Statistical Characterization
of HPC Monitoring Data

Bachelor Thesis

University of Basel
Faculty of Science
Department of Mathematics
and Computer Science
HPC Research Group

Examiner: Prof. Dr. Florina M. Ciorba
Supervisor: Thomas Jakobsche

Monika Multani
monika.multani@stud.unibas.ch

December 21, 2021

:\'@% University
/IXI\ " of Basel

Abstract

Scientific applications use high computing power offered by High Perfor-
mance Computing (HPC) systems to solve research questions. The use of system
resources is recorded by monitoring infrastructure. Data from monitoring ac-
tivities can give us insights into application behavior and system response. The
goal of this project is to characterize HPC monitoring data and its statistical
properties. An assessment of which system metrics have frequency components
is also made, because some monitoring metrics (e.g. CPU) have specific charac-
teristics resembling the waveform of sound data. For this purpose, we implement
code in Python to provide an overview of the system metrics and their char-
acteristics. The system metrics are divided into the conceptual groups CPU,
Memory and Network and into subgroups to better understand the type of met-
ric and investigate statistical properties of each group. The results show that
the majority of the system metrics are always zero, this is important for future
research on monitoring data. Researchers have to pre-process monitoring data
if they do not want to operate on data that is largely always zero. Furthermore,
we show that some system metrics have waveform and the most metrics with
waveform come from the network group. The amount of frequency components
inside the waveform of a system metric can be dependent on the executed appli-
cation. Frequency proofed to be a viable statistical feature that can complement
traditional features like minimum, maximum, and average. Frequency can not
only be used to analyze properties of system metrics, but also to characterize
application-specific system response. We also found that some system metrics
are very similar to specific musical instruments. This opens up further research
opportunity in the direction of applying acoustic signal processing techniques
on HPC monitoring data.

Contents

1 Introduction
1.1 Motivation and Goal L.
1.2 Research Questions
1.3 Solution and Answers
2 Related Work
2.1 Importance of Frequency and Waveform
2.2 Analysis of System Metrics L oL
2.3 HPC Monitoring Data of Applications
3 Methods and Materials
3.1 Fast Fourier Transformation and Spectrogram

3.2 Time Domain vs. Frequency Domain Representation
3.3 Taxonomist Dataset
3.3.1 Representative Applications
3.4 Conceptual Groups and Subgroups
3.5 Definition and Description of Metric Groups
3.5.1 Zero Constant and Nonzero Constant Metric Group
3.5.2 Increasing and Decreasing Monotonic Metric Group
3.5.3 Waveform Metric Group
3.5.4 Remaining or Other Metrics
3.6 Metrics with Waveform Characteristics
3.6.1 First Approach: Regular vs. Irregular Waveforms
3.6.2 Second Approach: Majority Waveform Metrics
3.7 Code Implementation
4 Results
4.1 Overview of Metric Groups
4.1.1 Percentage of Metric Groups for Each Conceptual Group
4.1.2 Metric Characteristics of Application Execution
4.2 Metrics with Majority Waveform

4.2.1 Time Domain Plots of Majority Waveform
4.2.2 Similarity of HPC Waveforms to Actual Sound

s o W

oo

5 Discussion

5.1 Statistical Properties of System Metrics
5.2 Majority Waveform System Metrics.
5.3 Regular and Irregular Waveform
5.4 System Metric Similarity to Sound

6 Conclusion
6.1 Future Work

Bibliography

39
39
39
40
40

41
42

43

Chapter 1

Introduction

Scientific applications use high computing power offered by High Performance
Computing (HPC) systems to solve research questions. The use of system re-
sources is recorded by monitoring infrastructure. Data from monitoring activi-
ties can give us insights into application behavior and system response.

1.1 Motivation and Goal

Monitoring data is generated by executing applications and benchmarks on HPC
systems. By analyzing this data, it is possible to gain insights into the applica-
tions and the HPC system. To better understand the applications and the HPC
system (e.g., to detect errors) monitoring data is often analyzed with statistical
features like the average load or the maximum CPU usage. But the HPC system
still needs to be fully understood, therefore alternative analysis methods need
to be investigated.

The goal of this project is to learn more about the metric groups in HPC
systems, to gain insight into the system metrics of HPC monitoring data, as
well as to characterize HPC data. Investigations for HPC monitoring data will
be made and system metrics will be sorted into groups based on their statistical
properties. Furthermore, an assessment of which system metrics have frequency
components will be made, because some monitoring metrics (e.g. CPU) have
specific characteristics resembling the waveform of sound data.

1.2 Research Questions

To achieve the goal, the monitoring data must be analyzed. At this point, the
problem is that the methods for analyzing the monitoring data are not clear. A
large number of different approaches exists such as the time series analysis with
and without machine learning. Simpler methods involve analyzing statistical
features like the average load or the maximum CPU usage. But these statistical
features do not always capture all characteristics of the data. Additionally, a
large number of system metrics exists to choose from, and it is not clear which
system metrics are worth investigating.

Hence, the research questions of this project are:

— What kind of metrics are available on the HPC system?

What are the characteristics of HPC monitoring data?
— Do system metrics have a specific frequency and waveform?

— How similar are system metrics to actual sound?

1.3 Solution and Answers

To solve the problem, the system metrics of HPC Monitoring Data are investi-
gated. By looking at the system metrics, it becomes visible that some of them
have sound wave characteristics. There exist monitoring metrics including CPU
usage that have frequencies. The initial approach to find a method for analyzing
monitoring data was to investigate the frequency of the HPC monitoring data.
While investigating the frequency, many other characteristics of the metrics were
observed. The project was thus further developed. In addition to frequencies,
other characteristics of the system metrics were researched in order to create an
overview of HPC Monitoring Data.

For any HPC researcher, a successful achievement could be of importance to
get a better overview of the data. HPC data with the relevant characteristics
for specialized experiments can then be filtered out. An example of using these
characteristics is for researchers to focus on the system metrics with waveforms
while analyzing the data through listening, since they are similar to sound waves.

The findings and answers to the research questions include:

Groups of metrics have been found based on statistical properties that
show, among other things, that a majority of system metrics is consistently
Z€ro.

Some system metrics were found to have frequency and most metrics with
waveform come from the network group.

The amount of frequency components inside the waveform of a system
metric can be dependent on the executed HPC application.

Some system metrics are very similar to specific musical instruments.

Chapter 2

Related Work

2.1 Importance of Frequency and Waveform

One aspect of finding system metrics with waveform, is to exploit the waveform
for audification in order to listen to the data and try to find out things that may
be overlooked by visual analysis. The transformation of data into sound is not
something that is uncommon. As mentioned in the handbook ”The sonifica-
tion handbook” by Dombois, Florian, et al., audification was used for example
to analyse physical data, general acoustic data or sound recording data. The
general goal of data audification is to make it possible to listen to the results
of scientific measurements or simulations in order to understand them better.
The audification of data is a method of decoding data that can be interpreted
as an amplitude over time and be reproduced as sound. [0]

”Tuning Complex Systems by Sonifying Their Performance Data” [12] is
a paper that investigates the use of sonification as a cognitive aid to support
performance tuning, which was presented as a novel approach to simplify perfor-
mance tuning of complex computer systems by using sound to transmit perfor-
mance information during execution. According to this research, sound-based
tuning approaches can have valuable solutions concerning these problems.

2.2 Analysis of System Metrics

In order to successfully audify data, first, system metrics, that are suitable for
audification (metrics that have a frequency and waveform), must be found. This
project focuses on finding these metrics and more generally on characterizing
HPC monitoring data.

Maarten Schenk had already taken an approach of turning performance data
into sound in his bachelor thesis ” The Sound of Computing” [29] also by inves-
tigating sonmification through the development of a customized solution. His
thesis is primarily based on proof of concept. In this thesis he assigned raw
values to a musical scale and played the resulting notes on a digital instrument.
The sound of applications can be used to distinguish them from one another.
Findings of his work show that it is possible to perform sonification of HPC
performance data, whereby new insights can be gained, and it makes the data
more understandable.

2.3 HPC Monitoring Data of Applications

Researchers at Sandia National Laboratories and Boston University in the USA
have presented the Taxonomist technique in a paper [2]. Taxonomist is a tech-
nique that uses machine learning to classify known and unknown applications
that are based on easily accessible system monitoring data, even when they are
being executed on a supercomputer. The technique is also capable of recognizing
previously unknown input configurations from known applications.

As previously indicated, some researchers have already developed techniques
to turn data into music in order to listen to the data. Therefore, in this thesis, a
further approach is applied to investigate the HPC monitoring data. As Florian
Dombois and Gerhard Eckel reported in their handbook [(], not every data
is suitable for audification. One of the requirements is that the data has a
waveform, which is why the new concept of investigating the frequency of HPC
monitoring data metrics came up. For the inquiry, a public dataset, which
contains several applications that have been executed on HPC systems, is used.

Chapter 3

Methods and Materials

3.1 Fast Fourier Transformation and Spectro-
gram

Fast Fourier Transformation (FFT) An important measurement method
in audio and acoustic measurement technology is the ”Fast Fourier Transforma-
tion” (FFT). The FFT decomposes a signal into individual spectral components
and thus indicates its composition. It is possible to assess mistakes, manage
quality and monitor the condition of equipment or systems using FFTs. To be
precise, the FFT is an optimized algorithm for implementing ” Discrete Fourier
Transformation”, DFT for short. In this process, a time-limited section of a sig-
nal is broken down into its components. These components are individual sine
oscillations at discrete frequencies whose amplitude and phase are determined.
The FFT thus allows visualization of a signal in the frequency range. [3]

In very simplified terms, the frequency counts the number of full sine turns or
peaks in the time series.

Spectrogram A spectrogram is a visual representation of the frequency spec-
trum of a signal on how it changes over time [9]. It is common to use spectro-
grams for representing frequencies of sound waves generated by people, ma-
chines, animals, etc. and recorded by microphones [26].

3.2 Time Domain vs. Frequency Domain Rep-
resentation

The metrics were plotted in time domain and frequency domain representation.
The title of the plots includes a list of the applied parameters. First, the appli-
cation name and the input size are mentioned. Afterwards, the run ID, node ID,
metric ID and the metric name are shown. Lastly, information about whether
the plot is a "raw timeseries” or a ”spectrogram + peaks” plot is presented.

The time domain plot visualizes the metric data with its values per second.
The time series values are shown on the x-axis and the values of the metrics are
shown on the y-axis. The Figure 3.1 shows an example plot for a time series
array.

['ft', 'X', 0, 0, 562, 'user_procstat’, 'raw timeseries']

metric value

o 100 200 300 400 500
time in seconds

Figure 3.1: Time Domain Representation of Metric 562

To calculate the frequency representation, Spectrogram (see Section 3.1)
and Fast Fourier Transform (FFT) (see Section 3.1) are used. The frequency
values are presented on the x-axis, while the amplitude values are presented
on the y-axis. For the transformation, the function scipy.signal.spectrogram(x,
fsfloat) from the open-source software SciPy [35] was used with the parameters
x and the optional parameter fsfloat. For the x parameter, the measured values
of time series were used, and the sampling frequency of the time series was
used for the fsfloat parameter. This function divides a time signal into shorter
segments of equal length. To each segment, the FFT was applied and thus the
representation of the spectrum on each segment was obtained [28]. An example
plot for a frequency plot of a time series array is shown in the Figure 3.2.

['ft’, "X, 0, 0, 562, 'user_procstat’, 'spectrogram + peaks']

100 200 300

frequency

amplitude
= o ol [
$ & & o

e
~

°
o

o

400 500

Figure 3.2: Frequence Domain Representation of Metric 562

For a better understanding of the transformation, consider the following ex-

ample:

In Figure 3.3, a representation in the time domain with a waveform is vis-
ible. It can be observed that a wave is repeated several times. To be more

precise, in this example the wave marked in red occurs 50 times.

1 10 20 30 40

(] o o o

Amplitude
°
°
3

oo 02 oa o6

Time

Figure 3.3: Time Domain Representation

o8

The image below (Figure 3.4) illustrates the frequency representation. In
the diagram it can be seen, that there is a frequency peak at 50. Therefore, in
the frequency domain, the different waves or their proportions are represented as
amplitude. Mathematically this is a delta function centred on the fundamental

frequency of 50 Hz.

Freq (Hz)

o
5
¥
-3

P Bq-----------cToTom==mx

Figure 3.4: Frequency Domain Representation

10

3.3 Taxonomist Dataset

The public data from Ates et al. [1] published in 2018 was used to investigate
frequencies in HPC monitoring data. This data was collected at the time to
figure out which applications are running on modern supercomputers using the
taxonomic technique mentioned above. HPC performance data from 11 bench-
marks that are representative applications (see Section 3.3.1), and 5 different
unwanted applications are included in the data. However for the investigation
of frequency only the data from the representative applications are used, as
the unwanted metrics have not been published. Each application has at least
three different input sizes, depending on what they are doing. In total, 721
different metrics per seconds were collected as time series data from each node,
of which only 563 have been published. Therefore the used data only includes
563 metrics. Several of these metrics are memory related, while others are CPU
related and some are network related. These groups are described in the Section
Conceptual Groups and Subgroups (see Section 3.4). The applications with the
same configuration were repeated 30 times. In addition, the four applications
miniAMR, miniMD, miniGhost and Kripke were executed 6 times with another
input on 32 nodes as time series data. All these time series data are used for
this research.

Taxonomist Dataset
Applications FT, MG, SP, LU, BT, CG, CoMD, miniGhost, miniAMR,
miniGhost, miniAMR, miniMD, Kripke | miniMD, Kripke
Input Sizes X Y Z L
Number of Nodes 4 4 4 32
Metrics per Second 563 563 563 563
Repeated Executions || 30 30 30 [§

Table 3.1: Taxonomist Dataset

11

3.3.1 Representative Applications

Application | Description

BT Block tri-diagonal solver
CcC Conjugate gradient

FT Fourier transform

LU Gauss-Seidel solver

MG Multi-grid on meshes

SP Scalar penta-diagonal solver

miniAMR Adaptive mesh refinement miniApp

miniMD MiniMD molecular dynamics miniApp

CoMD Classical molecular dynamics proxy application
miniGhost MiniGhost Halo Exchange Mini-Application
Kripke 3D S, deterministic particle transport

Table 3.2: Representative Application

The following descriptions are taken from [17] and [4]:

BT - Block tri-diagonal solver: BT simulates a CFD (computational fluid
dynamics) problem with two discrete versions of three-dimensional, unsteady,
compressible Navier-Stokes equations. BT solves multiple, independent systems
of non diagonally dominant, block tridiagonal equations.

CG - Conjugate gradient: Computation of the smallest eigenvalue of a
large, sparse symmetric, positive- definite matrix with a conjugate gradient
method. By using unstructured matrix vector multiplication, CG tests irregular
long distance communication.

FT - Fourier transform: Testing the performance of long-distance commu-
nication. FT numerically solves a Poisson partial differential equation (PDE)
using the fast Fourier transform (FFT).

LU - Gauss-Seidel solver: LU is simulating a CFD problem like BT, but
solves regular-sparse, lower and upper triangular systems.

MG - Multi-grid on meshes: MG requires highly structured long dis-
tance communication and tests the performance of short and long distance data
communication. MG computes an approximation for the solution to a three-
dimensional scalar Poisson problem on a discrete grid, by using the V-cycle
multi-grid algorithm.

12

SP - Scalar penta-diagonal solver: SP also simulates a CFD problem
like BT, but solves multiple, independent systems of non diagonally dominant,
scalar, penta-diagonal equations.

The following descriptions were taken from the respective github pages:

miniAMR - Adaptive Mesh Refinement Mini-App: miniAMR applies
a stencil calculation on a unit cube computational domain, which is divided
into blocks. The blocks all have the same number of cells in each direction
and communicate ghost values with neighboring blocks. With adaptive mesh
refinement, the blocks can represent different levels of refinement in the larger
mesh. (translated from [23])

miniMD - MiniMD Molecular Dynamics Mini-App: miniMD is a par-
allel molecular dynamics (MD) simulation package written in C++ and intended
for use on parallel supercomputers and new architectures for testing purposes.
This simple code is a self-contained piece of C++ software that performs par-
allel molecular dynamics simulation of a Lennard-Jones or a EAM system and
gives timing information. [25]

CoMD - Classical molecular dynamics proxy application: CoMD is a
reference implementation of typical classical molecular dynamics algorithms and
workloads. The code is intended to serve as a vehicle for co-design by allowing
others to extend and/or reimplement it as needed to test performance of new
architectures, programming models, etc. [5]

miniGhost - MiniGhost Halo Exchange Mini-Application: A broad
range of scientific computation involves the use of difference stencils. In a par-
allel computing environment, this computation is typically implemented by de-
composing the spacial domain, inducing a “halo exchange” of process-owned
boundary data. MiniGhost represents 3D nearest neighbor halo-exchange com-
munications that are present in a many HPC codes. [21]

Kripke - 3D S, deterministic particle transport: Kripke is a simple,
scalable, 3D S, deterministic particle transport code. Its primary purpose is
to research how data layout, programming paradigms and architectures effect
the implementation and performance of S, transport. (S,: Discrete ordinates
method of approximately solving radiative transfer equations.) [21]

13

3.4 Conceptual Groups and Subgroups

The following descriptions were taken from various sources.

Network The interconnection of several transmitters for the large-scale dis-
tribution of radio and television programs or individual broadcasts is referred
to as a network [7]. The network usage information are collected from Cray
network interface card (NIC) counters [2].

— NIC (Network Interface Controller): A network card, Network Inter-
face Controller (NIC) or Network Interface Card (NIC), is a printed circuit
board or chip that directly connects the network to the end device. It can
be a plug-in card for a bus system used in the personal computer: for In-
dustry Standard Architecture (ISA), Peripheral Component Interconnect
(PCI) or PCI Express, for Versa Module Europe (VME) or microchannel.
(translated from [16])

— RDMA (Remote Direct Memory Access): Remote Direct Memory
Access (RDMA) is a networking technology that allows computers to ex-
change data in main memory without using either computer’s processor,
cache or operating system. Because it frees up resources, RDMA, like
locally based Direct Memory Access (DMA), improves throughput and
performance. In addition, on the one hand, RDMA enables faster data
transfer rates and low-latency networks. On the other hand, it can be
used in networking and storage applications. [30]

— SMSG (Short Message Service Gateway): A Short Message Service
(SMS) gateway is a method that allows SMS messages to be sent and
received. SMS processes for organizations are facilitated and streamlined
with the help of SMS gateways. Some of the conversion into different
formats is often done by the gateways. [33]

— IPoGIF (IP over generic fabric interface): The HPC system where
the dataset for the Taxonomist was collected is a Cray system. Cray
uses a reliable and high-performance TP network over the Aries network.
This high-performance network is configured as an IP over generic fabric

(IPoGIF) interface.

— Other metrics including Energy and Power: Energy is the ability
to bring about change, for example creating motion.The unit of measure
for energy is joule. Power is defined as the amount of energy divided by
the amount of time it took to use the energy. Its unit is watt, which is
equal to one joule of energy every second. [3]

14

— LOADAVG: The load average is the CPU demand of a server. The server
includes the sum of the running and waiting threads [19]. Depending on
the system, the composition varies, as do the usual values. In general
the following applies: The lower the load value, the less loaded a system
is, i.e. more resources are available. A load average of 0 indicates that
all resources are available and the system can process a user’s tasks at
maximum speed. However, as the system load increases, it becomes more
and more difficult as all resources are permanently in use. [20]

Memory The memory metrics are collected by /proc/meminfo and /proc/vim-
stat [2], for which reason they are regrouped into memory info and virtual mem-
ory statistics here.

e Memory info (proc/meminfo): The memory info metrics are metrics
that provide information about the distribution and use of storage [183].

— Active / Inactive: Memory that is used by a particular process is
called active memory. The inactive memory is the memory allocated
to a process that is no longer running. There are pages that have not
been accessed recently. [31]

— Huge Pages: The memory pages are greater than default. Huge
pages are memory blocks that exist in two sizes: 2MB and 1GB. The
page tables used by 2MB pages are optimal for scaling to terabytes
of memory, whereas the page tables used by 1GB pages are best for
maintaining several gigabytes of memory. [22]

— Other metrics including cache and shared memory: A small
volatile computer memory that provides fast data access to a proces-
sor and stores frequently used computer programs, applications and
data is considered as cache memory [13]. Shared memory is a type
of memory that can be shared by several applications or processes
for the purpose of enabling communication between applications or
avoiding redundant data copies [14].

e Virtual memory statistics (proc/vmstat) The virtual memory statis-
tics is a computer system monitoring tool that collects and displays sum-
mary information about operating system memory, processes, interrupts,
paging and block I/O [39]. Virtual memory (VM) is a kernel feature that
simulates additional main memory such as RAM (random access memory)
or disk storage. This technique includes memory manipulation and man-
agement in order to allow the loading and execution of larger programs or
multiple programs at the same time. It also allows each program to op-
erate as if it had infinite memory, and it’s often cheaper than purchasing
more RAM. [34]

— Various virtual memory statistics: This subgroup includes the
various virtual memory statistics metrics.

15

— kswapd (Kernal Swap Daemon) memory management: The
name swap daemon is a misnomer because the daemon does more
than simply swap updated pages to the swap file. Its job is to ensure
that the memory management system runs smoothly. Every time the
timer expires, the kernel swap daemon (kswapd kernel init process)
is started. The swap daemon monitors the number of available pages
in the system to detect whether it is getting too low. [27]

— NR metrics: The metrics that determine the number of different
virtual memory statistic are included here.

— NUMA (Non-Uniform Memory Access): Non-Uniform mem-
ory access abbreviated NUMA is a multiprocessing memory design in
which the memory access time is dependent on the memory location
relative to the processor. A CPU can access its own local memory
faster than non-local memory when using NUMA. [11]

— Other metrics including slab and page: The amount by which
a cache can grow or shrink is called a slab and is expressed as one
memory allocation to the cache by the computer. Normally its size
is a multiple of the page size. [38] A page, also known as a memory
page or virtual page, is a contiguous block of virtual memory with a
defined length that is described by a single entry in the page table.
In a virtual memory operating system, it is the smallest unit of data
for memory management. [37]

CPU usage The unit that does most of the processing in a computer is called
the central processing unit (CPU) or the processor. It acts as a powerful cal-
culator, processing all instructions received from software running on the PC
and other hardware components. [32] The CPU usage information are collected
from /proc/stat [2].

— Various kernel / system statistics: The kernel manages the computer
and hardware operations and is therefore the central component of an op-
erating system. In general, it manages memory and CPU time operations.
Kernel acts as a gateway between applications and data processing per-
formed at hardware level using inter-process communication and system
calls. Managing communication between software (e.g. user-level appli-
cations) and hardware (CPU and disk storage) is the major goal of the
kernel. [30]

16

— Per Core Metric: The per core metrics are listed as ranges over 0-
47 cores. In this project, the per core metrics were disregarded. The
reason behind it is that on the HPC system where the data was ob-
tained, the following applies: a node has 48 CPU cores, and metrics
have been recorded for each of these nodes (e.g., per_core_user(_procstat,
per_core_userl_procstat, ..., per_core_user47_procstat). Besides that, there
is a metric (e.g., user procstat) which represents all 48 cores merged into
a single node; in other words, the CPU usage of all cores is practically in-
cluded in this combined metric for the entire node. Therefore, the metrics
containing the name 'per_core’ can be omitted.

3.5 Definition and Description of Metric Groups

In order to investigate the frequencies of HPC Monitoring Data, the time series
arrays must be analyzed in the beginning. Looking at the graphical represen-
tation of the data in a plot, it is evident that there are different types of plots.
For that reason, the metrics can be classified into different groups.

3.5.1 Zero Constant and Nonzero Constant Metric Group

The initial step is to identify very general groups of metrics. In the graphical
representation in some figures of the time series arrays, horizontal graphs can
be observed. These can be summarized to a group of constant metrics. In some
of these time series metrics a constant value of 0 occurs. Therefore, they can be
assigned to the zero constant metric group. The remaining ones, which always
have the same number in the time series array, are assigned to the nonzero
constant metric group. These two groups can be extracted relatively easily with
if statements. The remaining time series arrays potentially have a waveform.
One sample plot for each group is shown in the Figure 3.5 and Figure 3.6.

['ft', 'X', 0, 0, 37, 'RDMA_nrx_cray_aries_r', 'raw timeseries']
0.05

0.00

metric value

—0.05 4 . .
0 100 200 300 400 500
time in seconds

Figure 3.5: Metric 37 - Example Plot for Zero Constant

3.5.2 Increasing and Decreasing Monotonic Metric Group

Monotonic characteristics can be discovered in some of the time series arrays.
The values either consistently increase and never decrease or decrease and never
increase over time. Therefore, they could be categorized into two subgroups:

17

'ft', 'X', 0, 0, 74, 'loadavg_total processes cray_aries r', 'raw timeseries'
340 A

320 4

metric value

T T T T
0 100 200 300 400 500
time in seconds

Figure 3.6: Metric 74 - Example Plot for Nonzero Constant

increasing monotonic and decreasing monotonic. By determining whether the
next value is greater or equal to the current value, the increasing monotonic
group can be recognized. In the opposite case, if the next value is smaller or
equal to the current value, the array corresponds to the decreasing monotonic
group. In Figure 3.7 and Figure 3.8, one sample plot for each group is provided.

['ft', 'X', 0, 0, 36, 'PageTables_meminfo', 'raw timeseries']

91500 4

91000

metric value

T T
0 100 200 300 400 500
time in seconds

Figure 3.7: Metric 36 - Example Plot for Increasing Monotonic

['ft', 'X', 0, 0, 43, 'SReclaimable_meminfo', 'raw timeseries']
10500

10000

metric value

T T
0 100 200 300 400 500
time in seconds

Figure 3.8: Metric 43 - Example Plot for Decreasing Monotonic

3.5.3 Waveform Metric Group

The last group needed to investigate the frequency characteristics of the metrics
is to determine the group of actual waveform metrics. In some cases, a graph
with several amplitudes can be seen through the frequency representation of a
time series array which is calculated using the Spectrogram (see more in Section

18

3.1 and the Fast Fourier Transform (FFT) 3.1). According to the explanation
of the Fast Fourier Transform (FFT), the time series array is assumed to have
a waveform in the time domain representation, if the frequency representation
contains at least one frequency peak that is not equal to 1. The Figure 3.9 rep-
resents a sample plot for a time series array in the time domain. The frequency
representation of the corresponding time series array is shown in the Figure 3.10.

['ft', 'X', 0, 0, 562, 'user_procstat', 'raw timeseries']

3225

3200

3175 A

metric value

T T
0 100 200 300 400 500
time in seconds

Figure 3.9: Metric 562 - Example Plot for Waveform in Time Domain

['ft', 'X'. 0, 0, 562, 'user_procstat’, 'spectrogram + peaks']

1.0 A
5]
h=l
=
= 0.5
Q
m

0.0 = T T T T

0 100 200 300 400 500

frequency

Figure 3.10: Metric 562 - Example Plot for Waveform in Frequency Domain

3.5.4 Remaining or Other Metrics

There may be a few remaining metrics that seem to have an unusual time
domain plot and therefore belong to the category of other metrics. Here are the
time series arrays that have no peaks in the frequency plot or have exactly one
frequency peak at 1, which is the reason why these metrics cannot be assigned
to the other metric groups. As an example, a plot for other metrics is shown in
the Figure 3.11.

3.6 Metrics with Waveform Characteristics
For the purpose of investigating frequency in monitoring data from HPC appli-

cations and benchmarks, the metrics requirement is to have waveform charac-
teristics.

19

1le7 ['ft', 'X', 0, 0, 55, 'current_freemem_cray_aries_r', 'raw timeseries']
3.40900 v

3.40875

3.40850

3.40825

metric value

3.40800

3.40775

I T T T T
0 100 200 300 400 500
time in seconds

Figure 3.11: Metric 55 - Example Plot for Other Metrics

3.6.1 First Approach: Regular vs. Irregular Waveforms

The first approach was to look for waveform metrics that were regular. With
the help of the spectrogram, it is possible to extract an array of frequency peaks
from a time series array of a metric.

If the array of frequency peaks has only a few entries, the time series array
can be considered as a regular waveform. Thus, all time series array are called
regular if they have less than four frequency components. The network metric
0 with the four parameters application ’ft’, input ’X’, node ID 0 and run ID
0 is an example of a regular waveform (Figure 3.12). In the frequency repre-
sentation, it can be seen that the graph has three frequency peaks (Figure 3.13).

['ft', 'X', 0, 0, 61, 'hwintr_count procstat’, 'raw timeseries']

35000

30000

25000

metric value

20000

15000

T T
0 100 200 300 400 500
time in seconds

Figure 3.12: Metric 61 - Example Plot for Regular Waveform (Time Domain)

20

['ft, 'X', 0, 0, 61, 'hwintr_count procstat', 'spectrogram + peaks']

amplitude

T T T
0 100 200 300 400 500
frequency

Figure 3.13: Metric 61 - Example Plot for Regular Waveform (Frequency Do-
main)

However, if the array involves multiple entries, the time series array will have
many different overlayed frequency components and will therefore be irregular.
An example for an irregular waveform of a time series array is the metric 562
with the parameters application ’ft’, input X’, node ID 0 and run ID (Fig-
ure 3.14). The graph has more than three frequency components, which can be
seen in the frequency representation (Figure 3.15).

['ft', 'X', 0, 0, 562, 'user_procstat’, 'raw timeseries']

3225 A

3200

metric value

w

=

-~

w
L

T T
100 200 300 400 500
time in seconds

o

Figure 3.14: Metric 562 - Example Plot for Irregular Waveform (Time Domain)

['ft', 'X', 0, 0, 562, 'user_procstat', 'spectrogram + peaks']

1.0 A
[1¥]
h=l
=
= 0.5
m

0.0 = T T L T T

0 100 200 300 400 500

frequency

Figure 3.15: Metric 562 - Example Plot for Irregular Waveform (Frequency
Domain)

21

The frequency of HPC monitoring data should be easier to investigate using
regular waveform metrics. But unfortunately, it was discovered that depending
on the parameter, the network metric 0 has more than 3 entries for the array of
frequency peaks, and that this metric is actually a good metric for the analysis
of frequencies. The problem is that different applications may produce differ-
ent waveform plots for the same metric, of which some are regular while others
are irregular. Therefore this approach is not useless, but it cannot be used for
sorting out metrics with waveform. Instead, this approach is used to compare
the applications.

3.6.2 Second Approach: Majority Waveform Metrics

The second approach used was finding metrics consisting of the most waveform
characteristic time series arrays because these are the metrics that are considered
to be most suitable for investigating the frequency of HPC monitoring data. The
metrics which are selected for this purpose are those that consist of more than
95 percent waveform time series.

3.7 Code Implementation

In order to generate the statistics, a code in the Python environment was cre-
ated. A file called metricGroups.py, that gives an output of 4 different tables as
CSV files and also the plots of the metrics, was written. At the beginning, ar-
rays for all applications, input sizes and metrics were initialised according to the
data from the Taxonomist data set (see Section 3.3). With the aid of for-loops,
the program is executed over all arrays as well as over every node ID and run ID.

The Python CSV Module was used to create CSV files. The plots were dis-
played using matplotlib.pyplot. As mentioned in Section 3.2, spectrogram from
the SciPy module was used to visualise the spectrogram.

To extract the metric groups, the time series arrays were separated using
if statements with the respective conditions. For each group, a default dict
was created from the collection module to count the number of metric groups
occurring in the metric, which was later used to calculate different values.

22

The following code has been implemented for extracting the metric groups.

zero constant metrics
if all(x == 0 for x in timeseries):
zero_dict [metric_id] += 1

mon—-zero constant metrics
elif all(x == timeseries[120] for x in timeseries):
constant_dict [metric_id] += 1

increasing monotonic metrics
elif all(x <=y for x, y in zip(timeseries, timeseries[1:])):
increasing_monotonic_dict[metric_id] += 1

decreasing monotonic metrics
elif all(x >= y for x, y in zip(timeseries, timeseries[1:])):
decreasing_monotonic_dict[metric_id] += 1

wave form metrics
elif len(peaks) > 1 or (len(peaks) == 1 and peaks[0] != 1):
waveform_dict [metric_id] += 1

other metrics
else:
other_dict[metric_id] += 1

In addition, a Python file called WAVfileConverter.py was created for the
conversion of a WAV file. With the help of the Python file, a WAV file can
be displayed visually by first converting it into an array. This array is then
displayed in time series and frequency representations. The purpose of this
programme is to compare the system metrics with real sound.

23

Chapter 4

Results

4.1 Overview of Metric Groups

The following table contains percentage of each metric group over all metrics.
The percentages reported are calculated in terms of the total number of time
domain arrays produced for each metric. For each metric, a total of 4728 time
domain arrays can be constructed by combining all different possibilities of
applications, inputs, node IDs and run IDs parameters. The metrics are listed
with leading metric ID, as it is defined in the Taxonomist data. Metrics might
be grouped disregarding the metric ID ordering for readability. The table was
divided up into multiple tables based on the subgroup of the conceptual group
for better illustration in the document (Table 4.1 - 4.15). In addition, the first
column ’Metric ID’ was abbreviated as 'ID’.

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
prefixl: AR NIC_NETMON_ORB_EVENT_CNTR_REQ || constant | constant | monotonic | monotonic
prefix2: AR_NIC_RSPMON_PARB_EVENT_CNTR % % % % % %

0 | prefix]_FLITS metric_set_nic 0% 0% 0% 0% 95.73% | 4.27%
1 | prefix]_ PKTS metric_set_nic 0% 0% 0% 0% 94.97% | 5.03%
2 | prefix] STALLED _metric_set_nic 0.21% 0% 0% 0% 94.5% | 5.29%
3 | prefix2. AMO_BLOCKED _metric_set_nic 0% 0% 0% 0% 97.65% | 2.35%
4 prefix2. AMO_FLITS _metric_set_nic 0% 0% 0% 0% 96.11% | 3.89%
5 prefix2. AMO_PKTS _metric_set_nic 0% 0% 0% 0% 96.17% | 3.83%
6 | prefix2. BTE_RD_BLOCKED _metric_set_nic 76.35% | 0% 0% 0% 23.08% | 0.57%
7 | prefix2 BTE_RD_FLITS metric_set_nic 18.44% | 0% 0.04% 0.04% 77.35% | 4.12%
8 | prefix2. BTE_RD_PKTS metric_set_nic 18.44% | 0% 0.04% 0.04% 77.35% | 4.12%
9 | prefix2 IOMMU_BLOCKED _metric_set_nic 0% 0% 0% 0% 97.44% | 2.56%
10 | prefix2. IOMMU_FLITS metric_set_nic 0% 0% 0% 0% 97.46% | 2.54%
11 | prefix2. IOMMU_PKTS_metric_set_nic 0% 0% 0% 0% 97.46% | 2.54%
12 | prefix2_PI_FLITS metric_set_nic 0% 0% 0% 0% 96.21% | 3.79%
13 | prefix2_ PI_PKTS_metric_set_nic 0% 0% 0% 0% 96.7% | 3.3%

14 | prefix2_ PI_STALLED _metric_set_nic 0% 0% 0% 0% 96.17% | 3.83%
15 | prefix2. WC_BLOCKED _metric_set_nic 17.77% | 0% 0% 0% 79.93% | 2.31%
16 | prefix2 WC_FLITS metric_set_nic 17.77% | 0% 0% 0% 79.65% | 2.58%
17 | prefix2. WC_PKTS_metric_set_nic 17.77% | 0% 0% 0% 79.65% | 2.58%

Table 4.1: Network - NIC (Network Interface Controller)

24

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave | Other
constant | constant | monotonic | monotonic
% % % % % %
37 | RDMA nrx_cray_aries_r 100.0% | 0% 0% 0% 0% 0%
38 | RDMA rx_bytes_cray_aries_r || 100.0% | 0% 0% 0% 0% 0%
Table 4.2: Network - RDMA (Remote Direct Memmory Access)
ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %
39 | SMSG _nrx_cray_aries_r 0% 0% 0% 0% 100.0% | 0%
40 | SMSG_ntx_cray_aries_r 0% 0% 0% 0% 100.0% | 0%
41 | SMSG_rx_bytes_cray_ariesr || 91.9% 0% 0.04% 0.02% 7.23% | 0.8%
42 | SMSG_tx_bytes_cray_aries_r || 91.9% 0% 0.04% 0.02% 7.23% | 0.8%
Table 4.3: Network - SMSG (Short Message Service Gateway)
ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
64 | ipogif0_rx_bytes_cray_ariesr || 21.19% | 0% 0.13% 0.06% 73.63% | 4.99%
65 | ipogif0_tx_bytes_cray_ariesr || 21.09% | 0% 0.13% 0.08% 73.5% | 5.2%
Table 4.4: Network - IPoGIF (IP over Generic Fabric Interface)
ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %
55 | current_freemem_cray_ariesr || 0% 0% 0% 0% 15.99% | 84.01%
56 | energy(J)-cray_aries_r 0% 0% 0% 0% 99.6% | 0.4%
57 | freshness_cray_aries_r 0% 3.0% 0% 0% 96.21% | 0.78%
550 | power(W)_cray_aries_r 0% 0.27% 0.06% 0% 93.23% | 6.43%
Table 4.5: Network - Other Metrics Including Energy and Power
ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %
71 | loadavg_5min(x100)_cray_aries_r 0% 0.06% 91.62% 3.76% 0.21% | 4.34%
72 | loadavg_ latest(x100)_cray_aries_r 0% 0% 45.85% 3.34% 1.9% 48.9%
73 | loadavg_running_processes_cray_aries_r || 0% 37.61% | 0.08% 0.15% 59.31% | 2.86%
74 | loadavg_total_processes_cray_aries_r 0% 100.0% | 0% 0% 0% 0%
Table 4.6: Network - LOADAVG
ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave | Other
constant | constant | monotonic | monotonic
% % % % % %
18 | Active(anon)_meminfo 0% 43.02% 48.96% 0% 7.7% | 0.32%
19 | Active(file)_meminfo 0% 100.0% | 0% 0% 0% 0%
20 | Active_meminfo 0% 43.02% | 48.96% 0% 7.7% | 0.32%
29 | Inactive(anon) meminfo || 0% 72.14% | 27.81% 0.04% 0% 0%
30 | Inactive(file) meminfo 0% 100.0% | 0% 0% 0% 0%
31 | Inactive_meminfo 0% 72.14% | 27.81% 0.04% 0% 0%

Table 4.7: Memory (MEMINFO) - Active/Inactive

25

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave | Other
constant | constant | monotonic | monotonic
% % % % % %

25 | HugePages Free meminfo | 100.0% | 0% 0% 0% 0% 0%

26 | HugePages Rsvd_meminfo || 100.0% | 0% 0% 0% 0% 0%

27 | HugePages Surp_ meminfo || 0% 100.0% | 0% 0% 0% 0%

28 | HugePages_Total meminfo || 0% 100.0% | 0% 0% 0% 0%

Table 4.8: Memory (MEMINFO) - Huge Pages (Memory Pages Greater Than
Default)

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %
21 | AnonPages_meminfo 0% 47.48% | 38.37% 0% 7.83% | 6.32%
22 | Cached_meminfo 0% 69.31% | 30.69% 0% 0% 0%
23 | CommitLimit_meminfo 0% 100.0% | 0% 0% 0% 0%
24 | Committed_AS_meminfo || 0% 64.57% | 35.43% 0% 0% 0%
32 | KernelStack_meminfo 0% 100.0% | 0% 0% 0% 0%
33 | Mapped_meminfo 0% 49.6% 50.4% 0% 0% 0%
34 | MemFree_meminfo 0% 0% 0% 0% 16.16% | 83.84%
35 | Mlocked_meminfo 0% 100.0% | 0% 0% 0% 0%
36 | PageTables_meminfo 0% 0% 100.0% 0% 0% 0%
43 | SReclaimable_meminfo 0% 0% 0% 100.0% 0% 0%
44 | SUnreclaim_meminfo 0% 0% 0% 9.56% 7.8% 82.64%
45 | Shmem_meminfo 0% 69.31% | 30.69% 0% 0% 0%
46 | Slab_meminfo 0% 0% 0% 9.56% 7.59% | 82.85%
47 | Unevictable_meminfo 0% 100.0% | 0% 0% 0% 0%
48 | VmallocChunk_meminfo || 0% 100.0% | 0% 0% 0% 0%
49 | VmallocUsed_meminfo 0% 100.0% | 0% 0% 0% 0%

Table 4.9: Memory (MEMINFO) - Other Metrics Including Cache and Shared
Memory

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave | Other
constant | constant | monotonic | monotonic
50 | allocstall_vmstat 100.0% | 0% 0% 0% 0% 0%
51 | compact_blocks_moved_vmstat 100.0% | 0% 0% 0% 0% 0%
compact_pagemigrate_failed_vmstat || 100.0% | 0% 0% 0% 0% 0%
53 | compact_pages_moved_vmstat 100.0% | 0% 0% 0% 0% 0%
60 | htlb_buddy_alloc_success_vmstat 100.0% | 0% 0% 0% 0% 0%

Table 4.10: Memory (VMSTAT) - Various Virtual Memory Statistics

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave | Other
constant | constant | monotonic | monotonic
% % % % % %

67 | kswapd_high_wmark hit_quickly vmstat || 100.0% | 0% 0% 0% 0% 0%

68 | kswapd_inodesteal_vmstat 100.0% | 0% 0% 0% 0% 0%

69 | kswapd low_wmark hit_quickly vmstat || 100.0% | 0% 0% 0% 0% 0%

70 | kswapd_steal_vmstat 100.0% | 0% 0% 0% 0% 0%

Table 4.11: Memory (VMSTAT) - kswapd (Kernal Swap Daemon) Memory
Management

26

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %

76 | nr_active_anon_vmstat 0% 43.02% | 49.03% 0% 7.7% 0.25%
77 | nr_active_file_vmstat 0% 100.0% | 0% 0% 0% 0%

78 | nr_anon_pages_vistat 0% 47.44% | 38.43% 0% 7.85% | 6.28%
79 | nr_dirty_background_threshold_vmstat || 0% 0% 0% 0% 16.16% | 83.84%
80 | nr_dirty_threshold_vmstat 0% 0% 0% 0% 16.14% | 83.86%
81 | nr_file_pages_vmstat 0% 69.31% | 30.69% 0% 0% 0%

82 | nr_free_pages_vmstat 0% 0% 0% 0% 16.14% | 83.86%
83 | nr_inactive_anon_vmstat 0% 72.14% | 27.81% 0.04% 0% 0%

84 | nr_inactive file vmstat 0% 100.0% | 0% 0% 0% 0%

85 | nr_isolated_anon vmstat 100.0% | 0% 0% 0% 0% 0%

86 | nr_isolated file vimstat 100.0% | 0% 0% 0% 0% 0%

87 | nr_kernel_stack_vmstat 0% 100.0% | 0% 0% 0% 0%

88 | nr_mapped_vmstat 0% 49.6% 50.4% 0% 0% 0%

89 | nr_mlock_vmstat 0% 100.0% | 0% 0% 0% 0%

90 | nr_page_table_pages_vmstat 0% 0% 100.0% 0% 0% 0%

91 | nr_shmem_vmstat 0% 69.31% | 30.69% 0% 0% 0%

92 | nr_slab_reclaimable_vmstat 0% 0% 0% 100.0% 0% 0%

93 | nr_slab_unreclaimable_vmstat 0% 0% 0% 9.56% 7.8% 82.64%
94 | nr_unevictable_vmstat 0% 100.0% | 0% 0% 0% 0%

Table 4.12: Memory (VMSTAT) - NR Metrics
ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %

95 | numa foreign vmstat 100.0% | 0% 0% 0% 0% 0%
96 | numa_hit_vmstat 0% 0% 0% 0% 90.99% | 9.01%
97 | numa_interleave vmstat || 100.0% | 0% 0% 0% 0% 0%
98 | numa_local vmstat 0% 0% 0% 0% 90.99% | 9.01%
99 | numa_ miss_vmstat 100.0% | 0% 0% 0% 0% 0%
100 | numa_other_vmstat 100.0% | 0% 0% 0% 0% 0%

Table 4.13: Memory (VMSTAT) - NUMA (Non-Uniform Memory Access)

27

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %

101 | pageoutrun_vmstat 100.0% | 0% 0% 0% 0% 0%
534 | pgactivate_vmstat 99.96% | 0% 0% 0% 0.04% | 0%
535 | pgalloc_.dma32_vmstat 98.1% 0% 0% 0% 1.02% | 0.89%
536 | pgalloc_normal_vmstat 0% 0% 0% 0% 95.24% | 4.76%
537 | pgdeactivate_vmstat 100.0% | 0% 0% 0% 0% 0%
538 | pgfault_vmstat 0% 0% 0% 0% 78.26% | 21.74%
539 | pgfree_vmstat 0% 0% 0% 0% 98.98% | 1.02%
540 | pgmajfault_vmstat 100.0% | 0% 0% 0% 0% 0%
541 | perefil_dma32_vmstat 100.0% | 0% 0% 0% 0% 0%
542 | pgrefill normal vmstat 100.0% | 0% 0% 0% 0% 0%
543 | pgrotated_vmstat 100.0% | 0% 0% 0% 0% 0%
544 | pgscan_direct_dma32_vmstat 100.0% | 0% 0% 0% 0% 0%
545 | pgscan_direct_normal_vmstat 100.0% | 0% 0% 0% 0% 0%
546 | pgscan_kswapd_dma32_vmstat 100.0% | 0% 0% 0% 0% 0%
547 | pgscan_kswapd_normal_vmstat 100.0% 0% 0% 0% 0% 0%
548 | pgsteal_dma32_vmstat 100.0% | 0% 0% 0% 0% 0%
549 | pgsteal normal vmstat 100.0% | 0% 0% 0% 0% 0%
554 | slabs_scanned_vmstat 100.0% | 0% 0% 0% 0% 0%
558 | unevictable_pgs_culled_vmstat 100.0% | 0% 0% 0% 0% 0%
559 | unevictable_pgs_mlocked_vmstat 100.0% | 0% 0% 0% 0% 0%
560 | unevictable_pgs munlocked vmstat || 100.0% | 0% 0% 0% 0% 0%
561 | unevictable_pgs_rescued_vmstat 100.0% 0% 0% 0% 0% 0%

Table 4.14: Memory (VMSTAT) - Other Metrics Including Slab and Page

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
54 | context_switches_procstat || 0% 0% 0% 0% 91.05% | 8.95%
58 | guest_nice_procstat 100.0% | 0% 0% 0% 0% 0%
59 | guest_procstat 100.0% | 0% 0% 0% 0% 0%
61 | hwintr_count_procstat 0% 0% 0% 0% 97.38% | 2.62%
62 | idle_procstat 60.93% | 0% 0% 0.02% 38.87% | 0.17%
63 | iowait_procstat 99.85% | 0% 0% 0% 0.02% | 0.13%
66 | irq-procstat 100.0% | 0% 0% 0% 0% 0%
75 | nice_procstat 100.0% | 0% 0% 0% 0% 0%
551 | processes_procstat 100.0% | 0% 0% 0% 0% 0%
552 | procs_blocked_procstat 100.0% | 0% 0% 0% 0% 0%
553 | procs_running_procstat 0% 22.91% | 0% 0.06% 74.64% | 2.39%
555 | softirq_count_procstat 0% 0% 0% 0% 99.89% | 0.11%
556 | softirq_procstat 62.99% | 0% 0.02% 0.06% 35.6% | 1.33%
557 | sys_procstat 0% 0% 0% 0% 99.79% | 0.21%
562 | user_procstat 0% 0% 0% 0% 100.0% | 0%

Table 4.15: CPU Usage (PROCSTAT) - Various Kernel / System Statistics

In this table there should be 563 entries, since there is one entry for each
metric. But as already mentioned, the per core metrics are omitted, therefore
it now has 131 metrics, as well as 131 entries. By multiplying 4726 by 563,
we can calculate a total of 2,661,864 time series arrays of all metrics, including
per core metrics, together. Out of these a total of 69.3% time series arrays
are zero constant metrics and 4.52% are non-zero constant metrics. It also has
1.61% monotonic metrics that are increasing and 0.42% monotonic metrics that
are decreasing. Furthermore, 22.53% time series arrays have a waveform. The
remaining time series arrays were classified to the other group.

28

Total Time Series Arrays \ 2661864 ‘
Zero constant % 69.3%
Nonzero constant % 4.52%
Increasing monotonic % | 1.61%
Decreasing monotonic % | 0.42%
Wave % 22.53%
Other % 1.62%

Table 4.16: Percentage of Each Group over all Metrics

According to the percentage of metric groups calculated over all time series
arrays, more than half of the data cannot be used for a frequency based inves-
tigation because the majority of the metrics are zero constants and therefore
have no frequency.

Caution: The Table 4.16 is the only table where per_core metrics were not
excluded. This was done to gain an overview of the whole dataset of the Tax-
onomist. Most of the zero constant metrics come from the per_core metrics
which are a part of the PROCSTAT group. They are excluded from other
tables.

4.1.1 Percentage of Metric Groups for Each Conceptual
Group

The calculated percentages of the metric groups in each conceptual group are
presented in this section. The percentages are based on the number of time
series arrays in each Conceptual Group, which is listed in the last column.

Metric Group Network | MEMINFO | VMSTAT | CPU usage Total Time
Series Arrays

Zero constant 11.82% 3.99% 67.76% 16.43% 237093
Nonzero constant 5.54% 60.13% 33.43% 0.9% 120341
Increasing Monotonic 15.27% 48.56% 36.17% 0.0% 42753
Decreasing Monotonic 3.18% 50.41% 46.35% 0.06% 11181
Waveform 59.31% 1.56% 14.98% 18.1% 166471
Others 24.93% 29.18% 44.08% 1.81% 41529

Table 4.17: Conceptual Groups

By looking at the Table 4.17, the most waveform metrics come from the
network group and the most constant metrics, rounded up to 70%, come from
the memory group.

29

4.1.2 Metric Characteristics of Application Execution

To compare the applications, the percentages of the metric groups in the ap-
plication were calculated (Table 4.18). In addition, the approach of dividing
regular and irregular waveforms was used here. As mentioned, the time series
arrays that have less than four peaks in the frequency representation are clas-
sified as regular. In the opposite case, those with more than three peaks are
classified as irregular.

Application || Zero Nonzero | Increasing | Decreasing | Regular Irregular | Other | Total Time
constant | constant | monotonic | monotonic | Waveform | Waveform Series
% % % % % % % Arrays
FT 38.25% | 21.72% | 5.08% 1.56% 17.09% 9.43% 6.88% | 47160
MG 37.04% | 20.96% | 5.63% 2.04% 4.08% 23.45% 6.8% | 47160
SP 37.28% | 24.08% | 2.62% 2.37% 9.51% 17.5% 6.65% | 47160
LU 38.61% 18.4% 8.14% 1.54% 9.27% 18.93% 5.12% | 47160
BT 37.38% | 24.13% | 2.78% 2.41% 11.32% 15.84% 6.13% | 47160
CG 37.4% 24.22% | 2.64% 2.32% 9.08% 18.09% 6.25% | 47160
miniGhost 38.8% 21.92% | 4.53% 1.55% 10.02% 16.14% 7.04% | 72312
miniAMR 37.55% 15.11% 11.19% 1.58% 2.32% 23.32% 8.92% | 72312
miniMD 39.28% 16.14% 10.14% 1.69% 8.74% 15.84% 8.18% | 72312
Kripke 39.93% 13.86% 12.96% 1.66% 2.97% 20.39% 8.24% | 72312
CoMD 38.26% 18.88% | 4.25% 1.55% 15.13% 21.33% 0.6% | 47160

Table 4.18: Percentage of Each Metric Group From Each Application

Most HPC applications produce irregular waveform in their system metrics.
FT is the only application with more regular waveform metrics than irregular
waveform metrics. The application CoMD generates more system metrics with
waveform with about 35% compared to all other applications, which have on
average about 25% waveform system metrics.

4.2 Metrics with Majority Waveform

All the majority waveform metrics are listed in a table. This table was also
divided up into multiple tables based on the subgroup of the conceptual groups
for better illustration in the document (Table 4.19 - 4.23). In addition, the first
column ’Metric ID’ was abbreviated as 'ID’.

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other

prefix:AR_NIC_NETMON_ORB_EVENT_CNTR constant | constant | monotonic | monotonic

prefix2: AR_.NIC_RSPMON_PARB_EVENT_CNTR || % % % % % %
0 | prefix] REQ_FLITS metric_set_nic 0% 0% 0% 0% 95.73% | 4.27%
3 prefix2. AMO_BLOCKED _metric_set_nic 0% 0% 0% 0% 97.65% | 2.35%
4 | prefix2_ AMO_FLITS metric_set_nic 0% 0% 0% 0% 96.11% | 3.89%
5 | prefix2 AMO_PKTS _metric_set_nic 0% 0% 0% 0% 96.17% | 3.83%
9 | prefix2 IOMMU_BLOCKED _metric_set_nic 0% 0% 0% 0% 97.44% | 2.56%
10 | prefix2 IOMMU_FLITS metric_set_nic 0% 0% 0% 0% 97.46% | 2.54%
11 | prefix2 IOMMU_PKTS _metric_set_nic 0% 0% 0% 0% 97.46% | 2.54%
12 | prefix2_PI_FLITS metric_set_nic 0% 0% 0% 0% 96.21% | 3.79%
13 | prefix2_ PI_PKTS_metric_set_nic 0% 0% 0% 0% 96.7% | 3.3%
14 | prefix2_ P.STALLED _metric_set_nic 0% 0% 0% 0% 96.17% | 3.83%

Table 4.19: Majority Waveform Network - NIC (Network Interface Controller)

30

ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %
40 | SMSG_ntx_cray_aries_r || 0% 0% 0% 0% 100.0% | 0%

Table 4.20: Majority Waveform Network - SMSG (Short Message Service Gate-

way)
ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %
56 | energy(J)_cray ariesr || 0% 0% 0% 0% 99.6% | 0.4%
57 | freshness_cray_ariesr || 0% 3.0% 0% 0% 96.21% | 0.78%

Table 4.21: Majority Waveform Network - Other Metrics Including Energy and

Power
ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %
536 | pgalloc_normal vmstat || 0% 0% 0% 0% 95.24% | 4.76%
539 | pgfree_vmstat 0% 0% 0% 0% 98.98% | 1.02%

Table 4.22: Majority Waveform VMSTAT - Other Metrics Including Slab and

Page
ID | Metric Name Zero Nonzero | Increasing | Decreasing | Wave Other
constant | constant | monotonic | monotonic
% % % % % %
61 | hwintr_count_procstat || 0% 0% 0% 0% 97.38% | 2.62%
555 | softirq_count_procstat || 0% 0% 0% 0% 99.89% | 0.11%
557 | sys_procstat 0% 0% 0% 0% 99.79% | 0.21%
562 | user_procstat 0% 0% 0% 0% 100.0% | 0%

Table 4.23: Majority Waveform CPU Usage - Various Kernel / System Statistics

Without considering the per core metrics, a total of 20 metrics were found
which consist of more than 95% waveform. In addition, it can be observed that
the majority of these metrics are network metrics.

4.2.1 Time Domain Plots of Majority Waveform

The following Figures (Figure 4.1 - 4.20) are time series plots for the selected
metrics, the so-called majority waveform metrics. The time series arrays that
have the parameters application ’ft’, input ’X’, node ID 0 and run ID 0 are the
only ones that have been used for the graphical representation of these metrics,
which will be compared to the real sound in the next section.

31

metric value

metric value

metric value

metric value

['ft', 'X", 0, 0, 0, "AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_FLITS_metric_set_nic', 'raw timeseries']

les
4
3
2
1
0
[100 200 300 400 500
time in seconds
Figure 4.1: Metric 0
1e7 ['ft', 'X", 0, 0, 3, "AR_NIC_RSPMON_PARB_EVENT_CNTR_AMO_BLOCKED_metric_set_nic', 'raw timeseries']
2.0
15
1.0
0.5
0.0
[} 100 200 300 400 500
time in seconds.
Figure 4.2: Metric 3
1le8 ['ft", 'X", 0, 0, 4, "AR_NIC_RSPMON_PARB_EVENT_CNTR_AMO_FLITS_metric_set_nic', 'raw timeseries']
4
34
24
14
0
[100 200 300 400 500
time in seconds
Figure 4.3: Metric 4
1e8 X', 0, 0, 5, '"AR_NIC_RSPMON_PARB_EVENT_CNTR_AMO_PKTS_metric_set_nic', 'raw timeseries']
0.8
0.6
0.4
0.2
0.0
0 100 200 300 400 500

time in seconds.

Figure 4.4: Metric 5

32

metric value

metric value

metric value

metric value

['ft', 'X", 0, 0, 9, 'AR_NIC_RSPMON_PARB_EVENT_CNTR_IOMMU_BLOCKED_metric_set_nic', 'raw timeseries']

600000 -
400000
200000 -
04
0 100 200 300 400 500
time in seconds
Figure 4.5: Metric 9
['ft", 'X'. 0, 0, 10, 'AR_NIC_RSPMON_PARB_EVENT CNTR_IOMMU_FLITS metric_set _nic', 'raw timeseries']
500000 -
400000 A
300000 -
200000 1
100000
0
0 100 200 300 400 500
time in seconds
Figure 4.6: Metric 10
, 0, 0,11, 'AR_NIC_RSPMON_PARB_EVENT_CNTR_IOMMU_PKTS_metric_set_nic', 'raw timeseries']
500000 o
400000 A
300000 -
200000 4
100000 4
o
0 100 200 300 400 500
time in seconds
Figure 4.7: Metric 11
1e8 ['ft’, 'X*, 0, 0, 12, 'AR_NIC_RSPMON_PARB_EVENT_CNTR_PI_FLITS metric_set_nic', 'raw timeseries']
4
34
2
14
0
[100 200 300 400 500

time in seconds

Figure 4.8: Metric 12

33

metric value

metric value

metric value

metric value

, 0,0,13, 'AR_NIC_RSPMON_PARB_EVENT_CNTR_PI_PKTS_metric_set_nic', 'raw timeseries']

leg
125
1.00
0.75
050
025
0.00
[} 100 200 300 400 500
time in seconds
Figure 4.9: Metric 13
1e7 ['ft', 'X', 0, 0, 14, 'AR_NIC_RSPMON_PARB_EVENT CNTR Pl STALLED metric_set_nic', 'raw timeseries']
2.0
151
1.0
0.5
0.0
[} 100 200 300 400 500
time in seconds.
Figure 4.10: Metric 14
['ft’, "X, 0, 0, 56, 'energy(])_cray_aries_r', 'raw timeseries']
2801
260
240
22014
0 100 200 300 400 500
time in seconds
Figure 4.11: Metric 56
['ft’, 'X*, 0, 0, 57, 'freshness_cray_aries_r', 'raw timeseries']
11.0 {
10.0
954 v
9.0 1
0 100 200 300 400 500

time in seconds.

Figure 4.12: Metric 57

34

metric value

metric value

metric value

metric value

['ft', 'X", 0, 0, 61, 'hwintr_count_procstat', 'raw timeseries']

35000
30000
25000
20000
15000
[} 100 200 300 400 500
time in seconds
Figure 4.13: Metric 61
['ft', X', 0, 0, 536, 'pgalloc_normal_vmstat', 'raw timeseries']
60
50
40
30
20
10
[
0 100 200 300 400 500
time in seconds
Figure 4.14: Metric 536
['ft", X", 0, 0, 539, 'pgfree_vmstat', 'raw timeseries']
400 4
300
200
100 4
o
0 100 200 300 400 500
time in seconds
Figure 4.15: Metric 539
['ft’, "X, 0, 0, 39, 'SMSG_nrx_cray_aries_r', 'raw timeseries']
1.0
0.8
0.6
0.4
0.2
0.0
0 500

time in seconds.

Figure 4.16: Metric 39

35

metric value

metric value

metric value

metric value

['ft

, 0, 0, 40, 'SMSG_ntx_cray_aries_r', 'raw timeseries']

1.0
0.8 4
0.6
0.4
0.2
0.0
[} 100 200 300 400 500
time in seconds
Figure 4.17: Metric 40
['ft', 'X", 0, 0, 555, 'softirg_count_procstat’, 'raw timeseries']
22000
20000
18000
16000
100 200 300 400 500
time in seconds
Figure 4.18: Metric 555
['ft', 'X", 0, 0, 557, 'sys_procstat’, 'raw timeseries']
12
10
8
6
4
2
0
0 100 200 300 400 500
time in seconds
Figure 4.19: Metric 557
['ft', 'X', 0, 0, 562, 'user_procstat', 'raw timeseries']
3220 4
3210 4
3200 4
3190 4
3180 4
3170 4
[100 200 300 400 500

time in seconds

Figure 4.20: Metric 562

36

4.2.2 Similarity of HPC Waveforms to Actual Sound

This section contains the results gained from the analysis of the similarity be-
tween waveform systems metrics and sound, speech and music.

In order to compare the HPC monitoring data with real sound, the first
step was to create a method that receives a WAV file as input parameter and
converts it to an array. This array is visualised in time domain as well as in
frequency representation with the frequency peaks. The idea was to compare the
frequency peaks of the sound with the peaks of the majority waveform metrics.
The images below represent a conversion example of a piano pop WAV file [10]
into time domain(Figure 4.21) and frequency domain (Figure 4.22) plots.

PianoPop_140BMP_Instrument

1.0+

0.8 1

0.6

value

0.4 4

0.2 4

0.0 1

T T T
0 200 400 600 800 1000
time in seconds

Figure 4.21: Piano Pop (Time Domain)

['PianoPop_140BMP_Instrument', 'spectrogram + peaks']

N N w
o w S
L L L

amplitude
=
w
|

10 1

. 1Y t.Hf.

T T T T
o 2000 4000 6000 8000 10000
frequency

Figure 4.22: Frequency Domain Representation

37

However, there was a problem: the WAV file contains more samples per sec-
ond than our time series data, whereas the sampling frequency of our dataset
was 1/s, while normal sound sampling is done at multiple 1000/s. Without a
large number of data transformations, the comparison between the frequency
peak values of the arrays makes no sense.

But if the sampling frequency is disregarded, a certain similarity with the
waveform of the metric user_procstat becomes visible (Figure 4.23).

PianoPop_140BMP_Instrument

['ft', 'X", 0, 0, 562, 'user_procstat’, 'raw timeseries']

3220 4

3210 4

3200 1

metric value

3190 “
3180 1

3170 1

0 20 40 60 80 100 120 140

o 200 160 600 800 1000 time in seconds

fime in seconds

(a) Piano Pop (b) Metric 562

Figure 4.23: Visual Similarity of HPC Waveform to Actual Sound

Hence, a new approach was to find the sound waves produced by different
instruments and compare these views with the plots of the 20 most waveform.
In the following Figure (4.24) it can be observed that there is a certain similarity
between the metric energy(J)_cray_aries_r and the waveform of an oboe.

Flute ’\/\/\/\J\/\/\
Clarinet W ['ft', 'X", 0, 0, 56, 'energy(])_cray_aries_r', 'raw timeseries']

Saxophone

metric value
Y
=
S

o 25 50 75 100 125 150 175 200
time in seconds

(b) Metric 56

Playing the same note

(a) Sound Waves of Instruments [15]

Figure 4.24: Similarity of Instruments with Metric 56

Unfortunately, this was also the only similarity regarding the found sound
waves of instruments.

38

Chapter 5

Discussion

This section summarizes the findings and insights gained through this project.
Statistical properties, majority waveform, regular or irregular waveform, and
sound similarity are all aspects of this work.

5.1 Statistical Properties of System Metrics

The majority of all system metrics in the dataset were found to be zero-constant.
Most of the zero-constant metrics come from the per_core metrics of the PROC-
STAT group. Furthermore, the memory groups (MEMINFO and VMSTAT)
contribute the most to the constant system metrics category and the waveform
category receives the most contributions from the network group.

Majority of Zero Constant Metrics That the majority of the data inside
the dataset is zero constant, is not good news for anyone who wants to analyze
the dataset, because a lot of the metrics are useless. Most of the zero constant
metrics come from the per_core metrics and have to be excluded for meaningful
analysis and statistical results (as done in this project).

5.2 Majority Waveform System Metrics

Most system metrics with waveform come from the network group, specifically
the subgroup Network Interface Controller. But also the network subgroups
SMSG, TPoGIF, and Energy and Power have high waveform shares. Other
metric groups only have specific individual system metrics with waveform, but
are otherwise mostly non-waveform. Examples of these are numa_hit and pgfree
from VMSTAT, and user_procstat from PROCSTAT. Every major conceptual
group (CPU, Memory, Network) contains at least some system metrics that have
waveform. In total, 20 system metrics were found that consistently produce time
series data with waveform. The time series data for these individual metrics
includes over 95% waveform, while other metrics do not always have waveform.

39

Network Group mostly Waveform It was expected that the Network
group of metrics has the most time series data with waveform, followed by
the PROCSTAT group. The nature of communication inside an application is
dynamic. It was also expected that the memory group has mostly constant met-
rics, because certain metrics such as requested memory do not change during
execution.

5.3 Regular and Irregular Waveform

System metrics that have less than 4 frequency components are called regular
waveform and those with more than 3 frequency components are called irregu-
lar waveform. Most HPC applications produce an irregular waveform in their
system metrics. FT is the only application that has more metrics with regu-
lar waveform than irregular waveform. The application CoMD generates more
system metrics with waveform (around 35%) compared to all other applications
(averaging at around 25%).

HPC Applications and different Waveform It was unexpected to find
that different applications produce different kinds of waveform. For example,
FT produces more regular waveform time series data than other applications.
This could be due to FT solving a numerical equation and using long distance
communication in repeating and cyclic patterns.

5.4 System Metric Similarity to Sound

Complex musical pieces have multiple frequency components and are more sim-
ilar to the definition of irregular waveform, and thus have similar characteristics
as most applications in the dataset with the exception of FT, which has more
regular waveform. The metric energy(J)_cray_aries_r is particularly similar to
a waveform of the sound produced by an oboe. The sampling frequency of our
dataset was 1/s, while normal sound sampling is done at multiple 1000/s. This
makes comparison beyond visual analysis difficult without a lot of data trans-
formations. However, if the sampling frequency is disregarded, the waveform of
the metric user_procstat has a certain similarity to the waveform of pop music
on the piano.

Specific Metric Similarity to Instruments It is disappointing that beyond
the current findings, no further similarities between system metrics and sound
could be found or investigated. But the results are encouraging enough to leave
space for future work.

40

Chapter 6

Conclusion

The main contribution of this thesis is a systematic analysis of system met-
rics from HPC monitoring data. The results exposed metric groups with similar
characteristics, such as being zero-constant or having waveform. To complement
the statistical analysis of metrics, this work also contains a conceptual overview
sorting metrics into the higher-level groups of CPU, memory, network, as well as
lower-level conceptual groups such as RDMA (Remote Direct Memory Access)
or NIC (Network Interface Controller). Additionally, the waveform character-
istics of applications were investigated, exposing different waveform depending
on the application (regular vs. irregular waveform). A small exploration of the
system metric to sound was also provided.

The findings and answers to the research questions include:

— Groups of metrics have been found based on statistical properties that
show, among other things, that the majority of system metrics are con-
stant zero.

— Some system metrics were found to have frequency and most metrics with
waveform come from the network group.

— The amount of frequency components inside the waveform of a system
metric can be dependent on the executed HPC application.

— Some system metrics are very similar to specific musical instruments.

41

6.1 Future Work

There is still room for optimization and future work. Some of them are men-
tioned below:

For example, an audio player could be created for monitoring data by treat-
ing the data as if it were already sound. The challenge here would be on how
this data could actually be listened to. Factors such as the scale and speed of
the sound play a role here, and therefore a further approach could perhaps be
to use audification for the investigation of HPC monitoring data which includes
wavelike-shape data.

In addition, if the ability to listen to data exists, a tool similar to Shazaam
could be developed that would be able to detect certain events and conditions,
including performance degradation and idle time by listening to the sounds of
the application.

Further looking at regular and irregular waveform could bring us better
understanding of the HPC monitoring data. Research could be done to find out
what the reasons and triggers are for some metrics being regular and others not,
or why some applications generate more regular waveform than others.

42

Bibliography

1]

[9]

[10]

Emre Ates, Ozan Tuncer, Ata Turk, Vitus J Leung, Jim Brandt, Manuel
Egele, and Ayse K Coskun. Artifact for Taxonomist: Application Detection
through Rich Monitoring Data [online]. Available: https://doi.org/10
.6084/m9.figshare.6384248.v1, [Accessed: September 14, 2021], 2018.

Emre Ates, Ozan Tuncer, Ata Turk, Vitus J Leung, Jim Brandt, Manuel
Egele, and Ayse K Coskun. Taxonomist: Application detection through
rich monitoring data. In Furopean Conference on Parallel Processing, pages

92-105. Springer, 2018.

NTi Audio. Fast Fourier Transformation FFT [online]. Available: https:
//www.nti-audio.com/de/service/wissen/fast-fourier-transform
ation-fft [Accessed: November 22, 2021].

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, D. Dagum,
R. Fatoohi, S. Fineberg, P. Frederickson, and T. Lakinski et al. The NAS
Parallel Benchmarks [online]. Technical report, 1994.

”Classical molecular dynamics proxy application”, README [online].
Available: https://github.com/ECP-copa/CoMD [Accessed: November
22, 2021].

Florian Dombois, Gerhard Eckel, Thomas Hermann, Andy Hunt, and
John G Neuhoff. The Sonification Handbook, 2011.

Duden. Network [online]. Available: https://www.duden.de/rechtschr
eibung/Network [Accessed: November 24, 2021], 2021.

J.M.K.C. Donev et al. Energy Education - Energy vs power [online]. Avail-
able: https://energyeducation.ca/encyclopedia/Energy_vs_power
[Accessed: November 28, 2021], September 2021.

Wikimedia Foundation. Spectrogram [online]. Available: https://en.wik
ipedia.org/wiki/Spectrogram [Accessed: November 22, 2021], October
2021.

Free-Loops.com. Free Piano Loops and Piano Sounds [online]. Available:
http://free-loops.com/free-loops-find.php?term=piano&page=2
[Accessed: November 5, 2021], November 2007.

43

https://doi.org/10.6084/m9.figshare.6384248.v1
https://doi.org/10.6084/m9.figshare.6384248.v1
https://www.nti-audio.com/de/service/wissen/fast-fourier-transformation-fft
https://www.nti-audio.com/de/service/wissen/fast-fourier-transformation-fft
https://www.nti-audio.com/de/service/wissen/fast-fourier-transformation-fft
https://github.com/ECP-copa/CoMD
https://www.duden.de/rechtschreibung/Network
https://www.duden.de/rechtschreibung/Network
https://energyeducation.ca/encyclopedia/Energy_vs_power
https://en.wikipedia.org/wiki/Spectrogram
https://en.wikipedia.org/wiki/Spectrogram
http://free-loops.com/free-loops-find.php?term=piano&page=2

[11]

[12]

[16]

[17]

[18]

GeeksforGeeks. Kernel in Operating System [online]. Available: https:
//wwu .geeksforgeeks.org/kernel-in-operating-system/ [Accessed:
November 28, 2021], July 2020.

Cody Henthorne, Ivica Ico Bukvic, Pardha S Pyla, and Eli Tilevich. Tun-
ing Complex Systems by Sonifying Their Performance Data. Technical
report, Department of Computer Science, Virginia Polytechnic Institute &
State ..., 2013.

Techopedia Inc. What is Cache Memory? [online. Available: https:
//wwu.techopedia.com/definition/6307/cache-memory [Accessed:
November 28, 2021], August 2016.

Techopedia Inc. What is shared Memory? [online]. Available: https:
//www.techopedia.com/definition/13279/shared-memory [Accessed:
November 28, 2021], December 2016.

The Travel Insider. What Makes Digital Music Good (or Bad) Qual-
ity?[online]. Available: http://blog.thetravelinsider.info/2014/
06/makes-digital-music-good-bad-quality.html [Accessed: Novem-
ber 24, 2021], June 2014.

ITWissen.info. Netzwerkkarte [online]. Available: https://www.itwiss
en.info/Netzwerkkarte-network-interface-controller-NIC.html

[Accessed: November 26, 2021], May 2019.

T. Jakobsche. ”Benchmark scheduling and communication behavior”. Mas-
ter Project, University of Basel, Faculty of Science, Department of Mathe-
matics and Computer Science, 2018.

Bodo Bauer Shen Feng Stefani Seibold Jorge Nerin, Terrehon Bowden. The
/proc Filesystem - The Linux Kernel documentation [online]. Available:
https://www.kernel.org/doc/html/latest/filesystems/proc.html
#meminfo [Accessed: November 24, 2021], October 1999.

Mathangi K. Load average: What is it, and what’s the best load average
for your Linux servers? [online]. Available: https://www.site24x7.com
/blog/load-average-what-is-it-and-whats-the-best-load-averag
e-for-your-linux-servers [Accessed: November 24, 2021}, 2020.

Mathangi K. Load [online]. Available: https://de.wikipedia.org/wik
i/Load [Accessed: November 24, 2021], April 2021.

73D Sn deterministic particle transport”, README [online]. Available:
https://github.com/LLNL/Kripke [Accessed: November 22, 2021].

Don Domingo Laura Bailey Marek Suchdnek, Milan Navratil. Non-uniform
memory access [online]. Available: https://access.redhat.com/docu
mentation/en-us/red_hat_enterprise_linux/6/html/performance_t
uning guide/s-memory-transhuge [Accessed: November 28, 2021], July
2018.

44

https://www.geeksforgeeks.org/kernel-in-operating-system/
https://www.geeksforgeeks.org/kernel-in-operating-system/
https://www.techopedia.com/definition/6307/cache-memory
https://www.techopedia.com/definition/6307/cache-memory
https://www.techopedia.com/definition/13279/shared-memory
https://www.techopedia.com/definition/13279/shared-memory
http://blog.thetravelinsider.info/2014/06/makes-digital-music-good-bad-quality.html
http://blog.thetravelinsider.info/2014/06/makes-digital-music-good-bad-quality.html
https://www.itwissen.info/Netzwerkkarte-network-interface-controller-NIC.html
https://www.itwissen.info/Netzwerkkarte-network-interface-controller-NIC.html
https://www.kernel.org/doc/html/latest/filesystems/proc.html#meminfo
https://www.kernel.org/doc/html/latest/filesystems/proc.html#meminfo
https://www.site24x7.com/blog/load-average-what-is-it-and-whats-the-best-load-average-for-your-linux-servers
https://www.site24x7.com/blog/load-average-what-is-it-and-whats-the-best-load-average-for-your-linux-servers
https://www.site24x7.com/blog/load-average-what-is-it-and-whats-the-best-load-average-for-your-linux-servers
https://de.wikipedia.org/wiki/Load
https://de.wikipedia.org/wiki/Load
https://github.com/LLNL/Kripke
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge

[23]

[24]

” Adaptive Mesh Refinement Mini-App”, README [online]. Available:
https://github.com/Mantevo/miniAMR [Accessed: November 22, 2021].

”MiniGhost Halo Exchange Mini-Application”, README [online]. Avail-
able: https://github.com/Mantevo/miniGhost [Accessed: November 22,
2021].

”MiniMD Molecular Dynamics Mini-App”, README [online]. Available:
https://github.com/Mantevo/miniMD. [Accessed: November 22, 2021].

Pacific Northwest Seismic Network. What is a spectrogram? [online]. Avail-
able: https://pnsn.org/spectrograms/what-is-a-spectrogram [Ac-
cessed: November 22, 2021].

David A. Rusling Nikos Drakos. The Kernel Swap Daemon (kswapd) [on-
line]. Available: http://www.science.unitn.it/~fiorella/guidelin
ux/tlk/node5.html [Accessed: November 28, 2021], 1996.

Vibration Research. What is a Spectrogram? - Signal Analysisonline].
Available: https://vibrationresearch.com/blog/what-is-a-spectro
gram/ [Accessed: November 26, 2021], October 2021.

Maarten Schenk. The Sound of Computing. Bachelor Thesis, University
of Basel, Faculty of Science, Department of Mathematics and Computer
Science, 2021.

Robert Sheldon. Remote Direct Memory Access (RDMA) [online]. Avail-
able: https://searchstorage.techtarget.com/definition/Remote-D
irect-Memory-Access [Accessed: November 26, 2021], November 2021.

Stackoverflow. What is active memory and inactive memory [online]. Avail-
able: https://stackoverflow.com/questions/18529723/what-is-a
ctive-memory-and-inactive-memory [Accessed: November 28, 2021],
August 2013.

Techopedia. What is a Central Processing Unit (CPU)? [online]. Available:
https://www.techopedia.com/definition/2851/central-processin
g-unit-cpu [Accessed: November 26, 2021], 2021.

Techopedia. What is an SMS Gateway (SMSG)? [online]. Available: ht
tps://www.techopedia.com/definition/2978/sms-gateway [Accessed:
November 26, 2021], 2021.

Techopedia. What is Virtual Memory (VM)? [online]. Available: https://
www.techopedia.com/definition/4773/virtual-memory-vm [Accessed:
November 26, 2021], 2021.

The SciPy community. scipy.signal.spectrogram - scipy v1.7.1 manual [on-
line]. Available: https://docs.scipy.org/doc/scipy/reference/gener
ated/scipy.signal.spectrogram.html [Accessed: November 26, 2021],
August 2021.

45

https://github.com/Mantevo/miniAMR
https://github.com/Mantevo/miniGhost
https://github.com/Mantevo/miniMD.
https://pnsn.org/spectrograms/what-is-a-spectrogram
http://www.science.unitn.it/~fiorella/guidelinux/tlk/node5.html
http://www.science.unitn.it/~fiorella/guidelinux/tlk/node5.html
https://vibrationresearch.com/blog/what-is-a-spectrogram/
https://vibrationresearch.com/blog/what-is-a-spectrogram/
https://searchstorage.techtarget.com/definition/Remote-Direct-Memory-Access
https://searchstorage.techtarget.com/definition/Remote-Direct-Memory-Access
https://stackoverflow.com/questions/18529723/what-is-active-memory-and-inactive-memory
https://stackoverflow.com/questions/18529723/what-is-active-memory-and-inactive-memory
https://www.techopedia.com/definition/2851/central-processing-unit-cpu
https://www.techopedia.com/definition/2851/central-processing-unit-cpu
https://www.techopedia.com/definition/2978/sms-gateway
https://www.techopedia.com/definition/2978/sms-gateway
https://www.techopedia.com/definition/4773/virtual-memory-vm
https://www.techopedia.com/definition/4773/virtual-memory-vm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html

[36] Wikipedia. Non-uniform memory access [online]. Available: https://en.w
ikipedia.org/wiki/Non-uniform memory access [Accessed: November

28, 2021], November 2021.

[37] Wikipedia. Page (computer memory) [online]. Available: https://en.w
ikipedia.org/wiki/Page (computer memory) [Accessed: November 29,
2021], November 2021.

[38] Wikipedia. Slab allocation [online]. Available: https://en.wikipedia
.org/wiki/Slab allocation [Accessed: November 29, 2021], November
2021.

[39] Wikipedia. Vmstat [online]. Available: https://www.kernel.org/doc/h
tml/latest/filesystems/proc.html#meninfo [Accessed: November 24,
2021], July 2021.

46

https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Slab_allocation
https://en.wikipedia.org/wiki/Slab_allocation
https://www.kernel.org/doc/html/latest/filesystems/proc.html#meminfo
https://www.kernel.org/doc/html/latest/filesystems/proc.html#meminfo

N
X< University

/XN of Basel

Faculty of Science

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)
Translation from German original

Title of Thesis: Statistical Characterization of HPC Monitoring Data

Prof. Dr. Florina M. Ciorba
Name Assesor:

Monika Multani
Name Student:

18-061-663
Matriculation No.:

With my signature | declare that this submission is my own work and that | have fully
acknowledged the assistance received in completing this work and that it contains no
material that has not been formally acknowledged. | have mentioned all source materials
used and have cited these in accordance with recognised scientific rules.

Aesch, 29.11.2021 ‘
Place, Date: Student: W

Will this work be published?

ONo

@ Yes. With my signature | confirm that | agree to a publication of the work (print/digital)
in the library, on the research database of the University of Basel and/or on the
document server of the department. Likewise, | agree to the bibliographic reference in
the catalog SLSP (Swiss Library Service Platform). (cross out as applicable)

01.12.2021
Publication as of:

.

Aesch, 29.11.2021
Place, Date: Student: ‘W

Place, Date: Assessor:

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis .

August 2021

	Introduction
	Motivation and Goal
	Research Questions
	Solution and Answers

	Related Work
	Importance of Frequency and Waveform
	Analysis of System Metrics
	HPC Monitoring Data of Applications

	Methods and Materials
	Fast Fourier Transformation and Spectrogram
	Time Domain vs. Frequency Domain Representation
	Taxonomist Dataset
	Representative Applications

	Conceptual Groups and Subgroups
	Definition and Description of Metric Groups
	Zero Constant and Nonzero Constant Metric Group
	Increasing and Decreasing Monotonic Metric Group
	Waveform Metric Group
	Remaining or Other Metrics

	Metrics with Waveform Characteristics
	First Approach: Regular vs. Irregular Waveforms
	Second Approach: Majority Waveform Metrics

	Code Implementation

	Results
	Overview of Metric Groups
	Percentage of Metric Groups for Each Conceptual Group
	Metric Characteristics of Application Execution

	Metrics with Majority Waveform
	Time Domain Plots of Majority Waveform
	Similarity of HPC Waveforms to Actual Sound

	Discussion
	Statistical Properties of System Metrics
	Majority Waveform System Metrics
	Regular and Irregular Waveform
	System Metric Similarity to Sound

	Conclusion
	Future Work

	Bibliography

