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Abstract

In an ideal world, systems and applications run efficiently, reliably, and with high performance.
However, in the real world this is not always the case. Monitoring data generated by High Per-
formance Computing (HPC) systems is analyzed to understand the corresponding problems and
to have better understanding of the system and applications. Traditionally, monitoring data is
analyzed and investigated through visualization and resulting plots. However, there exists an al-
ternative approach that is not well explored, namely listening to the data. Listening to data can
have advantages over simply looking at plots, because the human auditory perception is good at
picking up on repeating patterns and changes in sound. The goal of this project is to convert HPC
monitoring data to sound files through audification. We want to analyze the data acoustically,
instead of the traditional visual analysis approach. Our results show that audification can assist
in recognizing repeated executions of applications, comparing multiple different applications, and
investigating different inputs and nodes of a specific application. We used the Python Wave Mod-
ule to audify specific system metrics that are characterized by frequency and have a waveform. To
systematically compare multiple application executions, we created an overview of the strongest fre-
quency components of our chosen system metrics. Applying Principle Component Analysis (PCA)
to our data and plotting the resulting clusters, exposed that some HPC applications repeat more
consistently (reproducing similar system metric waveform compared to other executions), while
other applications have more variation and change between repeated executions. Our discoveries
can serve as a base for future studies aimed at recognizing applications based on frequency com-
ponents in their execution behavior, similar to e.g. how Shazam recognizes songs. Our work also
opens further research on why some applications have more variation and generate different system
metric waveform for repeated executions compared to other applications.
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Chapter 1

Introduction

Scientific applications demand high computing power to solve problems. This is where High-
Performance Computing (HPC) systems, which offer computing power, come into play. HPC sys-
tems generate a large amount of monitoring data, which reflects the system’s response to running
applications.

1.1 Motivation and Challenges

In an ideal world, systems and applications run efficiently, reliably and with high performance.
However, this is not always the case. Monitoring data generated by HPC systems is analyzed to
have a better understanding of the system and applications. In this bachelor thesis, a specific
technique of analysis, audification, is explored. It enables the user to listen to data as if it were
sound. Audification can help to: (a) explore an alternative to visual analysis of data, (b) identify
repeated executions of applications, (c) compare multiple different applications, and (d) investigate
different inputs and nodes of an individual application.

It is not trivial whether the sound produced by audifying data can be used to analyze moni-
toring data. Listening to the sound files may reveal that no repeated sound pattern can be used
as a reference point, showing that audification is not effective. This exact problem was discovered
when sonification was used to listen to data. But, what makes sonification different from audifica-
tion? Sonification maps single data points to a musical scale, which is then played with a digital
instrument, whereas audification treats data as if it were already sound.

Another challenge to overcome is the ability to convert monitoring data to sound. Because
audification is only suitable for data with waveform, only monitoring data (system metrics) with
waveform are considered. The next difficulty is to objectively state similarities and differences
in sound using numbers rather than just listening. Furthermore, the numbers should be visually
represented so that the desired information about similarities can be extracted easily.
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1.2 Goals and Research Questions

To overcome the challenges defined in the previous section, a method for converting time series to
sound is required. For this purpose, Python provides a library called ’wave module’, which makes
it possible to convert data to sound. Following that, a systematic method for comparing sound
similarities and differences is needed as listening to all sound files would be beyond the scope of
this project. Consequently, a table in which the most prominent frequencies from the sound files
were recorded, was created. This allows to visually extract information about whether or not there
are similarities.
The research questions are:

• Can we listen to monitoring data (system metrics) of applications through audification?

• Do we hear differences between multiple applications?

• Do we hear differences between inputs to the same applications?

• Do we hear differences between nodes of the same execution?

• Do we hear differences between runs of the same application-input pair?

1.3 Solution, Utility, and Findings

By using the Python Wave Module, the system metrics with waveform were converted successfully
into sound files that can be listened to. This is beneficial for HPC reseachers, because rather
than analyzing data visually, data can be analyzed through audification. It may also bring some
information to the surface that would have remained hidden if visualization was used. Another
advantage could be that listening to data is easier or faster than looking at plots. Lastly, but worth
mentioning is that blind people can take part in research using audification. Because blind people’s
hearing abilities are enhanced when compared to hearing people, they may be able to detect even
minor differences in sound. The findings include:

• Audification can be used to recognize repeated application executions.

• It can be further used to investigate applications by comparing different input sizes.

• Audification can also help to analyze individual application executions, by listening to the
differences between several nodes of the same run.

• We found that applications generally produce the same frequency on all allocated nodes.

• We further found out that input sizes to applications change the frequency components of the
system metrics.

• Lastly, we found out that some applications repeat more consistently than others, meaning
they generate the same waveform for different repeated executions.
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1.4 Technical Background of FFT

The terms ’Fast Fourier Transform’ (FFT) and ’Spectrogram’ will be defined briefly in this section,
as well as their significance to the work.

Fast Fourier Transform (FFT)
The Fast Fourier Transform is a technique used for measurements regarding audio and acoustics
measurements. Individual spectral components and therefore frequency information can be obtained
by applying the Fast Fourier Transform to a signal. In more detail, the Fast Fourier Transform
is an optimization of the ’Discrete Fourier Tranformation’ (DFT). The data points collected over
time form a signal, which is then divided into frequency components. Each of these represents an
oscillation with amplitude and phase. [4]

Spectrogram
A spectrogram is a tool for visually displaying the frequency spectrum of a signal, or the ”loudness”
of a signal over time, in a waveform. Spectrograms are used in science to display the frequencies of
sound waves produced by, for example, humans or animals. [9][19]

What is the significance of the ’Fast Fourier Transform’ and ’Spectrogram’ in this work? The
spectrogram was generated applying the Fast Fourier Transform to a time series. This was done
in order to obtain the strongest frequency components of the chosen system metrics, which would
later be used for sound comparison.
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Chapter 2

Related Work

2.1 Data and Sound

Listening to computing data is not a novel approach in the scientific community. By conducting a
survey, Paul Vickers and James L. Alty [24] investigated whether computing information can be
conveyed through sound and whether musical experience influences what participants can hear. Ac-
cording to survey results, participants with musical experience were able to recognize tone changes
better. This finding is important for this work because it shows that listening to audified moni-
toring data can support in hearing similarities and differences in data. However, when it comes to
monitoring data analysis, they do not look for similarities between applications or different settings,
which is more important to High Performance Computing researchers that want to compare and
analyze application behavior.

2.2 Sonification

The paper ”Tuning Complex Systems by Sonifying Their Performance Data” [10] Henthorne et al.
also discussed a possible method for conveying performance data, namely sonification. Sonification
allows the programmer to listen to information via sound. While examining sonification, it was
discovered that survey participants could detect changes in sound characteristics. Based on their
newly acquired knowledge, participants were instructed to tune the configuration settings to see if
they could outperform the standard configuration solely through sonification, which proved to be
effective. All participants were able to tune the settings, resulting in improved performance. Even
so, we run into the same issue as before because they don’t make any comparisons between different
parameters in the analysis.

Sonification and the potential benefits of combining it with High Performance Computing (HPC)
was also investigated by Maarten Schenk in his Bachelor thesis ”The Sound of Computing” [22].
High Performance Computing researchers must analyze a lot of data to optimize the performance
of their applications. Instead of comparing data visually, this approach tries to convert monitoring
data into sound to determine if this method of comparing data can be beneficial to researchers.
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As a result, it was discovered that certain application parameters had characteristics that could
be extracted through sound and that this approach has the potential to be investigated further.
Nonetheless, the technique of sonification differs from the method of audification that we utilize.
The main difference between these two methods is that sonification maps data points to a musical
scale, whereas audification, which is used in this work, examines the data as if it were already
sound.

By nature, sonification is more suited for constant system metrics, because a constant value can
easily be mapped to a musical scale. System metrics that are changing a lot, e.g. with waveform,
are not so easily mapped or result in pseudo-random sound. If the metrics already have waveform,
the method of audification is more suited. In this thesis the focus is on audification and metrics
with waveform.

2.3 Audification

Previous related works have shown that researchers have attempted to find several methods for
working with computing information. Instead of using the traditional method of visually analyzing
data, performance data was converted into sound to enable acoustic analysis. Audification is not a
new technique; it has been used before, but not in the context of HPC monitoring data.
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Chapter 3

Methods

3.1 Audification

This paper proposes an approach for analyzing HPC monitoring data using audification. What
audification does in detail is to take a time series, which is defined as ”[. . . ] a sequence of data
points collected over an interval of time” [23] and translate it directly to sound without altering the
data. In this project, the time series are the HPC monitoring data where only those that resemble
waveforms are investigated. This is due to the fact that the produced sound by audifying these
time series are the best to experiment with. On the opposite, time series that are constant do not
provide much diversity in sound.

Figure 3.1: Waveform Time Series
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Figure 3.2: Constant Time Series

3.2 Python Wave Module

To enable listening to monitoring data, the time series can be saved as a wav file. Python comes in
handy in this case because it has a module called ’wave’ [14] that allows us to audify our data. This
module provides a set of parameters that can be manually configured. Sampling rate and channels
were the primary parameters investigated. They will be explained in the sections that follow.

3.2.1 Sampling Rate

The sampling rate is defined as ”the number of samples per second [...] taken from a continuous
signal to produce a discrete or digital signal” [12]. Various sampling rates were tested in order to
determine the influence of sampling rate on the sound generated by audification. As a starting
point, the sampling rate of 1000 hertz was randomly chosen and then increased by 200 or 300 hertz
until the sampling rate of 2500 hertz was reached. Because when the sampling rate is set too high,
it causes the pitch to rise, and the length of the sound file becomes too short. The opposite occurs
if the sampling rate is set too low. As a result, the sampling rate of 1500 hertz was chosen as the
best for distinguishing sound. This sampling rate was applied in all upcoming experiments.

3.2.2 Channels

The Python Wave Module includes a method called setnchannels() that enables choosing two chan-
nel settings: mono and stereo. The distinction between mono and stereo sound [. . . ] ”is the number
of channels used to record and playback audio” [21]. While mono uses one channel to convert a
signal into sound, stereo uses two channels. This makes it possible for stereo to create width with
sound, while mono cannot. Stereo sound can portray [. . . ] ”sound coming from different sources
and positions” [. . . ] [11]. Since the effect of stereo creating new dimensions is not primarily needed
for audification, mono was chosen as the default channel setting.
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3.3 Method Justification

This project’s aim is to make it possible to listen to monitoring data. There are two methods
available to achieve this: sonification and audification. Because sonification had already been
investigated, a new approach to achieving the same goals was discovered. As it was decided that
the code will be written in Python, it was only natural to select a Python library. The ’wave
module’ is a suitable library that matches audification because it can convert monitoring data to
an audio file in wav format without altering the data, which is the opposite of what sonification
does.

3.4 Dataset: Taxonomist Dataset

The data utilized in the project came from the Taxonomist dataset [2][3], which applied the machine
learning technique random forest to classify known applications and detect unknown ones. This
dataset contains a total of 11 applications, all of which are benchmarks, meaning that they do the
same thing every execution, see Table 3.1.

It also provides several parameters that can be configured, the first of which is the input size,
where the work changes depending on which input size is selected. These applications paired with
specific inputs were run on multiple nodes, and each node collected 563 metrics as a time series.
The applications can also be executed multiple times with the same configuration. It should be
noted that there are 721 metrics and 16 applications in total. However, only 563 metrics and 11
applications have been published in open source.

Taxonomist Dataset

Applications FT, MG, SP, LU, BT, CG, CoMD, miniGhost, miniAMR,

miniGhost, miniAMR, miniMD, Kripke miniMD, Kripke

Input Sizes X Y Z L

Number of Nodes 4 4 4 32

Metrics per Second 563 563 563 563

Repeated Executions 30 30 30 6

Table 3.1: Taxonomist Dataset Overview

The following application descriptions are taken from several sources:

BT - Block tri-diagonal solver
BT simulates a CFD (computational fluid dynamics) problem with two discrete versions of three-
dimensional, unsteady, compressible Navier-Stokes equations. BT solves multiple, independent
systems of non diagonally dominant, block tridiagonal equations. [13][5]

CG - Conjugate gradient
Computation of the smallest eigenvalue of a large, sparse symmetric, positive- definite matrix with a
conjugate gradient method. By using unstructured matrix vector multiplication, CG tests irregular
long distance communication. [13][5]
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FT - Fourier transform
Testing the performance of long-distance communication. FT numerically solves a Poisson partial
differential equation (PDE) using the fast Fourier transform (FFT). [13][5]

LU - Gauss-Seidel solver
LU is simulating a CFD problem like BT, but solves regular-sparse, lower and upper triangular
systems. [13][5]

MG - Multi-grid on meshes
MG requires highly structured long distance communication and tests the performance of short
and long distance data communication. MG computes an approximation for the solution to a
three-dimensional scalar Poisson problem on a discrete grid, by using the V-cycle multi-grid algo-
rithm. [13][5]

SP - Scalar penta-diagonal solver
SP also simulates a CFD problem like BT, but solves multiple, independent systems of non diago-
nally dominant, scalar, penta-diagonal equations. [13][5]

miniAMR - Adaptive Mesh Refinement Mini-App
miniAMR applies a stencil calculation on a unit cube computational domain, which is divided into
blocks. The blocks all have the same number of cells in each direction and communicate ghost
values with neighboring blocks. With adaptive mesh refinement, the blocks can represent different
levels of refinement in the larger mesh. [15]

miniMD - MiniMD Molecular Dynamics Mini-App
miniMD is a parallel molecular dynamics (MD) simulation package written in C++ and intended
for use on parallel supercomputers and new architectures for testing purposes. This simple code is
a self-contained piece of C++ software that performs parallel molecular dynamics simulation of a
Lennard-Jones or a EAM system and gives timing information. [17]

CoMD - Classical molecular dynamics proxy application
CoMD is a reference implementation of typical classical molecular dynamics algorithms and work-
loads. The code is intended to serve as a vehicle for co-design by allowing others to extend and/or
reimplement it as needed to test performance of new architectures, programming models, etc. [6]

miniGhost - MiniGhost Halo Exchange Mini-Application
A broad range of scientific computation involves the use of difference stencils. In a parallel comput-
ing environment, this computation is typically implemented by decomposing the spacial domain,
inducing a “halo exchange” of process-owned boundary data. MiniGhost represents 3D nearest
neighbor halo-exchange communications that are present in a many HPC codes. [16]

Kripke - 3D Sn deterministic particle transport
Kripke is a simple, scalable, 3D Sn deterministic particle transport code. Its primary purpose is to
research how data layout, programming paradigms and architectures effect the implementation and
performance of Sn transport. (Sn: Discrete ordinates method of approximately solving radiative
transfer equations.) [1]
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3.5 Implementation

The following Python code audifies the time series using the audify() function:

def audify():

samplingRate = 1500 # hertz

audio = wave.open('sound/ft/input/input_X.wav', 'w')

audio.setnchannels(1)

audio.setsampwidth(2)

audio.setframerate(samplingRate)

data = norm(timeseries) # normalize time series

audio.writeframesraw(data.tobytes())

audio.close()

The wave read object methods used in the code are described in detail below. The following is
a description taken from tutorialspoint: [25]

• open(): This function opens a file to read/write audio data. The function needs two parame-
ters - first the file name and second the mode. The mode can be ’wb’ for writing audio data
or ’rb’ for reading.

• setnchannels() : Set the number of channels. 1 for Mono 2 for stereo channels

• setsampwidth(): Set the sample width to n bytes

• setframerate(): Set the frame rate to n

• writeframesraw(): Write audio frames, without correcting
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For each execution, the findMaxNodeFrequency() function determines the frequency with the
highest amplitude per node:

def findMaxNodeFrequency():

max_freq = 0

for peak in peaks:

amplitude = spectrogram[peak]

if amplitude > spectrogram[max_freq]: # save frequency with highest amplitude

max_freq = peak

# save frequency to corresponding node dictionary

if node_id == 0:

node_0_dict[run_id] = max_freq

elif node_id == 1:

node_1_dict[run_id] = max_freq

elif node_id == 2:

node_2_dict[run_id] = max_freq

elif node_id == 3:

node_3_dict[run_id] = max_freq

The frequency with the highest amplitude, or frequency peak, can be determined using the spec-
trogram. In the spectrogram, the amplitude of each frequency peak is compared to the amplitude
of all other frequency peaks. Only when the highest peak for a given node is found is it saved in
the corresponding node dictionary.

13



Chapter 4

Results

4.1 Experiments

The time series was converted into sound using the Python Wave Module. The experiments were
executed for the network metric id 0 and the applications FT, MG, and SP. The applications FT,
MG, and SP were chosen based on criteria. The first condition was that they came from the NAS
Parallel Benchmark Suite [8], which is widely known and utilized for research. Second, the applica-
tions BT, LU and SP simulate the same problem with some variations, namely CFD (computational
fluid dynamics) that solves independent equations without much communication. SP was chosen
to be the representative for these applications. Because CG and FT both do long distance commu-
nications, FT was picked out of the two. And lastly, MG was chosen as a third application to be
examined since it conducts a different computation and short distance communication.
Since the input size L can only be applied to certain applications, it was omitted in this study.
Only these parameter settings were investigated because it would be too challenging to investigate
every possible combination of parameter settings. Eventually, the questions in the following sections
were answered subjectively, with the main goal of determining similarities and differences in hearing.

Here are some more details regarding metric 0: Aries is the name of a network hardware of the
company Cray that has its own network performance counters. The relationship between Aries
and metric 0 (AR NIC NETMON ORB EVENT CNTR REQ FLITS metric set nic) is that it is a
network metric from the Aries NIC (Network Interface Controller). It represents the aggregate net-
work traffic through the NIC into the High Speed Network (HSN) used as interconnection between
the nodes of the system.

4.1.1 Suitability of Audified Monitoring Data

Various metrics were examined to see what sound they produced in order to establish whether
monitoring data (system metrics) are suitable for audification. As described in Section 2.3, only
time series that resemble waveforms were analyzed. Because the sound generated by a constant
time series returned a constant tone, there was limited space for experimentation. In general,
audification has shown to be effective in converting monitoring data to sound.
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4.1.2 Comparison between Multiple Applications

Section 4.1 stated that the experiments were only conducted out for applications FT, MG, and SP.
But, for this experiment all applications were taken into consideration.
Listening to the applications displayed that they can be distinguished and recognized based on
sound. FT, CG, CoMD, and miniGhost are easily recognizable compared to other applications.
The remaining applications are not so easily distinguished based on sound. The reason for that
could be that they perform similar computations, but this needs further analysis. For future work,
analyze why some applications sound similar.

4.1.3 Comparison between Inputs to the same Applications

In this study, the input sizes X, Y, and L were investigated in combination with applications to
see if the input sizes affect monitoring data and, more importantly, sound. When evaluating the
listening part, it can be heard that the input sizes do influence monitoring data. In other words,
the same application with different input sizes does not sound the same. The correlation is between
what was defined in Section 3.4, where it was stated that input sizes impact the performance that
computers do. This was confirmed by the experiment.
It is worth noting that CoMD was found to be most stable, with only minimal changes in the values
for the frequency peaks.

4.1.4 Comparison between Nodes of the same Execution

In order to analyze whether nodes with the same application and input size differ in sound, the four
nodes of an execution were compared to one another. It was discovered that all nodes in FT sound
extremely similar, if not identical, to the human ear. Minor changes in sound were ’only’ visually
detectable with the help of an audio player called ”Resonic Player Beta” [20], which had an inbuilt
feature that allowed us to visualize the sound file. On the other hand, the nodes for applications
MG and SP also sounded similar but there was a pairwise similarity. The pairing node IDs for MG
were 0, 2 and 1, 3. While SP’s pairing node IDs were 0,3 and 1,2. One possible explanation for
this result may be that the metric 0 belongs to the network group. As a result, the pairing nodes
may represent clients who send packets to each other. While sending, the packet order stays; this
is also reflected in the sound, with two nodes sounding similar.

In summary, the answer to the question whether differences between nodes of the same execution
can be heard is yes.

4.1.5 Comparison between Runs of the same Application-Input Pair

The experiment was carried out for the different run IDs 0,1,2, and 3. The intention behind this
experiment was to see if running the same application-input pair would resolve in different sound
characteristics. When it comes to applications FT and SP, the sound produced for multiple runs
is extremely similar, nearly identical, whereas MG sounded similarly in general with some minor
differences. However, the difference isn’t significant enough. As an outcome, even with different
run IDs (repeated executions), the applications can be distinguished.
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4.2 Evaluation of the Solution

Hearing was used to extract the similarities and dissimilarities from previous experiments. However,
not everyone hears the same thing when listening to the same sound. As a result, the outcomes are
quite subjective. To illustrate that the outcomes can be objectively verified an overview table called
’Node Frequency Table’ was created to substantiate similarities and dissimilarities in numbers. In
a later step, the table was plotted for additional visual analysis.

4.2.1 Node Frequency Table

The frequencies with the highest amplitude per node, or frequency peaks per node, were compared
to see if the similarities or differences heard in sound could be verified by these numbers. Figure
4.1 shows the frequency peaks computed in a spectrogram for application FT.

Figure 4.1: Frequency Peaks for Application FT

There are two frequency peaks denoted by a red ’x’, with only the highest peak examined for
all application-input pairs. The highest frequency peak is more likely to repeat for repeated execu-
tions of the same application. On the opposite, ’weaker’ frequencies can be overshadowed or even
completely hidden by background noise and perturbations through other processes or applications
running on an HPC system.

Table 4.1 is the first version, which records the peak frequencies for each node and the metric
0. As an example of how the table works, the data in Figure 9 shows that the frequency peak for
application FT with input size X and node ID 0 is at 131. Therefore, the value 131 was denoted in
the first cell. For some application-input pairs there were two frequency peaks at the exact same
height, which were separated by a semicolon. In the absence of a peak, the term ’N/A’ was entered
into the cell.

Comparing the values for application FT, MG and SP with input size X reveals that they are
indeed distinct. The table also illustrates how different input sizes affect the work done by the
applications. Finally, it proves that the peak frequencies of the nodes are similar or pairwise similar
and that the executed runs are identical. In conclusion, the table confirms the findings of the
experiments described in Section 4.1. and demonstrates that it is effective in expressing what can
be heard in numbers.

A visual representation of the ’Node Frequency Table’ was required because looking at so many
numbers and attempting to find differences in numbers is not feasible. For this purpose, the first
version of Table 4.1 was expanded so that it lists the values for all nodes when they are executed
30 times.
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Highest Amplitude Frequency per Node

App+Input Node 0 Node 1 Node 2 Node 3

FT + X 131 131 131 131

FT + Y 258 258 258 258

FT + Z 216 216 216 216

MG + X 286 234 347 234

MG + Y 149 149 119 149

MG + Z 197 263 231 263

SP + X 26 26 26 26

SP + Y 84 84 84 84

SP + Z 168 168 168 168

LU + X 354 354 194 194

LU + Y 174 174 174 87

LU + Z 251 251 251 251

BT + X 96 96 96 96

BT + Y 103 103 103 103

BT + Z 223 223 223 223

CG + X 52 52 52 52

CG + Y 242 242 242 242

CG + Z 298 298 298 298

miniGhost + X 116 116 116 116

miniGhost + Y 101 101 101 101

miniGhost + Z 69 70 69 ; 139 70

miniAMR + X 75 75 75 75

miniAMR + Y 1 1 1 1

miniAMR + Z 17 8 8 ; 17 8

miniMD + X 1 1 1 1

miniMD + Y 139 139 227 139

miniMD + Z 44 44 44 44

Kripke + X 303 304 228 304

Kripke + Y 3 3 3 3

Kripke + Z 167 N/A 195 222

CoMD + X 233 233 233 233

CoMD + Y 169 169 169 169

CoMD + Z 228 228 228 228

Table 4.1: First version: ’Node Frequency Table’

Monika Multani provided in her thesis ”Sta-
tistical Characterization of HPC Monitoring
Data” [18] an overview table with metrics indi-
cating which time series had the most waveform.
A total of 20 metrics were recorded, and for each
of these metrics a ’Node Frequency Table’ was
created. However, for illustration purposes, the
table was divided into 11 sections, each of which
describes a different application. Also used were
the abbreviations ’Ips’ (input size), ’N ID’ (Node
ID) and ’R’ (Run). The remaining tables for the
other applications are contained in the appendix.
The Table 4.2 illustrates how the frequency with
the highest amplitude per node was recorded.
The metric analyzed in Table 4.2 has metric ID
0, and the application researched was FT. The
’Input’ column defines the input that was paired
with the application and executed 30 times for
each of the four nodes.
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Table 4.2: Node Frequency Table FT
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4.2.2 Visualization of Node Frequency Table

The goal of this section was to visualize the ’Node Frequency Table’ with clustering. During this
process, difficulties were encountered, which will be discussed here.

The first attempt was to plot the values for each run on the x-axis and the node IDs on the
y-axis. This was done as a test for metric 0, and application FT using input X to determine if the
generated plot produced helpful results, which it did not. Figure 4.2 contains no clusters, only lines
parallel to the x-axis are drawn.

Figure 4.2: First Attempt: ’Node Frequency Comparison’

Plotting the values for the executed runs per node was the next concept to be tested for metric 0,
and application FT with input X. However, adding a third dimension did not solve the problem of
no clusters being found, as seen in Figure 4.3. Furthermore, there is no option to plot the values
for node ID 3. As a consequence, this concept was abandoned.
Taken together, the attempts failed at visualizing the table where the frequency with the highest
amplitude per node was recorded. The challenge was to represent the nodes’ four dimensions in
a two or three-dimensional layout. As a result, a new approach for displaying the frequency table
was established that makes use of the ”Principal Component Analysis” (PCA). PCA reduces the
dimensionality of the data without losing information. It examines the correlation between dimen-
sions and sets the goal of preserving as much information as possible about how the original data
was distributed. This information is then saved in a minimum number of variables that are given
for plotting. [7]
The four dimensions of the nodes were reduced to two dimensions since adding a third dimension
would not contribute much as the nodes’ values are mostly the same. For example, if three data
points with value (40, 40, 40, 40) (50, 50, 50, 50), (60, 60, 60, 60) are to be plotted. The three data
points will always be drawn in a line, no matter how many dimensions are added or removed.
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Figure 4.3: Second Attempt: ’Node Frequency Comparison’
x-axis: node ID 1 values, y-axis: node ID 0 values, z-axis: node ID 2 values

Figure 4.4: Frequency Peaks of all Applications

Figure 4.4 illustrates the ’Node Frequency Table’ of metric 0. What is interesting in this data is that
a line of data points can be seen. The reason for this was already established. It is also noticeable
that applications MG and Kripke have more outliers, but application LU shows the desired input
clusters. This plot, however, makes it difficult to see individual data points. As a consequence,
instead of plotting all applications in a single frame, they were plotted for individual applications.
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Figure 4.5: Frequency Peak Visualization: FT Figure 4.6: Frequency Peak Visualization: MG

Figure 4.7: Frequency Peak Visualization: SP Figure 4.8: Frequency Peak Visualization: LU
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Figure 4.9: Frequency Peak Visualization: BT Figure 4.10: Frequency Peak Visualization: CG

Figure 4.11: Frequency Peak Visualization:
miniGhost

Figure 4.12: Frequency Peak Visualization:
miniAMR
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Figure 4.13: Frequency Peak Visualization:
miniMD

Figure 4.14: Frequency Peak Visualization:
Kripke

Figure 4.15: Frequency Peak Visualization: CoMD
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As shown in Figure 4.5 for application FT, three clusters have been formed for the corresponding
input sizes X, Y, and Z. Only for input size X is there an outlier; otherwise, FT always produces
the same numbers for all executed runs per node. The same is true for the applications SP, LU,
BT and CoMD. On the opposite, application MG does not always perform the same values. The
data points are more scattered and different input sizes occasionally overlap. This also applies to
miniAMR, miniMD and Kripke. The applications CG and miniGhost have a tendency to plot the
data points in a straight line with a few isolated outliers.
The findings are not surprising when referring to Table 4.2. The values for applications FT and SP
were practically identical for each execution, whereas the values for application MG varied greatly.
This demonstrates that the visualization of the ’Node Frequency Table’ generates the same results
as the table itself. The plots for the remaining 19 metrics can be found in the appendix.
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Chapter 5

Discussion

The initial objective of this project was to obtain answers to the following research questions:

• Can we listen to monitoring data (system metrics) of applications through audification?

• Do we hear differences between multiple applications?

• Do we hear differences between inputs to the same applications?

• Do we hear differences between nodes of the same execution?

• Do we hear differences between runs of the same application-input pair?

Utility of Audification
The first question is whether the audification of monitoring data (system metrics) can produce
audible time series. This has been verified to be feasible.

Recognizing Applications
The answer to the second question, whether differences between multiple applications can be heard,
is answered affirmatively. All applications can be distinguished based on sound. Some were eas-
ily recognizable due to their uniqueness, while others sounded similar but not identical to other
applications.

Effect of Input Size
The next discovery about the correlation between different input sizes paired with the same appli-
cation revealed that different input sizes do affect the output for all applications. When compared
to other applications, CoMD proved to be the most stable.

Node Variation
For the research question, if differences between nodes of the same execution can be heard, the
conclusion is, that for some applications the differences occurred pairwise. Other applications had
practically no substantial difference because they sounded nearly identical.
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Repeated Executions
The sound created by executing the same application-input pair indicated that the performed runs
for FT and SP sounded practically identical, whereas the executed runs for MG sounded similar
overall but with some minor changes.

5.1 Sonification vs. Audification

The main distinction between sonification and audification, as described in Section 2.2, is that
sonification maps data points to a musical scale, whereas audification treats the data as if it were
already sound. The aim of this section is to compare sound files created through sonification with
audification. For the comparison, Maarten Schenk’s sonification files (2021) are used for comparison,
with just the applications CoMD, Kripke, MG and miniAMR from metric 0 being considered. [22]
Moreover, all applications were executed with the input size X and the run ID 0.

The first noticeable change is the length of the sound file. The sonified time series has on
average a duration of 5 minutes, but the audification files are in the seconds range. This enables
the user to recognize applications within seconds. Listening to the sonified audio also revealed that
the applications Kripke, MG and miniAMR could not be recognized, because all that can be heard
are random piano tones being played without repetition. Only CoMD stood out because it uses
an alternating rhythm of low and high tones. The uniqueness of CoMD can also be found in the
audified version of CoMD. It stood out the most, among all applications.

According to Maarten Schenk (2021) discovered the same findings, that all applications besides
CoMD were unrecognizable due to their similarity. CoMD, on the contrary, showed a unique pattern
of anomalies. [22]

5.2 Limitations

The proposed method audification is a novel method of listening to monitoring data that has proven
to be effective. This work, however, was limited in several ways. First, audification relies on users
listening to sound, but not everyone hears things the same way. Some people can distinguish
between sounds, while others cannot because the frequency range is too low or too high for them
to hear. Second, the investigation part, which included listening, was limited to one metric with
limited parameter changes since listening to all sound files that could be computed would be out
of scope. Third, the results revealed that applications with specific input sizes have distinct sound
characteristics that set them apart from other applications. But, this uniqueness implies that we
can only recognize an application if the parameter settings (input and node configuration) are the
same. Nonetheless, this feature can be advantageous in detecting cryptocurrency miners whose
resource usage is always the same.
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Chapter 6

Conclusion

6.1 Main Contributions

As a result of this work, it was discovered that the Python Wave Module is sufficient for convert-
ing time series to sound and that sound characteristics can be used for application analysis. For
example, distinguishing applications and discovering similarities or differences between nodes can
be achieved. This work also includes a comparison table in which the frequency with the highest
amplitude per node for each execution was recorded, allowing sound similarities and differences to
be extracted through reading rather than listening. The comparison table was also visualized as an
additional step. Overall, the findings show how audio-based analysis can be used to complement
visual analysis.

In terms of confirming the findings, the study extended our knowledge of traditional statistical
features by using a valid alternative, frequency (instead of e.g. minimum, maximum and average).
Additionally, the discoveries will serve as a base for future studies aimed at recognizing applications
based on execution behavior, similar to e.g. how Shazam recognizes songs.

By applying PCA to the strongest frequency components of chosen system metrics and plotting the
result, further insights were exposed. It was discovered that some applications (FT, SP, BT, CoMD)
repeat more consistently, while others (MG, LU, CG, miniGhost, miniAMR, miniMD, Kripke) have
more variation and generate different system metric waveform for repeated executions.

To summarize, the main contribution of this work is the ability to listen to HPC Monitoring data
with audification and a systematic frequency-based analysis of multiple system metrics.

26



6.2 Future Work

Because the Python Wave Module contains parameters that have not been investigated in depth,
further research on this topic is recommended. The parameter channels, for instance, can be ex-
plored in terms of multi-channel sound system settings: mono, stereo, and surround sound. This
enables us to have a single audio file with different sounds on each speaker depending on the settings
we select. To demonstrate how surround sound is used in real life: Sound can be used to simulate
a car driving by in a movie.

This concept could be applied to applications running on multiple nodes. The experiment could
be carried out in a room with speakers set up in each corner to see if we can hear different or similar
sound coming from each corner.

When considering Shazam, the newly acquired knowledge that applications can be distinguished
can be put to use. Shazam is a tool that allows you to identify the title of a music song or the artist
by playing the song into the tool. Rather than identifying songs, it can be explored if applications
can be identified using an approach similar to Shazam.

Furthermore, as stated in Section 4.1.2, it is unknown why the investigated applications sound
similar. Because the primary goal was to determine whether or not applications sounded comparable
at all. A further study with more focus on the applications themselves is therefore recommended.
Our work also opens further research on why some applications have more variation and generate
different system metric waveform for repeated executions compared to others.
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Table A10: Node Frequency Table Kripke
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Visualization of Node Frequency Table

Figure A1: AR NIC RSPMON PARB EVENT CNTR AMO BLOCKED metric set nic

Figure A2: AR NIC RSPMON PARB EVENT CNTR AMO FLITS metric set nic
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Figure A3: AR NIC RSPMON PARB EVENT CNTR AMO PKTS metric set nic

Figure A4: AR NIC RSPMON PARB EVENT CNTR IOMMU BLOCKED metric set nic
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Figure A5: AR NIC RSPMON PARB EVENT CNTR IOMMU FLITS metric set nic

Figure A6: AR NIC RSPMON PARB EVENT CNTR IOMMU PKTS metric set nic

Figure A7: AR NIC RSPMON PARB EVENT CNTR PI FLITS metric set nic
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Figure A8: AR NIC RSPMON PARB EVENT CNTR PI PKTS metric set nic

Figure A9: AR NIC RSPMON PARB EVENT CNTR PI STALLED metric set nic

Figure A10: SMSG nrx cray aries r
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Figure A11: SMSG ntx cray aries r

Figure A12: energy(J) cray aries r

Figure A13: freshness cray aries r
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Figure A14: hwintr count procstat

Figure A15: pgalloc normal vmstat

Figure A16: pgfree vmstat
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Figure A17: softirq count procstat

Figure A18: sys procstat

Figure A19: user procstat
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