwell,
Cascadelake, and KNL. With different thread configurations and scheduling techniques.

The average runtime for idle events (figure 5.14) is the average time a CPU was idle for a
recorded idle event. It shows outliers for Stream on KNL, similar to the average wait time
(figure 5.12). This indicates that Stream on Cascadelake has fewer but longer idle events.
Compared to these outliers, the other executions have more frequent, but shorter idle events.

On Broadwell, the average runtime of an idle event is longer when one socket is idle.

But this is not the case on other systems.
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Figure 5.15: The number of idle time events for the different applications on Broadwell.
With different thread configurations and scheduling techniques.
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Figure 5.16: The number of idle time events for the different applications on Cascadelake.
With different thread configurations and scheduling techniques.
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Figure 5.17: The number of idle time events for the different applications on KNL. With
different thread configurations and scheduling techniques.

The number of idle time events (figures 5.15 - 5.17) has the same pattern as the number of
context switches (figure 5.9). We see outliers with the same configurations.

On Broadwell SPH_EXA with one or two idle cores has more idle times. We expected
to see this. The OS should not fully use the idle cores, but only from time to time. The
idle cores have a lot of idle time events. But with one idle socket, there are fewer idle
events than when all cores are used. With the average idle runtime, see figure 5.14, for
SPH_EXA on Broadwell, we see that these idle events took much longer. So with one idle
socket, there are fewer idle events that took on average much longer, compared to more
utilized cores. This shows that the unused cores on one socket were indeed idle for most
of the time. The average runtime of idle events for the other applications Mandelbrot and
Stream on Broadwell are also longer when one socket is idle. But for the other systems,
this is not the case. On Cascadelake the thread configuration with the shortest idle time
events differ between the applications. Also, the difference between the number of idle
events is not that big compared to other systems. On KNL all applications have more idle
events when all cores are utilized. The average runtime of these idle events on KNL for the
applications Mandelbrot and SPH_EXA are longer when all cores are used, compared to
the measurements with some idle cores. But Stream on KNL has the longest and the idlest

events when all cores are used.

5.1.4 Memory and Cache Performance
With Likwid we measured the performance of memory and cache. Not all counter groups

of Likwid are available on every system. Therefore, not all comparisons are possible.
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Figure 5.18: L1 request rate for the different applications on Broadwell and KNL. With
different thread configurations and scheduling techniques.

In figure 5.18 we see the L1 request rate. L1 request rate is the rate of instructions that
access the L1 cache. This rate should be higher for applications that read more memory. As
we can see for the same configurations, the L1 request rate is lower for Mandelbrot than for
Stream. These two applications have a much higher L1 request rate on Broadwell than on
KNL. This is not the case for SPH_EXA. For SPH_EXA there is not a big difference between
the two systems. The results from KNL seem strange because for executions without expert
chunk parameters the measured L1 request rate is often 0. It is much higher with expert
chunks. We do not have an explanation for this.
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Figure 5.19: L1 miss rate for the different applications on Broadwell and KNL. With different
thread configurations and scheduling techniques.

L1 miss rate (figure 5.19) is the fraction of L1 cache misses by the number of instructions.
A low miss rate is good. But for a memory-bound application, we expected some cache
misses. When comparing Mandelbrot and Stream this is the case. Mandelbrot has very low
values, often zero on Broadwell. Stream has higher values, especially on KNL. As in previous
plots, the results for Mandelbrot and Stream on KNL are zero without expert chunks. This
is not the case for SPH_ EXA which has higher values for the executions without expert
chunks. This shows that expert chunks lead to better scheduling where fewer cache misses
occur. We can also observe that for Stream on KNL, the scheduling techniques static,
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dynamic, ExhaustiveSel, and ExpertSel with expert chunks have higher miss rates than
other scheduling techniques.
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Figure 5.20: L1 miss ratio for the different applications on Broadwell and KNL. With
different thread configurations and scheduling techniques.

The L1 miss ratio (figure 5.20) is the fraction of L1 misses to the number of L1 accesses.
The result looks very similar to the L1 miss rate. Mandelbrot has a lower miss ratio than
Stream. SPH_EXA performs better with expert chunks, and for Stream, on KNL the same
scheduling techniques show the worst results. In contrast to the miss rate, here are a loot
of inf values. This is probably because the number of counted L1 accesses is zero. When

calculating the miss ratio, Likwid divides by zero. We assume that the reason for the strange
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values for the L1 miss rate and ratio on KNL is, that some counters are zero.

For the L1 cache misses we do not see much difference between the thread configu-
rations. So an idle core does not lead to fewer L1 cache misses. On Broadwell and KNL
each core has its own L1 cache. Likwid does not measure the core where no application is

executing, because of the pinning configuration.
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Figure 5.21: L2 request rate for the different applications on Broadwell, Cascadelake, and
KNL. With different thread configurations and scheduling techniques.

The L2 request rate (figure 5.21) looks similar to the L1 request rate (figure 5.18). Appli-
cations with higher memory needs have a higher request rate. Stream requests more than
SPH_EXA, which requests more than Mandelbrot. And as for the L.1 measurements, the
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data for Stream and Mandelbrot on KNL does not look correct. All executions without
expert chunks have a reported L2 request rate of zero.

Remarkable is the difference between the different scheduling techniques for Stream.
Dynamic, Static_Steal, and ExpertSel without expert chunks have much lower L2 request
rates. With expert chunks, the difference to other scheduling techniques is lower. The
scheduling technique with the highest request rate is ExpertSel without expert chunks. The
thread configuration for Mandelbrot on Broadwell and Cascadelake is interesting. With all
cores used the L2 request rate is higher than when some cores are idle.
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Figure 5.22: L2 miss rate for the different applications on Broadwell, Cascadelake, and KNL.
With different thread configurations and scheduling techniques.
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The L2 miss rate (figure 5.22) is similar to the L2 request rate (figure 5.21). For Stream
with the scheduling techniques dynamic, static_steal, and ExhaustveSel the recorded cache
request and miss rate on L2 is much lower than with other scheduling techniques. This is
caused by the longer execution time of the application with these scheduling techniques.
The data arrives in time on the cache when the application executes slower.
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Figure 5.23: L2 miss ratio for the different applications on Broadwell, Cascadelake, and
KNL. With different thread configurations and scheduling techniques.

For the L2 miss rate (figure 5.22) and request ratio (figure 5.23) the data from KNL is often
zero for the miss rate and inf for the miss ratio. The miss rate is higher for applications

with high memory usage. The high miss ratio on KNL, where there are no inf values, is
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probably caused by small denominators. Because this plot is dominated by the outliers on
KNL and the miss ratio seems similar for all applications, we have a separate plot without
the results from KNL (figure 5.24). There we can see the L2 request ratio on Broadwell and
Cascadelake. We can see that Mandelbrot has a much lower miss ratio when some cores are
idle. This is not the case for SPH_EXA on Broadwell. SPH EXA with two idle cores has a
higher request ratio than with all threads used. But this is not the case on Cascadlake.
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Figure 5.24: L2 request ratio only on Broadwell, Cascadelake for the different applications.
With different thread configurations and scheduling techniques.
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Figure 5.25: L2 bandwidth for the different applications on Broadwell and Cascadelake.
With different thread configurations and scheduling techniques.

The measured L2 bandwidth (figure 5.25) for Mandelbrot and Stream is often zero with-
out expert chunks. The bandwidth between L2 and L1 cache is more used by Stream and
SPH_EXA than Mandelbrot. But there is an interesting difference between those applica-
tions. Mandelbrot has a higher bandwidth when all cores are used and a lower bandwidth
when some cores are idle. This is the opposite of the results for Stream and SPH_EXA.
These applications have the highest bandwidth when one socket is idle. Also, both applica-
tions have higher bandwidth on Cascadelake than on Broadwell. For Stream, the scheduling
techniques dynamic, static_steal, and ExhaustiveSel have the lowest bandwidth.
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Figure 5.26: L2 data volume for the different applications on Broadwell and Cascadelake.
With different thread configurations and scheduling techniques.

For the L2 data volume (figure 5.26), we excluded the data from KNL, because it does not
look correct. On KNL the reported datavolume was too high. The data volume for the
different applications is quite different. Mandelbrot uses very little data volume between L1
and L2, Stream a bit more. The highest data volume is recorded for SPH_EXA. There we
can also observe that with one idle socket the needed data does not fit in the L1 cache as
well as with much more available cores. So a lot more data is loaded from L2. Stream uses
the same data only once. Perhaps this is the reason for the difference between Stream and
SPH_EXA. The scheduling techniques dynamic and ExhaustiveSel without expert chunks
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have a higher bandwidth than the other techniques for Stream.
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Figure 5.27: L3 request rate for the different applications on Broadwell, Cascadelake, and
KNL. With different thread configurations and scheduling techniques.

Since there is no L3 cache on KNL there are no measurements for this system. The L3 request
rate (figure 5.27) for Mandelbrot and SPH_EXA is very low on Broadwell and Cascadelake.
The difference between Broadwell and Cascadelake for the application Stream is quite high.
This difference between the computing systems is also visible in the L2 request rate (figure
5.21). Broadwell has probably a higher request rate because the cache is a bit smaller than
on Cascadelake. The scheduling techniques dynamic, static_steal and ExhaustiveSel have a

much lower L3 request rate for Stream.
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Figure 5.28: L3 miss rate for the different applications on Broadwell and Cascadelake. With
different thread configurations and scheduling techniques.

For the application Stream, the L3 miss rate (figure 5.28) on Cascadelake is higher than on
Broadwell. The L2 miss rate (figure 5.22) is lower on Cascadelake than on Broadwell. This
highlights that the same application on different systems can have different limitations. The
L3 miss rate for the other applications is quite low.

For Stream with the scheduling techniques dynamic, static_steal, and ExhaustveSel
the recorded cache misses on L3 is much lower than with other scheduling techniques. This
is also similar to the L2 miss rate (figure 5.22). When comparing this with the memory
bandwidth on L3 (figure 5.30), we see that these scheduling techniques have the lowest



Evaluation of OS Scheduler Events 60

bandwidth. The application requested less data per second. Therefore a higher rate of this

data arrived in time.
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Figure 5.29: L3 miss ratio for the different applications on Broadwell and Cascadelake. With
different thread configurations and scheduling techniques.

The L3 miss ratio (figure 5.29) is higher on Cascadelake than on Broadwell for all applications
except Mandelbrot. The results for Stream and Merge are interesting. Except for the
scheduling techniques dynamic and ExhaustiveSel without expert chunks, nearly all L3
accesses were missed. When comparing the L3 miss ratio to the L3 data volume (figure
5.31), we see that these two scheduling techniques have a much higher L3 data volume than
other techniques. It seems that these two scheduling techniques load a lot of data from the
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L3 cache. This data is loaded in time. For other scheduling techniques, which load only a
small amount from L3 the data is not loaded in time which leads to a very high miss ratio.
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Figure 5.30: L3 bandwidth for the different applications on Broadwell and Cascadelake.
With different thread configurations and scheduling techniques.

The bandwidth between L3 and L2 cache (figure 5.30) for the applications Mandelbrot and
Stream is similar to the bandwidth between L2 and L1 (figure 5.25). For Mandelbrot the L2
bandwidth is between 0.5 and 40 MBytes/s, L3 bandwidth is between 0.3 and 20 MBytes/s.
The bandwidths for Stream are between 2200 and 9000 MBytes/s for L2 and 2000 to 14,000
MBytes/s for L3. For SPH_EXA the L2 and L3 bandwidths are different. The L2 bandwidth
is between 2200 and 5000 MBytes/s, the L3 bandwidth is between 800 1200 MBytes/s. We
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still investigate why SPH_EXA has such a different bandwidth for the cache levels. For
Stream, the same scheduling techniques as previously show much lower L3 bandwidth than
the others.
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Figure 5.31: L3 data volume for the different applications on Broadwell and Cascadelake.
With different thread configurations and scheduling techniques.

The L3 data volume (figure 5.31) is similar to the L2 data volume (figure 5.26). SPH_ EXA
has the highest data volume compared with the other applications. So is the data volume
higher for executions with one idle socket than when more cores are utilized. As already
mentioned in the paragraph about the L3 miss ratio (figure 5.29), the scheduling techniques

dynamic and ExhaustiveSel have much higher data volume than other scheduling techniques.
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Figure 5.32: L3 load data volume for the different applications on Broadwell and Cascade-
lake. With different thread configurations and scheduling techniques.

The loaded data volume (figure 5.32) has the same pattern as the total data volume (figure
5.31). The same scheduling techniques, applications, and thread configuration show higher

loaded data volumes than others.
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Figure 5.33: L3 evict data volume for the different applications on Broadwell and Cascade-
lake. With different thread configurations and scheduling techniques.

The evicted data volume (figure 5.33) does not differ much between different scheduling
techniques. There is no big difference between one and two idle cores because the L2 cache
size remains. The idle cores are on different sockets. So they use different L2 cache groups.
For Stream and SPH_EXA the executions with one idle socket have a higher evicted data
volume than with more used cores. This is probably because the usable L2 cache is smaller

for one socket.
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Figure 5.34: L3 load data bandwidth for the different applications on Broadwell and Cas-
cadelake. With different thread configurations and scheduling techniques.

The load bandwidth for L3 (figure 5.34) is highest for the application Stream. SPH EXA
loads a bit of data and Mandelbrot much less. Stream with one idle socket loads more data
because the available L3 cache is much smaller than when the second socket is used. More
data is loaded and evicted (figure 5.35) This difference between the thread configurations is
higher on Cascadelake than on Broadwell.
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Figure 5.35: L3 evict data bandwidth for the different applications on Broadwell and Cas-

cadelake. With different thread configurations and scheduling techniques.

Both the load (figure 5.34) and evict data bandwidth (figure 5.35) do not differ much from
the total L3 bandwidth (figure 5.30) We observe the same pattern on all three graphs. The
same scheduling techniques have the lowest bandwidth. Also, the bandwidth is much higher

for Stream than for other applications.
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Figure 5.36: Memory bandwidth for the different applications on Broadwell and Cascadelake.
With different thread configurations and scheduling techniques.

According to the data in figure 5.36, Mandelbrot has on Broadwell with one or two idle cores
a bandwidth of about 16,000,000,000,000 MBytes/s. Also, the measurements for SPH EXA
on Broadwell with all threads report up to 5,859,771,276,596 MBytes/s. This can not be
correct. The other more realistic measurements for Mandelbrot are between 2 and 200
MBytes/s.

In figures 5.37 and 5.38 there is the memory bandwidth divided between the memory
read and write. This shows similar values for Mandelbrot and SPH_EXA.
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Figure 5.39: Memory data volume for the different applications on Broadwell and Cascade-
lake. With different thread configurations and scheduling techniques.

In figure 5.39 is the total Memory volume. In figures 5.41 - 5.40 is the data volume divided
between reads and writes. This data shows similar to the memory bandwidth (figure 5.36)
values that are too high for Mandelbrot and SPH_EXA on Broadwell. We leave it to future
work to investigate why Likwid reports these values with some applications and thread
configurations.
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Figure 5.42: L1 DTLB load misses for different applications on Broadwell and Cascadelake.
With different thread configurations and scheduling techniques.

As with other Likwid counter groups, the data from KNL is not good. Therefore, we leave
the results out for the analysis of the translation lookaside buffer (TLB). For the TLB misses
in figure 5.42, 5.43, and 5.44 we see that SPH_EXA has the most TLB misses compared with
other applications. Mandelbrot has very few data accesses, and the data access of Stream
is not random. Stream accesses three matrices. So the OS can probably predict which data
is accessed next. SPH_EXA is not that predictable, which leads to much more TLB misses.
Surprising is the difference in ITLB misses of SPH EXA on Broadwell and Cascadelake.
On Broadwell, SPH_EXA suffers much fewer ITLB misses than on Cascadelake. It is also
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interesting that some extreme outliers dominate the heat-map, especially for DTLB store

misses.
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Figure 5.43: L1 DTLB store misses for different applications on Broadwell and Cascadelake.

With different thread configurations and scheduling techniques.
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Figure 5.45: L1 DTLB load miss rate for different applications on Broadwell and Cascade-
lake. With different thread configurations and scheduling techniques.

The TLB miss rate, see figures 5.45, 5.46, and 5.47, should be low for high performance.

As we can see this is the case for all applications and systems. The instruction TLB misses
are a bit higher for SPH_EXA than for the other applications. Since SPH_EXA does more
complex calculations than Mandelbrot or Stream this higher ITLB miss rate sims right.
Notable is the difference for SPH EXA on Broadwell and Cascadelake.
ITLB miss rate on Broadwell. Stream has the highest data TLB store miss rate, especially

with the scheduling techniques dynamic and ExhaustveSel with expert chunks.

There is a lower
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niques.
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Figure 5.48: L1 DTLB load miss duration for different applications on Broadwell and Cas-
cadelake. With different thread configurations and scheduling techniques.

The TLB miss duration is in figures 5.48, 5.49, and 5.50. We observe a big difference between
the Systems. We assume that this is caused by different time units. The documentation
of these counters states that the miss duration is measured in cycles. Perhaps this is not

correctly converted on some systems.
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Figure 5.50: L1 ITLB miss duration for different applications on Broadwell, Cascadelake,
and KNL. With different thread configurations and scheduling techniques.

5.2 Results for Parallelization Methods

In this section, we compare the parallelization methods MPI and OMP. All executions
used all available cores on the respective computing system. The goal was to find out
how the OS influence differs between MPI processes and OpenMP threads. Executions
with only OpenMP. We also compare executions with hybrid MPI and OpenMP. Due to
time constraints, we could perform these experiments only for SPH_EXA on Broadwell and
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Cascadelake. We could only perform the measurements with perf. Likwid provides a tool
to monitor MPI applications. Due to technical problems and time constraints we did not
perform the measurements about the memory and cache. In section 5.2.1 we present the
results for thread migration events. The measurements for the context switches are shown

in section 5.2.2 and the idle time events in section 5.2.3.

5.2.1 Thread Migration
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Figure 5.51: Average wait time for thread migration events for the different applications on
Broadwell, Cascadelake, and KNL with different thread scheduling techniques. Parallelized
with MPI or OpenMP.
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A loot of measured thread migration events have a wait time of zero milliseconds (figure
5.51). The number of migration events is often very low, as we can see in figure 5.54, This
means that on most cores at most one migration event occurs. The wait time for the first
migration events is zero because there was no previous migration process to measure the
elapsed time between the two events. In most cases, the execution with MPI has shorter wait
times between the thread migrations. Some exceptions are Mandelbrot on KNL, SPH_EXA
on Broadwell, and Cascadelake. On Broadwell, the hybrid MPI and OpenMP versions have
higher wait times compared to the OpenMP version. On Cascadelake there is only a small

difference between these Parallelizations.
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Figure 5.52: Average delay for thread migration events for the different applications on
Broadwell, Cascadelake, and KNL with different thread scheduling techniques. Parallelized

with MPI or OpenMP.

The average scheduler delay (figure 5.52) that thread migrations experience is in most cases

very low. With only a few migrations the core the process migrates to is most likely idle. So

there is probably a low delay. There are very few recorded exceptions to this for SPH EXA

on Broadwell and Stream on KNL. We are still investigating why this outliers occur. The

delay for the hybrid version is similar to the OpenMP version.
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Figure 5.53: Average runtime for thread migration events for the different applications on
Broadwell, Cascadelake, and KNL with different thread scheduling techniques. Parallelized
with MPI or OpenMP.

The runtime of a thread migration event (figure 5.53) depends a lot on the computing system,
we have already discussed this for the thread migrations in figure 5.3. On Broadwell and
Cascadelake thread migrations with OpenMP take much longer than with MPI. This is
not what we expected. We expected that the migration with MPI processes takes longer
than with OpenMP threads. Because threads are smaller than processes. On Cascadelake
the runtime for thread migrations is higher for the hybrid SPH_EXA version than for the
OpenMP or MPI version.
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Figure 5.54: The number of thread migration events for the different applications on Broad-
well, Cascadelake, and KNL with different thread scheduling techniques. Parallelized with
MPI or OpenMP.

The number of thread migration events (figure 5.54) is much higher for executions with
OpenMP than with MPI. The only exceptions for this are SPH_EXA on Broadwell and
Cascadelake. Hybrid SPH_EXA on Broadwell has fewer thread migrations than with only
MPI or OpenMP. On Cascadelake the number of thread migration is between OpenMP and
MPL.
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5.2.2 Context Switches
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Figure 5.55: The average wait time for context switches events for the different applications
on Broadwell, Cascadelake, and KNL with different thread scheduling techniques. Paral-
lelized with MPI or OpenMP.

Except for SPH EXA all recorded wait times for context switch events (figure 5.55) took
longer for application parallelized with MPI than with OpenMP. This means that with MPI
context switches are less frequent. For SPH_ EXA with MPI on Broadwell and Cascadelake,
the wait time is zero. This means that at most one context switch is recorded. The hybrid

SPH_EXA versions perform similar to the versions parallelized with OpenMP.
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Figure 5.56: The average delay for context switches events for the different applications on
Broadwell, Cascadelake, and KNL with different thread scheduling techniques. Parallelized
with MPI or OpenMP.

Except for Stream on Cascadelake, the average delay for a context switch event (figure 5.56)
is shorter for executions with MPI. So the scheduler has a lower latency for context switches
for applications parallelized with MPI. As for the wait time of context switches (figure 5.55)
there are no recorded context switches for SPH EXA on Broadwell and Cascadelake with
MPI. The delay for the hybrid SPH_EXA version on Broadwell is much higher than with
OpenMP or MPI. ON Cascadelake this value is between MPI and OpenMP.
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Figure 5.57: Average runtime for context switches events for the different applications on
Broadwell, Cascadelake, and KNL with different thread scheduling techniques. Parallelized
with MPI or OpenMP.

The average duration of a context switch (figure 5.57) is shorter with MPI than with
OpenMP. The only exception to this is Mandelbrot on KNL. Similar to the wait time (figure
5.55) and delay (figure 5.56) SPH_EXA with MPI has no recorded context switches.
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Figure 5.58: The number of context switch events for the different applications on Broadwell,
Cascadelake, and KNL with different thread scheduling techniques. Parallelized with MPI
or OpenMP.

For all applications and on all systems there are fewer context switches with MPI than
with OpenMP (figure 5.58). For SPH EXA with MPI on Broadwell and Cascadelake, there
were no context switches recorded. An explanation for this is that the executions with MPI
were a bit shorter. On Cascadelake the SPH_EXA hybrid version experienced more context
switches than the MPI or OpenMP version.
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5.2.3 Idle Time

mapeni YT HS

wpesiE ik

ARG N BAREPEITE] Wi HdS
AWUBED BARISPEITED ¥XE HdS

Snundg oyepppeIsED 0hiok

AMURGD T FIEuT
M YERDEIIED WenaS

b0 TN WXE S

W TN ¥R HS

IR, U] (A MpEcIE T

static + expart churks
dyramic + expert chunks:
guided + Expert chunks
MFACZ + exper: chunks S84
static_stoal + expart chunks
MAF 4 expart chunks:

GAL + sapart chunks
Randomsal + expest chunks S84
ExnaustwuSal + expert chunks
BinarySal + expart chunks S
ExperiSal + axpert chunks

avg. of ail sched. tachniques S

E
- -
Idle-time awg. wait [ms]

Figure 5.59: Average wait time for thread migration events for the different applications on
Broadwell, Cascadelake, and KNL with different thread scheduling techniques. Parallelized
with MPI or OpenMP.

The wait time of idle events (figure 5.59) is shorter for applications with MPIL. The only
exception to this is Mandelbrot on KNL. The hybrid version of SPH_EXA has values between
the versions with OpenMP and MPI.

The delay of idle time events is always zero. No process needs execution time on the
CPU. Therefore, the idle time does not wait until it is scheduled.
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Figure 5.60: Average runtime for thread migration events for the different applications on
Broadwell, Cascadelake, and KNL with different thread scheduling techniques. Parallelized
with MPI or OpenMP.

The runtime of idle events (figure 5.60) is longer for executions with MPI, except for
SPH EXA on Cascadelake and KNL. The hybrid SPH EXA version on Broadwell had
shorter idle time events than with MPI or OpenMP.
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Figure 5.61: Number of thread migration events for the different applications on Broadwell,
Cascadelake, and KNL with different thread scheduling techniques. Parallelized with MPI
or OpenMP.

The highest number of idle time events is reported for all applications on KNL with OpenMP.
Except for the two outliers for SPH_EXA with MPI on Cascadelake. The number of idle
events and their duration suggests that with MPI there are fewer idle events, but they take
longer. The hybrid SPH_EXA version on Broadwell has fewer idle time events. This events
have also a shorter runtime (figure 5.60). So the processor on Broadwell has less idle time
with the hybrid version of SPH_EXA than with the other versions. This is not the case on
Cascadelake. There the hybrid version has values between those of MPI and OpenMP.
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There is often no big difference between the execution with OpenMP and the hybrid
MPI and OpenMP. A reason for this might be that there are only two MPI ranks and many
OpenMP threads. We leave it for future research to investigate whether more MPI ranks

change these measurements.

5.3 Discussion
In this section we summarize and discuss the results, that we presented in sections 5.1 and

5.2. We highlight some measurements that are distributed among the plots.

5.3.1 Application

We have four different applications with different properties. We presented the data in
sections 5.1 and 5.2. Mandelbrot is compute-bound, Stream is memory-bound. Merge is
a combination of Mandelbrot and Stream with compute- and memory-bound phases. The
last application is SPH_EXA which is memory-bound on Broadwell and Cascadelake and
compute-bound on KNL. The performance of the application depends on the computing
system on which they are executed.

Also important is the execution time of the application. SPH_EXA has the longest
execution time. Mandelbrot executed longer than Stream. The execution time of Merge
is those of Mandelbrot and Stream added. If an application executes longer there will be
more scheduling events during this time. Because the scheduler interrupts the application
periodically to let other processes execute. So we expected that SPH_EXA has more context
switches, thread migrations, and idle times than the other applications.

Mandelbrot has more thread migrations than Stream and SPH_EXA on Broadwell and
Cascadelake (figure 5.5). Mandelbrot has a higher degree of load imbalance. This requires
more load balancing by the scheduler. On KNL, SPH_EXA has much more thread migration
events than the other applications and Stream slightly more than Mandelbrot (figure 5.4).
The number of thread migrations for Merge is similar to those of Mandelbrot. But we
expected, that this number is closer to the number of thread migration of Mandelbrot and
Stream added up.

The number of context switches on Broadwell is lower for Mandelbrot than Stream.
SPH_EXA has the more context switches then the other applications (figure 5.9-5.11). On
Cascadelake, Mandelbrot has fewer context switches than the other applications. Stream
and SPH_EXA have roughly the same amount of context switches. On KNL, Mandelbrot
and Stream have roughly the same amount of context switches and SPH_EXA has more.
The number of context switches depends more on the computing system and the thread
configuration than on the application.

Mandelbrot has the least amount of idle time events on Broadwell and Cascadelake
(figure 5.15-5.17), followed by Stream. SPH_EXA has the most idle time events. The
difference between the applications can vary widely depending on the computing system.
These idle events on Broadwell and Cascadelake for Mandelbrot take between 30 and 190ms
(figure 5.14). For Stream, they have an average runtime between 10 and 60 and for SPH_EXA
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between 10 and 220ms. So Mandelbrot has the least amount of idle time events, which on
average are a bit longer than for Stream. SPH_EXA has the most idle time events which
have a longer runtime. Because Mandelbrot is compute-bound this is what we expected. A
compute-bound application, like Mandelbrot, should spend most of its time computing. The
idle time of a system should be short. We observe that Stream has more idle time events.

Memory-bound applications spend more time idle while waiting for data.

Cache request rate for the different cache levels and applications

Cache Request Rate
o System L1 L2 L3
Application
Broadwell 0.0036 | 0.0009 | O
Mandelbrot Cascadelake | - 0.008 0
KNL 3.0365 | 0.0006 | -
Broadwell 0.0093 | 0.7254 | 0.0302
Stream Cascadelake | - 0.4357 | 0.0172
KNL 5.5316 | 0.0475 | -
Broadwell 0.0589 | 0.0248 | 0.0014
SPH EXA Cascadelake | - 0.0219 | 0.0008
KNL 0.4459 | 0.0041 | -

Table 5.2: These values are averages for all thread scheduling techniques

All applications have a much higher L1 request rate on KNL than on Broadwell. The
application Stream has the highest cache request rate on all cache levels and systems. This
is what we expected from a memory-bound application. On KNL Mandelbrot has more L1
cache accesses per instructions than SPH_EXA, but less on L2. On Broadwell, SPH_EXA
has a higher request rate on all cache levels. On KNL SPH _EXA has fewer L1 accesses per
instructions than Mandelbrot, but more on L2 and L3. This indicates that the data locality
for SPH_EXA is not as good as for Mandelbrot, and therefore more data has to be loaded
from higher cache levels.

Bandwidth between the cache levels and main memory [MBytes/s]

Bandwidth between
oo System L1-L2 | L2-L3 | L3 - Memory

Application
Broadwell 31.82 19.638 38

Mandelbrot Cascadelake | 41.34 16.881 44
KNL 21.74 - 193
Broadwell 3159.08 | 3022.052 | 60647

Stream Cascadelake | 4945.95 | 7152.571 | 84143
KNL 564.07 | - 6350
Broadwell 2314.79 | 887.424 | 3180

SPH_EXA Cascadelake | 4443.99 | 1215.075 | 3719
KNL 103.43 | - 914

Table 5.3: These values are averages for all thread scheduling techniques. Because there is
not much difference between the thread scheduling techniques.

The memory-bound applications Stream and SPH_EXA have higher bandwidths than Man-
delbrot. Interesting is that for Mandelbrot and SPH_EXA, the bandwidth between L2 and
L3 cache is much lower than between L1 and L2 and between L3 and memory. This is not
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the case for Stream. This shows that Stream reads and writes from all cache levels equally.

Other applications use different cache levels differently.

5.3.2 Thread Level Scheduling

Some scheduling techniques struggle with Stream. Especially dynamic and ExhaustiveSel.
For some metrics also static_steal and ExpertSel. Stream requests a lot of data. If the
execution of Stream is divided into small intervals, then the data can not be preloaded.
This happens with dynamic. Each thread does a small chunk of the multiplication and has
then to wait for the data for the next data chunk. The L3 data volume (figure 5.31 and
L2 data volume (figure 5.26) are much higher for dynamic and ExhaustiveSel. For most
metrics, the expert chunks improve these bad-performing scheduling techniques.

For Mandelbrot and Stream different scheduling techniques have more thread migra-
tions (figure 5.5). For Mandelbrot it is guided, mFAC2,GAC, and RandomSel. For Stream,
it is static, dynamic, and ExhaustiveSel. The expert chunk does not make a big difference.
Thread migration may show load imbalance. So these scheduling techniques may lead to
more load imbalance than others. But this depends on the application.

Also the number of context switches is influenced by some scheduling techniques. For
dynamic and ExhaustiveSel we measured more context switches than for the other scheduling
techniques. The time between context switches (figure 5.6)is shorter for mAF and BinarySel
for Mandelbrot and Stream. So these techniques experience more frequent context switches.
Also the runtime of these switches is shorter than for other scheduling techniques.

In most measurements the scheduling techniques, that we analyzed, performed similar
to each other. There is no scheduling technique that is less affected by the OS.

5.3.3 Computing Systems

We measured the executions of the applications on three different computing systems, Broad-
well, Cascadelake, and KNL. In this section, we compare the performance of these three sys-
tems. For this, we take the average results over the different scheduling techniques because
they perform similarly on all systems.

Over all applications, Cascade lake has the lowest number of thread migrations, fol-
lowed by Broadwell, and KNL has much more. The average duration of a thread migration
event is shortest on Broadwell (0.01ms) and takes a bit longer on Cascadelake (0.02ms). On
KNL these events take much longer (0.13ms). The wait time of thread migrations is much
lower on Cascadelake than on the other two systems, which have similar delays. So on Cas-
cadelake, there are fewer thread migrations and they are less frequent. KNL has the highest
number of thread migrations, which take more time. So there are quite some differences
between the systems. The scheduling delay for migrations on Broadwell and Cascadelake
are very similar, on KNL the delay is much higher.

Broadwell has on average the lowest number of context switches, Cascadelake has a bit
more, and on KNL there are much more context switches. Also, the runtime of these context
switches is lower on Broadwell. On Cascadelake and KNL they take roughly the same time.

The frequency of these events is higher on Broadwell than on Cascadelake. It is much lower
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on KNL. So the time between context switches on Broadwell is shorter compared to the
other systems. The scheduling delay of context switches is much higher on Cascadelake, on
average 7.29 ms. On KNL it is 0.26ms and on Broadwell 0.04ms. Broadwell nodes have
fewer idle time events that are shorter than Cascadelake. KNL has much more idle time
events which take even more time. Only the time between the idle events is similar on all
systems.

5.3.4 Thread Configuration

We examined four thread configurations. The normal configuration is to use all available
cores. We compare this to executions with one or two cores left idle. The last configuration
is to leave one socket idle. The impact of the thread configuration depends on the used
application and system.

On Broadwell, the fewest context switches are reported for executions with one idle
socket (figure 5.9). On Cascadelake there are much more Switches with two idle cores
than with other thread configurations (figure 5.10). The other configurations have similar
amounts of context switches. On KNL there are fewer context switches when there are some
idle cores (figure 5.11). This is similar to the number of thread migrations on KNL (figure
5.5). KNL has more context switches and thread migrations when all cores are used. So
the OS interrupts the application less when there is at least one idle core. Cascadelake
has also a bit fewer thread migrations with idle cores. But Broadwell it depends on the
application which thread configuration leads to fewer migrations. The different systems
behave differently for different thread configurations regarding the number of switches. Some
can use this idle cores. This leads to fewer interrupts for the application.

The number of thread migration is not clearly influenced by the thread configuration
(figure 5.5).Mandelbrot Cascadelake and KNL have in most cases a bit fewer thread migra-
tions with idle cores. On Broadwell there are more thread migrations with one or two idle
cores.

For the cache misses on all levels (figures 5.19,5.22, and 5.28) we do not see much
difference between the thread configurations. On Broadwell and Cascadelake each core has
its own L1 cache. So the awvailable L1 cache per used core is the same. But several cores
belong to the same cache group in L2 and L3. Therefore, we expected to see a lower miss
rate.

Stream with one idle sockets loads more data (figure 5.34) because the available L3
cache is much smaller than when the second socket is used too. More data is loaded and
evicted (figure 5.35) This difference between the thread configurations is higher on Cas-
cadelake than on Broadwell. For the average idle runtime (figure 5.14) for SPH_.EXA on
Broadwell with one idle socket. We see that these idle events took much longer. So with
one idle socket, there are fewer idle events that took on average much longer, compared to
more utilized cores. This shows that the unused cores on one socket were indeed idle for
most of the time.

The datavolume on L2 and L3 is higher for executions on one socket (figure 5.26,
5.31). At least for the memory intensive applications Stream and SPH_EXA. This can be
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explained by the smaller available cache on one socket. The applications do the same work
but have only half of the cache available. The other thread configurations do not show a
big difference.

5.3.5 Limitations

With perf, we recorded thread migration, context switches, and idle time events. These
events take a very short time, with some exceptions that we see in the plots in this chapter.
Perf measures the wait time, scheduler delay, and runtime for these events in microseconds.
A lot of these measurements are reported as 0.000ms. So the resolution of perf for this
events is not always enough.

Migrations may depend on what is executed before. But we did not analyze thread
migrations depending on what was executed, because we only recorded around 10-600 mi-
grations for most configurations. With perf latency we see a list of the executed processes.
Normally there are around 120 different processes that perf recorded. Most of these pro-
cesses are kworker, also different kernel threads. It would be interesting to see if the number
of migrations of the same Kernel threads increases with longer measurements. With enough
recorded events it would be possible to analyze thread migrations depending on what kind
of thread was migrated. The size of the perf.data files would probably increase significantly
for this measurements.

Hardware counters are hard to interpret what they count. Not all systems use the
same names for the same counters. Or they do not have these counters implemented. Perf
uses these event aliases that map to predefined counter events and masks. PAPI and Likwid
have commands to print the available events and metrics on a given system. The problem
is that the names can change from system to system. It is not easy to verify that the
same command measures the exact same metric. The hardware counters are defined by
the manufacturer. But there is not a unified standard for these counters. So the available
counters on our systems differ, even when they were produced by Intel. For example, on
KNL much fewer hardware counters are available than on Broadwell.



Conclusion

To investigate the OS influence on the performance of parallel applications, we conducted
many measurements on different systems. We compared applications with different proper-
ties with several thread-level scheduling techniques and expert chunks. We also compared
the influence on different parallelization methods. With the tools PAPI, perf, and Likwid
we measured scheduling events and memory and cache performance.

Our measurements show that the performance of an application differs between the
different computing systems and thread configurations. The number and duration of thread
migrations are different on the computing system. On KNL there are more thread migra-
tions which on average take longer, compared to executions on Broadwell and Cascadelake.
The thread configurations do not impact the number of cache misses. But on some systems,
it leads to fewer context switches and thread migrations. The thread level scheduling tech-
niques perform similarly to each other. But some scheduling techniques show on certain
systems or with memory-bound applications worse performance than other scheduling tech-
niques. Thread migrations and context switches take longer and are more numerous with
applications that are parallelized with OpenMP than with MPI.

All aspects that we investigated are important. We can not point out a single factor
that is in every case the most important one. Every aspect can influence the performance
of the application. But for many observations, there is an example that shows the contrary.

6.1 Future Work

With perf, we recorded the overhead different events. But perf has no API to measure the
important part of an application like it is possible with PAPI or the Likwid marker APL
A tool like the perf-API [18] could deliver interesting measurements about the scheduling
events during the execution of certain kernels.

We leave it to future work to investigate the memory and cache performance for the
different parallelization techniques. We investigated the influence of the OS scheduler on
applications that are parallelized with MPI, OpenMP, and hybrid MPI and OpenMP. For
this kind of measurement, the tool likwid-mpirun should be suitable.

Why perf reports zero values for some thread configurations and not for others, needs
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to be explored in future work.
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Appendix

A.1  Measurements on MiniHPC

PAPI is the tool that made the least problems. Just load it with ml PAPI and follow the
tutorials. It is the tool that requires the most effort for different measurements but it worked
fine.

Perf requires sudo rights for most of the measurements. We did this with
alias sudo="sudo LD_LIBRARY PATH="$LD_LIBRARY_PATH”’ and then we could exe-
cute the perf command with sudo -E. For example sudo -E /usr/bin/perf sched record... The
best tutorial for perf We found is written by Brendan Gregg [17], there nearly everything
about perf is explained with examples how to use it.

We performed the experiments on miniHPC and also analyzed the perf.data files on
miniHPC. The reason for this is that these files can easily grow over 100MB. We did not need
all of this data. Because creating the plots on miniHPC was cumbersome, we transferred
the necessary and compressed data to our local machine with git. The only constraint is
that the git repository can only reach 4GB. And deleting it from the history is not easy.

Likwid is easy to install on any Linux machine to test it out. On miniHPC we
had some problems. Likwid-mpirun did not work at all. For the other measurements on
miniHPC one problem was, that if fewer were threads pinned with Likwid than are avail-
able for OpenMP, The measurement with Likwid does not work correctly. For this we used
OMP_NUM_THREADS to limit the number of threads for OpenMP.

A.2 SPH_EXA Kernel Analysis

With PAPI and Likwid marker API it is possible to analyze the individual kernels of an
application. We hope, that this will someday work with perf too. During our work, We
made some measurements of the SPH_EXA kernels. On the x-axis, there are the SPH_EXA
kernels. On the y-axis is the measurement. So that the plots are visible, there are some cuts
in the y-axis. All measurements were repeated 10 times and performed on Broadwell.
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SPH_EXA kernels.
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