
Multilevel Scheduling Prototype
plus LB4OMP

Master’s Project

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science

High Performance Computing

Advisor: Prof. Dr. Florina Ciorba
Supervisor: Dr. Ahmed Eleliemy

Supervisor: Jonas H. Müller Korndörfer

Gian-Andrea Wetten
gian-andrea.wetten@stud.unibas.ch

Abstract

The massive horizontal and vertical scaling of supercomputers in recent times gives rise to
applications that induce load imbalance on multiple layers. Multilevel scheduling has become
an increasingly compelling method of addressing this issue. In this work we asses the impli-
cations on performance of combining thread-level scheduling with scheduling at the batch and
application level using a two-phase approach of exploration and experimentation. The results
show that introducing a second layer of scheduling with the MLS prototype leads to very lim-
ited improvements in overall performance at a small scale. We show that this was mainly due
to the low degree of process-level load imbalance which reduces the effectiveness of the MLS
prototype.

2

Contents

1 Introduction 4

2 Related Work 4

3 Methods 5
3.1 LB4OMP . 5
3.2 MLS Prototype . 5
3.3 Exploration . 6
3.4 Experimental Setup . 9

4 Performance Evaluation and Results 10
4.1 Job execution times . 10
4.2 Batch execution times . 11

5 Discussion 14

6 Conclusion and Future Work 14

3

1 Introduction

When wanting to optimize the performance of parallel and distributed programs achieving an even
workload distribution across all processing units (PU) is very important. This is why scheduling
has been an popular research topic in high performance computing (HPC) over the last 30 years.
Coping with irregularities in the workload of a computational domain, however, is a very complex
task. It is often crucial to find the appropriate trade-off between the performance gain of an optimal
distribution and its induced overhead.

Parallelism in HPC has been growing at a substantial rate across multiple levels. As a conse-
quence it becomes increasingly crucial to analyze the performance impact of reducing load imbalance
by using scheduling procedures on each individual level. Ali et. al. [13] have shown that combining
multiple levels of scheduling can lead to an even more significant reduction of load imbalance.

The goal of this work is to analyze the performance impact of combining two different kinds
scheduling levels. It is yet unclear how thread-level scheduling affects the application performance
when we use the MLS prototype[7]. We want to examine this relation between thread-level and
batch-level scheduling and measure its overall implications on performance.

In shared-memory environments OpenMP is widely considered the standard method of paral-
lelism. The standard implementation offers us 3 methods of scheduling, namely static, dynamic and
guided scheduling. However it has been shown[4] that these limited options are often not producing
optimal results. Korndörfer et al.[11] showed that we can reach better performance gains using
different kinds of scheduling algorithms. In their work they presented a library called LB4OMP
which implements several known dynamic dynamic load balancing algorithms. In addition to that
a further extension of the library, called Auto4OMP, provides the user with options for automated
scheduling algorithm. This automated selection procedure has shown promising results and is built
on the principle of not requiring any user input or profiling ahead of the execution of the loops.
For this reason we are including all 4 automated scheduling methods in our experiments as well as
6 additional baseline algorithms implemented in LB4OMP.

The MLS prototype[7] has been implemented with the idea of applications sharing their idle
computing resource once they reach an idle state. This is done by releasing resources used by
MPI ranks as soon as the they are done with their calculations, i.e. they reach the MPI_Finalize
function. Therefore we can minimize idle time of nodes, leading to a reduction in the overall
execution time of a batch.

Section two introduces the tools and methods used in this work as well as the experimental setup.
In section three we present the evaluation procedures and the results, followed by a discussion of
them in section four. We close the report with a brief conclusion and opportunities for future work.

2 Related Work

LB4OMP[11] was introduced to address a lack of scheduling options in the OpenMP standard.
Korndörfer et al. implemented 14 dynamic scheduling algorithms in their work and performed
an analysis of the performance gain possible with each option. They showed that the presented
techniques outperform the ones from the OpenMP standard on multiple application-systems pairs.
This work is using their research infrastructure LB4OMP to perform thread-level scheduling.

The MLS prototype[7] is used for application-level and batch-level scheduling. Ahmed Eleliemy
demonstrated that scheduling on an pplication level never completely eliminates load imbalance and

4

therefore it is still possible to improve performance using batch-level scheduling. Thus he illustrates
that a coordination between those two levels leads to reduced idle time.

Ali et al. combined thread-level and process-level scheduling. They used six scheduling tech-
niques at the thread-level using an extended version of the GNU OpenMP runtime library called
eLaPeSD[4] and 11 techniques at the process level with DLS4LB[3]. Their results showed an im-
pressive improvement in application performance of up to 21%.

3 Methods

To appropriately evaluate the performance impact of multi-level scheduling we decided on using
a two-phase approach. The first step is comprised of an exploration of hybrid OpenMP and MPI
applications. Our main goal of this exploration is to find applications which are suitable candidate
for our experiments. This is done using the measuring capabilities built in the LB4OMP library.
The second phase of our evaluation consists of running experiments with several different scheduling
techniques for OpenMP loop. These experiments are run once with the MLS prototype and once
without. We then compare the total execution time as well as the idle time on nodes of these runs
for each OpenMP scheduling technique that we used.

3.1 LB4OMP
First we need to set the OpenMP schedule clause for the loops that we would like measure to
runtime. As with the standard OpenMP implementation we choose a schedule for those loops
by exporting the OMP_SCHEDULE environment variable. The library then provides us with
the loop execution time of each thread per time-step upon setting an environment variable called
KMP_TIME_LOOPS to the desired location of the output file. It also records the number of
iterations and the location of the loop. With this information we can calculate several metrics for
load imbalance which then in turn can be used to make an informed selection on the applications
that we want to include in our experiments.

The 10 scheduling techniques used in the experiments have been chosen from all three domains.
We use straightforward scheduling (static), three dynamic non-adaptive algorithms, where two are
from the OpenMP standard (guided,dynamic) and one is a practical variant of factoring implemented
in LB4OMP (fac2a). As a dynamic and adaptive technique we chose adaptive factoring(af_a). The
automated methods are comprised of RandomSel,ExhaustiveSel,BinarySel and Expertsel (auto,2-
auto,5).

3.2 MLS Prototype
The MLS prototype is based on a custom version of the Slurm workload manager[18]. For our
experiments we installed this custom version on five nodes which have been segregated from the
miniHPC[5] cluster. One node acts as a login-node and is also the host for the Slurm controller
service. The other four nodes are used for computations and run the compute node daemon slurmd.
Applications are linked against a library which intercepts MPI function calls. This library helps us to
keep track of exactly how long a program is executed in each MPI rank by using a timer between the
MPI function calls. It is possible to output these rank times to a file using the MPI_TIMES_FILE
environment variable. In addition to that we notify the Slurm controller when MPI_FINALIZE is

5

called on a rank. Since we are using only one rank per node this means that the controller can free
up the node for other jobs upon receiving this notification.

At the application level we use static scheduling and at the the batch level we employ a first
come first serve (FCFS) strategy.

3.3 Exploration
The first step is to find a hybrid application that uses both OpenMP and MPI. Afterwards we go
through the procedure of determining if the application is a suitable candidate for our experiments
or not, which is shown in Figure 1.

Check Makefile and
compile without linking

against LB4OMP

Run-time
errors?

Choose appropriate
parameters for a testrun

based on documentation or
“readme” files

Errors during
compilation?

No

No

Run on 1 rank with multiple
threads

Change parameters for a
testrun with multiple ranks

if necessary

Check Makefile and
compile with linking against

LB4OMP

Errors during
compilation?

No

Test a run with multiple
ranks

Run on 1 rank with multiple
threads

Analyze LB4OMP Output
from Step 1

Suitable
application?

Application
not
selected

Application
selected

Yes

Yes

End

Start

No

Yes

Yes

Figure 1: Procedure of selecting an application

Table 1 contains a listing of all the applications that have been considered for our experiments.
We summed up, where possible, the metrics provided by LB4OMP. Furthermore we added two
widely used metrics when dealing with load imbalances, the percent imbalance(p.i.)[6], as well as
the coefficient of variation (c.o.v.)[10]. Based on these results we chose the following applications:

6

• SPHYNX Evrard[2] simulates an Evrard collapse. It has been shown by Korndörfer et. al.
[11] that this application is a suitable candidate for thread-level scheduling.

• Mandelbrot[12] is an application to compute the Mandelbrot set. This application was also
selected by them and has been proven to be interesting when dealing with load balances at the
thread- and at the process-level. Because of that fact and because the application parameters
can be easily tuned we chose to run this application in all workload sizes.

• CoMD[15] implements algorithms and workloads from the domain of molecular dynamics.
It exhibits a similar behaviour to the SPEC-352.nab application used in [11] in terms of loop
execution time and iterations.

• miniVite[8] uses the Louvain method for graph community detection. Loop execution times
are moderately high and it is easy to adjust iterations/time-steps via input files or parameters.
We are running this application once in the small workload (S) with a graph that is generated
by the application itself. Additionally we also use it in the medium workloads (M1,M2) with
a graph provided by the SuiteSparse Matrix Collection[16].

• Cloverleaf [9] is a benchmark from the world of hydrodynamics and it provides several input
configurations that can be used. Furthermore it also has a good mean loop execution time to
iterations ratio (19µs/iter) compared to the applications we did not select.

7

Table 1: List of applications that have been considered for our experiments

Application | Suite Description Selected? Reason Execution com-
mand Function µ T Iterations P.I. C.O.V.

CloverLeaf_ref-1.3 | Mantevo A Lagrangian-Eulerian
hydrodynamics benchmark Yes srun clover_leaf

viscosity_kernel_:52:93 0.018238 2955 961 51.12 0.57
calc_dt_kernel_:91:132 0.018260 2955 961 50.57 0.56
advec_cell_kernel_:105:157 0.018548 2955 961 50.56 0.56
advec_mom_kernel_:143:173 0.018241 5910 962 51.14 0.58
advec_cell_kernel_:194:245 0.018651 2955 963 50.05 0.55
advec_mom_kernel_:203:234 0.018239 5910 962 51.08 0.57

TeaLeaf_ref-1.3 | Mantevo A mini-app that solves the
linear heat conduction equa-
tion on a spatially decom-
posed regularly grid using a
5 point stencil with implicit
solvers.

No Only a single loop
worth scheduling.
Loop has rather low
execution time

srun tea_leaf kernel_ppcg_inner_:104:117 0.017589 856 501 52.71 0.61

hpcg-3.1 | HPCG
An effort to create a new
metric for ranking HPC
systems

No

High number of
iterations with low
mean loop execution
time

srun hpcx

ComputeSPMV_ref:59:70 0.017514 264 17576 53.04 0.61

ComputeRestriction_ref:49:53 0.017408 264 2197 52.72 0.61
ComputeProlongation_ref:46:51 0.017935 264 140608 52.23 0.60
ComputeWAXPBY_ref:54:57 0.017637 830 1124864 52.54 0.60
ComputeDotProduct_ref:56:59 0.017422 285 1124864 52.53 0.61
ComputeDotProduct_ref:61:64 0.017962 552 1124864 52.19 0.59

miniTri | Mantevo A triangle based data analyt-
ics miniapp

No No hybrid imple-
mentation (MPI &
OpenMP separate)

miniMD | Mantevo

A simple proxy for the force
computations in a typical
molecular dynamics
applications

No

High number of
iterations with low
mean loop execution
time

srun miniMD_intel -t
20 -s 40 -n 10000

build:126:191 0.040339 501 256000 23.35 0.17
halfneigh_threaded:296:349 0.033328 101 256000 28.06 0.22
pbc:108:121 0.017829 500 256000 52.72 0.60
sort:390:405 0.017882 500 59319 52.91 0.61
borders:764:768 0.017791 3000 20 52.92 0.61
run:201:201 0.017722 10000 256000 52.68 0.61
run:98:98 0.017736 10000 256000 52.73 0.61

miniFE-2.2.0 | Mantevo An approximation to an
unstructured implicit finite No Too many iterations

(time/iter)
srun miniFE.x -nx
400 -ny 400 -nz 400

cg_solve:173:173 0.028865 200 64481201 32.63 0.28
cg_solve:158:158 0.025006 199 64481201 37.97 0.35

CoMD

A reference implementation
of typical classical molecular
dynamics algorithms and
workloads

Yes

srun
CoMD-openmp-mpi
-e -i 1 -j 1 -k 1 -x 80
-y 40 -z 40

redistributeAtoms:152:155 0.020253 101 57660 46.47 0.48
eamForce:238:245 0.021178 101 3690240 43.61 0.43
eamForce:304:318 0.018822 101 48778 49.00 0.53
advanceVelocity:71:80 0.018702 200 48778 50.01 0.55
advancePosition:85:96 0.018629 100 48778 49.42 0.54

miniVite

MiniVite is a proxy app that
implements a single phase of
Louvain method in
distributed memory for
graph community detection

Yes srun miniVite -f
rgg.bin -t 1.0E-07

distLouvainMethod:477:485 0.025894 587 16777216 36.37 0.32
distLouvainMethod:1378:1386 1.359486 587 16777216 30.51 0.19
distLouvainMethod:463:470 0.027255 587 16777216 35.65 0.31
distLouvainMethod:424:433 0.022742 587 16777216 41.50 0.40
distLouvainMethod:1409:1422 0.025064 586 16777216 37.56 0.34

SPHYNX-MPI Evrard | SPHYNX A simulation of a star colapse Yes srun evrard_NODLB

Mandelbrot A computation of the Man-
delbrot set

Yes
srun mandel.o
2000000 1024 0 0
0.5

wrf2 | SPECmpi2007 Weather prediction No

MPI run-time errors
pop2 | SPECmpi2007 Ocean modelling No
RAxML | SPECmpi2007 DNA matching No
GAPgeofem | SPECmpi2007 Heat Transfer using Finite

Element Methods (FEM)
No

l2wrf2 | SPECmpi2007 Weather prediction No
miniSMAC2D | Mantevo Solves the finite-differenced

2D incompressible Navier-
Stokes equations with
Spalart-Allmaras one-
equation turbulence model
on a structured body con-
forming grid.

No Compilation failed

miniAero | Mantevo MiniAero is an explicit (us-
ing RK4) unstructured finite
volume code that solves the
compressible Navier-Stokes
equations.

No Compilation failed

miniAMR | Mantevo 3D stencil calculation with
Adaptive Mesh Refinement
(AMR).

No MPI run-time errors

3.4 Experimental Setup
The experiments are prepared and run in 10 batches. Each batch is associated with one of the
scheduling technique mentioned in Table 3 and is comprised of 46 jobs. The jobs are divided into
4 different size categories which correspond to a fixed number of MPI ranks and determine the
input parameters for the applications. These categories will from now on be noted as S,Ms,Ml, L
where S is the set of jobs belonging to the small workload category and accordingly for the other
categories. Furthermore J = S ∪M1 ∪M2 ∪ L denotes the set of all jobs. To get a representative
workload we decided to divide the 46 jobs according to the information provided by the same table.
This partitioning represents a down-scaled version of the ESP system benchmark[17]. Since we run
each batch once with the MLS prototype and once without we get a total number of 46∗10∗2 = 920
jobs. As can be imagined the order of execution actually plays an important role when we would
like to involve the MLS prototype. Let us assume for example that we have 2 jobs l1, l2 ∈ L which
use all our available nodes and 2 jobs s1, s2 ∈ S, which run only on 1 node each. If we submit the
jobs in the sequence < l1, l2, s1, s2 > we would need to wait for l1 to end before we can proceed
with the other jobs. With a reordering to < l1, s1, s2, l2 > the Slurm controller might potentially
already assign nodes to s1 and s2 while l1 is still processing. Because we usually do not have an
optimal order of job execution in terms of workload size in the real world we chose to go with the
following order: S′1,M1′1,M2′1, L

′
1, S
′
2,M1′2,M2′2, L

′
2, S
′
3,M1′3,M2′3, where S′i ⊂ S, and accordingly

for the other categories. The detailed distribution of applications on to workload categories can be
seen in Table 2.

Table 2: Number of jobs per subset of workload category
S′1 S′2 S′3 S M1′1 M1′2 M1′3 M1 M2′1 M2′2 M2′3 M2 L′1 L′2 L

Cloverleaf 3 2 2 7
CoMD 2 2 1 5 1 1 1 3
miniVite 3 3 3 9 1 1 1 3 2 1 1 4
Mandelbrot 2 2 2 6 1 1 1 3 1 2 1 4 1 1
Sphynx 1 1
Total 8 7 7 22 4 4 3 11 4 4 3 11 1 1 2

Following the evaluation of our exploration procedure we designed an experiment table as de-
scribed in Table 3

Table 3: Design of the experiments
Factors Values Properties

Applications

Cloverleaf N = 961 | T = 2955 | Total loops = 176 | Modified loops = 6 | Workload = S
CoMD N = 48,778 | T = 101 | Total loops = 15 | Modified loops = 5 | Workload = M1,M2
miniViteGen N = 100,000 | T = 17 |Total loops = 39 | Modified loops = 7 | Workload = S
miniViteRgg N = 16,777,216 | T = 518 | Total loops = 39 | Modified loops = 7 | Workload = M1,M2
Mandelbrot N = 262,144 | T = 200 | Total loops = 1 | Modified loops = 1 | Workload = S,M1,M2,L
Sphynx N = 1,000,000 | T = 200 | Total loops = 41 | Modified loops = 2 | Workload = L

Scheduling techniques

static Straightforward parallelization
static_steal Extension of static scheduling
guided

Dynamic and non-adaptive self-scheduling techniquesdynamic
fac2a
af_a Dynamic and adaptive self-scheduling techniques
RandomSel

Automated DLS algorithm selectionExhaustiveSel
BinarySel
ExpertSel

Workload size

S MPI ranks = 1 | Jobs = 22
M1 MPI ranks = 2 | Jobs = 11
M2 MPI ranks = 3 | Jobs = 11
L MPI ranks = 4 | Jobs = 2

Computing nodes miniHPC-KNL Intel(R) Xeon Phi(TM) CPU 7210 (1 socket, 64 cores)
P=64 without hyperthreading, Pinning: OMP_PLACES=cores OMP_PROC_BIND=close

4 Performance Evaluation and Results

4.1 Job execution times
Figure 2 shows us the summed up elapsed time of all jobs per LB4OMP scheduling technique. What
this graph represents is the time that we would need to execute all jobs in a batch sequentially,
while maintaining node-level parallelism. We can clearly see that the choice of scheduling algorithm
has quite a big influence on this execution time. As expected the batch with the static schedule
performed overall the worst. The techniques from the dynamic, non-adaptive domain all led to
good results. When looking at the automated algorithm selection we see that both RandomSel
and BinarySel performed quite well, while the other two methods were slightly worse. Perhaps the
biggest surprise was the results that we got using static_steal, which were actually the best in terms
of execution time. In Figure 3 we can observe the same graph but with runs were we turned off

st
at
ic

d
y
n
am

ic

gu
id
ed

st
at
ic

st
ea
l

fa
c2
a

af
a

R
an

d
om

S
el

E
x
h
au

st
iv
eS
el

B
in
a
ry
S
el

E
x
p
er
tS
el

LB4OMP Scheduling Technique

0

2500

5000

7500

10000

12500

15000

17500

20000

T
p
a
r
(s
)

CoMD

Mandelbrot

Sphynx

clover

miniViteGen

miniViteRgg

Figure 2: Total elapsed time in seconds for each application per batch with the MLS prototype

the MLS prototype. These numbers should be roughly the same as in the previous graph since we
look at sequential job execution. In fact the only difference between the two should be the induced
overhead from the MLS prototype. As expected we get very small deviations when comparing both
graphs, with the biggest being roughly 18 seconds in the overall execution time. This tells us that
the overhead is quite small.

10

st
a
ti
c

d
y
n
a
m
ic

gu
id
ed

st
at
ic

st
ea
l

fa
c2
a

a
f
a

R
a
n
d
o
m
S
el

E
x
h
a
u
st
iv
eS
el

B
in
a
ry
S
el

E
x
p
er
tS
el

LB4OMP Scheduling Technique

0

2500

5000

7500

10000

12500

15000

17500

20000

T
p
a
r
(s
)

CoMD

Mandelbrot

Sphynx

clover

miniViteGen

miniViteRgg

Figure 3: Total elapsed time in seconds for each application per batch without the MLS prototype

4.2 Batch execution times
The next evaluation we did was the comparison of real elapsed time per batch. For this we used
the difference between the end time of the last job and the start time of the first job in each batch.
This has again been calculated for our batch runs with and without the MLS prototype. We can
observe the results in Figure 4. The main thing that stands out is that we see very little difference
between the two runs. Looking at Figure 5 we see the reason for that. The ranks are being freed
up almost at the exact same time in most applications. The only small exception is Mandelbrot
where some ranks finish up to 40 second before the others. We can in fact calculate the maximal
time-save possible t∗ in our experiments with the following formula:

t∗ =

∑
j

∑
i

r
′

j − rij (1)

Where:

• j ∈ J

• r
′

j : is the largest rank time of the job j

• Rj : is the set of rank times for job j

• rij ∈ Rj

The results for our batches can be observed in Table 4.2.

As we can see t∗ is quite small when comparing to the overall execution time from Figure 4.

11

Table 4: Maximal time-save possible when using the MLS prototype
static dynamic guided static_steal fac2a af_a RandomSel ExhaustiveSel BinarySel ExpertSel Total

t∗ (s) 34.91 34.83 34.69 34.67 34.86 34.93 34.79 34.81 80.50 34.84 393.83
st
at
ic

d
y
n
am

ic

gu
id
ed

st
at
ic

st
ea
l

fa
c2
a

af
a

R
an

d
om

S
el

E
x
h
au

st
iv
eS
el

B
in
ar
y
S
el

E
x
p
er
tS
el

LB4OMP Scheduling Technique

0

2500

5000

7500

10000

12500

15000

17500

B
at
ch

ex
ec
u
ti
on

ti
m
e(
s)

MLS

No MLS

Figure 4: Execution time of a batch in seconds with and without the MLS prototype

12

0

1000

2000

3000

4000

5000

M
ea
n
T
r
a
n
k
(s
)

static

rank0

rank1

rank2

rank3

0

1000

2000

3000

4000

5000

M
ea
n
T
r
a
n
k
(s
)

dynamic

rank0

rank1

rank2

rank3

0

1000

2000

3000

4000

5000

M
ea
n
T
r
a
n
k
(s
)

guided

rank0

rank1

rank2

rank3

0

1000

2000

3000

4000

5000

M
ea
n
T
r
a
n
k
(s
)

static steal

rank0

rank1

rank2

rank3

0

1000

2000

3000

4000

5000

M
ea
n
T
r
a
n
k
(s
)

fac2a

rank0

rank1

rank2

rank3

0

1000

2000

3000

4000

5000
M
ea
n
T
r
a
n
k
(s
)

af a

rank0

rank1

rank2

rank3

0

1000

2000

3000

4000

5000

M
ea
n
T
r
a
n
k
(s
)

RandomSel

rank0

rank1

rank2

rank3

0

1000

2000

3000

4000

5000

M
ea
n
T
r
a
n
k
(s
)

ExhaustiveSel

rank0

rank1

rank2

rank3

C
o
M
D
-M

1

C
o
M
D
-M

2

M
an

d
el
b
ro
t-
L

M
an

d
el
b
ro
t-
M
1

M
an

d
el
b
ro
t-
M
2

M
an

d
el
b
ro
t-
S

S
p
h
y
n
x
-L

cl
ov
er
-S

m
in
iV

it
eG

en
-S

m
in
iV

it
eR

gg
-M

1

m
in
iV

it
eR

gg
-M

2

0

1000

2000

3000

4000

5000

M
ea
n
T
r
a
n
k
(s
)

BinarySel

rank0

rank1

rank2

rank3

C
oM

D
-M

1

C
oM

D
-M

2

M
an

d
el
b
ro
t-
L

M
an

d
el
b
ro
t-
M
1

M
an

d
el
b
ro
t-
M
2

M
an

d
el
b
ro
t-
S

S
p
h
y
n
x
-L

cl
ov
er
-S

m
in
iV

it
eG

en
-S

m
in
iV

it
eR

gg
-M

1

m
in
iV

it
eR

gg
-M

2

0

1000

2000

3000

4000

5000

M
ea
n
T
r
a
n
k
(s
)

ExpertSel

rank0

rank1

rank2

rank3

Figure 5: Total elapsed time in ranks for each application per batch

13

5 Discussion

When looking at the results presented in the previous section we can make the following two
statements:

1. The reduction of load imbalance at thread-level has significantly increased the performance
of our jobs.

2. Combining the thread-level scheduling with MLS prototype led only to a very small reduction
in execution time.

The second statement might be explained in several ways. First of all we only used 4 nodes
in our computation cluster for our experiments which severely reduces the usefulness of the MLS
prototype. A second point to be made is that the order of job submission also plays an important
role. Finally the low level of process-level load imbalance could have multiple reasons. It has been
shown[13][1] that node-level scheduling may also implicitly reduce cross-node load imbalance in a
significant manner. Additionally the applications from the large workload category use a collective
MPI function at the end of their execution. This function call has an implicit barrier at the end
which means that the ranks are going to call the MPI_FINALIZE function at virtually the same
time. These are two possible reasons for the results we got from the t∗ calculation, explaining the
small amount of load imbalance at the process-level. This, in turn, has the consequence that nodes
are released very close to each other in the timeline of the application execution. Therefore we did
not have a high potential for performance gain from using the MLS prototype.

6 Conclusion and Future Work

In this work we evaluated the performance implications of combining the MLS prototype with
thread-level scheduling using LB4OMP. In summary, we can say that we saw a minimal performance
gain when combining thread-level scheduling and the MLS prototype, compared to pure thread-level
scheduling. We also showed that the maximal possible time-save when adding the MLS prototype
was quite small in contrast to the overall execution time of the batches. This was mainly due to ranks
finishing their computations at very similar times and thus the applications having a low process-
level load imbalance. Furthermore we observed a low induced overhead for the MLS prototype.
Thus it might still be worth using both scheduling on both levels in conjunction, especially when
using more nodes and a higher number of jobs.

Further work could include scaling up the amount of nodes to increase the effectiveness of the
MLS prototype. Another interesting areas of exploration would be the evaluation of the signifi-
cance of the job submission order and the addition of non-static scheduling at the application level
using LB4MPI[14]. Lastly it might be a good idea to focus on process-level load imbalance in the
exploration step in addition to the thread-level load imbalance.

14

References

[1] David Böhme, Markus Geimer, Lukas Arnold, Felix Voigtlaender, and Felix Wolf. Identifying
the root causes of wait states in large-scale parallel applications. ACM Transactions on Parallel
Computing (TOPC), 3(2):1–24, 2016.

[2] Rubén M Cabezón, Domingo Garcia-Senz, and Joana Figueira. Sphynx: an accurate density-
based sph method for astrophysical applications. Astronomy & Astrophysics, 606:A78, 2017.

[3] Ricolindo L Carino, Ali Mohammed, and Florina M Ciorba. Dynamic loop self-scheduling
for load balancing (dls4lb), 2020. URL: https://github.com/unibas-dmi-hpc/DLS4LB.
Accessed:2021-07-17.

[4] Florina M Ciorba, Christian Iwainsky, and Patrick Buder. Openmp loop scheduling revis-
ited: making a case for more schedules. In International Workshop on OpenMP, pages 21–36.
Springer, 2018.

[5] Ciorba, Florina M. minihpc: Small but modern hpc. https://hpc.dmi.unibas.ch/en/
research/minihpc/. Accessed:2021-07-15.

[6] Luiz DeRose, Bill Homer, and Dean Johnson. Detecting application load imbalance on high
end massively parallel systems. In European Conference on Parallel Processing, pages 150–159.
Springer, 2007.

[7] Ahmed Hamdy Mohamed Eleliemy. Multilevel Scheduling of Computations on Parallel Large-
scale Systems. PhD thesis, University_of_Basel, 2021.

[8] Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Ananth Kalyanaraman, and Asse-
faw H. Gebremedhin. Minivite: A graph analytics benchmarking tool for massively parallel
systems. In 2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), pages 51–56, 2018.

[9] JA Herdman, WP Gaudin, Simon McIntosh-Smith, Michael Boulton, David A Beckingsale,
AC Mallinson, and Stephen A Jarvis. Accelerating hydrocodes with openacc, opencl and cuda.
In 2012 SC Companion: High Performance Computing, Networking Storage and Analysis,
pages 465–471. IEEE, 2012.

[10] Susan Flynn Hummel, Edith Schonberg, and Lawrence E Flynn. Factoring: A method for
scheduling parallel loops. Communications of the ACM, 35(8):90–101, 1992.

[11] Jonas H Müller Korndörfer, Ahmed Eleliemy, Ali Mohammed, and Florina M Ciorba.
Lb4omp: A dynamic load balancing library for multithreaded applications. arXiv preprint
arXiv:2106.05108, 2021.

[12] Benoit B Mandelbrot. Fractal aspects of the iteration of z→ λz (1-z) for complex λ and z.
Annals of the New York Academy of Sciences, 357(1):249–259, 1980.

[13] Ali Mohammed, Aurélien Cavelan, Florina M Ciorba, Rubén M Cabezón, and Ioana Banicescu.
Two-level dynamic load balancing for high performance scientific applications. In Proceedings
of the 2020 SIAM Conference on Parallel Processing for Scientific Computing, pages 69–80.
SIAM, 2020.

15

[14] Ali Mohammed, Ahmed Eleliemy, Florina M Ciorba, Franziska Kasielke, and Ioana Banicescu.
An approach for realistically simulating the performance of scientific applications on high
performance computing systems. Future Generation Computer Systems, 111:617–633, 2020.

[15] Ghosh Sayan and Halappanavar Mahantesh. Comd. https://github.com/ECP-copa/CoMD,
2019. Accessed:2021-07-16.

[16] Texas A&M University. Suitesparse matrix collection. https://sparse.tamu.edu/DIMACS10/
rgg_n_2_24_s0. Accessed:2021-05-07.

[17] Adrian T Wong, Leonid Oliker, William TC Kramer, Teresa L Kaltz, and David H Bailey. Esp:
A system utilization benchmark. In SC’00: Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing, pages 15–15. IEEE, 2000.

[18] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux utility for resource
management. In Workshop on job scheduling strategies for parallel processing, pages 44–60.
Springer, 2003.

16

