
Scheduling of the Applications in

the Cloud
Master’s Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

High Performance Computing

Examiner: Prof. Dr. Florina Ciorba

Supervisor: Dr. Ahmed Eleliemy

Supervisor: Dr. Ali Mohammed

Drilon Vukaj

drilon.vukaj@stud.unibas.ch

18-058-339

16.09.2021

Abstract

Cloud computing is a paradigm that sparked the interest of the High Performance

Computing (HPC) community due to the cloud service providers offering of HPC

infrastructure, which provides an alternative to on-premise clusters for executing

HPC workloads. Cloud computing systems were traditionally suited only for loosely-

coupled parallel/distributed applications. However, cloud service providers enhanced

their capabilities and added low-latency interconnects to provide a better support

also for tightly coupled HPC workloads. In this thesis, we investigate whether a

Cloud-based cluster can provide a high performance as on-premise cluster for HPC

scientific applications. HPC scientific applications are complex and they are mainly

based on loops which can often be irregular. Loop scheduling is a key element for ob-

taining good performance. Therefore, we investigate the performance of various loop

scheduling techniques at one-level (thread) and two-level (process + thread) schedul-

ing on cloud and on-premise. Our work shows that several experiments conducted

in the cloud are HPC-competitive and very comparable to the on-premise HPC, but

cloud suffers from performance variability due to node allocation and sharing of the

resources with other cloud users.

i

Acknowledgments

I would like to express my gratitude to Prof Dr. Florina Ciorba for giving me the

opportunity to write the thesis in her research group. She was always supportive

and steered me in the right direction. I would like to thank my supervisors, Dr.

Ahmed Eleliemy and Dr. Ali Mohammed. They have given me constructive feedback

and crucial insights throughout all my thesis. The knowledge I got from them is

not bounded inside the thesis scope, but we discussed other topics related to their

research and how to spot different problems.

Furthermore, I want to thank my parents Fadil Vukaj and Fatmire Vukaj, and my

brother Ilir and his beautiful family (his wife Donjeta and daughter Leandra) for

constantly encouraging me throughout all my studies. They always gave me uncon-

ditional love and support. This work would not have been possible without them.

Finally, I want to thank my girlfriend Brikena Celaj for her continuously support and

helpful discussions and suggestions.

ii

Contents

1 Introduction 1

2 Background 5

2.1 Programming Frameworks . 5

2.1.1 OpenMP . 5

2.1.2 MPI . 6

2.2 Loop Scheduling techniques . 6

2.2.1 Static techniques . 7

2.2.2 Dynamic self-scheduling techniques 8

2.2.3 AUTO4MP . 11

2.3 Scheduling libraries . 13

2.3.1 OpenMP level . 13

2.3.2 MPI level . 14

2.4 HPC systems . 14

2.5 Cloud computing technology . 14

2.5.1 HPC on cloud . 16

3 Related Work 18

4 Methods 21

4.1 Goal . 22

4.2 Benchmarks . 22

4.2.1 Processor . 23

iii

4.2.2 Memory Bandwidth . 24

4.2.3 Internode communication . 24

4.3 Scientific applications . 25

4.3.1 Mandelbrot . 25

4.3.2 SPHYNX . 25

4.4 Systems . 26

4.4.1 miniHPC . 27

4.4.2 sciCORE . 27

4.4.3 Google Cloud . 28

4.5 Software stack . 29

4.6 Design of experiments . 29

4.6.1 Thread level scheduling . 30

4.6.2 Two-level scheduling (process+thread level) 30

5 Results 33

5.1 Hardware and System view . 33

5.1.1 Processor . 33

5.1.2 Memory bandwidth . 34

5.1.3 Inter-Node communication . 35

5.2 Application view . 37

5.2.1 Thread-level scheduling results 37

5.2.2 Two-level scheduling results 41

6 Conclusion & Future Work 48

Appendices 50

A 51

B 53

iv

Chapter 1

Introduction

Scientific applications simulate the actions of real-world objects based on mathemat-

ical models and such applications involve immense computations and amounts of

data. Some examples are weather prediction and computational fluid dynamics ap-

plications. To satisfy the demands of scientific applications, the execution power and

memory of High-Performance Computing (HPC) systems is required [31].

HPC is based on parallel architecture and parallel computation by providing a high

number of computing units and distributing the work among them. Therefore, HPC

is becoming one of the main pillars of scientific research.

Commonly, scientific applications involve large loops which present a good poten-

tial for parallelism. However, the execution time of these loop iterations can vary

due to conditional statements inside the loop, system variation, and different input

data. Loop parallelization is done in such a way that loop iterations are assigned

to the processing elements (PEs). One of the main challenges in parallelizing sci-

entific applications is the load imbalance, which is manifested when the PEs have

uneven execution finishing times. Such loops are called irregular loops. The schedul-

ing of the loop iterations to the PEs determines the performance of such applications.

Scheduling techniques are classified as static and dynamic. Dynamic load balancing

is achieved via dynamic loop scheduling (DLS) techniques.

One of the main aspects that need to be considered when parallelizing a scientific

application on such a setup is the load balancing aspect. If the scheduling of the

1

tasks to the PEs is not done correctly, the load imbalance may impact and degrade

the performance of the application. The load imbalance can exist across the nodes

at the process and within a node at the thread level. The application performance is

driven by the slowest thread because the threads that finish their work still have to

wait for the execution of the slowest one [42]. In this context, the scheduling aspect

is very important to achieve good load balancing. Currently, scheduling process is

the conventional way to address load balancing. Many research efforts have been

made to address load imbalance, and there exist several scheduling techniques in the

literature.

An HPC system is a collection of nodes connected via low latency interconnection

networks to form a single cluster, where each node is a self-contained computer with

its own OS, CPU, RAM and hard drive. They usually have a shared memory within a

single node and a distributed memory across several nodes. High-performance appli-

cations are usually executed in parallel, and parallelism can come in different forms.

HPC system parallelism can be exploited by different existing programming models.

Two common programming models of parallel programming in HPC are: shared-

memory and distributed-memory programming. In the shared memory programming

model, all parts share a common address space and they can directly access one

another’s data. It corresponds to the multithreaded programming, where multiple

threads are of control within a single process. An example of shared memory pro-

gramming is Open Multiprocessing (OpenMP) [13]. On the other hand, multiprocess

programming corresponds to distributed memory. Here, inter-process communica-

tion takes place where multiple processes exchange data through message passing. A

prominent example here is Message Passing Interface (MPI) [30]. Since the nature

of the HPC systems is hybrid, the most common approach in scientific applications

is to parallelize them in the hybrid fashion using MPI+OpenMP at the process and

thread-level [42].

When it comes to accessing the HPC capabilities to execute scientific applications,

the users have two possible scenarios: one is to acquire and operate an on-premise

HPC cluster; the other option is utilizing cloud computing resources. The second

2

approach is known as "HPC on cloud", which refers to the use of cloud resources to

run HPC applications [43]. Cloud computing is an emerging computing technology

that provides the renting of computing resources via the internet based on a pay-as-

you-go approach. The resources are operated based on virtual machines (VMs) and

ran on a multi-tenant mode on the physical hardware [24]. However, executing HPC

workloads in the cloud imposes difficulties due to the different properties that they

have when comparing them with traditional enterprise and web applications. They

have different execution mechanisms, enterprise and web applications run in a 24x7

fashion while HPC applications are usually run as jobs in batches. Moreover, HPC

applications require more computing power [43].

The cloud computing paradigm has sparked a lot of interest from the HPC commu-

nity because of the claims on the cost-effectiveness and the flexibility of this approach.

The advantages of the cloud are the a)elasticity, where the users can quickly provision

and adjust resources on-demand at any moment where users pay in pay-as-you-go ap-

proach, b) virtualization, that enables flexibility, customization, and resource control

[33].

One of the challenges in cloud computing is the scheduling of the VMs during the

resource provisioning [38]. In the resource provisioning process, the user makes a re-

quest for the resources and the VMs are created and allocated to the users. Improper

scheduling induces load imbalance which affects the performance of the scientific ap-

plications.

It is important to highlight the difference between the two types of load imbalances

that we introduced here because they are used in two different contexts. First, we

introduced load imbalance challenge in the context of scheduling of the tasks to PEs,

while in cloud computing context, the load imbalance is caused by the scheduling of

the VMs to cloud users during the resource provisioning. In this work, we are focused

on the load imbalance challenge in the task scheduling context.

Many studies [24][29] [2] evaluate the performance of cloud systems for HPC appli-

cations by either using synthetic benchmarks or real scientific applications. These

studies have consistently identified that cloud computing is not suitable for tightly

3

coupled HPC applications and that the lack of a low latency network is the main bot-

tleneck of cloud systems. Moreover, it has been concluded that cloud suffers from the

performance variability. They have also consistently shown that cloud computing is

competitive for HPC applications that are not communication bound. With the rapid

development of the cloud, it is not known if this outcome is still valid However, there

is a recent research work [32] that contradicts previous works due to the improvements

made by the cloud providers. It shows that cloud computing can also provide very

good performance for memory and communication-intensive applications. Certain

research [42] works also measure the performance of the scientific applications which

are designed to run on HPC systems with different scheduling techniques. However,

there are no evaluation studies that compare the performance of such applications

with different DLS techniques on on-premise HPC, with their performance on the

cloud resources.

Two approaches on-premise HPC and cloud computing are converging. Understand-

ing the gap between HPC and cloud systems is a very important aspect that needs

to be considered to further help the convergence. This work not only evaluates and

compares the performance of the latest cloud computing resource improvements with

on-premise HPC, but also evaluates how the applications which are designed for HPC

systems with the tuning of different DLS techniques behave in both an on-premise

HPC system and cloud computing resources. The DLS techniques designs are not

specific to a programming model. They are implemented and can be applied in differ-

ent levels. In this work they are applied at thread and process level to two scientific

applications, Mandelbrot[39] and SPHYNX[20]. What makes this work unique is the

filling of the gap between two approaches to access HPC capabilities, in such a way

that we compare the performance trends of scientific applications using different DLS

techniques during the execution running on both approaches.

4

Chapter 2

Background

2.1 Programming Frameworks

2.1.1 OpenMP

OpenMP Application Programming Interface (API) is a specification for parallel pro-

gramming and supports shared memory multiprocessing programming in C, C++,

and Fortran [13]. In OpenMP applications, the parallelization is done implicitly, and

the runtime behavior is based on the compiler directives, library routines, and environ-

ment variables [13]. Hence, it requires the compiler to support this specification and

a runtime library which provides an interface to the compiler. Many well-known com-

pilers such as Clang and GNU Compiler Collection (GCC) [12] support the OpenMP

specification.

OpenMP operates on the shared memory programming model where the execution

is made within a single node. The implicit parallelization of the program is made

via directives and pragmas which are specified in the part of the source code that

will be executed in parallel. The compiler is responsible to parallelize the specified

part based on the directives. OpenMP supports different constructs to parallelize a

program. Some of them are parallel regions, work-sharing, variable scoping, critical

regions, and synchronization. These constructs can be combined to achieve the goal

of parallelization. One of the main features of OpenMP is the parallelizing of the

5

loops which require specifying only a line just before the for loop:

#pragmaompfor[clause[[,]clause]...]new � line

for � loops

However, the programmer is responsible to analyse the dependencies between the loop

iterations in such a way that iterations are independent of each other. This assures

the correct final result.

2.1.2 MPI

MPI is a message-passing library interface specification for distributed memory sys-

tems where the processes work in parallel and have their individual memory space

[30]. It is not a library but a specification of what a message passing library should

be. It defines the syntax and the semantics of library routines. MPI can be used to

develop message-passing programs using C, C++, and Fortran [30].

The parallelization in the MPI is done explicitly. The programmer is responsible

to organize the processes, data distribution, and interaction between the processes.

There are two communication types used in MPI: point-to-point communication and

collective communication. Both of them have different modes and corresponding

library routines that allow programmers to implement them.

2.2 Loop Scheduling techniques

The most time-consuming parts during the computations in large programs are loops.

However, loops represent a huge source of parallelism. Their parallelization can bring

benefits to applications in terms of execution time. Scheduling task is a process in

which the parallelization of the loops is materialized by decomposing them in iteration

blocks and assign those blocks to the available PEs. As the loop iterations can have

different execution times due to conditional statements inside them, different inputs,

and system variations, this can lead to load imbalance which means that PEs don’t

6

have even execution finishing time. The PEs that finish earlier than others, stay in

idle mode. This represents a waste of the computation power potential. To achieve

balanced load execution, scheduling techniques balance the load into the PEs, so in

this case, the finishing time of each PEs iterations is similar and there is no wasted

potential. However, scheduling also involves overhead. The overhead can degrade

the performance. There is a trade-off between the scheduling overhead and the load

balance and based on that, different scheduling techniques fit better on reducing the

overall execution time. There are two main approaches of loop scheduling techniques:

static and dynamic. In the following two subsections an overview of two approaches

and different scheduling techniques that exist for them is given. The selection of the

scheduling technique per application, per loop per system basis is a decision to be

made, and some techniques require the chunk parameters. There is a novel approach

AUTO4MP that addresses this process by an automated selection of the scheduling

technique. In this approach, several automated selection techniques are implemented,

and a brief overview of these techniques is given in the last subsection of this section.

2.2.1 Static techniques

In the static techniques, the iterations are divided into chunks of a fixed size, which

are then assigned to PEs before the execution of the loop starts. As the scheduling

decision is made before execution, there is minimal scheduling overhead. This is a

very good approach when the loops are regular and iterations have the same execution

time. However, these techniques can produce load imbalance (uneven finishing times

of PEs) in cases when the loops are irregular or due to system variability. Static

chunking (SC) is an example of static loop scheduling techniques, where PE has a

chunk of tasks that is equal to the number of tasks N divided by the number of PEs

(N/P). The fixed chunks sizes are given to PEs before the execution of the loop. In the

trade-off between scheduling overhead and load balance, SC represents the extr<eme

where it has minimum load balance with the minimum scheduling overhead.

7

2.2.2 Dynamic self-scheduling techniques

Dynamic techniques differ from static because the scheduling decisions are made not

before the execution of the loop but dynamically during the application execution.

The PEs that have finished their assigned iterations take over other iterations during

the runtime. This can be done in two ways: centralized fashion, where a master PE

assigns tasks to worker PEs; decentralized fashion, where each PEs assigns tasks via

self-scheduling using a central pool. DLS techniques are also divided into adaptive

and nonadaptive techniques. Adaptive DLS techniques adapt the scheduling decisions

based on the information they obtain during the runtime. Some of adaptive techniques

are adaptive weighted factoring (AWF) [18], its variants AWF-B, AWF-C, AWF-D,

AWF-E [21] and adaptive factoring (AF) [16]. Non-adaptive DLS techniques make

decisions of scheduling during the runtime based on pre-computed information prior

to execution. This information does not change anymore during the runtime. Some

of nonadaptive techniques are self-scheduling (SS) [46] , fixed-sized chunking (FSC)

[37], guided self-scheduling (GSS) [44], trapezoid self-scheduling (TSS) [47], modified

fixed-sized chunking (mFSC) [17], factoring (FAC) [35], weighted factoring (WF) [34]

and random (RAN) [23] etc. Adaptive DLS techniques incur a higher scheduling

overhead comparing to the non-adaptive ones. However, their design is focused on

outperforming non-adaptive in highly irregular execution environments. Next in this

subsection an overview of DLS techniques is give.

• Self-scheduling (SS) assigns a single iteration per PE request. The chunk

size is equal to one.

Cs = 1

Regarding the trade-off between scheduling overhead and load balance, SS repre-

sents one of the extremes. It has the maximum load balance with the maximum

scheduling overhead. Implementing SS in a decentralized model for getting loop

iterations, gives the possibility to reduce the scheduling overhead.

• Fixed size chunking (FSC) - tries to reduce the scheduling overhead of the

8

SS technique by assigning loop iterations into the fixed size of chunks instead of

a single one. The chunk size depends on the standard deviation of the iterations,

sigma, and the scheduling overhead, h.

Cs =

 p
2Nh

�P
p
logP

!2/3

With the above formula, we try to find the optimal size of scheduling overhead

and at the same time have a good load balance.

• Guided Self-scheduling (GSS) - assigns a decreasing chunk size to PE where

this chunk size is the number of remaining loop iterations Ri, divided by the

number of PEs P.

Csi =
lRi

P

m

GSS tries to reduce the time of scheduling overhead by using less chunks and at

the same time have a good load balance. It addresses the uneven starting time

of PEs.

• Trapezoid self-scheduling - (TSS) assigns a decreased chunk size to PE

similar to GSS, but in TSS the chunk size decreases linearly. Due to this linear

calculation, the scheduling overhead is reduced because TSS is more efficient

and simpler to implement. Trapezoid Self-Scheduling takes the first chunk f and

last chunk l as inputs from the user and calculates the size as given below.

A =
l 2N

f + l

m
,

� =
f � l

A� 1
,

Cs(1) = f,

Cs(t) = Cs(t� 1)� �

The number of chunks is represented with A and current scheduling operations

9

are represented with t.

• Factoring (FAC)- this technique is based on GSS FSC techniques. Different

to this two methods, FAC assigns iterations into batches of P equal size chunks.

It would be as GSS method if each batch has one chunk, or as FSC method if

it has only one batch. To calculate the size of chunks, it uses a probabilistic

analysis.

Csj =
l Rj

xjP

m
,

R0 = N,Rj+1 = Rj � PCsj ,

bj =
P�

2
p
Rjµ

,

x0 = 1 + b20 + b0

q
b20 + 2,

xj = 2 + b2j + bj
q

b2j + 4, j > 0,

where j represents the index of batch and R represents the remaining iterations.

FAC is robust to variances of iteration execution time. Depending on �, it is

similar to SS if � is hight or it is similar to static for low �.

• Weighted-Factoring (WF) is similar to FAC, but to calculate the chunk size

it considers the PE speed. It dynamically decreases the chunk size of iterations

to PEs in proportion to their processing speed. Therefore, PEs have a weight

w where after the calculation of the batch and chunk size, these chunks are

multiplied by w.

Csij = wi ⇥ Cs_factoringjand
PX

i=1

wi = P

This equation represents the size of batch j for PE i.

• Adaptive Weight Factoring (AWF) - this technique works similarly to WF.

However, AWF adjusts the weights after each time step to balance the load. The

profiling and prior knowledge of system load are not required. This technique

10

is created for time-stepping applications. To find the weight, AWF uses the

performance of all PEs in the previous step.

Adaptive Weighted Factoring Variants – AWF has different variants like AWF-

b, AWF-c, AWF-D, AWF-E. The main goal of these variants is to deal with

AWF limitations. While in AWF the adaption happens after each step, in the

AWF variants, the adaption can happen also during the loop execution. These

variants adjust the PE weights with a different frequency depending on the

variant. Chunk size is calculated similarly to AWF with a modified version of

the weighted average ratio.

⇡i =

PSi

j=1 j ⇥ tij
PSi

j=1 j ⇥ nij

• Adaptive Factoring (AF) - It is a generalized version of FAC and WF. Dif-

ferent from FAC where mean and standard variation is known and are the same

in all PEs, in AF, both values are calculated during the runtime. Compared to

WF, AF dynamically calculate the new chunk’s size based on the recent per-

formance. To calculate the size of the chunk, AF uses a probabilistic model.

It has more overhead than AWF due to frequent time calculation on iteration

level.

2.2.3 AUTO4MP

Selecting the scheduling techniques is a time-consuming process for the users given

that there exist several ones, and the selection must be done carefully by considering

each technique with different characteristics and different chunk parameters. The

complexity is increased when the decision has to be made for each loop, application,

and system. The OpenMP standard provides the auto parameter for the schedule

clause or as a scheduling option, where the scheduling decision is delegated to the

compiler/runtime implementation. As the implementations of auto in OpenMP stan-

dard runtime libraries usually map to a certain technique, AUTO4MP is a novel

11

approach that implements four novel algorithms to automatically select a scheduling

technique among the existing ones by extending the implementation of auto technique

in the LLVM OpenMP runtime library. The algorithms implemented in AUTO4MP

are Auto Random selection, Auto Binary selection, Auto Exhaustive selection, and

Auto Expert selection. The remaining part of this subsection gives an overview of

these algorithms is given.

• Auto Random selection - Random selection method chooses the scheduling

algorithm randomly based on a defined probability Pj without trying to find

the highest performing algorithm beforehand. This probability, Pj, is defined

by the load imbalance at a certain point of execution, and it is calculated

with the formula Pj = LIB/10, where LIB is the percent load imbalance.

At each time step, the Random Selection method generates a number in [0,1]

interval. For all the cases where the Pj is smaller than the generated number,

the algorithm is not changed, otherwise, the algorithm is changed and chosen

from Auto4OMP portfolio. The disadvantage of this method is that it can have

a low performance.

• Auto Exhaustive selection - Exhaustive Selection method chooses the schedul-

ing algorithm with the highest performance for a loop. To find out this algo-

rithm, this method tries all algorithms in the Auto4OMP portfolio by selecting

one algorithm at each time-step and calculate its execution loop time. If there

is a high imbalance loop execution with the chosen algorithm, the Exhaustive

Selection method restarts the process of searching for a better algorithm. The

disadvantage of this method is that its trials to find the scheduling algorithm

are proportional to the size of the Auto4OMP portfolio.

• Auto Expert selection - Expert Selection method, similar to the Random

Selection method, chooses the scheduling algorithm without doing any search

beforehand. However, this method uses fuzzy logic and expert rules, to decide

which scheduling algorithm to select. It also collects information of the loop

execution time during the execution and benefits from them. The fuzzy logic

12

helps to reduce the complexity of all problems that have to do with uncertainties.

Its approach is to express expert knowledge as rules which help it to make a

decision based on the uncertain inputs. There are three steps during the process

of selection when using fuzzy logic: i) fuzzification, ii) evaluation of expert rules

iii) defuzzification.

2.3 Scheduling libraries

2.3.1 OpenMP level

At the OpenMP, the runtime library is responsible for the scheduling task. OpenMP

allows us to specify the scheduling algorithm to be used by the compiler. This can

be done either on source code in pragma, or it can be chosen during the runtime

by specifying runtime in the pragma. For the latter, the name of the algorithm

should be specified in the environment variable OMP_SCHEDULE. OpenMP sup-

ports three standard loop scheduling techniques [13]: static, dynamic, and guided.

The chunk size can be specified in the pragma as well, so the scheduling technique

will know how many iterations will be given to the PEs. But of course, this depends

on the chosen technique. If for instance the static technique is chosen, then blocks

of iterations of the specified size will be assigned to each PEs before the loop execu-

tion. In the dynamic technique case, the specified number of iterations are assigned

to the idling PEs during the runtime. In addition to standard OpenMP scheduling

techniques (static, dynamic and guided), the eLaPeSD [22] library supports four addi-

tional DLS techniques: FSC, TSS, FAC and RAN. The LB4OMP [36] is an extended

LLVM OpenMP runtime library that is used in this work. Apart from the standard

OpenMP scheduling techniques, it also supports other dynamic and adaptive loop

scheduling techniques from the literature: TSS, FSC, FAC, mFAC (improved imple-

mentation of Factoring), FAC2 (a practical variant of factoring), WF2 (a practical

variant of weighted factoring), TAP (tapering), mFSC (modified FSC), TFSS (Trape-

zoid factoring self-scheduling), FISS (Fixed increase self-scheduling (FISS), RAND. It

13

also supports the auto selection methods Auto Random, Auto Exhaustive, and Auto

Expert.

2.3.2 MPI level

There exist tools that implement DLS techniques at the process level using MPI. One

of them is DLB_tool [41]. It uses a master-worker execution model where there is a

master process and the other processes are called workers. The MPI worker processes

request work from the master process that executes the self-scheduling techniques.

DLB_tool initially implemented nine loop scheduling techniques: static, mfSC, GSS,

FAC, AWF-B, AWF-C, AWF-D, AWF-E, and AF. Afterward, it was extended into

LB4MPI [41] to support four additional DLS techniques: SS, FSC, TSS, and WF.

2.4 HPC systems

Nowadays research studies are mainly conducted using computer modeling, simula-

tion, and analysis. Usually, solving complex problems require computing capabilities

beyond a single server. This is made possible by the HPC systems. HPC systems

are usually supercomputers comprised of a large number of CPUs, GPUs, and a very

fast interconnection network between the computing elements. Their interconnection

is based on well-defined network topology. The most common architecture of HPC

systems is cluster architecture. HPC clusters usually have a large number of nodes

configured identically, and it looks like a single system. More than 86% of Top500

systems are based on the cluster architecture [25].

2.5 Cloud computing technology

Cloud computing technology is based on sharing the computer system resources and

allows users to rent them on-demand. The name "cloud computing" refers to the

fact that the resources and data centers are made available to users over the internet

[24]. The goal is to offer users a simplified way to access the technologies. Cloud

14

computing systems are usually built from commodity (consumer-level) hardware [24].

Cloud services can be divided into three main layers [24]:

• Infrastructure as a Service (IaaS) - Users can rent servers, storage, network-

ing, run different operating systems on those servers. It is a suitable solution for

cases when the users want to control all the computing elements by themselves.

Hence, it requires good technical skills to manage the services.

• Platform as a Service (PaaS) - A platform is provided to the users, which

allows them to develop, run, and manage their applications. It keeps the un-

derlying infrastructure away from the user.

• Software as a Service (SaaS) -Delivers the applications as a service where

the users can only access the software via a web browser. The users are not

concerned about the underlying infrastructure.

One of the key benefits of cloud computing technology is that it allows to easily set up

the IT infrastructure by reducing time and effort and also avoiding all the complexities

of owning and maintaining it. Other than that, the cloud typically uses a pay-as-you-

go fashion where the users pay only what they use. Sometimes applications have

higher peaks in usage at a particular hour, week, or month. The scaling up and down

of the resources makes financial sense, as having dedicated hardware and software, in

this case, might cause idling for much of the time. For this, cloud computing provides

burst computing capability by enabling quick resource adjusting to meet the demands

on certain hours [24].

The fundamental technology behind cloud computing is the virtualization software

which separates physical devices into many virtual devices, and allows managing them

to perform different computing tasks [24]. It increases the efficiency and utilization

of the existing computer hardware.

There exists public and private cloud providers which differ in the way they operate.

The public cloud refers to the model where IT services are offered and shared with

different organizations across the network and are provided via the internet. In this

15

case, it is the cloud service provider’s task to manage and maintain the compute

resources shared among their tenants. On the other hand, the private cloud refers to

the solution where the resources are dedicated to a single organization. The compute

resources can be located on-premise or managed by a third party in another place.

Giant data centers are managed by public cloud providers and are located in different

places around the world. Hence, they are usually divided into different geographic

regions like the EU, US West, etc. The regions are physically isolated from each other

in terms of location, power, etc. Each region is then further subdivided into so-called

availability zones. One zone does not correspond to a single data center but is rather

backed by one or more of them.

2.5.1 HPC on cloud

HPC systems are usually operated by non-profit organizations such as universities

or national laboratories. They are typically funded by government agencies and al-

located to research communities. HPC systems before were limited to the capacity

provided by the on-premise infrastructures of these organizations. Today, cloud com-

puting gives HPC users an alternative to this if the on-premise infrastructure is not

available. In contrast to on-premise HPC systems, cloud systems are built from profit

organizations to meet the market demand. Motivated by the growing commercial in-

terest in large-scale machine learning training, they are continuously upgraded [24].

The virtualization technology allows cloud systems to run applications into the same

hardware, and with this, it aims to achieve the economies of scale [24].

A difference worth to be mentioned is also the way how they can be accessed. For the

on-premise HPC systems, the users usually have to make a request to HPC providers

to allocate computing resources for the proposed research work. Sometimes the HPC

facilities do not scale in the same line with computational demands, and the access to

them might be rejected. Moreover, when access is granted, if the resources are over-

loaded, the jobs are queued until there are free resources to proceed. On the other

hand, the cloud has no queues due to a high number of available resources. Easy

and quick set up of the cluster in the cloud also reduces time-to-solution. Hence,

16

considering cloud computing as an alternative to on-premise HPC systems in certain

cases is worth it.

The viability of executing HPC applications on the cloud has started with the in-

creasing popularity of cloud computing in the late 2000s [19] [14].

The biggest players in the public cloud world currently are Amazon[1], Google Cloud

[3], Microsoft [2], and IBM [5], Oracle [8].

17

Chapter 3

Related Work

Load imbalance has been studied in many works in different contexts using very simi-

lar terminology. Two contexts that are close to our topic and terminology are the load

imbalance induced upon the scheduling of the applications into tasks manifested in

the process and thread level, and the scheduling of the resources in the cloud during

the resource provisioning.

The effective scheduling of the resources in the cloud improves quality of services

(QoS) parameters as resource utilization, reliability, execution cost, etc [38]. The

goal of scheduling in this context is to specify the best resources demanded by the

end-user for the execution of a task. Inefficient scheduling of the resources may lead to

performance degradation or wastage of cloud resources due to having overutilized or

underutilized resources respectively [38]. The works [38] [15] present a survey regard-

ing the scheduling techniques in cloud computing. However, the focus of this thesis

is not on the scheduling of the resources in the cloud during resource provisioning

but rather on the task scheduling of the applications. Scientific applications mainly

consist of large loops of different sizes and more specifically, this thesis is focused on

DLS techniques used to schedule the loop iterations on the PEs. Since this thesis

aims to evaluate the performance of different task scheduling techniques executed in

the cloud and compare them with on-premise HPC systems, it is also important to see

the results of the other works in terms of performance evaluation for both approaches.

HPC applications have different properties comparing to the traditional enterprise and

18

web applications and hence executing them in the cloud imposes difficulties. They

require high computing power capabilities not only in terms of CPU but also in terms

of memory and network speed needed to support the execution [43]. The on-demand

elasticity of computing resources provides a good advantage for cloud computing.

Despite this fact, previous studies [43] [29] [33] [24] [] have evaluated the performance

of applications on cloud resources, and they have consistently shown that running the

scientific applications on the cloud has some performance-limiting factors such as the

virtualization overhead and lack of low-latency networks. Most of the performance

evaluations are done using Amazon Web Services (AWS). Being the first player in

the market in making simplifications to use cloud resources for individuals and small

organizations, and the fact the AWS provided free credits to the researchers to uti-

lize the cloud infrastructure, made AWS be in the limelight of cloud service providers.

Early studies [28], [27],[24] evaluated AWS instances for HPC applications, and the

main conclusion was that cloud at that time were not suitable to run tightly coupled

HPC applications due to the virtualization overhead and poor network performance.

Afterward, AWS did some improvements in cloud instances to overcome those con-

straints. The work [29] evaluated these new instances (CC1 and CC2, which currently

are outdated) using 512 cores. They showed the processors have higher computational

power in new instances and that the scalability of the communication-intensive codes

is limited due to high start-up latencies and limited bandwidths which are imposed

by virtualized access to network interface cards (NIC). The study [33] tries to answer

the "who" (who should use the cloud for HPC) and "what" (for what they should

choose cloud for HPC)questions by evaluating the performance of HPC applications

in different on-premise HPC systems and public/private clouds. The outcome was

that cloud systems are suitable for small and medium-scale organizations which can

benefit from the pay-as-you-go model and that the cloud systems provide comparable

performance with on-premise HPC when executing applications with less-intensive

communication patterns. The [43] also confirms that the lack of low-latency net-

works represents the main bottleneck for the cloud.

19

Considering the fact that most of the studies had similar outcomes regarding the

performance of the HPC applications on the cloud, cloud service providers made im-

provements as a response to these research outcomes. The main paper close to our

work is [32] because it is one of the most recent ones that evaluate the HPC appli-

cation performance in the most recent improved instances in the cloud. This work

[32] shows that AWS has made significant advances in offering higher bandwidth and

lower latency networks. They show that today, cloud computing is not only suitable

for compute-intensive applications but also for memory and communication-intensive

ones.

To run HPC applications efficiently in the cloud, we must understand the gap between

on-premise HPC and cloud systems. Minimizing this gap on the performance aspect

would help scientists to make a better decision between the two approaches. Here,

the related work revealed the lack of performance evaluations of HPC applications

using different scheduling techniques in on-premise HPC and cloud. This thesis aims

to address this lack by evaluating HPC applications and benchmarks in cloud systems

of different cloud service providers comparing with on-premise HPC in the context of

task scheduling.

20

Chapter 4

Methods

This section presents the methods used to analyze the performance of the scientific

applications using different scheduling techniques on the cloud and compares them

to the on-premise HPC systems. There are variables such as the processor, memory,

network, and application that affect the performance on different systems. Therefore,

we also take a closer look at each component separately by measuring their perfor-

mance in isolation. On this basis, we divide our experiments into two categories: i)

benchmarks and ii) scientific applications. In the first category, we use different tools

to measure the performance gap between the systems on each component. In the

second category, we select two scientific applications as representatives, Mandelbrot

[39] and SPHYNX [20] applications. The experiments are conducted on sciCORE,

miniHPC, and Google Cloud. It is worth mentioning that we perform the same set

of experiments for each category in all three systems. They are not similar at the

hardware level, but they are similar at the software level. Hence, the purpose is

not to compare the performance of different platforms, because they are different.

Instead, we perform investigations to understand the performance trends on these

three platforms.

21

4.1 Goal

The goal of this work was to analyze the performance of the HPC workloads on on-

premise HPC and Cloud. To do so, we had to choose the systems, benchmarks, and

scientific applications on which the performance using different scheduling techniques

is analyzed. Comparing the performance of cloud and on-premise HPC systems has

been subject to studies in previous works, however, analyzing the performance of the

scientific applications on cloud resources and on-premise HPC systems in the context

of different task scheduling techniques is the contribution of this work. A set of loop

scheduling techniques are available in the literature and are implemented in the li-

braries ready to be used. In this work, apart from performing the benchmarks on

different systems, we are focused to compare the performance of different scheduling

techniques in different applications. The scheduling techniques are applied on the

thread-level and combined process with thread-level (two-level scheduling). Regard-

ing the scientific applications and comparing the performance of the applications using

different scheduling techniques, we divide our experiments into two phases: experi-

ments where the scheduling techniques are only applied in the thread-level (OpenMP);

experiments where the scheduling techniques are applied in two-level, thread and pro-

cess level (OpenMP + MPI). Hence, a good amount of work was focused on selecting

scientific applications, carefully planning the design of experiments by selecting the

systems and scheduling techniques to be applied. Moreover, preparing the environ-

ments for the executions, including the library installation and compilation, was an

important piece of this work. An overview of the components used for our work can

be seen in the figure 4-1.

4.2 Benchmarks

Comparing the performance of computer systems using benchmarks allows us to in-

vestigate and gain knowledge on different aspects of the systems. In this category

of experiments, we investigate the difference in contributions of the processors in the

22

Figure 4-1: Methodology

selected HPC systems, then, we investigate the memory and the network performance.

4.2.1 Processor

The selected systems are built from multi-core processors, where each multi-core

processor is considered as a node. Here, we selected the High Performance Linpack

(HPL) [26] benchmark as a tool to perform stress testing on the processor. HPL

benchmark solves a random linear system of equations and reports the floating-point

operations the system can perform per second (FLOPS). It is often considered as a

de-facto standard by the HPC community for processor benchmarking. It allows users

to scale the problem size and optimize the software by specifying some parameters

to achieve near-peak floating-point performance. However, the HPL usually requires

several iterations of benchmark tuning of parameters to find the parameters to reach

optimal performance. HPL is controlled by two critical parameters, P and Q, that

describe the process distribution among the cores, where their multiplication gives

23

the total number of MPI ranks. Other parameters needed by HPL are N, which is the

problem size to be solved, and NB, the block size for the data distribution. TOP500

also uses this tool to achieve the best performance for a given machine [11]. However,

the reported number does not reflect the overall performance of the system, and the

actual performance of an application might be lower than the performance reported

by the HPL benchmark. Intel compiler was used on all three platforms with the Intel

Math Kernel Library. For the Google Cloud, Intel OneAPI [6] compiler suite.

4.2.2 Memory Bandwidth

Another component that may affect the performance is the memory bandwidth of

the system. To throw light on the memory bandwidth of our systems, we use the

STREAM benchmark[40]. STREAM benchmark measures the memory bandwidth

(in MB/s) by performing four-vector operations: copy, scale, sum, and triad. It has

a general rule where each array must be at least four times the size of the sum of all

the last-level caches used in the run.

4.2.3 Internode communication

Internode communication is an important aspect of the system that needs to be con-

sidered. To investigate it, we use the MPI Ping Pong[7] program which uses the

MPI_Send and MPI_Recv to continually pass data to each other, and the band-

width is calculated by measuring the time the data is transferred and taking into

account the size of the data being transferred. Moreover, we use SkAMPI [45] bench-

marking system, which allows us to perform collective communication operations as

MPI_Alltoall to explore the latency aspect with a certain number of processes in-

volved.

24

4.3 Scientific applications

Apart from the benchmarks to compare the HPC and cloud systems, we also selected

two scientific applications which are used to measure their performance using different

scheduling techniques. The selected applications are Mandelbrot written in C and

Sphynx written in Fortran. Both applications are compiled using the Intel compiler.

4.3.1 Mandelbrot

When executed, Mandelbrot creates and displays fractal geometric images. Applying

the equation fc(z) = z4+c to a certain number of pixels in an iterative process which

yields the image. Mandelbrot is considered a computationally-intensive application

where the main work is done to compute the Mandelbrot set to generate the 2D image

pixels. The calculation of every pixel is considered as a task, hence the application

is parallelized in such a way that each of these tasks is performed in parallel. The

execution time of these tasks has a high variation from each other. However, we

use a modified version of Mandelbrot for both experiment types, thread-level, and

two-level (process+level) scheduling. The modified version of Mandelbrot is that we

executed it in time-steps and add two additional loops to explore loops with different

characteristics. The original loop is with constant load imbalance, while for the other

two, one is with increasing load imbalance and the other is with decreasing load

imbalance. We refer to the three loops with L0, L1 and L2

4.3.2 SPHYNX

SPHYNX is an accurate density-based smoother particle hydrodynamics (SPH) method

for astrophysical applications [20]. It is developed and maintained at the University

of Basel. Generally speaking, it is comprised of two heavy loops (we refer to them as

L0 and L1), which are hydrodynamics simulations. It is a time-stepping application,

parallelized using MPI and OpenMP [20]. The performance of SPHYNX is studied for

one simulation test-case, Evrard collapse which simulates the collapse of an unstable

cloud of gas and the formation of the subsequent shock-wave [20]. Our experiments

25

are conducted on a domain size of one million particles to explore its performance.

4.4 Systems

Selecting the systems to compare the performance of scientific applications for on-

premise and cloud approaches, was part of the investigation as well. For the cloud

approach, we explored what do the different cloud service providers offer in terms

of HPC such as AWS, Google Cloud, Azure, and Oracle. Moreover, we compiled

a table that compares the prices of the instances offered by different cloud service

providers, and the prices to gain access to the HPC centers. For the on-premise

solutions, we explore the Pizz Daint instance from CSCS (Swiss National Computing

Center) and sciCORE instances. The cost comparison can be seen in Appendix B. Our

experiments are conducted on three different compute platforms: miniHPC, sciCORE

and Google Cloud. Details of the selected systems are listed in the table below.

Table 4.1: Caption!

Platform Core Frequency
(GHz)

Processor Memory
(GB)

Network L1 L2 L3

miniHPC 10 2.4 Intel
Xeon

64 Intel
Omni-
Path 100
Gbit/s

32 Kb 256
Kb

25
Mb

sciCORE 56 2.7 Intel
Xeon
Platinium
8280 CPU

386

Infiniband:
40GbE
Ethernet:
1GbE

32 Kb 1
Mb

40
Mb

Google
Cloud
c2-
standard-
30

30
vC-
PUs

up to 3.8 Intel
Scalable
Pro-
cessors
(Cascade
Lake)

120 32 Gbps 32 Kb 256
Kb

50
Mb

The reasons to select those systems are the easy availability and the diversity of

the architectures. The miniHPC is available at the HPC group of the University

26

of Basel, which made it easy for us to gain access and conduct the experiments.

sciCORE is also a center of scientific computing which provides infrastructure and

services for high-performance computing. It is under the University of Basel umbrella

and granting access was a straightforward process. We choose Google Cloud as the

cloud service provider for the experiments of this work also due to the payment model

that they apply, which was very convenient for the budget planning of this master

thesis. The other service provider didn’t provide the possibility to allocate some

credits beforehand into our account and spend the credits on their services as we

want. The only cost model offered by other cloud service providers was the monthly

bill on the pay-as-you-go model and the upfront payment of specific instances which

turned out to be a non-feasible solution for our case.

4.4.1 miniHPC

miniHPC is a small HPC cluster that has two types of nodes: Intel Xeon (22 nodes)

and Intel Xeon Phi Knights Landing (KNL) (4 nodes). It has a peak performance

of 28.9 double-precision TFLOP/s. We choose the Xeon partition due to the higher

number of available nodes for our experiment. It is comprised of 22 computing nodes,

1 login node, and 1 storage node. The computing nodes are interconnected using

a two-level fat-tree topology, with 100 Gbit/s speed. Slurm [9] is used as a cluster

management tool and job scheduling system. The CPU speed in GHz is 2.4, it offers

20 threads and it has 64 Gb of RAM.

4.4.2 sciCORE

sciCORE is the scientific computing core facility of the University of Basel where the

processor type is Intel Xeon Platinium 8280. It has 56 cores per node, two sockets

with each 28 cores. The memory is 386 GB and the frequency is 2.7 GHz. The

network bandwidth supported is 40Gbe of Infiniband. Also here Slurm is used as

workload manager.

27

4.4.3 Google Cloud

Google Cloud offers a variety of computing instances offered for different purposes

ranging from general-purpose, compute-optimized, and network-optimized. Appendix

A shows the details of the type of instances offered by the Google Cloud. In particular,

as the third system, we choose the Google Cloud commodity cluster built on top of

the c2-standard-30 compute-optimized instances (C2 family). The simplification of

using cloud environments is a very important aspect identified in the past works.

In the context of HPC cluster creation, Google Cloud offers a service called Slurm

cluster which enabled us to quickly allocate a set of nodes within a specified placement

group and availability zone. Google Cloud cluster runs on top of shared VMs, and it

provides the Slurm workload manager out of the box.

One of the main advantages of this service is that the user doesn’t need to have

system expertise to build an HPC cluster, as everything can be configured by the

Google Cloud console. During the cluster creation process, several decisions have to

be made as choosing the instance type, selecting the availability zone, specifying the

minimum number of nodes (the compute nodes which are all the time active), the

maximum number of the nodes to be included in the cluster (maximum number of

compute nodes that can be reached based on the nodes required in jobs). Apart from

the compute nodes, the Slurm cluster also starts a login node and a controller node.

The Slurm cluster in Google Cloud can be built in two ways: using Terraform [10]

tool and by GUI in the Google Cloud console.

Google Cloud offers optimized images for HPC workloads that are pre-tuned for

optimal performance [4] and are focused on tightly coupled MPI applications. The

image is based on CentosOS 7 Virtual Machine. The pre-tuned HPC-optimized image

comes with the hyper-threading disabled. The Slurm cluster is built on top of the

HPC-optimized images, regardless of which instance type we choose. However, we

mentioned that we selected c2-standard-30 compute-optimized instance which has 30

virtual CPUs (vCPU). In Google Cloud, a vCPU is equivalent to a hyper-thread, and

in the case of disabling the hyper-threading, we have 15 physical cores available in

28

one node.

4.5 Software stack

Upon the system selection, we came to a point to decide about the software stack in

those three systems. We tried to make the software level similar in all systems. Some

parts did not depend on us, for example, the operating system of the chosen systems.

In the cloud, one can choose the operating system for the instances we want. How-

ever, the HPC-optimized images that we used for the experiments were built on top

of the Centos 7 operating system. The same operating system was used in miniHPC

and sciCORE as well.

The scheduling libraries that we selected were LB4OMP [36] and LB4MPI [41]. For

their compilation, we used the Intel compiler which is compatible with the libraries.

Installing and compiling them in the Google Cloud cluster was not a straightforward

process. Everything had to be figured out on how to set up and prepare the environ-

ments for the executions. For the Google Cloud, we used a free version of the Intel

compiler which is Intel OneAPI [6]. Here, we provide Appendix B with instructions

how to prepare the Google Cloud cluster for the experiments, because several things

had to be installed and also some workarounds had to be found. On the on-premise

HPC, miniHPC and sciCORE, the compilers were already installed and ready to be

used.

4.6 Design of experiments

The benchmarks and the applications were tested on three different systems, mini-

HCPC, sciCORE, and Google Cloud. It was important to choose a system size that

gives us a fair comparison between cloud and on-premise HPC in the context of the

performance of the applications with different scheduling techniques. Choosing the

system size had an impact on choosing the Google Cloud instance as well. The ex-

periments for one-level scheduling are executed within one node, using 20 threads for

29

miniHPC and sciCORE. Upon this decision, we selected the c2-standard-30 compute-

optimized instance for Google Cloud, which has 30 vCPUs, and in the disabled hyper-

threading mode, it has 15 physical cores. On this basis, we used 15 threads on a node

for Google Cloud. The reason for that is because we choose an instance that is com-

parable to what miniHPC and sciCORE could offer within a node in terms of PEs

capacity. For the two-level scheduling, the system size was 10 nodes, 1 rank per node,

and 20 threads per node in miniHPC and sciCORE. For Google Cloud, we used the

same number of nodes and rank per node, but with 15 threads. All the experiments

are performed with the hyper-threading disabled.

Both applications, Mandelbrot and SPHYNX are time-stepping applications. We run

both of them with two hundred time-steps for one-level and two-level scheduling.

4.6.1 Thread level scheduling

For the thread-level scheduling, fourteen techniques are considered using the LB4OMP

library. Techniques that require profiling information were not considered in this work

as they are influenced by the provided profiling parameters such as standard devia-

tion of task execution times sigma and the scheduling overhead h. The techniques

that are considered in this section of experiments are STATIC and STATIC_STEAL

for the scenarios where application tasks are statically and equally divided among

the threads, SS GSS, TSS, STATIC_STEAL from non-adaptive DLS techniques and

AWF, AWF_B, AWF_C, AWF_D, AWF_E, mAF for adaptive DLS techniques. In

addition, we also evaluate three auto selection techniques implemented in LB4OMP

library, the Auto Random, Auto Exhaustive, and Auto Expert.

4.6.2 Two-level scheduling (process+thread level)

In two-level scheduling, we consider five techniques at the process level and six tech-

niques at the thread level yielding 5x6=30 different combinations per application.

Also in this set of experiments, the techniques that require profiling information are

not considered at any level. SS is considered only in the thread-level since using it in

30

Factors Values Properties

Applications

Mandelbrot N = 0.6x106

tasks Time-step:
200

Sphynx N = 1x106 tasks
Time-step: 200

Linpack Processor
Benchmark

STREAM Memory Band-
width Bench-
mark

MPI PingPong Network Band-
width and La-
tency

SKampI Network La-
tency

Scheduling
level

Library Techniques

Single level
dynamic load
balancing

Thread
level

OpenMP
Standard

STATIC, SS, GSS

OpenMP
non-
standard

TSS

LB4OMP static_steal, mFAC2,
AWF, AWF-B, AWF-
C, AWF-D, AWF-E,
mAF, Auto Random,
Auto Exhaustive,
Auto Expert

Two level dy-
namic load
balancing

Thread
level

OpenMP
Standard

STATIC, SS, GSS

LB4OMP Auto Random, Auto
Exhaustive, Auto Ex-
pert

Process
level

LB4MPI STATIC, GSS, TSS,
FAC, AWF

Computing
system

Instance type Price per hour

miniHPC
scicore 0.007 CHF per core

Google Cloud 2.02 $ per node

31

the process level causes a waste on thread-level parallelism by using only one thread

when a single task is assigned to the requesting process. We omitted AF from the

two-level scheduling experiments since we confirm the results shown in [42] that AF

employed in process level generates large overhead and performs poorly for the ex-

periments conducted on miniHPC.

The techniques considered in the process level are STATIC, GSS, TSS, FAC and

AWF, and in the thread-level STATIC, SS, GSS, and three auto selection techniques

Auto Random, Auto Exhaustive, and Auto Expert.

32

Chapter 5

Results

In this section, the results of our experiments are presented. Considering the fact

that our systems are different in hardware level, we first investigate the performance

of their different components using benchmarks. This is followed by the experiments

conducted using scientific applications with different scheduling techniques.

5.1 Hardware and System view

5.1.1 Processor

The HPL benchmark required many iterations to scale and reach optimal perfor-

mance. The figure 5-1 shows theoretical peak performance on the left and the HPL

peak performance on the right for each platform for a single node setup using the max-

imum number of cores. Google Cloud reached around 65% of its theoretical peak,

while for sciCORE the gap between theoretical and reached performance is much

smaller. Also, the performance for sciCORE is much higher given the more process-

ing power it has. For miniHPC, the reached performance is 677 GFlops/s, which is

85% of its theoretical peak performance. For the Google Cloud, we run a set of trials

to find the best parameters, however, we are not sure if something else was running

on the same machine and if that prevented us to achieve higher peak performance.

We recall the fact that the reported number does not reflect the overall performance

33

of the system, since it may be the case that we didn’t find the best parameters in our

trials.

3ODWIRUP

*
)O
RS
�V

�

���

����

����

����

����

*RRJOH�&ORXG PLQL+3& VFL&25(

7KHURHWLFDO�SHDN +3/�SHDN

+3/��SHUIRUPDQFH

Figure 5-1: HPL performance

5.1.2 Memory bandwidth

STREAM benchmark offers us the possibility to measure the memory bandwidth with

data sets larger than the available cache on the system [40]. We run the benchmark

on a single node with the maximum available number of threads with hyper-threading

disabled. The parameters used for the benchmark are 8 bytes per array element, array

size of 120000000, offset 0. The memory per array was 915.5 MiB (= 0.9 GiB) and

the total memory required = 2746.6 MiB (= 2.7 GiB). The best time is taken over the

10 runs to calculate the bandwidth. The results are shown in MB/s. The table 5.1

shows the results from the STREAM benchmark. sciCORE shows a higher memory

bandwidth than the other two systems, while we can see that there is no significant

difference between the miniHPC and Google Cloud when all the available cores are

used and the data does not fit in their caches.

34

Table 5.1: STREAM benchmark results with array size 120000000, offset 0, memory per array 915.5 MiB

Platform Threads Copy Scale Add Triad
Google Cloud 15 70427.8 70237.4 79457.4 79358.3
miniHPC 20 70219.6 70124.2 79025.5 79147.1
sciCORE 56 139584.8 139536.4 159990.4 160823.3

5.1.3 Inter-Node communication

We explore the inter-node communication in a multi-node setup by studying the net-

work performance in two aspects, bandwidth, and latency. For latency, we employ

two MPI Ping-Pong [7] and SKaMPI [45] benchmarks, while for bandwidth only MPI

Ping-Pong. In figure 5-2 and 5-3, the experiments for MPI Ping-Pong bandwidth and

latency are conducted using two nodes, one process per node. The results for MPI

Ping-Pong bandwidth 5-2 shows us that Google Cloud reaches a peak bandwidth of

about 17 Gbit/s for its c2-standard-30 instances, with a slight drop after package

size exceeds 105 bytes. On the other hand, our results show that peak bandwidth for

sciCORE is 22Gbit/s, while for miniHPC is 17Gbit/s and falls after the package size

exceeds 105 bytes.

The figure 5-3, illustrates the latency aspect. Google Cloud c2-standard-30 instance

obtains higher start-up latency (16 µs) than other systems, and when the package

size exceeds 105, the latency is linearly increased. miniHPC and sciCORE start with

lower latency with smaller package sizes, 3,76 µs and 1.50 µs respectively. After the

package size exceeds 105 bytes, we can notice a slight increase of the latency in sci-

CORE and a significant increasing for miniHPC.

35

��
��

��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
��

��
��
�

�	
��������

�	�	���
������������
��	����

������	��������	��� ��!	��"

Figure 5-2: MPI Point-to-Point bandwidth with 2 nodes
and 1 process per node

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

���
��
��
�	

���������	

�������
������������
�������

�������������������������

Figure 5-3: MPI Point-to-Point latency with 2 nodes and
1 process per node

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

���
��
��
�	

���������	

�������
������������
�������

���������������������� !"	

Figure 5-4: MPI Alltoall latency on 10 nodes, 1 process
per node

Figure 5-4 shows the network latency when performing collective MPI_Alltoall

operation with 10 nodes and 1 process per node. For smaller package sizes miniHPC

and Google Cloud show no significant difference in latency, while for sciCORE latency

is somewhat higher and continues at a constant rate. The latency starts to slightly

increase after the package size reaches 104 bytes for sciCORE and Google Cloud, and

their performance starts to overlap. While up to that point, miniHPC shows similar

performance to Google Cloud, but the gap for miniHPC significantly increases after

the package size exceeds 105 bytes.

36

5.2 Application view

In this section we present the results obtained from the experiments executed on

thread-level scheduling using LB4OMP library, and two-level (process+thread) schedul-

ing using LB4OMP and LB4MPI libraries for two scientific applications, Mandelbrot

and SPHYNX. The same set of experiments is conducted on all three systems. We

report the results based on the execution level for both applications.

Before starting the experiments, we observe the performance variability of the appli-

cations by running a set of experiments each hour in a range of ten hours on different

days. Even for the static cases, in two-level scheduling, the results from Google Cloud

show the coefficient of variation 17%, while for miniHPC 3% and sciCORE 2%. This

indicates that the performance variability on Google Cloud is high due to the fact

the cloud resources are allocated upon request when the jobs are submitted and de-

allocated after the jobs are finished, and the resources are shared with other cloud

users. This may affect our results. However, our applications are time-stepping and

we consider the average execution time among time-steps as well. For the thread-

level scheduling executions, we repeat the experiments five times across all systems,

while for two-level scheduling we take one sample on Google Cloud due to the budget

limitations, and five repetitions for miniHPC and sciCORE.

5.2.1 Thread-level scheduling results

The goal of the performance analysis in this subsection was to examine which DLS

technique can provide better performance for each application’s loop using the LB4OMP

library for the thread-level scheduling. The figures 5-5, 5-6, 5-7, shows the average

parallel execution time for each technique for individual application executed on a

certain system using one node and the maximum number of threads on Google Cloud

(15) and miniHPC (20), while on sciCORE we limit the thread number to 20. The

x axis in the figures 5-5, 5-6, 5-7, represents the loop scheduling technique, and the

y axis the application execution time. As LB4OMP allows us to gather information

for loops individually, we express them in different colors to explore which technique

37

performed better on which loop. The Best in the figure represents the combination

of the best performing loop scheduling techniques for the corresponding loop, and it

outperforms every single technique.

We observe from the figures 5-5, 5-6, 5-7, for the Mandelbrot executions that dy-

namic and non-adaptive scheduling technique SS and GSS provided a fairly good

performance across all three systems, where GSS culminates with being part of the

Best combination for the L0 and L2 loops on Google Cloud. TSS gives slightly worse

performance than SS and GSS on all platforms. From the dynamic and adaptive

scheduling techniques, AWF-C and AWF-E techniques consistently provide a good

performance despite the AWF-C experiments on sciCORE. AWF, AWF-B, AWF-D

and mAF give a lower performance on all three systems compared to other dynamic

adaptive techniques. On Google Cloud, speaking of the parallel execution time aspect,

auto techniques gives better performance than dynamic and adaptive techniques, as

they are more closer to the Best combinations. This holds for miniHPC and sciCORE

as well. Generally speaking, they provide very similar performance to the dynamic

and non-adaptive techniques on Google Cloud and miniHPC. Moreover, on sciCORE,

the performance gap between auto selection methods and other techniques is higher,

where the best result is reached from the Auto Expert technique outperforming all

other techniques for every loop and participating for each loop in the Best combina-

tion. This is consistent with miniHPC Best combination for L0 and L2 loops. On

miniHPC, the best performance for the L1 comes from STATIC_STEAL, and this

is consistent with the selection of the Best technique for L1 in Google Cloud as well.

In general, all the DLS techniques provide a performance improvement on each sys-

tem comparing with the STATIC case. Here, we can highlight that the performance

trends of the DLS techniques are similar on the cloud to on-premise HPC systems

when applied to the Mandelbrot scientific application.

38

Figure 5-5: Mandelbrot performance in thread-level
scheduling - Google Cloud

Figure 5-6: Mandelbrot performance in thread-level
scheduling - miniHPC

Figure 5-7: Mandelbrot performance in thread-level
scheduling - sciCORE

From the figures 5-8, 5-9, 5-10, from SPHYNX application for dynamic and non-

adaptive scheduling techniques, we observe that techniques mAF, GSS, and TSS

consistently provided fairly high performance in almost all experiments across the

systems. In Google Cloud, the best non-adaptive scheduling technique was GSS,

with a difference of 7.56% worse than the Best combination in this set of experi-

ments. TSS performed slightly worse on miniHPC and Google Cloud, but it provided

the best performance among the non-adaptive scheduling techniques on sciCORE out-

performing GSS with 3.6%. SS performance is penalized in all systems for SPHYNX

39

due to the high scheduling overhead. The adaptive DLS techniques add scheduling

overhead due to the making of the scheduling decision during the runtime. However,

they are capable to adapt to system variations and heterogeneity. We observe that

adaptive scheduling techniques as AWF and all of its versions, together with mAF,

consistently provide high performance among all systems. Adaptive DLS techniques’

performance culminates with the mAF which is included in the Best combination

for both SPHYNX loops on two systems, Google Cloud and miniHPC. The Best

combination of techniques per loop for SPHYNX loops in sciCORE also comes from

adaptive DLS techniques, and it is AWF_E technique.

Auto selection methods performance was consistent among on-premise systems, miniHPC

and sciCORE providing a worse performance compared to other DLS techniques on

those systems. However, they give us a different picture for the experiments con-

ducted on Google Cloud when looking at the performance trend and compare auto

selection methods with other DLS techniques. In Google Cloud, auto selection meth-

ods experiments provided a more comparable performance to the other techniques on

the same system, with the Expert being best among them, and 7.27% worse than the

Best combination.

40

Figure 5-8: SPHYNX performance in thread-level
scheduling - Google Cloud

Figure 5-9: SPHYNX performance in thread-level
scheduling - miniHPC

Figure 5-10: SPHYNX performance in thread-level
scheduling - sciCORE

5.2.2 Two-level scheduling results

In examining the performance of DLS techniques on the process+thread level we exe-

cute parallel applications using hybrid parallel programming fashion with MPI+OpenMP.

We choose a system size of 10 nodes, 1 process per node, and the maximum number

of threads with hyperthreading disabled. Given the varying hardware characteris-

tics among all systems, for Google Cloud, we use the maximum number of 15 cores

available for the chosen c2-standard-30 instance, while for both on-premise HPC clus-

ters we use 20 cores per node. The Google Cloud allowed us to place all 10 nodes

41

with HPC optimized images in the same placement group, which is critical to achiev-

ing low-latency network performance. The goal of the performance analysis in this

subsection was to examine which combination of DLS techniques can provide better

performance for each application, and see if the cloud can provide HPC competitive

performance for scientific applications.

The figures, show the parallel execution time of SPHYNX for all combinations and

highlights the best combination in terms of parallel execution time. The combinations

in the figure are clustered process-wise where the techniques selected at the process

level appear in the x-axis, and each bar represents the technique employed at the

thread level. Also, these figures show in percentage how worse are other combina-

tions performing when comparing to the best combination.

From the figures 5-11, 5-12, 5-13 we observe that using two-level scheduling for

SPHYNX in Google Cloud didn’t show any improvement compared to the case when

not using any DLS technique in terms of application execution time, since the best

performance is achieved when using the STATIC technique in both levels. However,

the combinations of DLS techniques, for example, GSS at the process level with GSS,

or with auto selection methods on the thread level, give a worse performance com-

pared to the best combination for about less than 5.5% on Google Cloud and less

than 4.26% on miniHPC. Also, employing TSS on the process level and maintaining

STATIC on the thread level shows a fairly good performance on Google Cloud and

miniHPC, with the performance percentage worse than the best performing combi-

nation 2.45% on Google Cloud and 3.87% on miniHPC. Combinations of the TSS

technique in the process level with other techniques on the thread level (except SS in

the thread level) show a comparable performance trend between Google Cloud and

miniHPC. The best combination for SPHYNX in miniHPC in terms of application

execution time turned to be the STATIC+Auto Expert. This combination has con-

sistently shown high performance across the systems since on sciCORE resulted as

the best combination as well, and on Google Cloud performed 3.3% worse than the

best combination. However, other combinations with STATIC at the process level

42

and selected techniques on a thread level, except SS, give a very similar performance

on miniHPC, with a difference of less than 1% with the best performing combination.

Combining FAC in the process level with the chosen techniques in the thread-level

gave a similar performance on Google Cloud and miniHPC, where the performance

difference between these combinations is less than 2.5% except FAC+Auto Exhaustive

on Google Cloud which gave slightly worse performance compared to other combi-

nations. This is not entirely consistent with sciCORE results since the difference

between different combinations with FAC at the process level oscillates on a higher

range than other systems.

Employing AWF on the process level shows a similar performance trend on all three

systems, keeping the difference between combinations under 3%, except the AWF+STATIC

on Google Cloud that gave a slightly worse performance than other AWF combina-

tions.

We observe the combinations where the auto selection methods are involved in the

thread level, and it is consistently shown across the systems that the best performance

provided by these techniques is when used in combination with STATIC technique

at the process level culminating with Auto Expert as part of the Best combination

in two systems, miniHPC, and sciCORE. Auto Expert combination with STATIC

shows the best performance among auto selection methods used on the thread level

on Google Cloud as well. We also observe that the combination of three auto selection

methods with FAC and AWF at the process level, show similar performance across

all three systems keeping the oscillations of the experiments under 2.5%, despite the

combination of FAC+Auto Exhaustive on Google Cloud that shows relatively worse

performance than other FAC and auto selection methods combinations. The combi-

nations of GSS with auto selection methods results show that GSS+Auto Random

slightly outperforms other GSS and auto selection methods combinations on Google

Cloud and sciCORE. However, this is not the case for miniHPC where the difference

among GSS and auto selection methods is around 0.2%.

We also take a look at the experiments from the time-stepping aspect. In the figures

5-18, 5-14, 5-22 we extract the performance results based on the average execution

43

time of the time-step executions. In the figures 5-19, 5-15, 5-23 the plot is based on the

median values of time-step executions, while for the figures 5-20, 5-16, 5-24 the min-

imum of all time-step executions is taken. The first column of these plots represents

the time-step execution time for STATIC+STATIC combination, the second is for the

best DLS technique at the thread level, the third is the best at the process level, and

the fourth is the best two-level combination. However, for the Google Cloud and sci-

CORE, when selecting best at each level and the best combination per time-step, we

exclude the STATIC+STATIC from the calculation since the best results were given

from this combination and our interest is to investigate the DLS techniques behav-

ior. We observe that when considering the average, median and minimum value per

time-step, the Auto Expert technique has consistently shown the best performance

across all three systems, except in the case when the minimum value of time-steps is

taken on Google Cloud which shows the Auto Random as the best technique on the

thread level. This is in line with the results considered from the parallel execution

time of all time-steps as well. Looking at the median value per time-step consistently

shows the TSS technique as the best performing DLS on the process level. However,

when considering the average and minimum value per time-step on Google Cloud,

it is the FAC technique that gives better results. In one case, when looking at the

minimum value per time-step on sciCORE shows the GSS as the best technique on

the process level. The best combination from the time-stepping perspective shows

a strong competition between STATIC+Auto Expert and TSS+STATIC, since from

the average value per time-step perspective the STATIC+Auto Expert performed the

best on Google Cloud and sciCORE, and TSS+STATIC on miniHPC, while from the

median per time-step perspective, TSS+STATIC performs better on Google Cloud

and miniHPC, and STATUC+Auto Expert on sciCORE. However, considering the

results system-wise, TSS+STATIC was consistently the best combination among the

average, median and minimum perspective on miniHPC, and STATIC+Auto Expert

on sciCORE. Google Cloud gives us a different picture in this aspect since in all

three perspectives (average, median, minimum) a different combination is shown as

the best. From the average value, median, and minimum time-steps values, the best

44

combinations are STATIC+Auto Expert, TSS + STATIC, and FAC+STATIC re-

spectively.

As SPHYNX is a communication-intensive application, we can see from the results

that the cloud can occasionally provide HPC competitive performance for tightly

coupled HPC workloads with different scheduling techniques, since due to the budget

limit, we run one experiment for each technique combination on the cloud for two-level

scheduling. However, it was also shown that the cloud has performance variability

that goes up to 17%, and we may need more repetitions to confirm our results.

Figure 5-11: SPHYNX performance in two-level schedul-
ing - Google Cloud

Figure 5-12: SPHYNX performance in two-level schedul-
ing - miniHPC

Figure 5-13: SPHYNX performance in two-level schedul-
ing - sciCORE

45

Figure 5-14: SPHYNX - miniHPC-
min average per level

Figure 5-15: SPHYNX - miniHPC-
min median per level

Figure 5-16: SPHYNX - miniHPC -
min per level

Figure 5-17: miniHPC

Figure 5-18: SPHYNX - Google
Cloud - min average per level

Figure 5-19: SPHYNX - Google
Cloud - min median per level

Figure 5-20: SPHYNX - Google
Cloud - min per level

Figure 5-21: test

Figure 5-22: SPHYNX - sciCORE
- min average per level

Figure 5-23: SPHYNX - sciCORE-
min median per level

Figure 5-24: SPHYNX - sciCORE
- min per level

Figure 5-25: test

For the Mandelbrot application, we merged an OpenMP time-stepping version

46

of it with the MPI version. We observed a significant difference in the execution

times of our experiments with different scheduling techniques combinations between

cloud cluster and miniHPC. Even for a small input size of the problem, the difference

between execution times in cloud and miniHPC was for a scale factor of four to seven

in favor of miniHPC for the same combination This observation is not consistent

with other experiments results and with the assumption that cloud can provide HPC

competitive performance for computationally-intensive applications. Nevertheless,

this can be subject to a study in future work which investigates the reasons for such

a behavior of Mandelbrot MPI and time-stepping application in the cloud.

47

Chapter 6

Conclusion & Future Work

In this work, the performance of on-premise HPC and cloud systems has been analyzed

in the context of thread-level scheduling and two-level scheduling (process+thread).

For this, we choose Google Cloud as representative for cloud platforms, and two on-

premise HPC systems. We have built a cluster on Google Cloud and installed the nec-

essary toolset which allowed us to perform our experiments on one-level and two-level

scheduling. Several benchmarks for testing different hardware components have been

performed. For the one-level and two-level scheduling experiments, two scientific ap-

plications, Mandelbrot and SPHYNX have been used in this work. For the scheduling

process, we used different scheduling techniques implemented in LB4OMP [36] for the

thread level and LB4MPI [41] for the process level. We have shown that performance

trends of DLS techniques are similar on the cloud with on-premise HPC when com-

paring them to each other on the OpenMP level. Considering one-level scheduling,

we identified that mAF, GSS, and AWF_E techniques have relatively good perfor-

mance across all three systems for both applications. Also, auto selection methods

show high performance when employed with the Mandelbrot application, especially

Auto Expert which has shown highest performance across systems for Mandelbrot

application. On the other hand, we identified AWF and AWF_B as techniques that

provided lower performance in all platforms for both applications.

For the two-level scheduling, when looking from the overall application execution

time aspect, the performance didn’t improve on Google Cloud for DLS techniques,

48

with the STATIC in both levels being the best combination. However, for the two-

level scheduling in the cloud, we execute one experiment for each combination, and

more repetitions would be required. We identified GSS and TSS as the techniques

that provided relatively good performance when employed at the process level despite

some cases in sciCORE. GSS has also shown high performance when employed at the

thread level. Employing SS for thread-level in two-level scheduling has shown worse

performance due to the scheduling overhead. On the other hand, the auto selection

methods have shown relatively good performance with the Auto Expert being the

best among them in almost all cases.

While the observations from the time-stepping aspect have shown that the Auto Ex-

pert selection method provided high performance when employed in the thread level.

For the process level, TSS has shown to be the best in most of the cases, while for

the combination of process and thread level, TSS+STATIC has shown to be the best

in most of the cases

We have also shown that also on MPI+OpenMP applications, even for the tightly

coupled applications, the cloud can occasionally offer HPC-competitive performance

and that the performance trends of DLS techniques can be similar on cloud and

on-premise HPC. However, the cloud has shown to have a high variability for our

experiments even on a small scale.

For future work, it would be interesting to perform more extensive experiments by in-

creasing the number of scheduling techniques included in experiments. This can scale

also platform-wise by performing the experiments on other cloud service providers as

well. Moreover, the reasons for Mandelbrot MPI and time-stepping version behavior

could be investigated in future work.

49

Appendices

50

Appendix A

51

O
p
ti

m
iz

at
io

n
F
am

il
y

in
st

an
ce

T
y
p
e

C
P

U
co

re
s

v
C

P
U

D
ef

au
lt

T
h
re

ad
s

p
er

C
or

e

M
em

or
y

(G
ib

)
N

et
w

or
k

B
an

d
-

w
id

th
(G

b
p
s)

P
ro

ce
ss

or
ty

p
e

F
re

q
u
en

cy
G

H
z

P
ri

ce
O

n
e-

d
em

an
d
($

p
er

h
ou

r)

A
W

S

C
om

p
u
te

O
p
ti

m
iz

ed
C

4
c4

.2
xl

ar
ge

8
15

In
te

l
X

eo
n

E
5-

26
66

v3
P
ro

ce
ss

or
2.

9
$0

.4
54

c4
.4

xl
ar

ge
16

30
In

te
l
X

eo
n

E
5-

26
66

v3
P
ro

ce
ss

or
2.

9
$0

.9
09

c4
.8

xl
ar

ge
36

60
In

te
l
X

eo
n

E
5-

26
66

v3
P
ro

ce
ss

or
2.

9
$1

.8
17

C
5n

c5
n
.2

xl
ar

ge
8

21
25

In
te

l
X

eo
n

P
la

ti
nu

m
P
ro

ce
ss

or
3

$0
.4

92
c5

n
.4

xl
ar

ge
16

42
25

In
te

l
X

eo
n

P
la

ti
nu

m
P
ro

ce
ss

or
3

$0
.9

84
c5

n
.9

xl
ar

ge
36

96
50

In
te

l
X

eo
n

P
la

ti
nu

m
P
ro

ce
ss

or
3

$2
.2

14
C

5
c5

.2
xl

ar
ge

8
16

10
2n

d
ge

n
In

te
l
X

eo
n

S
ca

la
b
le

P
ro

ce
s-

so
rs

(C
as

ca
d
e

L
ak

e)
3.

4
$0

.3
88

c5
.4

xl
ar

ge
16

32
10

2n
d

ge
n

In
te

l
X

eo
n

S
ca

la
b
le

P
ro

ce
s-

so
rs

(C
as

ca
d
e

L
ak

e)
3.

4
$0

.7
76

c5
.9

xl
ar

ge
32

72
10

2n
d

ge
n

In
te

l
X

eo
n

S
ca

la
b
le

P
ro

ce
s-

so
rs

(C
as

ca
d
e

L
ak

e)
3.

4
$1

.7
46

C
6g

c6
g.

2x
la

rg
e

8
16

10
C

u
st

om
b
u
il
t

A
W

S
G

ra
vi

to
n
2

P
ro

-
ce

ss
or

3.
4

$0
.3

10
4

c6
g.

4x
la

rg
e

16
32

10
C

u
st

om
b
u
il
t

A
W

S
G

ra
vi

to
n
2

P
ro

-
ce

ss
or

3.
4

$0
.6

20
8

c6
g

32
64

10
C

u
st

om
b
u
il
t

A
W

S
G

ra
vi

to
n
2

P
ro

-
ce

ss
or

3.
4

$1
.2

41
6

M
em

or
y

O
p
-

ti
m

iz
ed

R
4

r4
.2

xl
ar

ge
8

12
2

10
In

te
l
X

eo
n

E
5-

26
86

v4
P
ro

ce
ss

or
2.

3
$0

.6
40

2

r4
.4

xl
ar

ge
16

24
4

10
In

te
l
X

eo
n

E
5-

26
86

v4
P
ro

ce
ss

or
2.

3
$1

.2
80

4
r4

.8
xl

ar
ge

32
48

8
10

In
te

l
X

eo
n

E
5-

26
86

v4
P
ro

ce
ss

or
2.

3
$2

.5
60

8
R

5n
r5

n
.2

xl
ar

ge
8

64
U

p
to

25
C

u
st

om
2n

d
ge

n
er

at
io

n
In

te
l

X
eo

n
S
ca

la
b
le

P
ro

ce
ss

or
s

(C
as

ca
d
e

L
ak

e)
3

$0
.4

92

r5
n
.4

xl
ar

ge
16

12
8

U
p

to
25

C
u
st

om
2n

d
ge

n
er

at
io

n
In

te
l

X
eo

n
S
ca

la
b
le

P
ro

ce
ss

or
s

(C
as

ca
d
e

L
ak

e)
3

$0
.9

84

r5
n
.8

xl
ar

ge
32

25
6

25
C

u
st

om
2n

d
ge

n
er

at
io

n
In

te
l

X
eo

n
S
ca

la
b
le

P
ro

ce
ss

or
s

(C
as

ca
d
e

L
ak

e)
3

$2
.2

14

R
5b

r5
b
.2

xl
ar

ge
8

64
U

p
to

10
C

u
st

om
2n

d
ge

n
er

at
io

n
In

te
l

X
eo

n
S
ca

la
b
le

P
ro

ce
ss

or
s

(C
as

ca
d
e

L
ak

e)
3.

4
$0

.3
88

r5
b
.4

xl
ar

ge
16

12
8

U
p

to
10

C
u
st

om
2n

d
ge

n
er

at
io

n
In

te
l

X
eo

n
S
ca

la
b
le

P
ro

ce
ss

or
s

(C
as

ca
d
e

L
ak

e)
3.

4
$0

.7
76

r5
b
.8

xl
ar

ge
32

25
6

10
C

u
st

om
2n

d
ge

n
er

at
io

n
In

te
l

X
eo

n
S
ca

la
b
le

P
ro

ce
ss

or
s

(C
as

ca
d
e

L
ak

e)
3.

4
$1

.7
46

R
6g

r6
g.

xl
ar

ge
8

32
U

p
to

10
C

u
st

om
b
u
il
t

A
W

S
G

ra
vi

to
n
2

P
ro

-
ce

ss
or

$0
.4

86
4

r6
g.

2x
la

rg
e

16
64

U
p

to
10

C
u
st

om
b
u
il
t

A
W

S
G

ra
vi

to
n
2

P
ro

-
ce

ss
or

$0
.9

72
8

r6
g.

4x
la

rg
e

32
12

8
U

p
to

10
C

u
st

om
b
u
il
t

A
W

S
G

ra
vi

to
n
2

P
ro

-
ce

ss
or

$1
.9

45
6

G
o
og

le
cl

ou
d

C
om

p
u
te

op
-

ti
m

iz
ed

C
2

c2
-s

ta
n
d
ar

d
-8

8
32

16
In

te
l

S
ca

la
b
le

P
ro

ce
ss

or
s

(C
as

ca
d
e

L
ak

e)
3.

1
u
p

to
3.

8
$0

.5
4

c2
-s

ta
n
d
ar

d
-1

6
16

64
32

In
te

l
S
ca

la
b
le

P
ro

ce
ss

or
s

(C
as

ca
d
e

L
ak

e)
u
p

to
3.

8
$1

.0
8

c2
-s

ta
n
d
ar

d
-3

0
30

12
0

32
In

te
l

S
ca

la
b
le

P
ro

ce
ss

or
s

(C
as

ca
d
e

L
ak

e)
u
p

to
3.

8
$2

.0
2

M
em

or
y

op
-

ti
m

iz
ed

M
1

m
1-

u
lt

ra
m

em
-4

0
40

96
1

32
In

te
l
X

eo
n

S
ca

la
b
le

P
ro

ce
ss

or
(S

ky
-

la
ke

)
2.

0
u
p

to
2.

7
$6

.3

A
zu

re
M

ic
ro

so
ft

C
om

p
u
te

op
-

ti
m

iz
ed

H
se

ri
es

S
ta

n
d
ar

d
_

H
8

8
56

40
In

te
l
X

eo
n

E
5

26
67

v3
3.

2
to

3.
3

$1
.6

1

S
ta

n
d
ar

d
_

H
16

16
11

2
80

In
te

l
X

eo
n

E
5

26
67

v3
3.

2
to

3.
3

$1
.9

01
M

em
or

y
op

-
ti

m
iz

ed
D

v2
-

se
ri

es
11

-1
5

S
ta

n
d
ar

d
_

D
13

_
v2

8
56

6
$1

.0
56

S
ta

n
d
ar

d
_

D
14

_
v2

16
11

2
12

2.
0

u
p

to
2.

7
$2

.1
11

S
ta

n
d
ar

d
_

D
15

_
v2

20
14

0
25

n
o

p
ri

ce

C
S
C

S
P
iz

D
ai

nt
X

C
50

C
om

p
u
te

N
od

es
(5

70
4

N
od

es
)

12
64

In
te

l®
X

eo
n
®

E
5-

26
90

v3
2.

6
P
ac

ka
ge

s:
10

0
N

od
e

H
ou

rs
(N

H
)

-
C

H
F

20
0

20
0

N
H

-
C

H
F

55
0

10
00

N
H

-
C

H
F

23
00

A
d
d
it

io
n
al

p
ri

ce
p
er

N
H

:
C

H
F

0.
53

(M
in

im
u
m

re
qu

es
t

10
k

n
od

e
h
ou

rs
X

C
40

C
om

p
u
te

N
od

es
(1

81
3

N
od

es
)

2
x

18
64

/1
28

T
w

o
In

te
l®

X
eo

n
®

E
5-

26
95

v4
2.

1

L
og

in
N

od
es

10
25

6
In

te
l®

X
eo

n
®

C
P
U

E
5-

26
50

v3
2.

3
sc

iC
O

R
E

2x
28

38
6

In
te

l
X

eo
n

P
la

ti
n
iu

m
82

80
C

P
U

@
2.

7
G

H
z

2.
7

C
H

F
0.

39
2

O
R

A
C

L
E

O
ra

cl
e

V
M

.O
p
ti

m
iz

ed
3.

F
le

x
1/

18
/2

02
1

1–
25

6
U

p
to

50
G

b
p
s

3r
d

G
en

In
te

l
X

eo
n

Ic
e

L
ak

e
3.

0
u
p

to
3.

6
$0

.0
54

/c
or

e/
h
r

52

Appendix B

Google Cloud SLURM cluster:

Prerequisites:

• Google Cloud account

• Billing account connected to your Google Cloud account

Steps:

1. Start the Google Cloud shell

2. Use gcloud auth list to see if cloud shell is configured properly. The expected

output is:

Credentialed accounts:

- <myaccount>@<mydomain>.com (active)

3. Get the project if with gcloud config list project command

4. Set the project id with gcloud config set project <PROJECT_ID>. Expected

output: Updated property [core/project].

5. Clone the Git repository that contains the Slurm for Google Cloud Platform

Terraform files:

git clone https://github.com/SchedMD/slurm-gcp.git

6. cd slurm-gcp

7. cd tf/example/basic

53

8. cp basic.tfvars.example basic.tfvars

9. Open basic.tfvars file

10. Modify Terraform file parameters to set up all the cluster configuration param-

eters as cluster_name, project, zone, machine_type etc.

11. Perform terraform init

12. Perform terraform apply -var-file=basic.tfvars

This step may take a while to set up the cluster

13. After the cluster is set up, you can go to the VM instances in Google Cloud

console. You should see two nodes started, controller and login node.

14. Login to the login node via SSH button in the table on VM instances page

Up to this point we managed to set up the cluster and log in.

Intel OneAPI:

Google Cloud SLURM cluster comes with OpenMP compiler module installed.

However, you can install the Intel OneAPI compiler. If you don’t use an instal-

lation framework such as EasyBuild, you should install the Intel compiler in the

home directory so the other compute nodes can have access to it.

LB4OMP:

Installing LB4OMP has its challenges as well. First you need to perform the

following installations:

(a) sudo yum update

(b) sudo yum install gcc gcc-c++ make

(c) sudo yum install -y openssl-devel

(d) wget https://cmake.org/files/v3.13/cmake-3.13.3.tar.gz

54

(e) tar -zxvf cmake-3.13.3.tar.gz

(f) cd cmake-3.13.3

(g) ./bootstrap

(h) make

(i) sudo make install

Cmake needs to be installed in the home directory as well.

Google Cloud SLURM cluster runs on top of HPC optimized images which run

on Centos 7 OS. This OS installs by default the gcc 4.8.5 which does not include

shared_mutex file required by the LB4OMP compilation. The LB4OMP library

needs newer gcc versions which contains the shared_mutex file. You can install

newer gcc with these commands:

(a) yum install centos-release-scl

(b) yum install devtoolset-8

(c) scl enable devtoolset-8 – bash

In order the library to work with Google Cloud SLURM cluster, you need to

comment the IF part for ICC version in the file

sudo vi /usr/local/cuda/include/crt/host_config.h

Every time you login, it is required to export the CPLUS_INCLUDE_PATH

environment variable (or set it in the /.bash_profile file)

export CPLUS_INCLUDE_PATH=/opt/rh/devtoolset-8/root/usr/include/c++/8

environment variable every time time you login to the cluster (or you can put it

in the /.bash_profile file). Another important export is the I_MPI_PMI_LIBRARY

environment variable to point to the Slurm Process Management Interface

(PMI) library:

export I_MPI_PMI_LIBRARY=/usr/local/lib/libpmi.so

55

Bibliography

[1] Amazon Web Services. https://aws.amazon.com/.

[2] Azure Microsoft. https://azure.microsoft.com/en-us/.

[3] Google Cloud. https://cloud.google.com/.

[4] Google Cloud HPC Optimized VM Image.
https://cloud.google.com/blog/topics/hpc/introducing-hpc-vm-images.

[5] IBM. https://www.ibm.com/cloud.

[6] Intel OneAPI. https://software.intel.com/content/www/us/en/develop/tools/oneapi.html.

[7] Mpi ping pong to demonstrate cuda-aware mpi. https://github.com/olcf-
tutorials/MPI_ping_pong.

[8] Oracle. https://www.oracle.com/cloud/.

[9] SLURM Workload Manager. https://slurm.schedmd.com/quickstart.html.

[10] Terraform. https://www.terraform.io/.

[11] Top 500 frequently asked questions. https://www.top500.org/resources/frequently-
asked-questions/.

[12] Using the GNU compiler collection. Free Software Foundation, 4(02), 2003.

[13] OpenMP Application Programming Interface. 5 edition, 2018.

[14] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58,
April 2010.

[15] AR. Arunarani, D. Manjula, and Vijayan Sugumaran. Task scheduling tech-
niques in cloud computing: A literature survey. Future Generation Computer
Systems, 91:407–415, 2019.

[16] I. Banicescu and Z. Liu. Adaptive Factoring: A Dynamic Scheduling Method
Tuned to the Rate of Weight Changes. In Proceedings of the High Performance
Computing Symposium, pages 122–129, 2000.

[17] Ioana Banicescu, Florina M. Ciorba, and Srishti Srivastava. Scalable Comput-
ing: Theory and Practice, chapter Performance Optimization of Scientific Ap-
plications using an Autonomic Computing Approach, pages 437–466. Number
Chapter 22. John WileySons, Inc., 2013.

[18] Ioana Banicescu, Vijay Velusamy, and Johnny Devaprasad. On the scalability
of dynamic scheduling scientific applications with adaptive weighted factoring.
Cluster Computing, 6:215–226, 07 2003.

[19] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging it platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generation Computer
Systems, 25(6):599–616, 2009.

[20] R. M. Cabezón, D. García-Senz, and J. Figueira. SPHYNX: an accurate density-
based SPH method for astrophysical applications. , 606:A78, October 2017.

[21] Ricolindo Cariño and Ioana Banicescu. Dynamic load balancing with adaptive
factoring methods in scientific applications. The Journal of Supercomputing,
44:41–63, 04 2008.

[22] F. Ciorba, Christian Iwainsky, and Patrick Buder. Openmp loop scheduling
revisited: Making a case for more schedules. ArXiv, abs/1809.03188, 2018.

[23] Florina M. Ciorba, Christian Iwainsky, and Patrick Buder. Openmp loop schedul-
ing revisited: Making a case for more schedules, 2018.

[24] Susan Coghlan and Katherine Yelick. The magellan final report on cloud com-
puting. 12 2011.

[25] HPC-AI Advisory Council. Introduction to high-performance computing.
https://www.hpcadvisorycouncil.com/pdf/Intro_to_HPC.pdf.

[26] Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack benchmark:
past, present and future. Concurrency and Computation: Practice and Experi-
ence, 15:803–820, 08 2003.

[27] J. Ekanayake and G. Fox. High performance parallel computing with clouds and
cloud technologies. In CloudComp, 2009.

[28] C. Evangelinos and C. Hill. Cloud computing for parallel scientific hpc applica-
tions: Feasibility of running coupled atmosphere. 2008.

[29] Roberto R. Expósito, G. Taboada, S. Ramos, J. Touriño, and R. Doallo. Perfor-
mance analysis of hpc applications in the cloud. Future Gener. Comput. Syst.,
29:218–229, 2013.

[30] Message P Forum. Mpi: A message-passing interface standard. Technical report,
USA, 1994.

[31] Gropp, W. Lusk, E., and Skjellum A. Using MPI: portable parallel programming
with the message-passing interface. MIT, 1999.

[32] Giulia Guidi, Marquita Ellis, Aydin Buluç, Katherine Yelick, and David Culler.
10 years later: Cloud computing is closing the performance gap, 02 2021.

[33] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B. Lee,
V. March, D. Milojicic, and C. H. Suen. Evaluating and improving the per-
formance and scheduling of hpc applications in cloud. IEEE Transactions on
Cloud Computing, 4(3):307–321, 2016.

[34] Susan Flynn Hummel, Jeanette Schmidt, R. N. Uma, and Joel Wein. Load-
sharing in heterogeneous systems via weighted factoring. In Proceedings of the
Eighth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’96, page 318–328, New York, NY, USA, 1996. Association for Computing Ma-
chinery.

[35] Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring:
A method for scheduling parallel loops. Commun. ACM, 35(8):90–101, August
1992.

[36] Jonas Korndörfer, Ahmed Eleliemy, Ali Mohammed, and Florina Ciorba.
Lb4omp: A dynamic load balancing library for multithreaded applications, 06
2021.

[37] C. P. Kruskal and A. Weiss. Allocating independent subtasks on parallel proces-
sors. IEEE Transactions on Software Engineering, SE-11(10):1001–1016, 1985.

[38] Mohit Kumar, S.C. Sharma, Anubhav Goel, and S.P. Singh. A comprehensive
survey for scheduling techniques in cloud computing. Journal of Network and
Computer Applications, 143:1–33, 2019.

[39] Benoit B. Mandelbrot. Fractal aspects of the iteration of z→�z(1-z) for complex
� and z, pages 37–51. Springer New York, New York, NY, 2004.

[40] John D. McCalpin. Stream: Sustainable memory bandwidth in high
performance computers. Technical report, University of Virginia, Char-
lottesville, Virginia, 1991-2007. A continually updated technical report.
http://www.cs.virginia.edu/stream/.

[41] A. Mohammed and F. M. Ciorba. Research Report - University of Basel, Switzer-
land. https://drive.switch.ch/index.php/s/aanqAdp3X2Fxsoe, 2018.

[42] Ali Mohammed, Aurélien Cavelan, Florina Ciorba, Ruben Cabezon, and Ioana
Banicescu. Two-level Dynamic Load Balancing for High Performance Scientific
Applications, pages 69–80. 01 2020.

[43] Marco A. S. Netto, Rodrigo N. Calheiros, Eduardo R. Rodrigues, Renato Luiz
de Freitas Cunha, and Rajkumar Buyya. HPC cloud for scientific and business
applications: Taxonomy, vision, and research challenges. ACM Comput. Surv.,
51(1):8:1–8:29, 2018.

[44] C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical
scheduling scheme for parallel supercomputers. IEEE Transactions on Comput-
ers, C-36(12):1425–1439, 1987.

[45] Ralf Reussner, Peter Sanders, Lutz Prechelt, and Matthias Muller. Skampi: A
detailed, accurate mpi benchmark. Lecture Notes in Computer Science, 1497, 10
1998.

[46] Peiyi Tang and Pen Chung Yew. Processor self-scheduling for multiple-nested
parallel loops. In Kai Hwang, Steven M. Jacobs, and Earl E. Swartzlander,
editors, Proceedings of the International Conference on Parallel Processing, Pro-
ceedings of the International Conference on Parallel Processing, pages 528–535.
IEEE, December 1986.

[47] T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: a practical scheduling
scheme for parallel compilers. IEEE Transactions on Parallel and Distributed
Systems, 4(1):87–98, 1993.

