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Abstract

The OpenMP standard allows for programs using loops to be par-
allelized either as loop iterations or as tasks. This project analyzes the
possible performance gains which can be achieved when using tasks. The
current LLVM runtime library uses a static steal method to schedule tasks
for execution. In this project we modify the runtime to steal a chunk of
tasks of a given size in order to reduce the time spent on overhead. The re-
sults show a promising reduction in parallel execution time when stealing
chunks of tasks for programs that have a large number of tasks.
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1 Introduction

1.1 OpenMP Tasks

When using OpenMP to parallelize code, traditionally the code would be in the
form of a for loop and a construct would be used to split this loop into iterations.
With the advent of tasking, any given block of code can be labeled a task.

One use-case of tasking is to simply create a task inside of a for loop for
code that doesn’t not have any intraloop dependencies. Another use case is to
create tasks in a recursive manner that depend on their parent task, for example
when solving a Sudoku puzzle. In this paper, we will only discuss tasks without
dependencies.

Previous work has shown that a program parallelized using tasks can perform
better than its parallel loop equivalent in some cases. [4] The goal of the project
is to find the balance between overhead caused by the sheer number of tasks in
a tasking program and overhead caused by load imbalance due to having tasks
that are too large in a program’s execution. During the course of the experiment
and according to the related work, we also found that the task-to-data affinity
could also be a secondary benefit from this work.

In this paper we compare and contrast the LLVM tasking implementation
with some other implementations discussed in research papers. We then make
changes the the nature in which tasks are scheduled, and perform benchmarks
on the new implementation. The results will then be analyzed by comparing the
program execution times and the task affinity. We then explore the potential for
further research on this topic, for instance by continuing the experiment with
more scheduling algorithms and a larger variety of parallel programs.

1.2 History of OpenMP Tasking

2008
OpenMP 3.0 2016
Tasking Introduced LLVM adds Taskloop Support
-~/ ’ . ’ 3

2015 2017
OpenMP 4.5 LLVM adds taskloop recurisve
Taskloop Introduced

Figure 1: Timeline

1.3 Converting applications from parallel loop to tasking

As seen in the timeline, there are several methods that a programmer can use
to convert a program parallelized with loops into a program parallelized with
tasking. The methods that use the task construct will be referred to as puretask



methods and the methods that use the taskloop construct will be referred to as
taskloop methods in this paper. While neither method is considered to be the
correct way, some are considered to be more NUMA friendly, as they distribute
the workload between cores in different ways.

1.3.1 Puretask Single

This is the most common implementation used when converting a loop into
tasks without using taskloop. This implementation is known to be problematic
on NUMA architectures.[6]

1.3.2 Puretask Parallel

This method is similar to the previous method, but the generation of tasks is
split evenly among the threads. The resulting distribution of tasks depends
on the scheduling method used to parallelize the for loop. If a simple static
schedule is used, which is the default, each thread will create the same number
of tasks, and they will be in sequential order.



1.3.3 Taskloop Linear

After the introduction of tasking in OpenMP 3.0 it has become commonplace
to parallelize a for loop using tasks, by simply defining the entire contents of a
for loop as a task. In 2015 the taskloop construct was added with the release of
OpenMP 4.5 which automates this behavior. The exact behavior regarding how
many tasks each thread creates is left up to the runtime to decide. In LLVM, the
task generation is done through a combination of taskloop linear and taskloop
recursive. While the taskloop construct is specified in the OpenMP standard,
the method used to determine the order and which thread the tasks will be
created on is left up to the implementation to decide. The desired grain size or
the number of tasks that should be created is also configurable by the user.[3]

This is the simplest implementation of the taskloop construct. First, a task
is generated with a lower bound which is the lowest value of the index variable
and an upper bound which is the highest value of the index variable. This main
task is then split into new tasks with new lower and upper bound values based
on the grain size or num_tasks parameter. The extra iterations that do not
divide into the grain size are distributed evenly. This implementation results in
very high task affinity for the thread that is creating the tasks, but all the tasks
will be created on one thread.

Listing 1: Task-parallel Single Listing 2: Taskloop
#pragma omp parallel #pragma omp taskloop
{ for (int 1 = 0; 1 < N; i++)
#pragma omp single {
{ do_work ();

for (int i = 0; i <N; i++) ||}
#pragma omp task

{
do_work ();

}
}
}

Figure 2: Taskloop Linear




1.3.4 Taskloop Recursive

Since the method used to generate the tasks when using taskloop is left up
to the implementation, it is not documented by the OpenMP runtime. The
recursive taskloop function also differs between each OpenMP implementation,
with some implementations not using it at all. The description in this paper
refers to the current LLVM implementation. The first task is generated with
the entire upper and lower bound just like in a linear taskloop, it is then split
into two even halves. These halves are then split again until a threshold is
reached. Once the threshold is reached, the resulting tasks are then split in a
linear manner until the desired grain size is reached. This implementation was
created with the goals to make the taskloop construct more NUMA friendly.

1 / | \ 2
1 / 3 2 \ 4
IS IS SEC

Figure 3: Taskloop Recursive (Threshold shown as dotted line)



1.4 Scheduling Tasks
1.4.1 Task Execution Logic

This diagram explains the logic that a thread uses to determine which tasks to
execute, whether they are from the current thread or whether they have to be
stolen from another note. Note how simple the logic is, a thread simply saves
the thread number after it has successfully stolen a task from another thread,
or otherwise it simply picks a random thread number. This behavior is changed
in the task-to-data affinity related work, in which they change the logic in the
LLVM runtime to prefer threads from the same node.

] use_own_tasks Check victim_thread
__kmp_remove_my _taskl __kmp_get_random Use last victim
— __kmp_invoke_task __kmp_steal task — Nothing stolen yet

' victim_thread = -1

Figure 4: Task Execution Logic



1.4.2 Task Stealing Logic

Victim’s
Task Queue

acquire lock

Check if task
is viable

release lock

AN

Figure 5: Task Stealing Logic

2 Related Work

Since this paper analyzes the LLVM implementation of OpenMP tasking, it is
important to also analyze what other research exists for this implementation and
others as well. Since this paper focuses on the overhead caused by scheduling
tasks, the exact amount of time it takes for one thread to take a task from the
queue would be of particular interest. Past research has measured the exact
amount of time that it takes for a thread to steal a task from another thread
(LLVM) or from a central queue (GOMP) and found it to be approximately
35 microseconds when using 20 threads on LLVM][1]. This number matches up
with the results in our experiment. For example in Figure 12, reducing the
grain size from 50 to 1 introduces 2054769 more tasks. Of these, 60-80% of the
tasks are stolen by another thread. This number can be multiplied by the time
it takes to steal one task, but one single thread only affects the total program
execution time by 1/20 of this, so the result must be divided by 20. This would
result in an expected total increase in program execution time of 2.2 to 2.9
seconds, which is in the range of the results from this experiment. Also of note
is that they acknowledge that ”it is a common pattern to create tasks with a
single or master construct” and that ”it might be useful to develop a specialized
implementation for this use-case”. A possible implementation for this use-case
would be the taskvector stealing as described in this paper.

Another possible area of research when it comes to improving the perfor-



mance of parallel OpenMP applications using tasks is to implement scheduling
algorithms to determine which tasks to schedule on which threads. Experiments
implementing these scheduling algorithms have been done using the OpenUH
runtime library[5]. They use the OpenUH runtime because it is highly customiz-
able when it comes to tasking. The queue and task stealing behavior can be
customized with options set at runtime, including which end of the queue tasks
should be added to, which end of the queue tasks should be stolen from, and
how many tasks should be stolen at once.

When it comes to scheduling tasks, overhead is usually the first thing to be
considered, but the task-to-data affinity should not be overlooked either. Ex-
periments have shown that speedup can be improved by up to 4x when using
the new ”affinity” parameter in OpenMP 5.0 when using the taskloop clause[2].
There is a possible overlap between the affinity gained when using the affinity
parameter and the improved affinity when stealing multiple tasks in row us-
ing vectors of tasks. They also introduce the concept of "NUMA-aware task
stealing” which modifies the logic in Figure 4 to prefer tasks from the same
node.

3 Methods

3.1 Visualizing task execution

In order to better understand how tasks are scheduled and executed in the
LLVM OpenMP runtime, we needed a way to understand how a program using
tasks has executed in an efficient manner for a variety of programs. By assigning
ID numbers to each of the tasks, printing the start and end times of the tasks
executions, and visualizing the printed time in a timeline we were able to quickly
evaluate the execution of different programs.

3.1.1 Enabling Task IDs

By default, the LLVM runtime does not create task ID numbers when new tasks
are created. The runtime always refers to tasks by using a pointer to the task
data’s memory address. It does have debugging functionality built-in which
allows for the creation of task ID numbers. In this project we do not turn on
the entire debugging functionality, but we do enable the generation of task ID
numbers. This is done by calling the function to generate a task ID when a new
task is allocated.

Since both implicit and explicit tasks both call this function to generate
task ID numbers, they both share the same counter. In all of the experiments
that were conducted in this project, all implicit tasks were created before any
explicit tasks were created. When running experiments using 20 threads there
were approximately 82 implicit tasks created, which resulted in the task ID
numbers for the explicit tasks starting at approximately 83. In order to improve
readability and prevent lapses in the task ID numbers, the KMP_GEN_TASK_ID
was duplicated and each was set to a separate counter. This ensured that the



kmp_tasking.cpp

—kmp_task_alloc

kmp.h

KMP_GEN_TASK_ID()

_KMP_GEN_ID(counter)

[

KMP_ATOMIC_INC(&counter)+1

task ID numbers for explicit tasks always started at one and always incremented

by one.

3.1.2 Exporting Task Timestamps

The simplest way to measure the start and end time of a task would be to
simply add a print statement in the task start and task end functions in the
runtime. In order to reduce the overhead caused by the large amount of print
statements being buffered, these values are instead saved to a global array. At
the end of the program execution, the buffer is printed to a CSV file named

Figure 6: Task ID Generation

taskTimeOutput. A sample of the file can be seen in Table 1.

. Executin Creatin 1=Start

Timestamp Threadg Task ID Threadg 0=Stop
5708049.64039087 14 3 0 1
5708049.64044245 6 2 0 1
5708049.64046568 14 3 0 0
5708049.64051432 14 1 0 1
5708049.64057035 6 2 0 0
5708049.64063098 14 1 0 0

Table 1: Sample task time output

3.2 Experiment Setup

3.2.1 Generating the task timeline visualization

When executing a program using the LB4OMP library with the tasking file
from this project installed, the feature to export task times has to be turned on
using environment variables. Simply add these environment variables into your

sbatch script.
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Listing 3: Setup environment variables

EXPORT OMP_EXPORT_TASK TIMES 1
EXPORT OMP_EXPORT_-CHUNK BOUNDS 1
EXPORT OMP_PRINT_ENV_VARIABLES 1

After execution, the task start and end times will be printed into a file named
taskTimeOutput.csv in the source directory of the program. The taskTimeOut-
put.csv file can then be visualized using the provided Python tool. Simply run
the python program with the CSV file as an argument. A PDF file with the
visualization will be generated in the same directory.

The plot in the top right shows each task as a blue box. The X axis is time
and the Y axis is the thread number that executed the task. The plot on the
is the same plot but zoomed in on the first few milliseconds on runtime. The
histogram with the task ID number on the X axis and the task’s execution time
on the Y axis.

3.2.2 Taskloop Guided Scheduling Experiment

The first experiment conducted in this project was to apply a scheduling algo-
rithm to the linear taskloop function. Since the linear taskloop function simply
uses a for loop to create the tasks with a given size, the size values were modified
so that they were generated from a function. What resulted is a series of tasks
that start with a large size and become smaller. Upon running the experiment
it was found that the grain size was too large, any additional modifications to
the grain size would restrict the use cases of the solution, and we pivoted the
project to only using adaptive scheduling techniques.

Figure 7: Taskloop Linear using Guided scheduling
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3.2.3 Loop Shifting Technique

After evaluating the linear taskloop with scheduling technique and before imple-
menting the taskvector stealing technique, the concept of rearranging the order
of the tasks was explored. The idea was that if the small tasks could be moved
to the end of the runtime and the large tasks could be executed immediately,
the load imbalance could be reduced without affecting the total task switching
overhead at all. This was achieved by simply modifying the loop index iterator
to start and end at a number other than zero.

Listing 4: Without shift Listing 5: With shift value
#pragma omp parallel #pragma omp parallel
{ {
#pragma omp single #pragma omp single

{ {
for (int i = 0; 1 < N; i4++) for (int 1 = 0; 1 < N; i++)
#pragma omp task #pragma omp task

{ {
do_work (i ); q=((i+(N/2))%N)+shift ;

} do_work(q);

} }

}

}
}

Changing the starting index of the loop did decrease the total execution
time with some shift values, and increase it with other shift values, however
the shift values that resulted in the decrease were too specific to this specific
application that the experiment was not useful in the general case. Since the
goal of this project is to increase the performance for all programs using the
LLVM runtime and not just certain specific applications, this concept was not
further evaluated.

12




4 Results

4.1 Puretask Single

Thread ID

O NWHMAU OO

0 2 4 6 8 10 12
Time

Figure 8: Task Distribution Puretask Single

This visualization is generated by the visualize.py python script. The red
area shows time where a thread is sitting idle while there are still tasks left to
be computed, this can be because the tasks are either not generated yet or the
thread is currently switching from one task to another. The blue area shows
time that a thread is completing a task, the darker the shade of blue, the higher
the thread ID. The green area shows time that a thread is idle due to load
imbalance.

In this visualization, all tasks are created by one thread. Since a ”single”
construct was used instead of a "master” construct, any thread could have been
the one creating the tasks. By looking at the thread ID numbers, which are
decreasing for thread 0 and increasing for all other threads, it is clear that
thread 0 is the one creating tasks in this execution of the program.

Another point to note from this graph is that the task ID numbers are
sequential for thread 0, which means that they are generated in a sequential
order, however they skip numbers on all the other threads. This is the basis for
the concept of improving task-affinity in this paper.
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4.2 Puretask Parallel

Thread ID
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Time

Figure 9: Task Distribution Puretask Parallel

This visualization works in the same way as the previous one, the only
difference is that instead of using a ”single” construct to generate the tasks,
a "parallel for” is used. Logically, this would mean the the scheduler for the
for loop distributes the iterations of the for loop, and each thread then simply
converts its for loop iterations into tasks.

While in the previous visualization the task ID numbers correlated with the
location of the pixel in the Mandelbrot program, this was simply a coincidence
because there was only one thread accessing the atomic iterator that generates
the task ID numbers, and the iterator was being accessed in the order of the
original for loop. In this case here with the parallel task generation, multiple
threads are accessing this atomic iterator with different parts of the original for
loop, essentially creating a random ordering of the task ID numbers.

Even though this is the case, using the distribution of the task execution
times from figure 9, the distribution of the original loop iterations can be seen.
Since we know that the Mandelbrot program has small tasks are the beginning
and end of the program and large tasks in the middle, we can see that according
to this visualization, the large tasks were at first distributed to the threads in
the middle of the plot, while the high and low thread numbers started executing
the small tasks.
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4.3

Task time distribution
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Figure 10: Task execution time distribution

Linear Taskloop with Guided scheduling
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Figure 11: Linear taskloop with Guided scheduler
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4.5 Standard LLVM and Vector task stealing
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Figure 12: Program execution using standard library (left) and task vectors
(right)
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Figure 13: Execution time distribution for grain size 1
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5 Discussion

5.1 Overhead, affinity, and load imbalance

It has long been known that picking a grain size is a battle between having
too many tasks which will result in high scheduling overhead, and picking too
large tasks which results in load imbalance at the end of the execution. The
proposed solution in this paper is to take a grain size of 1, and then schedule
the tasks in ”chunks” where the size can be adapted during the execution of the
program. As seen in figure 12, this concept was in part successful since the task
scheduling overhead was reduced when there was a large amount of tasks. The
problem that remains is that there is an increase in execution time when there
are a small number of tasks.

In the graph, the break-even point can be seen at around a grain size of 30.
In order to generalize this to other programs, the total execution time would
have to be normalized. This would indicate that if the average task switching
time remains constant when using the same system and the same number of
threads, the break-even point between scheduling overhead and load imbalance
is at approximately 680 tasks/second, or in other words 1.5 microsecond tasks
on this system.

It is important to note that finding this break-even point required an exhaus-
tive search of all reasonable grain sizes. Especially for programs with a very long
runtime, it becomes infeasible to do this exhaustive search of grain sizes. In this
case, the program can be run with a grain size of 1 and the taskvector stealing
technique enabled (Figure 13).

5.2 Increasing task affinity without downsides

Aside from the more efficient task scheduling when dealing with a large number
of tasks, another advantage of using a vector of tasks when stealing from another
thread is the increased task affinity. If a series of tasks were in sequential order,
which likely means that they access data in sequential order, they would still
access data in sequential order after the tasks have been stolen by another
thread. This could greatly decrease the number of cache misses. This was not
measured in this experiment but would be an avenue for further research.
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5.3 Reduced variance in program execution time

A noteworthy artifact of the program execution times in Figure 12 is that the
variance of the execution times decreased when using smaller grain sizes. A
possible explanation for this would be that load imbalance has much higher
variation than task scheduling overhead does. Load imbalance is often referred
to as a factor of the grain size in this paper, however it is very non-deterministic.
Figure 14 below shows a simulation of the best-case scenario where all threads
complete their last task at the exact same time, while Figure 15 shows the worst-
case scenario where a thread starts the last task just before all other threads
complete tasks. During a program’s execution there is the possibility that all
the threads could complete their last task at the exact same time, and there is
also the possibility that it has a load imbalance of up to the time it takes for
one task to execute. In the experiment with task vectors, the number of tasks
in a vector was 1 at the end of the execution, which makes the execution times
at least as precise as the execution times from the standard library.

The worst-case scenario in Figure 14 does assume that all tasks have the same
execution time which is not the case in this experiment, however the concept
can still explain why the variance in runtime increases together with the grain
size. In this case the worst case scenario would be the biggest task being the
last task that is execution, and the probabilistic distribution would be much
harder to model.

Thread ID
Thread ID

Figure 14: Best-Cast Scenario Figure 15: Worst-Cast Scenario

This could prove to be useful, for example if this program were in itself a
task in a larger program using MPI, the increased consistency in the program’s
execution could reduce the load imbalance of the larger program.

5.4 Overhead and load imbalance bathtub curve

Now that we know the overhead incurred by task switching scales linearly with
the number of tasks, and that the overhead caused by load imbalance has an
upper-bound which is the runtime of the longest task and a lower bound of zero,

18



we can theretically model the execution time of a program from the grain size
as follows.

—— Total Task Switching Time
Load Imbalance Upper Bound
—— Load Imbalance Lower Bound

Additional Time
Additional Time

T T T T T T
0 200 400 600 800 1000 o 200 400 600 800 1000
Grain Size Grain Size

Figure 16: Factors contributing to exe-Figure 17: Possible theoretical execu-
cution time tion times

6 Conclusion

These experiments have shown that there is a potential advantage to implement-
ing a task stealing function that steals a vector of tasks at once when dealing
with programs that generate a large number of tasks (more than 680 tasks/sec-
ond). In theory, implementing this would also increase the task affinity in some
scenarios, however this was not tested in this experiment.

There are other methods to fine tune the scheduling of tasks in OpenMP
discussed in this paper, but none of the other methods showed a promising
improvement that can be generally applied to all programs that might run on a
given OpenMP runtime library. While it is worth knowing these methods, they
can be implemented at the program level and would not be viable to implement
inside the OpenMP runtime library.

This project also confirms the findings from [4] which is that using OpenMP
tasks as they are implemented now will not necessarily improve a program’s per-
formance by any significant amount, but it will result in consistent performance
when compared to an unknown scheduler.
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