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Abstract

The massive horizontal and vertical scaling of supercomputers in recent times gives rise to
applications that induce load imbalance on multiple layers. Multilevel scheduling has become
an increasingly compelling method of addressing this issue. In this work we asses the impli-
cations on performance of combining thread-level scheduling with scheduling at the batch and
application level using a two-phase approach of exploration and experimentation. The results
show that introducing a second layer of scheduling with the MLS prototype leads to very lim-
ited improvements in overall performance at a small scale. We show that this was mainly due
to the low degree of process-level load imbalance which reduces the effectiveness of the MLS
prototype.
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1 Introduction

When wanting to optimize the performance of parallel and distributed programs achieving an even
workload distribution across all processing units (PU) is very important. This is why scheduling
has been an popular research topic in high performance computing (HPC) over the last 30 years.
Coping with irregularities in the workload of a computational domain, however, is a very complex
task. It is often crucial to find the appropriate trade-off between the performance gain of an optimal
distribution and its induced overhead.

Parallelism in HPC has been growing at a substantial rate across multiple levels. As a conse-
quence it becomes increasingly crucial to analyze the performance impact of reducing load imbalance
by using scheduling procedures on each individual level. Ali et. al. [13] have shown that combining
multiple levels of scheduling can lead to an even more significant reduction of load imbalance.

The goal of this work is to analyze the performance impact of combining two different kinds
scheduling levels. It is yet unclear how thread-level scheduling affects the application performance
when we use the MLS prototype[7]. We want to examine this relation between thread-level and
batch-level scheduling and measure its overall implications on performance.

In shared-memory environments OpenMP is widely considered the standard method of paral-
lelism. The standard implementation offers us 3 methods of scheduling, namely static, dynamic and
guided scheduling. However it has been shown|[4] that these limited options are often not producing
optimal results. Korndorfer et al.[11] showed that we can reach better performance gains using
different kinds of scheduling algorithms. In their work they presented a library called LB4AOMP
which implements several known dynamic dynamic load balancing algorithms. In addition to that
a further extension of the library, called Auto4dOMP, provides the user with options for automated
scheduling algorithm. This automated selection procedure has shown promising results and is built
on the principle of not requiring any user input or profiling ahead of the execution of the loops.
For this reason we are including all 4 automated scheduling methods in our experiments as well as
6 additional baseline algorithms implemented in LB4OMP.

The MLS prototype[7] has been implemented with the idea of applications sharing their idle
computing resource once they reach an idle state. This is done by releasing resources used by
MPI ranks as soon as the they are done with their calculations, i.e. they reach the MPI Finalize
function. Therefore we can minimize idle time of nodes, leading to a reduction in the overall
execution time of a batch.

Section two introduces the tools and methods used in this work as well as the experimental setup.
In section three we present the evaluation procedures and the results, followed by a discussion of
them in section four. We close the report with a brief conclusion and opportunities for future work.

2 Related Work

LB4OMPJ[11] was introduced to address a lack of scheduling options in the OpenMP standard.
Korndorfer et al. implemented 14 dynamic scheduling algorithms in their work and performed
an analysis of the performance gain possible with each option. They showed that the presented
techniques outperform the ones from the OpenMP standard on multiple application-systems pairs.
This work is using their research infrastructure LB4AOMP to perform thread-level scheduling.

The MLS prototype|7] is used for application-level and batch-level scheduling. Ahmed Eleliemy
demonstrated that scheduling on an pplication level never completely eliminates load imbalance and



therefore it is still possible to improve performance using batch-level scheduling. Thus he illustrates
that a coordination between those two levels leads to reduced idle time.

Ali et al. combined thread-level and process-level scheduling. They used six scheduling tech-
niques at the thread-level using an extended version of the GNU OpenMP runtime library called
eLaPeSD[4] and 11 techniques at the process level with DLS4LB[3]. Their results showed an im-
pressive improvement in application performance of up to 21%.

3 Methods

To appropriately evaluate the performance impact of multi-level scheduling we decided on using
a two-phase approach. The first step is comprised of an exploration of hybrid OpenMP and MPI
applications. Our main goal of this exploration is to find applications which are suitable candidate
for our experiments. This is done using the measuring capabilities built in the LB4AOMP library.
The second phase of our evaluation consists of running experiments with several different scheduling
techniques for OpenMP loop. These experiments are run once with the MLS prototype and once
without. We then compare the total execution time as well as the idle time on nodes of these runs
for each OpenMP scheduling technique that we used.

3.1 LB4OMP

First we need to set the OpenMP schedule clause for the loops that we would like measure to
runtime. As with the standard OpenMP implementation we choose a schedule for those loops
by exporting the OMP_SCHEDULE environment variable. The library then provides us with
the loop execution time of each thread per time-step upon setting an environment variable called
KMP TIME LOOPS to the desired location of the output file. It also records the number of
iterations and the location of the loop. With this information we can calculate several metrics for
load imbalance which then in turn can be used to make an informed selection on the applications
that we want to include in our experiments.

The 10 scheduling techniques used in the experiments have been chosen from all three domains.
We use straightforward scheduling (static), three dynamic non-adaptive algorithms, where two are
from the OpenMP standard (guided,dynamic) and one is a practical variant of factoring implemented
in LB4OMP (fac2a). As a dynamic and adaptive technique we chose adaptive factoring(af a). The
automated methods are comprised of RandomSel,ExhaustiveSel,BinarySel and Expertsel (auto,2-
auto,d).

3.2 MLS Prototype

The MLS prototype is based on a custom version of the Slurm workload manager[18]. For our
experiments we installed this custom version on five nodes which have been segregated from the
miniHPC[5] cluster. One node acts as a login-node and is also the host for the Slurm controller
service. The other four nodes are used for computations and run the compute node daemon slurmd.
Applications are linked against a library which intercepts MPI function calls. This library helps us to
keep track of exactly how long a program is executed in each MPI rank by using a timer between the
MPT function calls. It is possible to output these rank times to a file using the MPI TIMES FILE
environment variable. In addition to that we notify the Slurm controller when MPI FINALIZE is



called on a rank. Since we are using only one rank per node this means that the controller can free
up the node for other jobs upon receiving this notification.

At the application level we use static scheduling and at the the batch level we employ a first
come first serve (FCFS) strategy.

3.3 Exploration

The first step is to find a hybrid application that uses both OpenMP and MPI. Afterwards we go
through the procedure of determining if the application is a suitable candidate for our experiments
or not, which is shown in Figure 1.
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Run on 1 rank with multiple
threads
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based on documentation or testrun with multiple ranks
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Run on 1 rank with multiple Test a run with multiple :“\;plicaﬂon
threads ranks selected
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Check Makefile and
compile with linking against
LB4OMP
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D

Suitable
application?

Errors during
compilation?
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selected

Figure 1: Procedure of selecting an application

Table 1 contains a listing of all the applications that have been considered for our experiments.
We summed up, where possible, the metrics provided by LB4OMP. Furthermore we added two
widely used metrics when dealing with load imbalances, the percent imbalance(p.i.)[6], as well as
the coefficient of variation (c.0.v.)[10]. Based on these results we chose the following applications:



SPHYNX Evrard|2| simulates an Evrard collapse. It has been shown by Korndorfer et. al.
[11] that this application is a suitable candidate for thread-level scheduling.

Mandelbrot[12] is an application to compute the Mandelbrot set. This application was also
selected by them and has been proven to be interesting when dealing with load balances at the
thread- and at the process-level. Because of that fact and because the application parameters
can be easily tuned we chose to run this application in all workload sizes.

CoMD|15] implements algorithms and workloads from the domain of molecular dynamics.
It exhibits a similar behaviour to the SPEC-352.nab application used in [11] in terms of loop
execution time and iterations.

miniVite[8] uses the Louvain method for graph community detection. Loop execution times
are moderately high and it is easy to adjust iterations/time-steps via input files or parameters.
We are running this application once in the small workload (S) with a graph that is generated
by the application itself. Additionally we also use it in the medium workloads (M1, M2) with
a graph provided by the SuiteSparse Matrix Collection|[16].

Cloverleaf|9] is a benchmark from the world of hydrodynamics and it provides several input
configurations that can be used. Furthermore it also has a good mean loop execution time to
iterations ratio (19us/iter) compared to the applications we did not select.



Table 1: List of applications that have been considered for our experiments

Application | Suite Description ‘ Selected? ‘ Reason g::;c;tlon com-= Function ‘ " ‘ T ‘ Iterations ‘ P.I. ‘ C.0.V.
viscosity kernel :52:93 0.018238 2955 961 51.12 0.57
calc_dt_ kernel :91:132 0.018260 | 2955 961 50.57 | 0.56
CloverLeaf ref-1.3 | Mantevo A Lagrangian-Eulerian Yes srun clover leaf advec cell kernel :105:157 0.018548 2955 961 50.56 | 0.56
— : hydrodynamics benchmark i b - advec _mom kernel :143:173 0.018241 5910 962 51.14 0.58
advec cell kernel :194:245 0.018651 2955 963 50.05 0.55
advec_mom_kernel :203:234 0.018239 5910 962 51.08 0.57
TeaLeaf ref-1.3 | Mantevo A mini-app that solves the No Only a single loop srun tea_ leaf kernel ppcg_inner_:104:117 0.017589 856 501 52.71 0.61
linear heat conduction equa- worth scheduling.
tion on a spatially decom- Loop has rather low
posed regularly grid using a execution time
5 point stencil with implicit
solvers.
ComputeSPMV _ref:59:70 0.017514 264 17576 53.04 | 0.61
An effort to create a new High number of
hpeg-3.1 | HPCG metric for ranking HPC No iterations with low srun hpex ComputeRestriction _ref:49:53 0.017408 264 2197 52.72 0.61
peg-3. g mean loop execution p ComputeProlongation ref:46:51 0.017935 264 140608 52.23 0.60
systems time ComputeWAXPBY _rel:54:57 0.017637 | 830 1124864 52.54 | 0.60
ComputeDotProduct _ref:56:59 0.017422 285 1124864 52.53 0.61
ComputeDotProduct _ref:61:64 0.017962 552 1124864 52.19 0.59
miniTri [ Mantevo A triangle based data analyt- No No  hybrid imple-
ics miniapp mentation (MPI &
OpenMP separate)
build:126:191 0.040339 | 501 256000 23.35 | 0.17
A simple proxy for the force High number of halfneigh threaded:296:349 0.033328 101 256000 28.06 | 0.22
computations in a typical iterations with low srun miniMD intel -t pbe:108:121 0.017829 500 256000 52.72 0.60
miniMD | Mantevo S P No ) o 20 5 40 o 10000 sort:390:405 0.017882 | 500 59319 52.91 | 0.61
e e« YRAIIES pon Joop execution B borders:764:768 0.017791 | 3000 | 20 52.92 | 0.61
PP run:201:201 0.017722 | 10000 | 256000 52.68 | 0.61
run:98:98 0.017736 10000 | 256000 52.73 | 0.61
miniFE-2.2.0 | Mantevo An approximation to an No Too many iterations srun miniFE.x -nx cg_solve:173:173 0.028865 200 64481201 32.63 0.28
o unstructured implicit finite (time/iter) 400 -ny 400 -nz 400 cg solve:158:158 0.025006 199 64481201 37.97 | 0.35
A reference implementation srun redistributeAtoms:152:155 0.020253 101 57660 46.47 | 0.48
of typical classical molecular CoMD-openmp-mpi eamForce:238:245 0.021178 101 3690240 43.61 0.43
CoMD Gr e Yes A NN camForce:304:318 0.018822 | 101 48778 29.00 | 0.53
e, orims an NPT, advanceVelocity:71:80 0.018702_| 200 18778 50.01 | 0.55
y advancePosition:85:96 0.018629 100 48778 49.42 | 0.54
MiniVite is a proxy app that distLouvainMethod:477:485 0.025894 587 16777216 36.37 | 0.32
implements a single phase of srun miniVite -f distLouvainMethod:1378:1386 1.359486 587 16777216 30.51 0.19
miniVite Louvain method in Yes bin -t 1.0B-07 distLouvainMethod:463:470 0.027255 587 16777216 35.65 0.31
distributed memory for T8g.bir : distLouvainMethod:424:433 0.022742 587 16777216 41.50 0.40
graph community detection distLouvainMethod:1409:1422 0.025064 586 16777216 37.56 0.34
SPHYNX-MPI Evrard | SPHYNX | A simulation of a star colapse | Yes srun evrard  NODLB
srun mandel.o
Mandelbrot A computation of the Man- Yes 2000000 1024 0 O
delbrot set 0.5
wrf2 | SPECmpi2007 Weather prediction No
pop2 [ SPECmpi2007 Ocean modelling No
RAxML [ SPECmpi2007 DNA matching No MPI run-time errors
GAPgeofem [ SPECmpi2007 Heat Transfer using Finite | No
Element Methods (FEM)
12wrf2 [ SPECmpi2007 Weather prediction No
miniSMAC2D | Mantevo Solves the finite-differenced | No Compilation failed
2D incompressible Navier-
Stokes equations with
Spalart-Allmaras one-
equation turbulence model
on a structured body con-
forming grid.
miniAero | Mantevo MiniAero is an explicit (us- No Compilation failed
ing RK4) unstructured finite
volume code that solves the
compressible Navier-Stokes
equations.
miniAMR | Mantevo 3D stencil calculation with | No MPI run-time errors
Adaptive Mesh Refinement
(AMR).




3.4 Experimental Setup

The experiments are prepared and run in 10 batches. Each batch is associated with one of the
scheduling technique mentioned in Table 3 and is comprised of 46 jobs. The jobs are divided into
4 different size categories which correspond to a fixed number of MPI ranks and determine the
input parameters for the applications. These categories will from now on be noted as S, My, M, L
where S is the set of jobs belonging to the small workload category and accordingly for the other
categories. Furthermore J =S U M1U M2U L denotes the set of all jobs. To get a representative
workload we decided to divide the 46 jobs according to the information provided by the same table.
This partitioning represents a down-scaled version of the ESP system benchmark[17]. Since we run
each batch once with the MLS prototype and once without we get a total number of 46x10%2 = 920
jobs. As can be imagined the order of execution actually plays an important role when we would
like to involve the MLS prototype. Let us assume for example that we have 2 jobs [1,12 € L which
use all our available nodes and 2 jobs s1,s2 € S, which run only on 1 node each. If we submit the
jobs in the sequence < [1,12,s1,s2 > we would need to wait for /1 to end before we can proceed
with the other jobs. With a reordering to < I1, s1, s2,[2 > the Slurm controller might potentially
already assign nodes to sl and s2 while [1 is still processing. Because we usually do not have an
optimal order of job execution in terms of workload size in the real world we chose to go with the
following order: Sy, M1y, M2}, L}, S5, M14, M2, L, S5, M15, M2%, where S; C S, and accordingly
for the other categories. The detailed distribution of applications on to workload categories can be
seen in Table 2.

Table 2: Number of jobs per subset of workload category

Sy Sy, Sy S | M1y M1, M1, M1 | M2y M2, M2; M2|L, L, L
Cloverleaf 3 2 2 7
CoMD 2 2 1 5 1 1 1 3
miniVite 3 3 3 9 1 1 1 3 1 1 4
Mandelbrot | 2 2 2 6 1 1 1 3 1 2 1 4 1 1
Sphynx 1 1
Total 8 7 7 22 | 4 4 3 11 4 4 3 11 1 1 2

Following the evaluation of our exploration procedure we designed an experiment table as de-
scribed in Table 3

Table 3: Design of the experiments

Factors ‘ Values ‘ Properties
Cloverleaf N = 961 | T = 2955 | Total loops = 176 | Modified loops = 6 | Workload = S
CoMD N = 48,778 [ T = 101 [ Total loops = 15 [ Modified Toops = 5 | Workload = M1,M2

Applications miniViteGen N = 100,000 | T = 17 [Total loops = 39 | Modified loops = 7 | Workload = S

pp miniViteRgg N = 16,777,216 | T — 518 | Total loops — 39 | Modified loops — 7 | Workload — M1,M2

Mandelbrot N = 262,144 [ T = 200 [ Total loops = 1 [ Modified loops = 1 | Workload = S,M1,M2,L
Sphynx N = 1,000,000 | T = 200 | Total loops = 41 | Modified loops = 2 | Workload = L
static Straightforward parallelization
static_steal Extension of static scheduling
guided
dynamic Dynamic and non-adaptive self-scheduling techniques

Scheduling techniques fac2a = - - =
af a Dynamic and adaptive self-scheduling techniques
RandomSel
E?(haustlveSel Automated DLS algorithm selection
BinarySel
ExpertSel
S MPI ranks = 1 | Jobs = 22

. M1 MPI ranks = 2 | Jobs = 11

Workload size M2 MPT ranks — 3 [ Jobs — 11

L MPI ranks = 4 [ Jobs = 2
. .. Intel(R) Xeon Phi(TM) CPU 7210 (1 socket, 64 cores
Computing nodes miniHPC-KNL P:Gé(l V\)/ithout hyp(erthl)reading, Pinrsing: OMPipLAC)ES:cores OMP_PROC_BIND=close




4 Performance Evaluation and Results

4.1 Job execution times

Figure 2 shows us the summed up elapsed time of all jobs per LBAOMP scheduling technique. What
this graph represents is the time that we would need to execute all jobs in a batch sequentially,
while maintaining node-level parallelism. We can clearly see that the choice of scheduling algorithm
has quite a big influence on this execution time. As expected the batch with the static schedule
performed overall the worst. The techniques from the dynamic, non-adaptive domain all led to
good results. When looking at the automated algorithm selection we see that both RandomSel
and BinarySel performed quite well, while the other two methods were slightly worse. Perhaps the
biggest surprise was the results that we got using static_ steal, which were actually the best in terms
of execution time. In Figure 3 we can observe the same graph but with runs were we turned off

I CoMD
20000 4 I Mandelbrot
B Sphynx
1 -
700 I clover
15000 A B miniViteGen
B miniViteRgg
= 12500 A
3
&5 10000 A
7500
5000 A
2500 A
O =

static

dynamic
guided
static_steal
fac2a

af_a
RandomSel
ExhaustiveSel
BinarySel
ExpertSel

LB4OMP Scheduling Technique

Figure 2: Total elapsed time in seconds for each application per batch with the MLS prototype

the MLS prototype. These numbers should be roughly the same as in the previous graph since we
look at sequential job execution. In fact the only difference between the two should be the induced
overhead from the MLS prototype. As expected we get very small deviations when comparing both

graphs, with the biggest being roughly 18 seconds in the overall execution time. This tells us that
the overhead is quite small.

10



I CoMD
20000 A W Mandelbrot
I Sphynx
17500 I clover
15000 B miniViteGen
B miniViteRgg
= 12500
N
& 10000
7500
5000
2500
0 =

static
dynamic
guided
static_steal
fac2a

af_a
RandomSel
ExhaustiveSel
BinarySel
ExpertSel

LB4OMP Scheduling Technique
Figure 3: Total elapsed time in seconds for each application per batch without the MLS prototype

4.2 Batch execution times

The next evaluation we did was the comparison of real elapsed time per batch. For this we used
the difference between the end time of the last job and the start time of the first job in each batch.
This has again been calculated for our batch runs with and without the MLS prototype. We can
observe the results in Figure 4. The main thing that stands out is that we see very little difference
between the two runs. Looking at Figure 5 we see the reason for that. The ranks are being freed
up almost at the exact same time in most applications. The only small exception is Mandelbrot
where some ranks finish up to 40 second before the others. We can in fact calculate the maximal
time-save possible ¢* in our experiments with the following formula:

= ZZT; —Tij (1)
J %

Where:
e jcJ
. r;- : is the largest rank time of the job j
e R; : is the set of rank times for job j
® 7y € Rj

The results for our batches can be observed in Table 4.2.

As we can see t* is quite small when comparing to the overall execution time from Figure 4.
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Table 4: Maximal time-save possible when using the MLS prototype
‘ static ‘ dynamic ‘ guided ‘ static_steal ‘ fac2a | af a ‘ RandomSel ‘ ExhaustiveSel ‘ BinarySel ‘ ExpertSel ‘ Total

t* (s) | 3491 | 34.83 [ 3469 | 34.67 | 3486 | 34.93 | 34.79 | 3481 | 80.50 | 34.84 | 393.83
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s No MLS
15000 -
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10000 A

7500

Batch execution time(s)

5000

2500 -
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dynamic
guided
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fac2a

af_a
RandomSel
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BinarySel
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LB40OMP Scheduling Technique

Figure 4: Execution time of a batch in seconds with and without the MLS prototype
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5 Discussion

When looking at the results presented in the previous section we can make the following two
statements:

1. The reduction of load imbalance at thread-level has significantly increased the performance
of our jobs.

2. Combining the thread-level scheduling with MLS prototype led only to a very small reduction
in execution time.

The second statement might be explained in several ways. First of all we only used 4 nodes
in our computation cluster for our experiments which severely reduces the usefulness of the MLS
prototype. A second point to be made is that the order of job submission also plays an important
role. Finally the low level of process-level load imbalance could have multiple reasons. It has been
shown[13][1] that node-level scheduling may also implicitly reduce cross-node load imbalance in a
significant manner. Additionally the applications from the large workload category use a collective
MPI function at the end of their execution. This function call has an implicit barrier at the end
which means that the ranks are going to call the MPI FINALIZE function at virtually the same
time. These are two possible reasons for the results we got from the t* calculation, explaining the
small amount of load imbalance at the process-level. This, in turn, has the consequence that nodes
are released very close to each other in the timeline of the application execution. Therefore we did
not have a high potential for performance gain from using the MLS prototype.

6 Conclusion and Future Work

In this work we evaluated the performance implications of combining the MLS prototype with
thread-level scheduling using LB4OMP. In summary, we can say that we saw a minimal performance
gain when combining thread-level scheduling and the MLS prototype, compared to pure thread-level
scheduling. We also showed that the maximal possible time-save when adding the MLS prototype
was quite small in contrast to the overall execution time of the batches. This was mainly due to ranks
finishing their computations at very similar times and thus the applications having a low process-
level load imbalance. Furthermore we observed a low induced overhead for the MLS prototype.
Thus it might still be worth using both scheduling on both levels in conjunction, especially when
using more nodes and a higher number of jobs.

Further work could include scaling up the amount of nodes to increase the effectiveness of the
MLS prototype. Another interesting areas of exploration would be the evaluation of the signifi-
cance of the job submission order and the addition of non-static scheduling at the application level
using LBAMPI[14]. Lastly it might be a good idea to focus on process-level load imbalance in the
exploration step in addition to the thread-level load imbalance.
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