
The Sound of Computing

Bachelor Thesis

University of Basel

Department of Mathematics and Computer Science

HPC research group

Examiner: Prof. Dr. Florina M. Ciorba

Supervisor: Thomas Jakobsche

Maarten Schenk
maarten.schenk@unibas.ch

15. February 2021

Abstract

In High Performance Computing (HPC) there is a lot of monitoring data
that needs to be analysed and understood. Researchers looking at moni-
toring data want to understand and compare their applications, as well as
identify problems that degrade performance. In order to achieve this, data
is usually visualised. An alternative approach is sonification, which refers to
turning data into sound. The aim of this work is to develop a custom solu-
tion for sonification of HPC data and showcase the possibilities of insights
which can be gained. The custom solution uses Python which handles the
data processing, sonification and synthesis of the data and uses the Musi-
cal Instrument Digital Interface (MIDI) through a Python package, but also
provides the possibility to use an open-source synthesiser. It also provides
various settings inside a custom user editable configuration file regarding the
data selection and sonification parameters. Experiments are conducted to
show the functionality of the custom solution. The findings show that soni-
fication can complement traditional visualisation approaches and determine
the strengths, weaknesses, and limitations of the custom solution. In con-
clusion, the custom solution can turn data into sound, but the experiments
unveiled that there is room for optimisation. Ideas for these optimisations
and future work are discussed.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Aim . 3
1.3 Problem . 4
1.4 Solution . 4

2 Related Work 6
2.1 Sonification . 6
2.2 Sonification solutions . 7
2.3 Approach . 7

3 Methods 8
3.1 Mido and Musical Instrument Digital Interface (MIDI) 8
3.2 The custom solution - sonificator.py 9
3.3 Data . 9
3.4 Configuration . 9

4 Results 14
4.1 Experiment 1 - Is it possible to hear the differences between

different applications? . 14
4.2 Experiment 2 - Does the problem size have an impact on soni-

fication? . 15
4.3 Experiment 3 - Do the nodes sound differently from data of

the same run? . 15
4.4 Experiment 4 - Are runs very similar to each other or must

they be handled otherwise? 16
4.5 Experiment 5 - Is it possible to use multiple tracks for data? . 17

1

4.6 Experiment 6 - Is it possible to feed multiple data sources to
a track and still be able to hear similarities or dissimilarities? . 18

4.7 Overall findings . 20

5 Discussion 21
5.1 Strengths and weaknesses . 21
5.2 Limitations . 22
5.3 Conclusion . 22

6 Future Work 24
6.1 Software extension . 24
6.2 Additional experiments . 25

Bibliography 26

2

Chapter 1

Introduction

1.1 Motivation

In today’s world we deal with a lot of data, also in science. High Performance
Computing (HPC) is no exception. In HPC there is a lot of performance,
diagnostics, and scheduling method data. Traditionally, this data is analysed
and visualised. By looking for alternatives to complement the established
ways of dealing with data, the idea to turn data into sound came up.

In general, turning data into sound is not a new idea. It is already used
in many applications where immediate feedback is necessary or helpful, e.g.
Geiger counter, sonar or volcanic activity detection. In HPC, immediate
feedback could also be helpful to hear performance drops, load balancing
issues, resource bottlenecks, idle times or other metrics. In general, this
procedure is called sonification. Sonification is defined as a method to convert
information into instrumental sound. The benefits of this procedure are
that the auditory perception is able to differentiate between pace, amplitude,
frequency and space [1]. This makes sonification a good complementation to
visualisation, as it provides an additional perception level.

1.2 Aim

The aim of this work is to gain insight into sonification in HPC, as well as
to improve the understanding of HPC operations and find new possibilities
of researchable topics. Specifically, to find similarities or dissimilarities be-
tween various applications with different executions, number of computing

3

nodes and problem sizes. The focus will be set on the user section from the
/proc/stat/ metric, but there are many other possibilities to explore. The
/proc/stat/user metric is the CPU’s normal processes executing time in user
mode, which is typically measured in hundredths of a second.

Additionally, this work aims to be a proof of concept for sonification in
the field of HPC and wants to show that insights can be gained if sonification
is used on HPC data.

1.3 Problem

Currently there are no widely used solutions that provide all needs which
HPC data sonification require. There are many approaches which solve the
sonification part, but do not provide out of the box features like multitrack
files, intuitive instrument selection, a synthesiser and/or deal with multiple
data sources (e.g. how is an average built over performance data? How are
different data sources mixed in a meaningful way?). This work will include
a custom software solution depending on the used data.

1.4 Solution

To achieve the defined aims, this work will be using the provided data from
Ates et al. (2018) [2]. For the sonification of this data, a Python solution
with data processing, sonification and a synthesiser will be presented. More-
over, various experiments are conducted to find answers to the above stated
questions about similarities and dissimilarities regarding the chosen metrics.
In particular, this work wants to explore the following questions based on
the software solution:

� Is it possible to hear the differences between different applications?

� Does the problem size have an impact on the sonification?

� Do the nodes sound differently from data of the same run?

� Are runs very similar to each other or must they be handled otherwise?

� Is it possible to use multiple tracks for data (e.g. make all nodes hear-
able at the same time)?

4

� Is it possible to feed multiple data sources to a track and still be able
to hear similarities or dissimilarities?

A successful outcome could be relevant for any HPC researcher, to gain new,
better or different “tune” on their work. Also, if the HPC research field gains
more interest in sonification, the sonification community could also benefit
from new viewpoints.

5

Chapter 2

Related Work

2.1 Sonification

To my knowledge there is no prevalent solution for turning performance data
into sound. Turning other data into sound is not uncommon. In his master
thesis, Andrea Fasolo Rao (2016) [3] designed and implemented a real-time
sonification system of solar wind data. His work mainly explored the rela-
tionship between scientific visualisation and data art.

Another work by Wanda Diaz Merced (2012) [4], an astrophysicist at the
South African Astronomical Observatory who has lost her vision, found in
collaboration with programmers a way to continue and further explore her
work through sonification. They developed a Java based solution which is
designed to analyse two-dimensional data and demonstrated the benefit of
their sonification technique with X-ray astronomy and solar data.

NASA uses sonification for measurement data of satellites. Robert Alexan-
der (2014) [5], a graduate student, worked with the sun scientists at NASA
for turning data from wind satellite into sound. With their method “bird’s
ear view” they were able to reduce playback time by a factor of around 4000,
thereby turning solar wind data describing a month into a 10-minute-long
audio file. These examples show that sonification can bring insights and is
successfully used in other scientific fields.

6

2.2 Sonification solutions

There are many open-source solutions, some of them are more advanced and
require no programming knowledge. Others are more a proof of concept
and would need further development. A more professional sonification tool,
TwoTone created by Datavized Technologies Inc. [6], is a Java-Script based
solution, which can solely be run via a web app in a browser. Because it is
open-source, it is also available to be built via the Node Package Manager
(npm). TwoTone has a lot of features to customise the output and is also
flexible on the input data, it is not tailored to do one thing only, like many
other approaches. An alternative approach from Erin Braswell is called sonify
[7], which uses Python to turn data into sound. It provides many features
like playing directly sound from data inside Python, but it requires Python
knowledge to utilise.

2.3 Approach

This work will not be using any pervious built solutions, because it wants
to use a straight-forward, reproducible, and experimental approach while
maintaining a low number of dependencies. Further it aims to be a proof of
concept for HPC performance data sonification. Traditionally, performance
data is evaluated by visualisation. Contrary to visualisation, sonification
might reveal certain information or pattern that cannot be identified through
viewing. Sonification puts HPC data into an unusual format and provides
a relatively unexplored technique to convey information and perceptualise
data. This work combines the existing sonification concept with performance
data produced by applications running on HPC systems.

7

Chapter 3

Methods

The herby proposed solution works with basic methods in order to achieve
understandable and reproducible insights. The focus lies more on proof of
concept and proof of gain than on providing a full-fledged industry grade
solution.

3.1 Mido and Musical Instrument Digital In-

terface (MIDI)

To achieve the aim, the programming language Python with the Mido pack-
age [8] was used, which gives full access to the MIDI communications pro-
tocol. MIDI is not a recorded audio signal, it contains only event messages
that specify instructions for the device or application playing the MIDI track.
These event messages include a note’s notation (start or end of a note), pitch
(frequency of the sound), velocity (how forcefully a pitch is created) and
the clock signal (pace of the track). The range of the playable notes with
MIDI is C-1 to G9 which is denoted in numbers from 0 to 127 for the pro-
tocol and physically corresponds to the frequency ranged from 8.175799 to
12543.85 Hz (assuming equal temperament, in which notes are separated by
logarithmically equal distances, and a 440 Hz A4) [9].

8

3.2 The custom solution - sonificator.py

With the MIDI format as a starting point, a custom Python program “sonifi-
cator.py” was developed. The software can convert data to sound. The data
is handled based on later explained configuration options. If needed, the data
is converted to an average (e.g. when four nodes are selected). Depending
on the configuration, differences are calculated and calibrated to a scale of
pitches. This mapping of data to notes is based on a normalisation over the
MIDI or the selected shorter range of pitches.

3.3 Data

The data processing of the Python program is currently tailored to work with
all available data from Ates et al. (2018) [2], but could be extended to work
with other data sets. The data from Ates et al. (2018) offers an enormous
amount of HPC performance data from 11 different applications with many
metrics. For each application they used three different problem sizes and
ran it for 30 times on a system with four processing nodes and gathered
721 different metrics. They collected this data because they wanted to know
which applications are running on modern supercomputers that are shared
among thousands of users. They used machine learning methods to classify
known applications and detect unknown applications [2].

3.4 Configuration

To be able to work with such a diverse data set, the Python solution is using
configuration files which can be easily customised by end users. A configura-
tion file is composed of different sections, each preluded by a [section] header,
followed by key/value pairs separated by a specific string (= or : by default)
[10]. In this work, the configuration file starts with a [GENERAL] section,
which defines the following settings:

� NAME – sets the folder name for the track(s) and possibly data. This
folder will be deleted if it exists before the execution.

� DATA PATH – sets the path to data.

� DATA TO DISC – enables/disables data storage (raw data).

9

� DATA TAGS – list of header names for the [“data container(s)”] sep-
arated by a space.

� MODE – there are four different modes available.

– single – allows only one data tag and “sonifies” the data based on
the selected [SONIFICATION] settings.

– multi – allows for any amount of data tags and “sonifies” the data
based on multiple settings that are defined inside the [SONIFI-
CATION] and [MULTITRACK] header.

– difference – requires exactly two data tags and “sonifies” the ab-
solute difference between the data based on the settings inside
[SONIFICATION] and the SUBMODE.

– difference2 – allows for any amount of data tags. This mode de-
termines the average over all input data, calculates the absolute
difference between every data input and the average. Afterwards
it sums up all differences and “sonifies” the resulting data based
on the settings inside [SONIFICATION] and the SUBMODE.

� SUBMODE – this mode is only available for difference and difference2.
The sonification in this work is made only over pitch. This mode pro-
vides an option for velocity as a sonification argument, which then will
always play the same tone but with different velocities.

The [SONIFICATION] section consist of:

� INSTRUMENT – allows the selection of 128 different instruments based
on the MIDI standard (a list can be found on https://en.wikipedia.

org/wiki/General_MIDI#Program_change_events).

� PITCHES – number of playable pitches. MIDI offers 128 different
pitches; this parameter shortens the range of pitches to the centre (e.g.
a standard piano has only 97 pitches).

� VELOCITY – defines the force which is applied to the instrument
(mainly notable in loudness).

� VELOCITY BANDWIDTH – only available in both difference modes,
defines the amount of possible different velocities.

10

� CUT – decides how data is modified to the same length. If cut is
enabled all data is reduced to the shortest data set, if cut is disabled
short data sets are extended with zeros to the longest data set.

� DELTATIME – times between MIDI messages (notable in the playback
speed).

� MIDITRACK NAME – the output name of the produced MIDI track.

� FLUIDSYNTH – enables/disables FluidSynth as a synthesiser (Flu-
idSynth must be installed separately.) FluidSynth options are ex-
plained in the [FLUIDSYNTH] header section [11].

As mentioned before, there is a [MULTITRACK] section, which only affects
the “multi”-track mode. It is composed of two options:

� INSTRUMENT – defines where the instrument should be set, either
inside the [“data container(s)”], so that every data set has the option
for an own instrument or inside [SONIFICATION] all data sets use the
same instrument.

� NORMALIZATION – defines if the data is normalised locally (individ-
ually by itself) or globally (over all data sets).

The data set(s) are defined inside [“data container(s)”], the names for them
are provided by the DATA TAGS option from the [GENERAL] section. The
options are:

� APPLICATION – all 11 applications provided by the data from Ates
et al. (2018) [2] are selectable and shown in Table 3.1.

� PROBLEM SIZE – the three different problem sizes are denoted as X,
Y, Z which corresponds to the difficulty from small to large.

� RUN ID – defines the selected run (from 0 to 29).

� NODE ID – defines the selected node (from 0 to 3). It is possible to
select all nodes to get an average over all nodes, via a modifier.

� METRIC ID – defines the metric (721 possibilities). As in the intro-
duction stated, this work will only focus on a single metric regarding
the CPU user usage from /proc/stat/.

11

Table 3.1: Selectable Applications
Application Description

bt Block tri-diagonal solver
cg Conjugate gradient
ft Fourier transform
lu Gauss-Seidel solver
mg Multi-grid on meshes
sp Scalar penta-diagonal solver

miniAMR Adaptive mesh refinement
miniMD Molecular dynamics
CoMD Molecular dynamics

miniGhost Structured PDE solver
kripke Sn transport

� SERIES LEN – cuts data ends by provided amount.

The options for the FluidSynth synthesiser are defined inside the [FLU-
IDSYNTH] section:

� SOUNDFONT – path to the SoundFont which should be used to syn-
thesise.

� OUTPUT NAME – the name of the output file.

� OUTPUT FORMAT – the output file format, different formats are
available (e.g. wav, ogg).

� SAMPLING RATE – defines the sampling rate (the standard CD rate
is 44100 Hz).

The program is able to generate audio files based on these explained con-
figurations, which fully describe the data sets, sonification and synthesiser
capabilities. Based on these configurations, this work conducts the following
experiments:

� Experiment 1: Compare all 11 applications.
App [all 11 apps], problem size [Z], run id [0], node id [average
over all four nodes]

12

� Experiment 2: Compare problem sizes X, Y and Z.
App [selected app], problem size [X, Y, Z], run id [0], node id [
average over all four nodes]

� Experiment 3: Compare differences between nodes.
App [selected app], problem size [Z], run id [0], node id [nodes
difference]

� Experiment 4: Compare differences between runs.
App [selected app], problem size [Z], run id [run difference], node
id [average over all four nodes]

� Experiment 5: Demonstrates the multitrack functionality over the four
nodes.
App [selected app], problem size [Z], run id [0], node id [multitrack
nodes]

� Experiment 6: Demonstrates the multitrack functionality over all 11
applications.
App [multitrack over all apps], problem size [Z], run id [0], node
id [average over all four nodes]

These experiments aim to show that with this software it is possible to
“sonify” HPC performance data in a meaningful way.

13

Chapter 4

Results

To evaluate the solution, I listened to audio tracks produced by the Python
program. Depending on the experiment, the different modes were used to
compare tracks and gain meaningful insights about the performance data.

4.1 Experiment 1 - Is it possible to hear the

differences between different applications?

The aim of this experiment is to investigate if the 11 applications could be
distinguished solely based on the user data from /proc/stat/. To achieve this
aim, I used the single mode for each of the 11 applications. Every track is
based on the problem size Z, the 0th run and the average over all four nodes.

Experiment parameter:
App [all 11 apps], problem size [Z], run id [0], node id [average
over all four nodes]

The experiment showed that it is possible to distinguish some applica-
tions. For example, the applications bt, sp and ft are very difficult to differ-
entiate. Others like kripke, mg and cg all seem to have a rhythm and with
different pitch bandwidths, which makes them distinguishable. A very spe-
cial application is CoMD, which is very monotonous and has some anomalies
where it goes wild.

14

4.2 Experiment 2 - Does the problem size

have an impact on sonification?

The aim of this experiment is to investigate the impact of the problem size on
performance data. To achieve this, I used the difference2 mode to generate a
track which solely makes the difference hearable between the problem sizes.

Experiment parameter:
App [selected app], problem size [X, Y, Z], run id [0], node id [
average over all four nodes]

Repeated for bt, kripke and CoMD

By analysing and visualising the data there is a strong indication that
the problem size does not influence sonification. After listening to three
samples of the selected applications, the used method fails to confirm the
expectation that only pitches on the lower end of the frequency bandwidth
are audible when the differences in the data are small. This is because the
data is normalised for the mapping to the MIDI pitches, which skews the data
over the 128 pitches and fails to represent the scale of the data. Because the
mean difference in all iterations was less than 1%, it is safe to assume that
the problem size does not matter. For any further experiment, the problem
size will be set to Z. This also supports the sole use of the problem size Z in
experiment 1.

4.3 Experiment 3 - Do the nodes sound dif-

ferently from data of the same run?

The aim of this experiment is to investigate the impact of the nodes data. I
want to answer if it matters which node is chosen and if the average of the
nodes is suitable as a replacement for the individual nodes. To achieve this
aim, I used the difference and difference2 mode to generate tracks that make
differences between the nodes hearable.

Experiment parameter:
App [selected app], problem size [Z], run id [0], node id [nodes
difference]

15

Repeated for bt, kripke and CoMD

By analysing and visualising the data there is a strong indication that
replacing a single node with the average does not influence sonification. After
listening to three samples of the selected applications, the used method fails
to confirm the expectation that only pitches on the lower end of the frequency
bandwidth are audible when the differences in the data are small. This fails
due to the same reason as experiment 2. As in experiment 2, the mean
difference in all iterations was less than 1%. Therefore, it is safe to assume
that the selected node does not have an influence.

For any further experiment, the average over all nodes will be used. This
also supports the sole use of the average in the previous experiments.

4.4 Experiment 4 - Are runs very similar to

each other or must they be handled oth-

erwise?

The aim of this experiment is to investigate the impact of the runs data. I
want to answer if it matters which run is chosen or if any run is suitable.
To achieve this aim, I used the difference and difference2 mode to generate
tracks that make differences between the runs hearable.

Experiment parameter:
App [selected app], problem size [Z], run id [run difference], node
id [average over all four nodes]

Repeated for bt, kripke and CoMD

By analysing and visualising the data there is a strong indication that
the selected run does not influence the sonification. After listening to three
samples of the selected applications, the used method fails to confirm the
expectation that only pitches on the lower end of the frequency bandwidth
are audible when the differences in the data are small. This is also due to
the same reason as the two previous experiments failed. The mean difference
in all iterations was again less than 1%, it is safe to assume that the selected
run does not have an influence.

16

For any further experiment, the 0th run will be used. This also supports
the sole use of a single run in the previous experiments.

4.5 Experiment 5 - Is it possible to use mul-

tiple tracks for data?

The aim of this experiment is to show the functionality of multiple data
sources inside one track. To achieve this aim, I used the multi-mode to
generate a track with multiple data sources.

Experiment parameter:
App [selected app], problem size [Z], run id [0], node id [multitrack
nodes]

Repeated for bt, kripke and CoMD

I used the data of the nodes from the same run. Surprisingly, the result
was a good method to make differences hearable. Even for an untrained
person that lacks a musical ear it is easy to notice when a part plays out of
tune. Figure 4.1 shows the data of all four nodes scaled to MIDI notes.

Figure 4.1: CoMD all four node data as multitrack.

17

In the case of the bt application, there are three nodes playing very high
pitches, while the last node is only playing low pitches. Figure 4.2 shows a
prime example for a node playing out of tune.

Figure 4.2: bt all four node data as multitrack.

When using the kripke application, there is a broader variation of tunes.
This is explained by the fact that the min, max and mean are all in less
than 1% of the data scale, which gets distorted by the same reason as in the
previous experiments, as shown in Figure 4.3.

4.6 Experiment 6 - Is it possible to feed mul-

tiple data sources to a track and still be

able to hear similarities or dissimilarities?

The aim of this experiment is to show an overview over all 11 applications
and their load in comparison. To achieve this aim, I used the multi-track
mode to generate a track from all 11 applications data sources.

Experiment parameter:
App [multitrack over all apps], problem size [Z], run id [0], node id
[average over all four nodes]

18

Figure 4.3: kripke all four node data as multitrack.

Surprisingly, three clusters are audible. The applications in the cluster with a
very high pitch are: ft, lu, miniGhost, miniAMR, miniMD and kripke. There
are two applications with a medium pitch: bt and sp. On the low pitch end
there are: mg, cg and CoMD. These results are also shown in Figure 4.4.

Figure 4.4: All 11 applications data as multitrack.

19

4.7 Overall findings

The single-track mode did perform very well and made it possible to cate-
gorise the applications to a certain degree. As demonstrated in the exper-
iments, the difference and difference2 mode were not providing meaningful
insights. Surprisingly, the multi-track mode outperformed all my expecta-
tions. It was possible to differentiate between nodes while the difference
mode had failed. Therefore, I conclude that sonification can be a very good
complementary data interpretation to the traditional visualisation technique.

20

Chapter 5

Discussion

In this bachelor thesis I investigated sonification based on the development of
a custom solution. The results of the experiments show that sonification of
HPC data can work, is able to provide new insight and offers the possibility
for an easier understanding of the data.

5.1 Strengths and weaknesses

While conducting the experiments, strengths and weaknesses of the Python
software solution were exposed.

In a few cases it was possible to classify an application solely based on
the sound produced (e.g. the CoMD application with its incredibly unique
pattern of anomalies). On the contrary, there were a bunch of applications
which were too similar to each other to distinguish them based on hearing
the tracks.

Both modes difference and difference2 showed some flaws in mapping
data to pitches. These modes were always able to show a huge difference
independently of the scale of the actual size of the difference. The developed
algorithm skewed the scale of the data so that the scope was always zoomed
in to detect a difference. This made both modes unusable to show meaningful
insights. To fix those modes it would be necessary to use the scale of the
whole data set and to adjust the pitch scale accordingly (e.g. fixate the
common pitch C4 to the average and play deviations correspondingly higher
or lower in pitch).

In contrast, the multi-track mode, which was only a showcase, surprised

21

with a possibility to gain insight about parts playing out of tune (see Fig-
ure 4.2). This mode was also able to generate three clusters out of the 11
applications which showed an unexpected use case of this mode (see Fig-
ure 4.4). This mode could also be used in general to find similarities and
dissimilarities.

The usability of the program could be improved in some ways. The con-
figuration file could be improved with options for all runs, which is currently
not implemented. This would look similar to the node option which is able
to select node individually and has an option to select all together. As of
right now, the data selection only works for the data from Ates et al. (2018)
[2], a general approach or described API (e.g. the csv format or a custom
“sonify” format) would be beneficial for further use.

5.2 Limitations

Some results are dependent on subjective perception. Somebody might not
be able to hear very high pitches while others might not be able to differen-
tiate between pitches due to lack of a musical ear. To remove the subjective
perception a study with a subject group should be conducted. After listen-
ing to the tracks, the subject group could help to answer if the question of a
classification is even possible solely based on the /proc/stat/ user data.

The software currently does not have any functionalities based on music
theory. An example would be generating tracks which are using the general
major scales. This could make the track much more enjoyable and distin-
guishable.

The possibility to gain new insights solely based on hearing as compared
to the visualisation seems very limited, however it can be easier to detect
insights by hearing rather than comparing multiple graphs.

5.3 Conclusion

The results show that this software can be used to compare applications,
runs, different problem sizes and find differences between multiple applica-
tions and nodes, to compute the sound average over nodes, to map data to
pitches and to generate sound with different instruments. However, there are
still difficulties to overcome concerning the difference and difference2 modes.

22

Nevertheless, differences could be detected by the multi-track mode, which
is based on another method.

More generally, this work shows that sonification of HPC performance
data is successfully working and through sonification insights can be gained.

23

Chapter 6

Future Work

As already mentioned, if a study would show that we can distinguish ap-
plications solely on sound, this would open a new data analysis path for
an application classification. This would open the possibility to use general
audio analytics on HPC performance data as a new norm. It may also be
possible to create a detector/classifier which would, only through listening
to the application sound, be able to identify certain events and states (e.g.
performance drops, idle times, load imbalance).

6.1 Software extension

The software could be extended in different aspects:

� Adding additional modes for different objectives. For example, a mode
that searches for repeating patterns in different applications, which
then could lead to new insights about the source code of the application.
Another example would be to use different metrics or a combination of
metrics at the same time.

� Extend the data selection to work independently of data sets.

� Add functionalities based on music theory.

� Expose more of the underlaying MIDI format to be able to fully ma-
nipulate the resulting tracks.

24

� Add a music player to the application, so that everyone that uses this
application hears the same sounds. This is currently not assured be-
cause the MIDI format is interpreted by the users music player (the
exception here is if FluidSynth was used to synthesis the MIDI to a
Waveform).

� A configuration file generator could be added to reduce the effort for
larger experiments.

6.2 Additional experiments

In the current state the software would also allow for many different experi-
ments. For example, all 721 metrics from the data set of Ates et al. (2018)
[2] are available. Other experiments could compare applications in depth
against each other or focus on different parameters simultaneously.

25

Bibliography

[1] Wikipedia contributors. Sonification. https://en.wikipedia.org/

wiki/Sonification, 2020. [Online; accessed 9-Feburary 2021].

[2] Emre Ates, Ozan Tuncer, Ata Turk, Vitus J. Leung, Jim Brandt,
Manuel Egele, and Ayse K. Coskun. Taxonomist: Application de-
tection through rich monitoring data. https://doi.org/10.1007/

978-3-319-96983-1_7, 2018.

[3] Andrea Fasolo Rao. New media for scientific data vi-
sualization. https://issuu.com/andreaefferao/docs/

newmediaforscientificvisualization, 2016. [Online; accessed
12-December 2020].

[4] Wanda L. Diaz-Merced, Robert M. Candey, Nancy Brickhouse, Matthew
Schneps, John C. Mannone, Stephen Brewster, and Katrien Kolen-
berg. Sonification of astronomical data. https://doi.org/10.1017/

S1743921312000440, 2012.

[5] Robert L. Alexander, Sile O’Modhrain, D. Aaron Roberts, Jason A.
Gilbert, and Thomas H. Zurbuchen. The bird’s ear view of space physics:
Audification as a tool for the spectral analysis of time series data. https:
//doi.org/10.1002/2014JA020025, 2014.

[6] Datavized Technologies, Inc. Twotone. https://twotone.io/, 2019.
[Online: accessed 11-December 2020].

[7] Erin Braswell. sonify. https://github.com/erinspace/sonify, 2017.
[Online; accessed 14-December 2020].

26

[8] Ole Martin Bjørndalen and Rapolas Binkys. Mido. https://mido.

readthedocs.io/en/latest/, 2020. [Online; accessed 14-December
2020].

[9] Wikipedia contributors. Midi. https://en.wikipedia.org/wiki/

MIDI, 2021. [Online; accessed 11-Feburary 2021].

[10] Python Software Foundation. Supported ini file structure.
https://docs.python.org/3/library/configparser.html#

supported-ini-file-structure, 2021. [Online; accessed 26-January
2021].

[11] Tom Moebert. Fluidsynth. https://github.com/FluidSynth/

fluidsynth, 2021. [Online; accessed 19-December 2020].

27

28

