Analysis of Individual HPC System Metrics
through Audification

Bachelor Thesis

University of Basel
Faculty of Science
Department of Mathematics
and Computer Science
HPC Research Group

Examiner: Prof. Dr. Florina M. Ciorba
Supervisor: Thomas Jakobsche

Li Ting Luong
liting.luong@stud.unibas.ch

December 21, 2021

N
7\|,6\|/é University

/XN of Basel

Abstract

In an ideal world, systems and applications run e ciently, reliably, and with high performance.
However, in the real world this is not always the case. Monitoring data generated by High Per-
formance Computing (HPC) systems is analyzed to understand the corresponding problems and
to have better understanding of the system and applications. Traditionally, monitoring data is
analyzed and investigated through visualization and resulting plots. However, there exists an al-
ternative approach that is not well explored, namely listening to the data. Listening to data can
have advantages over simply looking at plots, because the human auditory perception is good at
picking up on repeating patterns and changes in sound. The goal of this project is to convert HPC
monitoring data to sound les through audi cation. We want to analyze the data acoustically,
instead of the traditional visual analysis approach. Our results show that audi cation can assist
in recognizing repeated executions of applications, comparing multiple di erent applications, and
investigating di erent inputs and nodes of a speci ¢ application. We used the Python Wave Mod-
ule to audify speci ¢ system metrics that are characterized by frequency and have a waveform. To
systematically compare multiple application executions, we created an overview of the strongest fre-
guency components of our chosen system metrics. Applying Principle Component Analysis (PCA)
to our data and plotting the resulting clusters, exposed that some HPC applications repeat more
consistently (reproducing similar system metric waveform compared to other executions), while
other applications have more variation and change between repeated executions. Our discoveries
can serve as a base for future studies aimed at recognizing applications based on frequency com-
ponents in their execution behavior, similar to e.g. how Shazam recognizes songs. Our work also
opens further research on why some applications have more variation and generate di erent system
metric waveform for repeated executions compared to other applications.

Contents

1 Introduction 3
1.1 Motivation and Challenges e 3
1.2 Goalsand Research QUEStIONS i i i i e e e 4
1.3 Solution, Utility, and Findings 4
1.4 Technical Background of FFT 5

2 Related Work 6
2.1 Dataand Sound e 6
2.2 Sonication e 6
2.3 Audication e e 7

3 Methods 8
3.1 Audication e 8
3.2 Python Wave Module 9

3.21 SamplingRate 9

3.2.2 Channels e 9
3.3 Method Justication 10
3.4 Dataset: Taxonomist Dataset 10
3.5 Implementation 12

4 Results 14

4.1 EXPeriments o 14
4.1.1 Suitability of Audi ed Monitoring Data 14
4.1.2 Comparison between Multiple Applications 15
4.1.3 Comparison between Inputs to the same Applications 15
4.1.4 Comparison between Nodes of the same Execution 15
4.1.5 Comparison between Runs of the same Application-Input Pair 15

4.2 Evaluation of the Solution 16
4.2.1 Node Frequency Table 16
4.2.2 Visualization of Node Frequency Table 18

5 Discussion 24
5.1 Sonicationvs. Audication. 25
5.2 Limitations 25

6 Conclusion 26
6.1 Main Contributions e e e e e 26
6.2 Future Work

.. 27

Appendices 30
Node Frequency Table 30
Visualization of Node Frequency Table 30

Chapter 1

Introduction

Scienti ¢ applications demand high computing power to solve problems. This is where High-
Performance Computing (HPC) systems, which o er computing power, come into play. HPC sys-
tems generate a large amount of monitoring data, which re ects the system's response to running
applications.

1.1 Motivation and Challenges

In an ideal world, systems and applications run e ciently, reliably and with high performance.
However, this is not always the case. Monitoring data generated by HPC systems is analyzed to
have a better understanding of the system and applications. In this bachelor thesis, a specic
technique of analysis, audi cation, is explored. It enables the user to listen to data as if it were
sound. Audi cation can help to: (a) explore an alternative to visual analysis of data, (b) identify
repeated executions of applications, (c) compare multiple di erent applications, and (d) investigate
di erent inputs and nodes of an individual application.

It is not trivial whether the sound produced by audifying data can be used to analyze moni-
toring data. Listening to the sound les may reveal that no repeated sound pattern can be used
as a reference point, showing that audi cation is not e ective. This exact problem was discovered
when soni cation was used to listen to data. But, what makes soni cation di erent from audi ca-
tion? Soni cation maps single data points to a musical scale, which is then played with a digital
instrument, whereas audi cation treats data as if it were already sound.

Another challenge to overcome is the ability to convert monitoring data to sound. Because
audi cation is only suitable for data with waveform, only monitoring data (system metrics) with
waveform are considered. The next diculty is to objectively state similarities and di erences
in sound using numbers rather than just listening. Furthermore, the numbers should be visually
represented so that the desired information about similarities can be extracted easily.

1.2 Goals and Research Questions

To overcome the challenges de ned in the previous section, a method for converting time series to
sound is required. For this purpose, Python provides a library called 'wave module', which makes
it possible to convert data to sound. Following that, a systematic method for comparing sound
similarities and di erences is needed as listening to all sound les would be beyond the scope of
this project. Consequently, a table in which the most prominent frequencies from the sound les
were recorded, was created. This allows to visually extract information about whether or not there
are similarities.

The research questions are:

" Can we listen to monitoring data (system metrics) of applications through audi cation?
Do we hear di erences between multiple applications?

Do we hear di erences between inputs to the same applications?

Do we hear di erences between nodes of the same execution?

Do we hear di erences between runs of the same application-input pair?

1.3 Solution, Utility, and Findings

By using the Python Wave Module, the system metrics with waveform were converted successfully
into sound les that can be listened to. This is bene cial for HPC reseachers, because rather
than analyzing data visually, data can be analyzed through audi cation. It may also bring some
information to the surface that would have remained hidden if visualization was used. Another
advantage could be that listening to data is easier or faster than looking at plots. Lastly, but worth
mentioning is that blind people can take part in research using audi cation. Because blind people's
hearing abilities are enhanced when compared to hearing people, they may be able to detect even
minor di erences in sound. The ndings include:

" Audi cation can be used to recognize repeated application executions.
It can be further used to investigate applications by comparing di erent input sizes.

Audi cation can also help to analyze individual application executions, by listening to the
di erences between several nodes of the same run.

We found that applications generally produce the same frequency on all allocated nodes.

We further found out that input sizes to applications change the frequency components of the
system metrics.

Lastly, we found out that some applications repeat more consistently than others, meaning
they generate the same waveform for di erent repeated executions.

1.4 Technical Background of FFT

The terms 'Fast Fourier Transform' (FFT) and 'Spectrogram’ will be de ned brie y in this section,
as well as their signi cance to the work.

Fast Fourier Transform (FFT)

The Fast Fourier Transform is a technique used for measurements regarding audio and acoustics
measurements. Individual spectral components and therefore frequency information can be obtained
by applying the Fast Fourier Transform to a signal. In more detail, the Fast Fourier Transform

is an optimization of the 'Discrete Fourier Tranformation' (DFT). The data points collected over
time form a signal, which is then divided into frequency components. Each of these represents an
oscillation with amplitude and phase. [4]

Spectrogram

A spectrogram is a tool for visually displaying the frequency spectrum of a signal, or the "loudness"
of a signal over time, in a waveform. Spectrograms are used in science to display the frequencies of
sound waves produced by, for example, humans or animals. [9][19]

What is the signi cance of the 'Fast Fourier Transform' and 'Spectrogram' in this work? The
spectrogram was generated applying the Fast Fourier Transform to a time series. This was done
in order to obtain the strongest frequency components of the chosen system metrics, which would
later be used for sound comparison.

Chapter 2

Related Work

2.1 Data and Sound

Listening to computing data is not a novel approach in the scienti c community. By conducting a
survey, Paul Vickers and James L. Alty [24] investigated whether computing information can be
conveyed through sound and whether musical experience in uences what participants can hear. Ac-
cording to survey results, participants with musical experience were able to recognize tone changes
better. This nding is important for this work because it shows that listening to audi ed moni-
toring data can support in hearing similarities and di erences in data. However, when it comes to
monitoring data analysis, they do not look for similarities between applications or di erent settings,
which is more important to High Performance Computing researchers that want to compare and
analyze application behavior.

2.2 Soni cation

The paper "Tuning Complex Systems by Sonifying Their Performance Data" [10] Henthorne et al.
also discussed a possible method for conveying performance data, namely soni cation. Soni cation
allows the programmer to listen to information via sound. While examining soni cation, it was
discovered that survey participants could detect changes in sound characteristics. Based on their
newly acquired knowledge, participants were instructed to tune the con guration settings to see if
they could outperform the standard con guration solely through soni cation, which proved to be

e ective. All participants were able to tune the settings, resulting in improved performance. Even
S0, we run into the same issue as before because they don't make any comparisons between di erent
parameters in the analysis.

Soni cation and the potential bene ts of combining it with High Performance Computing (HPC)
was also investigated by Maarten Schenk in his Bachelor thesis "The Sound of Computing” [22].
High Performance Computing researchers must analyze a lot of data to optimize the performance
of their applications. Instead of comparing data visually, this approach tries to convert monitoring
data into sound to determine if this method of comparing data can be bene cial to researchers.

As a result, it was discovered that certain application parameters had characteristics that could
be extracted through sound and that this approach has the potential to be investigated further.
Nonetheless, the technique of soni cation di ers from the method of audi cation that we utilize.
The main di erence between these two methods is that soni cation maps data points to a musical
scale, whereas audi cation, which is used in this work, examines the data as if it were already
sound.

By nature, soni cation is more suited for constant system metrics, because a constant value can
easily be mapped to a musical scale. System metrics that are changing a lot, e.g. with waveform,
are not so easily mapped or result in pseudo-random sound. If the metrics already have waveform,
the method of audi cation is more suited. In this thesis the focus is on audi cation and metrics
with waveform.

2.3 Audi cation

Previous related works have shown that researchers have attempted to nd several methods for
working with computing information. Instead of using the traditional method of visually analyzing
data, performance data was converted into sound to enable acoustic analysis. Audi cation is not a
new technique; it has been used before, but not in the context of HPC monitoring data.

Chapter 3

Methods

3.1 Audication

This paper proposes an approach for analyzing HPC monitoring data using audi cation. What
audi cation does in detail is to take a time series, which is dened as "[...] a sequence of data
points collected over an interval of time" [23] and translate it directly to sound without altering the
data. In this project, the time series are the HPC monitoring data where only those that resemble
waveforms are investigated. This is due to the fact that the produced sound by audifying these
time series are the best to experiment with. On the opposite, time series that are constant do not
provide much diversity in sound.

Figure 3.1: Waveform Time Series

Figure 3.2: Constant Time Series

3.2 Python Wave Module

To enable listening to monitoring data, the time series can be saved as a wav le. Python comes in
handy in this case because it has a module called 'wave' [14] that allows us to audify our data. This
module provides a set of parameters that can be manually con gured. Sampling rate and channels
were the primary parameters investigated. They will be explained in the sections that follow.

3.2.1 Sampling Rate

The sampling rate is de ned as "the number of samples per second [...] taken from a continuous
signal to produce a discrete or digital signal" [12]. Various sampling rates were tested in order to
determine the in uence of sampling rate on the sound generated by audi cation. As a starting
point, the sampling rate of 1000 hertz was randomly chosen and then increased by 200 or 300 hertz
until the sampling rate of 2500 hertz was reached. Because when the sampling rate is set too high,
it causes the pitch to rise, and the length of the sound le becomes too short. The opposite occurs
if the sampling rate is set too low. As a result, the sampling rate of 1500 hertz was chosen as the
best for distinguishing sound. This sampling rate was applied in all upcoming experiments.

3.2.2 Channels

The Python Wave Module includes a method called setnchannels() that enables choosing two chan-
nel settings: mono and stereo. The distinction between mono and stereo sound [...] "is the number
of channels used to record and playback audio” [21]. While mono uses one channel to convert a
signal into sound, stereo uses two channels. This makes it possible for stereo to create width with
sound, while mono cannot. Stereo sound can portray [...] "sound coming from di erent sources
and positions" [...] [11]. Since the e ect of stereo creating new dimensions is not primarily needed
for audi cation, mono was chosen as the default channel setting.

3.3 Method Justi cation

This project's aim is to make it possible to listen to monitoring data. There are two methods
available to achieve this: sonication and audi cation. Because soni cation had already been
investigated, a new approach to achieving the same goals was discovered. As it was decided that
the code will be written in Python, it was only natural to select a Python library. The 'wave
module’ is a suitable library that matches audi cation because it can convert monitoring data to

an audio le in wav format without altering the data, which is the opposite of what soni cation
does.

3.4 Dataset: Taxonomist Dataset

The data utilized in the project came from the Taxonomist dataset [2][3], which applied the machine

learning technique random forest to classify known applications and detect unknown ones. This
dataset contains a total of 11 applications, all of which are benchmarks, meaning that they do the
same thing every execution, see Table 3.1.

It also provides several parameters that can be con gured, the rst of which is the input size,
where the work changes depending on which input size is selected. These applications paired with
speci ¢ inputs were run on multiple nodes, and each node collected 563 metrics as a time series.
The applications can also be executed multiple times with the same con guration. It should be
noted that there are 721 metrics and 16 applications in total. However, only 563 metrics and 11
applications have been published in open source.

Taxonomist Dataset
Applications FT, MG, SP, LU, BT, CG, CoMD, miniGhost, miniAMR,
miniGhost, miniAMR, miniMD, Kripke miniMD, Kripke
Input Sizes X Y z L
Number of Nodes 4 4 4 32
Metrics per Second 563 563 563 563
Repeated Executions|| 30 30 30 6

Table 3.1: Taxonomist Dataset Overview
The following application descriptions are taken from several sources:

BT - Block tri-diagonal solver

BT simulates a CFD (computational uid dynamics) problem with two discrete versions of three-
dimensional, unsteady, compressible Navier-Stokes equations. BT solves multiple, independent
systems of non diagonally dominant, block tridiagonal equations. [13][5]

CG - Conjugate gradient

Computation of the smallest eigenvalue of a large, sparse symmetric, positive- de nite matrix with a
conjugate gradient method. By using unstructured matrix vector multiplication, CG tests irregular
long distance communication. [13][5]

10

FT - Fourier transform
Testing the performance of long-distance communication. FT numerically solves a Poisson partial
di erential equation (PDE) using the fast Fourier transform (FFT). [13][5]

LU - Gauss-Seidel solver
LU is simulating a CFD problem like BT, but solves regular-sparse, lower and upper triangular
systems. [13][5]

MG - Multi-grid on meshes

MG requires highly structured long distance communication and tests the performance of short
and long distance data communication. MG computes an approximation for the solution to a
three-dimensional scalar Poisson problem on a discrete grid, by using the V-cycle multi-grid algo-
rithm. [13][5]

SP - Scalar penta-diagonal solver
SP also simulates a CFD problem like BT, but solves multiple, independent systems of non diago-
nally dominant, scalar, penta-diagonal equations. [13][5]

miniAMR - Adaptive Mesh Re nement Mini-App

miniAMR applies a stencil calculation on a unit cube computational domain, which is divided into
blocks. The blocks all have the same number of cells in each direction and communicate ghost
values with neighboring blocks. With adaptive mesh re nement, the blocks can represent di erent
levels of re nement in the larger mesh. [15]

miniMD - MiniMD Molecular Dynamics Mini-App

miniMD is a parallel molecular dynamics (MD) simulation package written in C++ and intended

for use on parallel supercomputers and new architectures for testing purposes. This simple code is
a self-contained piece of C++ software that performs parallel molecular dynamics simulation of a
Lennard-Jones or a EAM system and gives timing information. [17]

CoMD - Classical molecular dynamics proxy application

CoMD is a reference implementation of typical classical molecular dynamics algorithms and work-
loads. The code is intended to serve as a vehicle for co-design by allowing others to extend and/or
reimplement it as needed to test performance of new architectures, programming models, etc. [6]

miniGhost - MiniGhost Halo Exchange Mini-Application

A broad range of scienti c computation involves the use of di erence stencils. In a parallel comput-
ing environment, this computation is typically implemented by decomposing the spacial domain,
inducing a \halo exchange" of process-owned boundary data. MiniGhost represents 3D nearest
neighbor halo-exchange communications that are present in a many HPC codes. [16]

Kripke - 3D S |, deterministic particle transport

Kripke is a simple, scalable, 3D § deterministic particle transport code. Its primary purpose is to

research how data layout, programming paradigms and architectures e ect the implementation and
performance of § transport. (S,: Discrete ordinates method of approximately solving radiative
transfer equations.) [1]

11

3.5 Implementation

The following Python code audi es the time series using theaudify() function:

def audify():
samplingRate = 1500 # heriz
audio = wave.open(sound/ft/input/input_X.wav, w)
audio.setnchannels(1)
audio.setsampwidth(2)
audio.setframerate(samplingRate)
data = norm(timeseries) # normalize time series
audio.writeframesraw(data.tobytes())
audio.close()

The wave read object methods used in the code are described in detail below. The following is
a description taken from tutorialspoint: [25]

open(): This function opens a le to read/write audio data. The function needs two parame-
ters - rst the le name and second the mode. The mode can be 'wb' for writing audio data
or 'rb' for reading.

setnchannels() : Set the number of channels. 1 for Mono 2 for stereo channels
setsampwidth(): Set the sample width to n bytes
setframerate(): Set the frame rate to n

writeframesraw(): Write audio frames, without correcting

12

For each execution, thefindMaxNodeFrequency() function determines the frequency with the
highest amplitude per node:

def findMaxNodeFrequency():
max_freq = 0
for peak in peaks:
amplitude = spectrogram[peak]
if amplitude > spectrogram[max_freq]: # save frequency with highest amplitude
max_freq = peak

save frequency to corresponding node dictionary
if node_id == 0:
node_0_dict[run_id] = max_freq
elif node_id == 1:
node_1_dict[run_id] = max_freq
elif node_id ==
node_2_dict[run_id] = max_freq
elif node_id ==
node_3_dict[run_id] = max_freq

The frequency with the highest amplitude, or frequency peak, can be determined using the spec-
trogram. In the spectrogram, the amplitude of each frequency peak is compared to the amplitude
of all other frequency peaks. Only when the highest peak for a given node is found is it saved in
the corresponding node dictionary.

13

Chapter 4

Results

4.1 Experiments

The time series was converted into sound using the Python Wave Module. The experiments were
executed for the network metric.id O and the applications FT, MG, and SP. The applications FT,
MG, and SP were chosen based on criteria. The rst condition was that they came from the NAS
Parallel Benchmark Suite [8], which is widely known and utilized for research. Second, the applica-
tions BT, LU and SP simulate the same problem with some variations, namely CFD (computational
uid dynamics) that solves independent equations without much communication. SP was chosen
to be the representative for these applications. Because CG and FT both do long distance commu-
nications, FT was picked out of the two. And lastly, MG was chosen as a third application to be
examined since it conducts a di erent computation and short distance communication.

Since the input size L can only be applied to certain applications, it was omitted in this study.
Only these parameter settings were investigated because it would be too challenging to investigate
every possible combination of parameter settings. Eventually, the questions in the following sections
were answered subjectively, with the main goal of determining similarities and di erences in hearing.

Here are some more details regarding metric 0: Aries is the name of a network hardware of the
company Cray that has its own network performance counters. The relationship between Aries
and metric 0 (AR_NIC_NETMON _ORB_EVENT _.CNTR _REQ_FLITS _metric_set.nic) is that it is a
network metric from the Aries NIC (Network Interface Controller). It represents the aggregate net-
work tra ¢ through the NIC into the High Speed Network (HSN) used as interconnection between
the nodes of the system.

4.1.1 Suitability of Audi ed Monitoring Data

Various metrics were examined to see what sound they produced in order to establish whether
monitoring data (system metrics) are suitable for audi cation. As described in Section 2.3, only
time series that resemble waveforms were analyzed. Because the sound generated by a constant
time series returned a constant tone, there was limited space for experimentation. In general,
audi cation has shown to be e ective in converting monitoring data to sound.

14

4.1.2 Comparison between Multiple Applications

Section 4.1 stated that the experiments were only conducted out for applications FT, MG, and SP.
But, for this experiment all applications were taken into consideration.

Listening to the applications displayed that they can be distinguished and recognized based on
sound. FT, CG, CoMD, and miniGhost are easily recognizable compared to other applications.
The remaining applications are not so easily distinguished based on sound. The reason for that
could be that they perform similar computations, but this needs further analysis. For future work,
analyze why some applications sound similar.

4.1.3 Comparison between Inputs to the same Applications

In this study, the input sizes X, Y, and L were investigated in combination with applications to
see if the input sizes a ect monitoring data and, more importantly, sound. When evaluating the
listening part, it can be heard that the input sizes do in uence monitoring data. In other words,
the same application with di erent input sizes does not sound the same. The correlation is between
what was de ned in Section 3.4, where it was stated that input sizes impact the performance that
computers do. This was con rmed by the experiment.

It is worth noting that CoMD was found to be most stable, with only minimal changes in the values
for the frequency peaks.

4.1.4 Comparison between Nodes of the same Execution

In order to analyze whether nodes with the same application and input size di er in sound, the four
nodes of an execution were compared to one another. It was discovered that all nodes in FT sound
extremely similar, if not identical, to the human ear. Minor changes in sound were ‘only' visually
detectable with the help of an audio player called "Resonic Player Beta" [20], which had an inbuilt
feature that allowed us to visualize the sound le. On the other hand, the nodes for applications
MG and SP also sounded similar but there was a pairwise similarity. The pairing node IDs for MG
were 0, 2 and 1, 3. While SP's pairing node IDs were 0,3 and 1,2. One possible explanation for
this result may be that the metric O belongs to the network group. As a result, the pairing nodes
may represent clients who send packets to each other. While sending, the packet order stays; this
is also re ected in the sound, with two nodes sounding similar.

In summary, the answer to the question whether di erences between nodes of the same execution
can be heard is yes.

4.1.5 Comparison between Runs of the same Application-Input Pair

The experiment was carried out for the di erent run IDs 0,1,2, and 3. The intention behind this
experiment was to see if running the same application-input pair would resolve in di erent sound
characteristics. When it comes to applications FT and SP, the sound produced for multiple runs
is extremely similar, nearly identical, whereas MG sounded similarly in general with some minor
di erences. However, the dierence isn't signi cant enough. As an outcome, even with di erent
run IDs (repeated executions), the applications can be distinguished.

15

4.2 Evaluation of the Solution

Hearing was used to extract the similarities and dissimilarities from previous experiments. However,
not everyone hears the same thing when listening to the same sound. As a result, the outcomes are
quite subjective. To illustrate that the outcomes can be objectively veri ed an overview table called
‘Node Frequency Table' was created to substantiate similarities and dissimilarities in nhumbers. In

a later step, the table was plotted for additional visual analysis.

4.2.1 Node Frequency Table

The frequencies with the highest amplitude per node, or frequency peaks per node, were compared
to see if the similarities or di erences heard in sound could be veri ed by these numbers. Figure
4.1 shows the frequency peaks computed in a spectrogram for application FT.

Figure 4.1: Frequency Peaks for Application FT

There are two frequency peaks denoted by a red 'x', with only the highest peak examined for
all application-input pairs. The highest frequency peak is more likely to repeat for repeated execu-
tions of the same application. On the opposite, 'weaker' frequencies can be overshadowed or even
completely hidden by background noise and perturbations through other processes or applications
running on an HPC system.

Table 4.1 is the rst version, which records the peak frequencies for each node and the metric
0. As an example of how the table works, the data in Figure 9 shows that the frequency peak for
application FT with input size X and node ID 0 is at 131. Therefore, the value 131 was denoted in
the rst cell. For some application-input pairs there were two frequency peaks at the exact same
height, which were separated by a semicolon. In the absence of a peak, the term 'N/A' was entered
into the cell.

Comparing the values for application FT, MG and SP with input size X reveals that they are
indeed distinct. The table also illustrates how di erent input sizes a ect the work done by the
applications. Finally, it proves that the peak frequencies of the nodes are similar or pairwise similar
and that the executed runs are identical. In conclusion, the table conrms the ndings of the
experiments described in Section 4.1. and demonstrates that it is e ective in expressing what can
be heard in numbers.

A visual representation of the ‘Node Frequency Table' was required because looking at so many
numbers and attempting to nd di erences in numbers is not feasible. For this purpose, the rst
version of Table 4.1 was expanded so that it lists the values for all nodes when they are executed
30 times.

16

Highest Amplitude Frequency per Node
App+Input Node 0 | Node 1 | Node 2 | Node 3
FT + X 131 131 131 131
FT+Y 258 258 258 258
FT+Z 216 216 216 216
MG + X 286 234 347 234
MG +Y 149 149 119 149
MG + Z 197 263 231 263
SP + X 26 26 26 26
SP +Y 84 84 84 84
SP+2Z 168 168 168 168
LU+ X 354 354 194 194
LU+Y 174 174 174 87
LU+ 2Z 251 251 251 251
BT + X 96 96 96 96
BT +Y 103 103 103 103
BT +Z 223 223 223 223
CG + X 52 52 52 52
CG+Y 242 242 242 242
CG+Z 298 298 298 298
miniGhost + X | 116 116 116 116
miniGhost + Y | 101 101 101 101
miniGhost + Z | 69 70 69 ; 139| 70
miniAMR + X 75 75 75 75
miniAMR + Y 1 1 1 1
miniAMR + Z 17 8 8;17 8
miniMD + X 1 1 1 1
miniMD + Y 139 139 227 139
miniMD + Z 44 44 44 44
Kripke + X 303 304 228 304
Kripke + Y 3 3 3 3
Kripke + Z 167 N/A 195 222
CoMD + X 233 233 233 233
CoMD +Y 169 169 169 169
CoMD + Z 228 228 228 228

Table 4.1: First version: 'Node Frequency Table'

Monika Multani provided in her thesis "Sta-
tistical Characterization of HPC Monitoring
Data" [18] an overview table with metrics indi-
cating which time series had the most waveform.
A total of 20 metrics were recorded, and for each
of these metrics a 'Node Frequency Table' was
created. However, for illustration purposes, the
table was divided into 11 sections, each of which
describes a di erent application. Also used were
the abbreviations 'lps' (input size), ‘N ID' (Node
ID) and 'R' (Run). The remaining tables for the
other applications are contained in the appendix.
The Table 4.2 illustrates how the frequency with
the highest amplitude per node was recorded.
The metric analyzed in Table 4.2 has metric ID
0, and the application researched was FT. The
‘Input’ column de nes the input that was paired
with the application and executed 30 times for
each of the four nodes.

17

131|131|132|132({131|131|{131|{131/131|130{131 [131 (131 ({132 |131 (131 |131 |131 (130 |130 |132 |132 |132 |131 |131 |131 (131 |130 |131 |131
131|131|132|132({131|131|{131{131/131|130{131 [131 (131 (132 |131 (131 |131 |131 (130 |130 |132 |132 |132 |131 |131 |131 (131 |130 |131 |131

131|131|132|132({131|131|131|131/131|130{131 |131 |131 (132 |131 (131 |131 |131 (130 |130 |132 |132 |132 |131 |131 |131 |131 |130 |131 |131
131|131|132|132(131|263|131|263|131|130|{131 |131 |131 ({132 |131 (263 |131 |131 (130 |130 |132 |132 |132 |131 |131 |131 |131 |130 |131 |131
258|258|257|258|258|258|258|258|257|258|259 (258 (259 |259 |258 |258 (259 |258 |258 |258 |258 |258 |258 |258 |257 (259 |258 (259 (258 |259
258(258|257|258|258|258|258|258|257(258|259 (258 (259 |259 |258 258 (259 |258 258 |258 |258 |258 |258 |258 |257 (259 |258 |259 (258 [259
258|258|257|258|258|258|258|258|257|258(259 |258 (259 |259 (258 |258 |259 |258 |258 |258 |258 |258 |258 258 |257 |259 |258 |259 |258 |259
258(258|257|258|258|258|258|258|257|258|259 (258 (259 (259 |258 |258 (259 |258 |258 |258 |258 |258 |258 |258 |257 (259 [258 |259 (258 [259
216(217|217|218|216|217|216|216|215(216|217 |215 (217 |216 |216 |216 (216 |216 |216 |216 |216 |216 |216 |215 |216 (217 |217 |216 |216 |216
216(217|217|218|216|217|216|216|215(216|217 |215 217 |216 |216 |216 (216 |216 |216 |216 |216 |216 |216 |215 |216 (217 |217 |216 |216 |216
216(217|217|218|216|217|216|216|215(216|217 |215 217 |216 |216 |216 (216 |216 |216 |216 |216 |216 |216 |215 |216 (217 |217 |216 |216 |216
216(217|217|218|216|217|216|216|215(216|217 |215 217 |216 |216 |216 (216 |216 |216 |216 |216 |216 |216 |215 |216 (217 |217 |216 |216 |216

0
1

2
3
0
1
2
3
0
1
2
3

IpsINID|RO|R1R2|R3|R4R5R6/R7/R8R9R10/R 11R 12|R 13|R 14|R 15|R 16|R 17|R 18|R 19|R 20|R 21|R 22|R 23|R 24|R 25|R 26|R 27|R 28|R 29

X
X

X
X
Y
Y
Y
Y
z
z
z
z

Table 4.2:

Node Frequency Table FT

4.2.2 Visualization of Node Frequency Table

The goal of this section was to visualize the 'Node Frequency Table' with clustering. During this
process, di culties were encountered, which will be discussed here.

The rst attempt was to plot the values for each run on the x-axis and the node IDs on the
y-axis. This was done as a test for metric 0, and application FT using input X to determine if the
generated plot produced helpful results, which it did not. Figure 4.2 contains no clusters, only lines
parallel to the x-axis are drawn.

Figure 4.2: First Attempt: 'Node Frequency Comparison'

Plotting the values for the executed runs per node was the next concept to be tested for metric O,
and application FT with input X. However, adding a third dimension did not solve the problem of
no clusters being found, as seen in Figure 4.3. Furthermore, there is no option to plot the values
for node ID 3. As a consequence, this concept was abandoned.

Taken together, the attempts failed at visualizing the table where the frequency with the highest

amplitude per node was recorded. The challenge was to represent the nodes' four dimensions in
a two or three-dimensional layout. As a result, a new approach for displaying the frequency table
was established that makes use of the "Principal Component Analysis" (PCA). PCA reduces the
dimensionality of the data without losing information. It examines the correlation between dimen-
sions and sets the goal of preserving as much information as possible about how the original data
was distributed. This information is then saved in a minimum number of variables that are given
for plotting. [7]
The four dimensions of the nodes were reduced to two dimensions since adding a third dimension
would not contribute much as the nodes' values are mostly the same. For example, if three data
points with value (40, 40, 40, 40) (50, 50, 50, 50), (60, 60, 60, 60) are to be plotted. The three data
points will always be drawn in a line, no matter how many dimensions are added or removed.

18

Figure 4.3: Second Attempt: 'Node Frequency Comparison'
x-axis: node ID 1 values, y-axis: node ID O values, z-axis: node ID 2 values

Figure 4.4: Frequency Peaks of all Applications

Figure 4.4 illustrates the 'Node Frequency Table' of metric 0. What is interesting in this data is that
a line of data points can be seen. The reason for this was already established. It is also noticeable
that applications MG and Kripke have more outliers, but application LU shows the desired input
clusters. This plot, however, makes it di cult to see individual data points. As a consequence,
instead of plotting all applications in a single frame, they were plotted for individual applications.

19

Figure 4.5: Frequency Peak Visualization: FT Figure 4.6: Frequency Peak Visualization: MG

Figure 4.7: Frequency Peak Visualization: SP Figure 4.8: Frequency Peak Visualization: LU

20

Figure 4.9: Frequency Peak Visualization: BT Figure 4.10: Frequency Peak Visualization: CG

Figure 4.11: Frequency Peak Visualization: Figure 4.12: Frequency Peak Visualization:
miniGhost miniAMR

21

Figure 4.13: Frequency Peak Visualization: Figure 4.14: Frequency Peak Visualization:
miniMD Kripke

Figure 4.15: Frequency Peak Visualization: CoMD

22

As shown in Figure 4.5 for application FT, three clusters have been formed for the corresponding
input sizes X, Y, and Z. Only for input size X is there an outlier; otherwise, FT always produces
the same numbers for all executed runs per node. The same is true for the applications SP, LU,
BT and CoMD. On the opposite, application MG does not always perform the same values. The
data points are more scattered and di erent input sizes occasionally overlap. This also applies to
miniAMR, miniMD and Kripke. The applications CG and miniGhost have a tendency to plot the
data points in a straight line with a few isolated outliers.

The ndings are not surprising when referring to Table 4.2. The values for applications FT and SP
were practically identical for each execution, whereas the values for application MG varied greatly.
This demonstrates that the visualization of the 'Node Frequency Table' generates the same results
as the table itself. The plots for the remaining 19 metrics can be found in the appendix.

23

Chapter 5

Discussion

The initial objective of this project was to obtain answers to the following research questions:

" Can we listen to monitoring data (system metrics) of applications through audi cation?

Do we hear di erences between multiple applications?
" Do we hear di erences between inputs to the same applications?

~ Do we hear di erences between nodes of the same execution?

Do we hear di erences between runs of the same application-input pair?

Utility of Audi cation
The rst question is whether the audi cation of monitoring data (system metrics) can produce
audible time series. This has been veri ed to be feasible.

Recognizing Applications

The answer to the second question, whether di erences between multiple applications can be heard,
is answered a rmatively. All applications can be distinguished based on sound. Some were eas-
ily recognizable due to their uniqueness, while others sounded similar but not identical to other
applications.

E ect of Input Size

The next discovery about the correlation between di erent input sizes paired with the same appli-
cation revealed that di erent input sizes do a ect the output for all applications. When compared
to other applications, CoMD proved to be the most stable.

Node Variation

For the research question, if di erences between nodes of the same execution can be heard, the
conclusion is, that for some applications the di erences occurred pairwise. Other applications had
practically no substantial di erence because they sounded nearly identical.

24

Repeated Executions

The sound created by executing the same application-input pair indicated that the performed runs
for FT and SP sounded practically identical, whereas the executed runs for MG sounded similar
overall but with some minor changes.

5.1 Sonication vs. Audi cation

The main distinction between soni cation and audi cation, as described in Section 2.2, is that
soni cation maps data points to a musical scale, whereas audi cation treats the data as if it were
already sound. The aim of this section is to compare sound les created through soni cation with
audi cation. For the comparison, Maarten Schenk's soni cation les (2021) are used for comparison,
with just the applications CoMD, Kripke, MG and miniAMR from metric O being considered. [22]
Moreover, all applications were executed with the input size X and the run ID O.

The rst noticeable change is the length of the sound le. The sonied time series has on
average a duration of 5 minutes, but the audi cation les are in the seconds range. This enables
the user to recognize applications within seconds. Listening to the soni ed audio also revealed that
the applications Kripke, MG and miniAMR could not be recognized, because all that can be heard
are random piano tones being played without repetition. Only CoMD stood out because it uses
an alternating rhythm of low and high tones. The uniqueness of CoMD can also be found in the
audi ed version of CoMD. It stood out the most, among all applications.

According to Maarten Schenk (2021) discovered the same ndings, that all applications besides
CoMD were unrecognizable due to their similarity. CoMD, on the contrary, showed a unique pattern
of anomalies. [22]

5.2 Limitations

The proposed method audi cation is a novel method of listening to monitoring data that has proven

to be e ective. This work, however, was limited in several ways. First, audi cation relies on users
listening to sound, but not everyone hears things the same way. Some people can distinguish
between sounds, while others cannot because the frequency range is too low or too high for them
to hear. Second, the investigation part, which included listening, was limited to one metric with
limited parameter changes since listening to all sound les that could be computed would be out
of scope. Third, the results revealed that applications with speci c input sizes have distinct sound
characteristics that set them apart from other applications. But, this uniqueness implies that we
can only recognize an application if the parameter settings (input and node con guration) are the
same. Nonetheless, this feature can be advantageous in detecting cryptocurrency miners whose
resource usage is always the same.

25

Chapter 6

Conclusion

6.1 Main Contributions

As a result of this work, it was discovered that the Python Wave Module is su cient for convert-
ing time series to sound and that sound characteristics can be used for application analysis. For
example, distinguishing applications and discovering similarities or di erences between nodes can
be achieved. This work also includes a comparison table in which the frequency with the highest
amplitude per node for each execution was recorded, allowing sound similarities and di erences to
be extracted through reading rather than listening. The comparison table was also visualized as an
additional step. Overall, the ndings show how audio-based analysis can be used to complement
visual analysis.

In terms of con rming the ndings, the study extended our knowledge of traditional statistical
features by using a valid alternative, frequency (instead of e.g. minimum, maximum and average).
Additionally, the discoveries will serve as a base for future studies aimed at recognizing applications
based on execution behavior, similar to e.g. how Shazam recognizes songs.

By applying PCA to the strongest frequency components of chosen system metrics and plotting the
result, further insights were exposed. It was discovered that some applications (FT, SP, BT, CoMD)
repeat more consistently, while others (MG, LU, CG, miniGhost, miniAMR, miniMD, Kripke) have
more variation and generate di erent system metric waveform for repeated executions.

To summarize, the main contribution of this work is the ability to listen to HPC Monitoring data
with audi cation and a systematic frequency-based analysis of multiple system metrics.

26

6.2 Future Work

Because the Python Wave Module contains parameters that have not been investigated in depth,
further research on this topic is recommended. The parameter channels, for instance, can be ex-
plored in terms of multi-channel sound system settings: mono, stereo, and surround sound. This
enables us to have a single audio le with di erent sounds on each speaker depending on the settings
we select. To demonstrate how surround sound is used in real life: Sound can be used to simulate
a car driving by in a movie.

This concept could be applied to applications running on multiple nodes. The experiment could
be carried out in a room with speakers set up in each corner to see if we can hear di erent or similar
sound coming from each corner.

When considering Shazam, the newly acquired knowledge that applications can be distinguished
can be put to use. Shazam is a tool that allows you to identify the title of a music song or the artist
by playing the song into the tool. Rather than identifying songs, it can be explored if applications
can be identi ed using an approach similar to Shazam.

Furthermore, as stated in Section 4.1.2, it is unknown why the investigated applications sound
similar. Because the primary goal was to determine whether or not applications sounded comparable
at all. A further study with more focus on the applications themselves is therefore recommended.
Our work also opens further research on why some applications have more variation and generate
di erent system metric waveform for repeated executions compared to others.

27

Bibliography

[1] 3D Sn deterministic particle transport, README [Online]. https://github.com/LLNL/Krip
ke [Accessed: 24.11.2021].

[2] Emre Ates, Ozan Tuncer, Ata Turk, Vitus J Leung, Jim Brandt, Manuel Egele, and Ayse K
Coskun. Artifact for Taxonomist: Application Detection through Rich Monitoring Data. ht
tps://doi.org/10.6084/m9.figshare.6384248.v1 [Accessed: 14.09.2021], 2018.

[3] Emre Ates, Ozan Tuncer, Ata Turk, Vitus J Leung, Jim Brandt, Manuel Egele, and Ayse K
Coskun. Taxonomist: Application detection through rich monitoring data. In European Con-
ference on Parallel Processing pages 92{105. Springer, 2018.

[4] NTi Audio. Fast Fourier Transformation FFT. https://www.nti-audio.com/de/service/w
issen/fast-fourier-transformation-fft [Accessed: 24.11.2021].

[5] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, D. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, and T. Lakinski et al. The NAS Parallel Benchmarks. Technical report, RNR-
94-007, NASA Ames Research Center, Mo ett Field, CA, 03,https://www.nas.nasa.gov/a
ssets/pdf/techreports/1994/rnr-94-007.pdf [Accessed: 22.11.2021], 1994.

[6] Classical molecular dynamics proxy application, README [Online]. https://github.com/E
CP-copa/CoMI)Accessed: 24.11.2021].

[7] Luuk Derksen. visualising high-dimensional datasets using pca and t-sne in python.

[8] NASA Advanced Supercomputing (NAS) Division. NAS Parallel Benchmarks. https://www.
nas.nasa.gov/software/npb.html , [Accessed: 24.11.2021], 2021.

[9] Wikimedia Foundation. Spectrogram. https://en.wikipedia.org/wiki/Spectrogram
[Accessed: 24.11.2021], 2021.

[10] Cody Henthorne, Ivica Ico Bukvic, Pardha S Pyla, and Eli Tilevich. Tuning Complex Systems
by Sonifying Their Performance Data. Technical report, Department of Computer Science,
Virginia Polytechnic Institute & State ..., 2013.

[11] Charles Ho man. Mono vs. Stereo Sound: The Di erence Explained (With Audio Examples).
https://www.blackghostaudio.com/blog/mono-vs-stereo-sound-the-difference-exp
lained-with-audio-examples [Accessed: 17.11.2021], 2020.

[12] Federal Agencies Guidelines Initiative. Sampling rate (audio).http://www.digitizationgu
idelines.gov/term.php?term=samplingrateaudio [Accessed: 23.11.2021].

28

[13] Thomas Jakobsche. Benchmark scheduling and communication behavior. Master Project,
University of Basel, Faculty of Science, Department of Mathematics and Computer Science,
2018.

[14] The Python Standard Library. wave | Read and write WAV les. https://docs.python.or
o/3/library/wave.html [Accessed: 22.11.2021], 2021.

[15] Adaptive Mesh Re nement Mini-App, README [Online]. https://github.com/Mantevo/m
INIAMR [Accessed: 24.11.2021].

[16] MiniGhost Halo Exchange Mini-Application, README [Online]. https://github.com/Man
tevo/miniGhost (JAccessed: 24.11.2021].

[17] miniMD molecular dynamics mini-app, README [online].

[18] Monika Multani. Statistical Characterization of HPC Monitoring Data. Bachelor Thesis,
University of Basel, Faculty of Science, Department of Mathematics and Computer Science,
2021.

[19] Paci ¢ Northwest Seismic Network. What is a spectrogram? https://pnsn.org/spectrogr
ams/what-is-a-spectrogram [Accessed: 25.11.2021].

[20] Resonic Player.https://resonic.at/home [Accessed: 24.11.2021].

[21] Rowkin. Mono vs Stereo Sound: What's the big di erence? https://www.rowkin.com/blo
gs/rowkin/mono-vs-stereo-sound-whats-the-big-difference [Accessed: 22.11.2021],
20109.

[22] Maarten Schenk. The Sound of Computing. Bachelor Thesis, University of Basel, Faculty of
Science, Department of Mathematics and Computer Science, 2021.

[23] Tableau. Time series analysis: De nition, types, techniques, and when it's used.https:
[lwww.tableau.com/learn/articles/time-series-analysis [Accessed: 24.11.2021].

[24] Paul Vickers and James L Alty. Using music to communicate computing information. Inter-
acting with computers 14(5):435{456, 2002.

[25] Chandu Yadav. Read and write WAV les using Python (wave). https://www.tutorialsp
oint.com/read-and-write-wav-files-using-python-wave [Accessed: 24.11.2021], 2019.

29

Appendices

Node Frequency Table

30

6v¢| 6¥C| 6€C| 0G¢| TSC| S€C| ¢ve| 0S¢| 9ve| 6¥¢| 0G¢| Sve| 0SZ| 8v¢| 0S¢| 6¥¢| vEC| SEC| TSC| SEC|0SC|EVC|LC|9€E2|9€C|0SC|0SC|Tve |617¢|TSC €l Z
6v¢| 6VC| 6€¢| 0G¢| TSC| S€C| ¢ve| 0S¢| 9ve| 6¥¢| 0G¢| Sve| 0S¢| 8v¢| 0S¢| 6¥c| vEC| SEC| TSC| SEC|0SC|EVC|LVC|9€E2|9€C|0GC|0SC|Tve |617¢|TSC ¢l Z
6v¢| 6VC| 6€¢| 0G¢| TSC| S€C| ¢ve| 0S¢| 9ve| 6¥¢| 0G¢| Sve| 0SZ| 8¥¢| 0S¢| 6Ve| vEC| SEC| TSC| SEC|0SC|EVC|LVZ|9€EC|9€C|0GC|0SC|TYe|61¢|TSC T Z
6v¢| 6VC| 6€¢| 6v¢| TSC| S€C| ¢ve| 0S¢| 9ve| 6¥¢| 0S¢| Sve| 0S¢| 8v¢| 0S¢| 6¥e| ¥8| 6.| TSC| SEC|0SC|Eve|Lve| 61| 8L|0SC|0SC| S9|6V¢|TSC 0| Z
98| G8| G8| ¢8| €8] 98| 98| /8| €8| /8| 98| €8] S8 64| 98| ¢8| 8. /L/| 98| €8| ¥8| 88| 8| 98| 98| 98| 98| G8| 88| /8 €l A
TLT| T/T| 69T| S9T| 29T 98| ¢/T| ¥/T| 99T| ¥/T| ¢/T| S9T| 69T| 8ST| TLT| €9T| 9ST| [L/| TLT| 99T|/9T|SLT| 8L|CLT|CLT| 98|ELT|TLT|9LT VLT ¢l A
T/T| T/T| 69T| S9T| /97| €/1| ¢/T| ¥/T| 99T| ¥/T| ¢/T| S9T| 69T| 8ST| TLT| €9T| 9ST| ¥ST| TLT| 99T|/9T|SLT|9ST|CLT|CLT| 98|ELT|TLT|9LT |V/.T T A
TLT| T/T| 69T| S9T| Z9T| €/T| ¢.T| ¥/T| 99T| ¥/T| ¢/T| S9T| 69T| 8ST| TLT| €9T| 9ST| ¥ST| TLT| 99T|/9T|SLT|9ST|CLT|CLT|0LT|ELT|TLT|9LT VLT 0| A
¥6T| 06T| 80¢| T6T| ¥0C| €6T| ¢6T| T6T| €0C| L0Z| €6T| €6T| €6T| 00Z| S6T| S6T| ¥0Z| SOC| TTZ| SOC|V6T|96T |¥6T|€02|90C|T6T|90C (6T |V6T V6T €l X
¥6T| 06T| 80¢| 6S€| ¥OC| €6T| ¢6T| T6T| €0C| L0Z| €6T| €6T| T9E| 00C| S6T| 6SE€| 8YE| SO¢| TTC| SOC|V6T|96T V6T |€0Z|90C|T6T|90Z (6T |T9€ V6T ¢l X
V6T| 6S€| 80¢| 6S€| ¥OC| €6T| ¢6T| T6T| €0C| 6EE| €6T| €6T| T9E| 00C| S6T| 6SE| 8YE| SOC| TTC| 9VE V6T 96T V6T |€0Z|90C|T6T|90C|6T |T9€ |PSE T X
C9€| 6SE| 6EE| 6GE| SEE| VSE| VSE| LGE| 8VE| 6EE| LGE| ¢9€| TIE| 8YE| 6SE| 6SE| 8YE| EVE| GCE| IVE|TIE|ESE|SSE |CVE|OVE |ESE|TVE|TIE|TIE [VSE 0] X
62 d|8z ¥|/z H|92 H|Sz d|¥zZ H|€C H(zz H|Tz H[0Z H|6T H|8T H|/T H|9T H|ST H|¥T H|ET H|2T H|TT ¥(0T H|6 H|8 H|/ H|9 H|S |~ ¥[€ ¥|z ¥|T 4|0 ¥|dI N|sdI
89T| 89T| OLT| 89T| 69T| 29T| 69T| 89T| Z9T| 89T| 89T| /9T| 69T| 69T| Z9T| 69T| L9T| 69T| 89T| 69T |69T 89T |69T|L9T|89T|69T|89T|L9T|/9T 89T €l Z
89T| 89T| OLT| 89T| 69T| 29T| 69T| 89T| Z9T| 89T| 89T| /9T| 69T| 69T| Z9T| 69T| L9T| 69T| 89T| 69T |69T 89T |69T|L9T|89T|69T|89T|L9T|/9T 89T c| Z
89T| 89T| OLT| 89T| 69T| 29T| 69T| 89T| Z9T| 89T| 89T| /9T| 69T| 69T| Z9T| 69T| L9T| 69T| 89T| 69T |69T 89T |69T|L9T|89T|69T|89T|L9T|/9T 89T T Z
89T| 89T| OLT| 89T| 69T| 29T| 69T| 89T| 29T| 89T| 89T| /9T| 69T| 69T| Z9T| 69T| L9T| 69T| 89T| 69T |69T 89T |69T|L9T|89T|69T|89T|L9T|/9T 89T 0| Z
¥8| 68| v¥8| G8| €8| ¢8| ¢8| €8] €8] €8] €8] ¥8| v¥8| ¥8) ¥8| ¥8| ¥8| 18| ¢8| ¢8| ¢8| ¥8| €8| ¥8| ¥8| ¥8| €8] ¥8| €8| ¥8 €l A
¥8| G8| v¥8| G8| €8| ¢8| ¢8| €8] €8] €8] €8 ¥8 v¥8| ¥8 ¥8| ¥8| ¥8| 18| ¢8| ¢8| ¢8| ¥8| €8| ¥8| ¥8| ¥8| €8] ¥8| €8 ¥8 ¢l A
¥8| 68| ¥8| G8| €8| ¢8| ¢8| €8] €8] €8] €8] v¥8| ¥8| ¥8| ¥8| ¥8| v¥8| T8 ¢8| ¢8| ¢8| ¥8| €8| ¥8| ¥8| ¥8| €8| ¥8| €8] ¥8 T A
¥8| G8| v¥8| G8| €8| ¢8| ¢8| €8] €8] €8] €8] ¥8| ¥8| V8| ¥8| ¥8| ¥8| 18| ¢8| ¢8| ¢8| ¥8| €8| ¥8| ¥8| ¥8| €8] ¥8| €8| ¥8 0| A
9¢| l¢| l¢| 92| 9¢| 9¢| 9¢| 9¢| [le| 9¢| /L] 92| 9¢| 9¢| 9¢| 9¢| 9¢| 9¢| 8¢| 9¢| lc| l¢| 9¢| 9¢| 9¢| 9¢| L¢| 8Z| 9¢| 9¢ €l X
9¢| l¢| lg| 92| 9¢| 9¢| 9¢| 9¢| [le| 9¢| /L] 92| 9¢| 92| 9¢| 9¢| 9¢| 9¢| 8¢| 9¢| lc| l¢| 9¢| 9¢| 9¢| 9¢| L¢| 8Z| 9¢| 9¢ ¢l X
9¢| /l¢| lg| 92| 9¢| 9¢| 9¢| 9¢| [le| 9¢| L] 92| 9¢| 92| 9¢| 9¢| 9¢| 9¢| 8¢| 9¢| L¢| l¢| 9¢| 92| 9¢| 9¢| L¢| 8Z| 9¢| 9¢ T X
9¢| l¢| lZ| 92| 9¢| 9¢| 9¢| 9¢| [le| 9¢| L] 92| 9¢| 92| 9¢| 9¢| 9¢| 9¢| 8¢| 9¢| L¢| l¢| 9¢| 92| 9¢| 9¢| Lc| 8Z| 9¢| 9¢ 0] X
62 d|82 ¥|/2 H|9¢ H|Sz d|ve ¥|eC H[2e d|Tz ¥[02 ¥|6T ¥|8T H|/T H|9T H|ST H|¥T H|ET H|eT H|TT ¥|0T 4|6 4|8 H|/ H|9 H|S H|¥ H[€ H|c ¥|T ¥|0 ¥|dI N|sdI

Table A2: Node Frequency Table LU

31

Table Al: Node Frequency Table SP

0c€| 80€| 8€¢| L6¢| L0¢C| OLT| 68¢| 06T| SLT| ¢€¢| V9| 99T| €€C| €T€| OCE| 68| 66| ¢8¢| 16| T/Z| 0S|/8¢|TE€C| €9|0CT|CET| 82|65C|69T|86¢ €l Z
0c€| 80€| 8€¢| L6¢| L0C| OLT| 68¢| O6T| SLT| ¢€¢| V9| 99T| €€¢| €T€| OCE| 68| 66| ¢8¢| 16| T/Z| 0SG|/8¢|TE€C| €9|0CT|CET| 8C|65¢|69T |86C ¢l Z
0c€| 80€| 8€¢| L6¢| L0C| OLT| 68¢| O6T| SLT| ¢€¢| V9| 99T| €€C| €T€| OCE| 68| 66| ¢8¢| 16| T.Z| 0S|/8C|TE€C| €9|0CT|CET| 8C|65¢|69T 86¢ T Z
0cC€| 80€| 8€¢| L6¢| L0cC| OLT| 68¢| O6T| SLT| ¢€¢| V9| 99T| €€C| €T€| OCE| 68| 66| ¢8¢| 16| T.Z| 0S|/8C|TE€C| €9|0CT|CET| 8C|65C|69T 86¢ 0| Z
¢8T| V6| ¢¢c| T€C| S| 9¢c| 0LT| /CT| 80T| S8¢| 66| 99| €9| T6¢| TS| L¢c| 6S¢| 80T| /L¢Z| ¥9|0TT|/9T|89C|S9¢|V1C|TLC|S.T|SSC|88C[CVC €l A
¢8T| V6| <¢v| T€C| S¢¢| 9¢¢| 0LT| /cT| 80T| G8¢| 66| 99| €9| T6¢| ¥cc| L2c| 6S¢| 80T| €¢¢| ¥9|0TT|/9T|89¢|S9¢|V1C|TLC|S.T1|SSC|.8C[Cve ¢l A
¢8T| V6| ¢v| T€¢| S¢¢| 9¢¢| 0LT| /cT| 80T| G8¢| 66| 99| €9| T6¢| €¢¢| S| 6S¢| 80T| €¢¢| ¥9|0TT|/9T|89¢|S9¢|¥1C|TLC|S.T1|SS¢C|/8C (Ve T A
¢8T| ¥6| ¢¢c| T€¢| G| 9¢c| 0LT| /cT| 80T| G8¢| 66| 99| €9| T6¢| <S| L¢c| 6S¢| 80T| /L¢Z| ¥9|0TT|/9T|89¢|S9¢|¥1¢|TLC|S.T|SSC|/.8C(¢ve 0| A
19| 0c¢c| 88¢| TT€| vOE| ¢E€T| ¢/c| G8¢| 80T| 6ST| L¢¢| 69| 0L) 85¢| T.| 8| 86¢| ¢9¢| 64T| ¥8T|€.¢|002|06T |82 |v0T|¥0C|8EC|€CC| TL| ¢S €l X
19| 0c¢c| 88¢| TTI€| vOE| SET| ¢/c| G8¢| 80T| 6ST| L¢¢| 69| 0L| T¢e| TL| 8| 86¢| ¢9¢| 64T| ¥8T|€.2|00C|06T |82 |v0T|¥0C|8EC|66¢| TL| <5 ¢l X
19| Occ| 88¢| TTI€| VOE| 9€T| ¢/c| G8¢| 80T| 6ST| Z¢¢| 69| 0| 86T| T.| 8Y| 86¢| ¢9¢| 64T| ¥8T|€.C|00C|06T |28 V0T |¥0C|8EC| OC| TL| ¢S T X
19| 0¢c| 88¢| TT€| V0E| CET| ¢/c| G8¢| 80T| 6ST| 22c¢| 69| 0L| ¢S¢| T.| 8| 86¢| ¢9¢| 64T| ¥8T|€.C|00C|06T |28 V0T |02 (8EC| OC| TL| ¢S 0] X
62 d|8z ¥|/z H|92 H|Sz d|¥zZ H|€C H(zz H|Tz H[0Z H|6T H|8T H|/T H|9T H|ST H|¥T H|ET H|2T H|TT ¥(0T H|6 H|8 H|/ H|9 H|S |~ ¥[€ ¥|z ¥|T 4|0 ¥|dI N|sdI
T1¢| 6T¢| 1T¢| 81¢| Tce| 9¢¢| 8T1¢| vee| 11¢| 1T¢| 91¢| T1¢| TTZ| 61¢| ¥ec| 6T¢| 61¢| T1¢| 0T¢| TTC|TTZ|01¢|TTC|CT2|TT1Z|2cC|TTC|1TZ|cT1Z|ECC €l Z
T1¢| 6T¢| 1T¢| 81¢| T¢e| 9¢c| 8T¢| vee| 11¢| 1T¢| 91¢| T1¢| TT¢| 61¢| ¥ec| 6T¢| 61¢| T1¢| 0T¢| TT¢|TTZ|01¢|TTC|CT2|TT1Z|2cc|TTC|1TZ|cTc|ECC c| Z
T1¢| 6T¢| 1T¢| 81¢| T¢e| 9¢c| 8T¢| vee| T1¢| 1T¢| 91¢| T1¢| TTZ| 61¢| ¥ec| 61| 61¢| T1¢| 0T¢| TT¢|TTZ|01¢|TTC|CT2|TT1¢|2¢cc|TTC|ITZ|¢Tc|ECC T Z
T1¢| 6T¢| TT¢| 81¢| Tee| 9¢¢| 8T1¢| vee| T1¢| 1T¢| 91¢| T1¢| TT¢| 61¢| ¥ee| 6T¢| 6T¢| T1¢| 0T¢| TTC|TTZ|0T¢|TTC|CTZ|TT¢|¢cc|TTC|TITZ|¢T¢|EcC 0| Z
TTIT| TTT| €TT| TIT| ¢TIT| ¥OT| TTT| ¢TIT| TTT| TTT| TTT| TTT| ¥OT| ¥OT| 90T| TTT| TTT| TTT| TTT| OTT|TTT|¥OT|TTT|TOT|ZOT|TTT|TTT|OTT|SOT|EOT €l A
TIT| TTT| €TT| TIT| ¢TIT| ¥OT| TTT| ¢TIT| TTT| TTT| TTT| TTT| ¥OT| ¥OT| 90T| TTT| TTT| TIT| TTT| OTT|TTT|POT|TTT|TOT|ZOT|TTIT|TTT|OTT|SOT|EOT ¢l A
TIT| TTT| €TT| TTT| ¢TIT| ¥OT| TTT| ¢TT| TTT| TTT| TTT| TTT| ¥OT| ¥OT| 90T| TTT| TTT| TTT| TTT| OTT|TTT|VOT|TTT|TOT|Z0T|TIT|TTT|OTT|SOT|E0T T A
TIT| TTT| €TT| TTT| ¢IT| ¥OT| TTT| ¢TIT| TTT| TTT| TTT| TTT| ¥OT| ¥OT| 90T| TTT| TTT| TTT| TTT| OTT|TTT|¥OT|TTT|TOT|ZOT|TIT|TTT|OTT|SOT|EOT 0| A
06| T6| 16| 86| 68| /6| 66| 86| 96| 16| 6/1| 16| 68| 96| ¥6| 06| 18T| T6| T6| [6| 68| 16| L6| 06|00T| T6| 68| 06| 26| 96 €l X
06| T6| 16| 86| 68| /6| 66| 86| 96| 16| 6/1| T6| 68| 96| ¥6| 06| T8T| T6| I8T| /6| 68| 16| L6| 06|00T| T6| 68| 06| 26| 96 ¢l X
06| T6| 16| 86| 68| L6/ 66| 86| 96| 16| 6/1| T6| 68 96| ¥6| 06| T8T| T6| I8T| L6| 68| 16| L6| 06|00T| T6| 68| 06| 26| 96 T X
06| T6| 16| 86| 68| L6/ 66| 86| 96| 16| 6/1| T6| 68 96| ¥6| 06| T8T| T6| T6| L6| 68| 16| L6| 06|00T| T6| 68| 06| 26| 96 0] X
62 d|82 ¥|/2 H|9¢ H|Sz d|ve ¥|eC H[2e d|Tz ¥[02 ¥|6T ¥|8T H|/T H|9T H|ST H|¥T H|ET H|eT H|TT ¥|0T 4|6 4|8 H|/ H|9 H|S H|¥ H[€ H|c ¥|T ¥|0 ¥|dI N|sdI

Table A4: Node Frequency Table CG

32

Table A3: Node Frequency Table BT

yx44

yx44

8¢¢

0€e

8¢¢

yx44

8¢¢

8¢¢

9¢¢

6¢¢

yx44

8¢¢

8¢¢

8¢¢

8¢¢

8¢¢

yx44

8¢¢

62¢

8¢¢

8¢¢

8¢¢

6¢¢

yX44

8¢¢

9¢¢

8¢¢

8¢¢

8¢¢

8¢¢

yx44

yX44

8¢¢

0€e

8¢¢

yx44

8¢¢

8¢¢

9¢¢

6¢¢

yx44

8¢¢

8¢¢

8¢¢

8¢¢

8¢¢

yx44

8¢¢

(Y44

8¢¢

8¢¢

8¢¢

6¢¢

yx44

8¢¢

9¢¢

8¢¢

8¢¢

8¢¢

8¢¢

yx44

yX44

8¢¢

0€e

8¢¢

yX44

8¢¢

8¢¢

9¢¢

6¢¢

yX44

8¢¢

8¢¢

8¢¢

8¢¢

8¢¢

yX44

8¢¢

62¢

8¢¢

8¢¢

8¢¢

6¢¢

yX44

8¢¢

9¢¢

8¢¢

8¢¢

8¢¢

8¢¢

yX44

yX44

8¢¢

0€C

8¢¢

yX44

8¢¢

8¢¢

9¢¢

6¢¢

yX44

8¢¢

8¢¢

8¢¢

8¢¢

8¢¢

yX44

8¢¢

(Y44

8¢¢

8¢¢

8¢¢

6¢¢

yX44

8¢¢

9¢¢

8¢¢

8¢¢

8¢¢

8¢¢

0.7

0.7

69T

T.T

69T

0T

0T

0.7

0.7

0.7

T.T

0.7

1.7

1.7

T.T

0T

0.7

1.7

1T

69T

0.7

04T

0.7

0T

0.7

0.7

69T

691

0.7

69T

0T

04T

69T

T.T

69T

0T

0.7

0.7

0.7

0.7

T.T

0T

7%

1.7

T.T

0T

0T

1.7

17 %

69T

0.7

0.7

0T

0T

0.7

0.7

69T

691

0T

69T

0T

0.7

69T

TLT

69T

0T

0T

0.7

0.7

0.7

TLT

0T

1.7

1.7

T.T

0T

0T

T.T

1.7

69T

0.7

0.7

0T

0T

0.7

0.7

69T

697

0T

69T

0T

0T

69T

TLT

69T

0T

0T

0.7

0.7

0.7

TLT

0T

1.7

1.7

TLT

0T

0T

T.T

1.7

69T

0T

0T

0T

0T

0.7

0.7

69T

697

0T

69T

9€¢

€ee

f4%4

[4%4

[4%4

9e¢

€ee

[4%4

€ec

9€¢

9€¢

[4%4

vee

L€¢

1514

9€¢

€ee

9€¢

€ee

€ee

1514

€ec

TeC

SE€¢

vee

[4%4

vee

0€e

€ee

€ee

9e¢

€ee

[4%4

[44

[4%4

9e¢

€ec

[4%4

€eec

9€¢

9€¢

[44

vee

L€C

1514

9€¢

€ee

9€¢

€ee

€ec

1514

€ee

TeC

SE€C

vee

[44

vee

0€e

€ee

€eec

9€¢

€e¢

[44

[44

[44

9€¢

€e¢C

[414

€eC

9€¢

9€¢

[414

vee

L€C

1514

9€¢

€e¢c

9€¢

€e¢

€eC

1514

€e¢

TeC

SE€C

vee

[44

vee

0€C

€ec

€ec

9g¢

€e¢

[414

[434

444

9g¢

€e¢

[44

€ec

9¢g¢

9¢g¢

434

e

LE¢C

GEC

9¢g¢

€ee

9g¢

€e¢

€ec

GEC

€eC

TeC

GE€C

1444

[44

Ve

0ge

€ee

€ee

6¢

8¢

/cd

9c o

Gcd

vc o

€

¢cd

icd

ocd

6T o

8T

/T d

9T d

ST d

dR<|

€T

[4R-|

7Ty

oT o

64

8y

LY

9d

R

v d

€y

cd

T4

(O]

1c¢

S6T

S8T

(474

6T

8ST

yX44

€1¢

09¢

981

12¢

16T

V6T

65¢

yX44

9¢¢

8G¢

8T

yx44

| 474

8G¢

29T

91¢

Gce

8¢¢

0T¢

81

9¢g

18T

€9¢

76T

8¢¢

6ST

[4%4

9¢¢

11%4

09¢

€1¢

09¢

987

6G¢

16T

V6T

09¢

09¢

9¢¢

€67

G8T

9¢¢

19T

€61

29T

91¢

144

S6T

(0174

VIN

6c¢

18T

TeC

09¢

8¢¢

[4%4

[474

6T

T1¢

yX44

€1¢

6T

6ST

yx44

16T

9¢¢

yx44

yx44

6T

Gee

S8T

9¢¢

88T

9¢¢

29T

68T

1G¢

09¢

8T

81

96T

18T

€9¢

S6T

96T

[4%4

G8T

6T

T11¢

09¢

98T

09¢

6ST

09¢

0504

8G¢

09¢

yx44

€67

€67

8GT

6T

ST¢

144

68T

29T

yAST4

S6T

0T¢

LST

6¢¢

09T

16T

¢ST

A4

LT

61T

917

1744

STT

T0€

14

81T

494

(44}

LT

0ct

0ct

61T

8TT

0ct

0ct

cit

TST

61T

8ET

81T

81T

LT

Wt

Y1t

0ct

6vT

¢ST

61T

LT

61T

91T

1743

STT

T0€

44

81T

[49%

¢St

LT

0ct

0ct

61T

81T

0ctT

0ct

(49"

TSt

61T

8€ET

81T

91T

LT

Wi

Y1t

0ct

61T

¢ST

61T

LYT

6TT

91T

1%4)

STT

T0€

vl

8TT

41

(444

LYT

0ctT

0ct

6vT

8TT

0cT

08T

[4%%

TGT

61T

8€T

8TT

8TT

LYT

144"

V1T

T0€

67T

¢ST

61T

LYT

61T

917

174

STT

T0E

et

81T

411

¢st

LYT

0ct

0ct

61T

LVT

0ct

0ct

494

TST

61T

8ET

81T

917

LYT

¢8¢

viT

T0€

6vT

1EC

8ET

144

29¢

¥9¢

€8¢

vEE

18¢

G8T

L6€

e

G8¢

G8¢

8¢

66¢

98¢

18¢

{414

§8¢

1.2

X4

8¢€

1€

S6T

144"

yX44

0S¢

e

78T

%4 %4

LEC

T6¢

144

29¢

¥9¢

€8¢

¢6¢

18¢

G8T

L6€

1.7

G8¢

§8¢

18¢

66¢

98¢

18¢

vEE

§8¢

LlC

Ll

YAZ4

12€

G6T

88¢

yx44

STy

144

18T

LvE

LE¢C

8€ET

144

29¢

¥9¢

€8¢

[44

18¢

G8T

L6€

e

G8¢

§8¢

18¢

66¢

98¢

18¢

¢6¢

§8¢

LlC

LlC

YAZ4

98¢

S6T

88¢

yx44

L0¢

144

18T

vee

LE¢C

8€ET

144

29¢

¥9¢

28¢

96

18¢

S8T

L6€

T.T

§8¢

§8¢

8¢

66¢

98¢

18¢

TSsE

§8¢

LlC

€8¢

8¢e

€9¢

S6T

88¢

yX44

L0¢

144

5144

98¢

6¢ o

8¢ d

yXAR- |

9c

Scd

| AR=|

€z

ccd

T2

0cd

6T o

8T o

VA=

9T d

ST

vTd

€T

[4R-|

Ty

oT d

64

8y

Ld

9d

Sy

vy

€y

cyd

Td

0y

0
S XXX > > > > [N N NN

a
Zold|Nm|O|d|N[Mm|O | |N M
Table A6: Node Frequency Table CoMD

33

Zold|NMm|O|d|N|™M[O|H [N |™

%]
S XXX X [> > > > IN|N NN

a

Table A5: Node Frequency Table MG

€| ¢8| v8| 98| S8| €8| /8| ¢6| €. S8 G/| 8. ¢6| 88 [/ v8] €L| S8 88| T.| /8| 92| 98| SG8| 0/ 16| S8| ¢6| 68| 0L € Z
€. ¢8| v8| 98| G8| €8| /8| ¢6| €. S8| G/ 8. <¢6| 88 /L. v¥8] €L| S8| 88| T.| /8| 92| 98| SG8| 0/ 16| S8| ¢6| 68|6ET ¢l Z
€. ¢8| V8| 98| G8| €8| /8| ¢6| €. 98| GL| 8. <¢6| /8 L/ v¥8] €L| S8| 88| T.| /8| 9/| 98| S8| 0| 16| S8| ¢6| 68| 0L 1 Z
€. ¢8| V8| 98| G8| €8| /8| ¢6| €. S8 G/ 8. <¢6| 88 /L. v8] €L| S8 68| T.| /8| 9/| 98| S8| 0| 16| S8| ¢6| 68| 69 0] Z
09| 89| cOT| €0T| €9| €0T| €9| 09| ¢9| G¥| TOT| GZ| 8S| €0T| €8] 6S| ¥9| 0L V9| 96| ¥.| 9S| ¥.|€0T| 8G| €9|c0T| €6| €.|10T €A
09| 8S| ¢OT| €0T| €9| €0T| €9| 09| <¢9| TS| TOT| SG/| 8S| €0T| €8] 6S| ¥9| 0L V9| 96| ¥.| 95| ¥.|€0T| 8G| €9|c0T| €6| €.|10T ¢l A
09| 85| ¢OT| €0T| €9| €0T| €9| 09| ¢9| 09¢| TOT| SG/| 8S| €0T| €8] 6S| ¥9| 0L V9| 96| ¥.| 95| v.|¥0T| 8G| €9|c0T| €6| €.|10T T A
09| 8SG| ¢OT| €0T| €9| €0T| €9| 09| <¢9| Gv| TOT| GZ| 8S| €0T| €8] 6S| ¥9| 0L V9| 96| ¥.| 95| ¥.|€0T| 8G| €9|c0T| €6| €.|10T 0] A
9¢T| 8CT| ¥2T| ¢¢T| 80T| /ZT| 9TT| 6¢T| /LZT| 8¢T| OET| 9¢T| 6¢T| ¥eT| G¢T| /LZT| ¢TT| O€T| ¢¢T| €CT|OET|CET|ECT|9¢T|8¢T|9¢T|9TT|LCT|SCT|9TT € X
9¢T| 8CT| ¥¢T| ¢¢T| 80T| /ZT| 9TT| 6¢T| LZT| 8¢T| O€T| 9¢T| 6¢T| ¥eT| S¢T| [ZT| ¢TT| O€T| ¢¢T| ¥CT|OET|CET|ECT|9¢T|8¢T|9¢T|STIT|LCT|SCT|9TT ¢l X
OCT| 8¢T| ¥¢T| TeT| 80T| LZT| 9TT| 6¢T| LZT| 8¢T| OET| 9¢T| 6¢T| ¥eT| SCT| [ZT| ¢TT| O€T| ¢CT| ¥CT|OET|CET|ECT|9¢T|8CT|9¢T|GTIT|LCT|SCT|9TT T X
OCT| 8¢T| ¥¢T| ¢¢T| 80T| /ZT| 9TT| 6¢T| /LZT| 8¢T| OET| 9¢T| 6CT| ¥2T| SCT| [LZT| CTT| OET| ¢¢T| €CT|0ET|CET|ECT| 92T |8CT|9¢T|STT|LCT|SCT|9TT 0] X
62 ¥|82 H|/z 1|9z H|G¢ H|ve ¥|€z H|zz H|Tz H|0z H|6T H|8T H|/T H[9T H|ST H|vT H|€T H|2T H|TT H|0T ¥|6 ¥|8 ¥|, H|9 H|G d|v H|€ H|z H|T H|0 H|Al NsdI
€| ¢8| V8| 98| G8| €8| /8| ¢6| €. 98| G/| 8. 6] 88 L/ v8] €L| S8 88| T/.| /8| 9/| 98| S8| 0/ 16| S8| ¢6| 68| 0L € Z
€| ¢8| v8| 98| G8| €8| /8| ¢6| €. S8 G/| 8. ¢<6] 88 [/ v8] €L| S8 88| T/.| /8| 9/| 98| G8| 0/ 16| S8| ¢6| 68|6ET 44
€| ¢8| v8| 98| G8| €8| /8| ¢6| €. 98| G/| 8. <¢6| /8 [/ v8] €L| G8| 88| T.| /8| 92| 98| G8| 0/ 16| S8| ¢6| 68| 0L 1 7
€| ¢8| v8| 98| G8| €8| /8| ¢6| €. S8 G/ 8. ¢6| 88 /L. v¥8] €L| S8 68| T.| /8| 9/| 98| SG8| 0/ 16| S8| ¢6| 68| 69 0l z
09| 85| ¢OT| €0T| €9| €0T| €9| 09| <¢9| G¥b| TOT| GZ| 8S| €0T| €8] 6S| ¥9| 0L ¥9| 96| ¥.| 95| ¥.|€0T| 8G| €9|c0T| €6| €.|10T € A
09| 8S| ¢OT| €0T| €9| €0T| €9| 09| <¢9| TS| TOT| GZ| 8S| €0T| €8] 6S| ¥9| 0L ¥9| 96| ¥.| 95| ¥.|€0T| 8G| €9|c0T| €6| €101 ¢l A
09| 8G| ¢OT| €0T| €9| €0T| €9| 09| ¢9| 09¢| TOT| G/| 8G| €0T| €8] 6S] v9| 0L ¥9| 96| ¥.| 99| v.|vOT| 8G| €9|¢0T| €6| €.|T0T T A
09| 8S| ¢OT| €0T| €9| €0T| €9| 09| ¢9| G¥| TOT| SG/| 8S| €0T| €8] 6S| ¥9| 0L v¥9| 96| ¥.| 9S| ¥.|€0T| 8G| €9|c0T| €6| €.|10T 0] A
9¢T| 8¢T| ¥CT| ¢¢T| 80T| LZT| 9TT| 6¢T| /[ZT| 8¢T| O€T| 9¢T| 6¢T| ¥2T| GeT| [ZT| CTT| O€T| ¢¢T| €CT|0ET|CET|€CT|92T|8¢T|9¢T|9TT| /2T |SCT|9TT € X
9¢T| 8¢T| ¥2T| ¢¢T| 80T| /ZT| 9TT| 6¢T| /ZT| 8¢T| O€T| 9¢T| 6¢T| ¥eT| SeT| [ZT| ¢TT| O€T| ¢c¢T| ¥T|OET|CET|ECT|92T|8¢T|9¢T|STIT| /2T |SeT|9TT ¢l X
9¢T| 8¢T| ¥2T| TeT| 80T| /ZT| 9TT| 6¢T| LZT| 8¢T| O€T| 9¢T| 6¢T| ¥eT| GeT| [ZT| ¢TT| O€T| ¢¢T| ¥CT|0ET|CET|ECT|9¢T|8¢T|9¢T|STIT|LCT|SeT|9TT T X
9¢T| 8CT| ¥ZT| ¢¢T| 80T| LZT| 9TT| 6¢T| /LZT| 8¢T| O€T| 9¢T| 6ZT| ¥eT| S¢T| [ZT| ¢TT| O€T| ¢¢T| €CT|OET|CET|ECT|9¢T|8¢T|9¢T|STIT|LCT|SCT|9TT 0] X
62 ¥|8¢ H|/z H|9z H|Ge ¥|ve H|€Z d|ze H|TZ ¥|0¢ ¥|6T H|8T H|.T H[9T H|ST H|vT H|E€T H|2T H|TT H|0T ¥|6 ¥|8 ¥|. ¥|9 ¥|G d|v H|€ H|z H|T H|0 d|dl N|sdI

iIAMR

ni

Node Frequency Table mi

Table A8
34

iGhost

ni

Node Frequency Table mi

Table A7

o) 9v| Ov| ¥ vv| Ov| 9| 9¥| vv| vv| 9¥| v¥| Ov| 9| V¥¥| 9v| Ov| ¥v| VY¥| Ov| Vv 9v| ¥¥| 9v| 9v| vv| 9¥| 9¥| 9v| V¥ € Z
| 9v| 9v| ¥ vv| Ov| 9| 9v| vv| vv| 9¥| v¥| Ov| 9¥| V¥¥| 9v| Ov| ¥v| VY¥| Ov| Vv 9v| ¥v| 9v| 9v| vv| 9V 9¥| 9| V¥ 44
| 9v| Ov| ¥ vv| Ov| 9O¥| 9v| vv| vv| 9v| v¥| CI€| 9¥| ¥¥| 9v| Ov| Wvb| VY¥| Ov| Vv 9v| ¥p| 9Y| 9Ov| vv| 9V 9¥| 9| Vv 1 Z
o) 9v| Ov| ¥ vy| Ov| 9O¥V| 9V vv| vv| 9v| vv| Ov| 9v| ¥¥| 9v| Ov| ¥vb| VY¥| Ov| Vv 9v| ¥p| OY| 9Ov| vv| 9V 9F| 9| Vv 0l Z
8ET| LET| 6ET| 8ET| 8ET| 8C€T| G/¢| 8ET| LET| 8ET| 6ET| 6ET| SG/c| 8ET| LET| 8ET| G/¢| 6ET| 8ET| L/C| LET|8ET|8ET|LLC| BET|8ET |BET|BET|BET|6ET €l A
8ET| LET| 6ET| 8ET| 8ET| 8C€T| G/¢| 8ET| LET| 8ET| 6ET| G6ET| G/c| 8ET| LET| 8ET| G/¢| 6ET| 8ET| //c| LET|8ET|8ET|/LLC| BET|8ET|BET|BET|BET|LLC ¢l A
8ET| LET| 6ET| 8ET| 8ET| 8E€T| G/¢| 8ET| LET| 8ET| 6ET| G6ET| G/c| 8ET| G/¢| 8ET| G/¢| 6ET| 8ET| //¢| LET|8ET|8ET|/L/.C| BET|8ET |8ET|BET|BET|6ET 1 A
8€T| LET| 6ET| 8ET| 8ET| 8ET| G/¢| 8ET| LET| 8ET| 6ET| 6ET| LET| 8ET| G/¢| 8ET| G/¢| 6ET| 8ET| L/c| LET|8ET|8ET|L/.C| BET|8ET |8ET|BET|BET|6ET 0] A
V/N T|V/N T T T T T T T T|V/N T T ¢|V/N|V/N|V/N T TIV/N| T| T| T|IV/N| T T|¥0¢| T| T € X
V/N T|V/N T T T T T T T T|V/N T T ¢|V/N|V/N|V/N T TIV/N| T| T| T|IV/N| T T/¥0¢| T| T ¢ X
V/N T|V/N T T T T T T T T|V/N T T ¢|V/N|V/N|V/N T TIV/N| T| T| T|IV/N| T T/¥0¢| T| T T X
V/N TIV/N T T T T T T T T|V/N T T ¢|V/N|V/N|V/N T TIV/N| T| T| T|V/N| T T|¥0¢| 7| T 0] X
62 ¥|82 H|/z H[9z H|G¢ H|ve ¥|€z H|zz H|Tz ¥|0z H|6T H|8T H|/T H[9T H|ST H|vT H|ET H|2T H|TT H|0T H| 6 4|8 H|. H|9 | S H|¥ H|€ [z U[T ¥[0 H¥|dl N|sdI
o) 9v| 9v| Wb vv| 9Ov| 9| 9v| vv| vv| 9¥| v¥| 9Ov| 9O¥| v¥| 9v| Ov| ¥v| VY¥| 9Ov| Vv 9v| ¥y 9v| 9v| vv| 9V Y| 9| Vv € Z
o) 9v| Ov| ¥ vv| 9Ov| 9| 9v| vv| vv| 9¥| v¥| Ov| 9| v¥| 9v| Ov| ¥v| VY¥| Ov| Vv 9v| ¥y 9v| 9v| vv| 9¥| 9¥| 9| Vv ¢ Z
| 9v| Ov| ¥ vv| Ov| 9| 9v| vv| vv| 9¥| vv| CI€| 9| V¥¥| 9v| Ov| ¥v| VY¥| Ov| Vv 9v| ¥v| 9v| 9v| vv¥| 9¥| Y| 9| Vv 1 Z
o) 9v| Ov| Wb vv| Ov| 9| 9V vv| vv| 9¥| v¥| 9Ov| 9¥| ¥¥| 9v| Ov| ¥v| VY¥| Ov| Vv 9v| ¥¥| 9v| 9v| vv| 9¥| 9¥| 9| V¥ 0] Z
8€T| LET| 6ET| 8ET| 8ET| 8ET| G/¢| 8ET| LET| 8ET| 6ET| 6ET| G/¢| 8ET| LET| 8ET| G/¢| 6ET| 8ET| L/¢| LET|8ET|8ET|L.C| BET|8ET |8ET|BET|BET|6ET €A
8€T| LET| 6ET| 8ET| 8ET| 8ET| G/¢| 8ET| LET| 8ET| 6ET| 6ET| G/¢| 8ET| LET| 8ET| S/¢| 6ET| 8ET| L/¢| LET|8ET|8ET|LLC| 8ET|8ET |8ET|BET|8ET|LLC ¢l A
8ET| /ET| 6€T| 8CT| 8ET| 8ET| G/c¢| 8ET| LET| 8ET| 6€T| 6ET| G/¢| 8ET| G/Z| 8€T| G/¢| 6ET| 8€T| [/Z| LET|8ET|8ET|//¢| 8ET|8ET|8ET|BET|8ET|6ET T A
8€T| LET| 6ET| 8ET| 8ET| 8C€T| G/¢| 8ET| LET| 8ET| 6ET| 6ET| LET| 8ET| G/¢| 8€T| G/¢| 6ET| 8ET| L/c| LET|8ET|8ET|/L/LC| BET|8ET |8ET|BET|BET|6ET 0] A
V/N T|V/N T T T T T T T T|V/N T T ¢|V/N|V/N|V/N T TIV/N| T| T| T|IV/N| T T|¥0¢| T| T € X
V/N T|V/N T T T T T T T T|V/N T T ¢|V/N|V/N|V/N T TIV/N| T| T| T|IV/N| T T|¥0¢| T| T ¢ X
V/N T|V/N T T T T T T T T|V/N T T ¢|V/N|V/N|V/N T TIV/N| T| T| T|IV/N| T T|¥0¢| T| T T X
V/N T|V/N T T T T T T T T|V/N T T ¢|V/N|V/N|V/N T TIV/N| T| T| T|IV/N| T T|¥0¢| T| T 0] X
62 ¥|8¢ H|/z H[92 H|G¢ ¥|ve H|€z H|ze ¥|TZ ¥|0c H|6T H|8T H|/T H[9T H|ST H|vT H|€T H|2T H|TT H|0T ¥| 6 ¥[8 H|. H|9 d| S H|¥ H|€ H[¢ H|T |0 ¥|dl N|sdI

Table A10: Node Frequency Table Kripke

35

iniMD

Table A9: Node Frequency Table m

Visualization of Node Frequency Table

Metric ID: 3, Application: FT, MG, SP, LU, BT, CG, miniGhost, miniAMR, miniMD, Kripke, CoMD

&
&
200 4 «
& & X e & & &
Z"' ¢ & X
~ &z & L4 g
g 1 z 5 ¢ ¥ Zazed v dg o
g * & oo ¢ e
E: Yo' &Y & ﬂ ﬁ &
g o "y *@;@W g o “ﬂwaﬁw@t FE"
g .‘ﬁr‘év i%(ZW‘@ & «
E 1004 & 352;6’(‘ X
& g & « v ¢ XX),(
&« <«
C
—200 & & «
‘(i(
*3‘00 *2‘00 *1‘00 6 lﬂ‘ﬂ ZEI)U 30‘0 4[I)ﬂ

Principal Component 1

Figure Al: AR_NIC_RSPMON_PARB_EVENT_CNTR_AMO_BLOCKED_metric_set_nic

Metric ID: 4, Application: FT, MG, SP, LU, BT, CG, miniGhost, miniAMR, miniMD, Kripke, CoMD

150 1 X
& L a<
¢ ¢
100 1 & v A
% ¥
o~ - &
g 50 7 Z 77 &
g , fa L 5 ¢
E & v ¢ &« g5 g v, X
S 0 = ﬂi‘mﬂm
= o o T ey ¢ e & &
i3 Z ia(
£ —sof & ¢ fz &
& & Y o i(‘(
—100 A
¢ X
& &
—~300 —200 —100 0 100 200 300 400 500

Principal Component 1

Figure A2: AR_NIC_.RSPMON_PARB_EVENT_CNTR_AMO_FLITS_metric_set_nic

36

RE%E]

miniGhost
miniAMR
miniMD
Kripke
CoMD

FT

MG

SP

w

BT

CcG
miniGhost
miniAMR
miniMD
Kripke
CoMD

Principal Compenent 2

Principal Component 2

Metric ID: 5, Application: FT, MG, SP, LU, BT, CG, miniGhost, miniAMR, miniMD, Kripke, CoMD

150 1 & LS
. %
100 {
v [S v s X
&
50 Y Z iz F X x
Y v x f z ¢ € & &
of T & e mm—— o i S P g
X o S p74 FX:
5o] ¥ & S et é « &
& X Y 4 &
¢ o« &«
X
—100 4
v
—150 1 «
73‘00 72‘00 71'00 (I] 160 ZII)U 3[;0 460

Principal Component 1

Figure A3: AR_.NIC_RSPMON_PARB_EVENT_CNTR_AMO_PKTS_metric_set_nic

Metric ID: 9, Application: FT, MG, SP, LU, BT, CG, miniGhost, miniAMR, miniMD, Kripke, CoMD

X
&
200 1
P A ¢
¢ F: v v o«
¢ v
100 4 & ¥
S esd
o] a@ ST voF awiﬁnwmqwmwm z
; &
i‘i
Y i « d’ . ¥
—100 1 .—; &
* & &
y & «
~200 1 ¢ ¢
72‘00 71‘00 I0 160 260 360 460

Principal Component 1

Figure A4: AR_NIC_RSPMON_PARB_EVENT_CNTR_IOMMU_BLOCKED_metric_set_nic

37

FT
MG
SP
w
BT
CG

miniGhost
miniAMR
miniMD
Kripke
CoMD

FT

MG

SP

w

BT

CG
miniGhost
miniAMR
miniMD
Kripke
CoMD

	Introduction
	Motivation and Challenges
	Goals and Research Questions
	Solution, Utility, and Findings
	Technical Background of FFT

	Related Work
	Data and Sound
	Sonification
	Audification

	Methods
	Audification
	Python Wave Module
	Sampling Rate
	Channels

	Method Justification
	Dataset: Taxonomist Dataset
	Implementation

	Results
	Experiments
	Suitability of Audified Monitoring Data
	Comparison between Multiple Applications
	Comparison between Inputs to the same Applications
	Comparison between Nodes of the same Execution
	Comparison between Runs of the same Application-Input Pair

	Evaluation of the Solution
	Node Frequency Table
	Visualization of Node Frequency Table

	Discussion
	Sonification vs. Audification
	Limitations

	Conclusion
	Main Contributions
	Future Work

	Appendices
	Node Frequency Table
	Visualization of Node Frequency Table

