MULTILEVEL SCHEDULING OF COMPUTATIONS

ON PARALLEL LARGE-SCALE SYSTEMS

Inauguraldissertation

zur
Erlangung der Wiirde eines Doktors der Philosophie
vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultit

der Universitat Basel

von Ahmed Hamdy Mohamed Eleliemy

Basel, 2021

Originaldokument gespeichert auf dem Dokumentenserver

der Universitat Basel

edoc.unibas.ch

https://edoc.unibas.ch/

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultét

auf Antrag von

Prof. Dr. Florina M. Ciorba, First Supervisor

Prof. Dr. Heiko Schuldt, Second Supervisor

Prof. Dr. Wolfgang E. Nagel, External Expert

Basel, den 02.03.2021

Prof. Dr. Marcel Mayor, Dekan

to the soul of my parents

Abstract

Computational scientists are eager to utilize computing resources to execute
their applications to advance their understanding of various complex phenom-
ena. This eagerness drives the rapid technological development in high per-
formance computing (HPC). Modern HPC systems exhibit rapid growth in the
number of cores per computing node and the number of computing nodes per
system. As such, modern HPC systems offer additional levels of hardware par-
allelism at the core, node, and system levels. Each level requires and employs tech-
niques for appropriate scheduling of the computational work at the respective
level. These scheduling techniques work separately without coordination, and each
technique is designed to achieve specific performance targets. Currently, the ab-
sence of coordination between schedulers at different levels is an open research prob-
lem. In many cases, independent scheduling decisions degrade applications’
performance and signify inefficient resources” usage of contemporary HPC sys-
tems. To solve this problem, we formulate the following research question: How
can the multilevel parallelism of a modern HPC system be exploited through scheduling
to improve the performance of computationally-intensive applications and to enhance the
utilization of HPC resources?

Understanding the relation between the different scheduling levels is crucial
for solving the aforementioned research question. However, it is challenged by
(1) the absence of methods, models, and tools that allow examining and an-
alyzing the interaction and the mutual impact of these scheduling levels, and
(2) the different nature and performance targets of each of these scheduling lev-
els. This doctoral dissertation addresses these challenges in the context of two
specific scheduling classes: queuing-based job scheduling at the batch-level and
dynamic loop self-scheduling (DLS) at the application-level. We propose and eval-
uate a multilevel scheduling (MLS) prototype that solves the problem by bridging
the schedulers at these scheduling levels. The MLS prototype aims to decrease
applications” execution time and increase system utilization. It employs two novel
scheduling approaches that have been introduced by this doctoral dissertation:
(1) the distributed chunk-calculation approach (DCA) and (2) the resourceful coordi-
nation approach (RCA) to achieve performance targets.

At the application-level, DCA addresses the scalability challenge associated
with existing DLS implementation approaches while maintaining a global schedul-

ing overview that is important to achieve global optimal scheduling decisions.

viii Abstract

We apply DCA to several DLS techniques, and we show how it benefits applica-
tions” execution time (the first goal of the MLS prototype).

At the batch-level, RCA enables application schedulers to share their allo-
cated but idle computing resources with other applications through a batch sys-
tem. The significance of RCA is that it leverages and combines the advantages
of node sharing and dynamic resource and job management. It offers an effi-
cient resource sharing (of idle resources only) and avoids shrink and expansion
operations on the application side. RCA allows batch systems to reassign com-
puting resources once they become free (the second goal of the MLS prototype).
By employing DCA and RCA, the MLS prototype answers the research question
and shows a creative and useful way of exploiting the multilevel parallelism of
modern HPC systems through scheduling.

This doctoral dissertation advances the state-of-the-art by demonstrating the
usefulness and the performance potential of coordinated scheduling decisions
at different levels. We also designed and implement a set of methods and tools,
which we make available for the community to analyze the mutual impact of

decision at different levels of scheduling.

Acknowledgements

I see my work as a result of the unconditional support and love of many people,
and I am so grateful to them. I appreciate the continuous support of my research
advisors: Prof. Dr. Florina M. Ciorba and Prof. Dr. Heiko Schuldt. Prof. Ciorba
dedicated time and valuable resources for me to complete this work. She also
guided me with her fruitful discussions and comments that shaped my research
in its best form. I am also so grateful to Prof. Schuldt, who supported me in
many ways more what he thinks.

Many thanks go to my friends: Antonio Maffia, Danilo Guerrera, Ali Mo-
hammed, Jonas Korndorfer, Aurélien Cavelan, and Michal Grabarczyk The morn-
ing coffees and the joyful discussions we had together are priceless for me and
will never be forgotten. Having such a good company helped me in avoiding
stress and depression when things were not going as expected.

Special thanks go to my brother and sister, who supported me from the
early days of my childhood and till now. My lovely wife, Omnia, thanks. You
encouraged me and believed in me when no one else believed. Finally, my son,
Noureldin, my daughter, Laila, since you came to my world and till I leave it,

will remain the motivation behind any success I achieve.

This work was partly supported by the Swiss National Science Foundation,

which is also thankfully acknowledged.

Contents

Abstract vii
Acknowledgements ix
List of Figures xiii
List of Tables xvii
1 Introduction 1
1.1 Motivation e 3
1.2 Problem Statement and Research Question 3
1.3 Scope of the Dissertation 5
14 Research Approach 6
14.1 Evaluation Methodology 8

1.5 Contributions 9
1.6 Outlineofthe Thesis 11
1.7 Publications 12

2 Scheduling in HPC Systems 15
2.1 Application Level Scheduling (ALS) 15
211 Static Loop Scheduling (SLS) 17

2.1.2 Dynamic Loop Self-scheduling (DLS) 17

2.1.3 Performance Metrics 22

2.2 Batch Level Scheduling (BLS) 24
221 Static vs. Dynamic Batch Systems 24

222 Planning vs. Queuing Batch Systems 25

2.2.3 Queuing-based Job Scheduling 25

224 Other Job Scheduling Techniques 26

2.2.5 Performance Metrics 26

2.3 Related State of the Art in Scheduling 27

3 Two-level Scheduling Simulator 31
3.1 Application and Batch Level Scheduling Simulations 31
3.2 Proposed Scheduling Simulation Approach 39

3.3 Bridging an ALS Simulator with a BLS Simulator 40

xii Contents
3.4 From High Level to Detailed HPC Workload Representation 43
3.5 Performance Evaluation and Discussion 44
3.6 Summary 49

4 Distributed Chunk Calculation Approach (DCA) 51
41 Execution Models of DLS Techniques 51
4.2 From Centralized to Decentralized DLS Techniques 54
4.3 Distribution of the Chunk Calculation 57
4.4 Performance Evaluation and Discussion 60
45 Summary 67

5 Hierarchical Distributed Chunk Calculation Approach (HDCA) 69
5.1 Hierarchical DLS Techniques 70
5.2 Maintaining Local Work Queues 71
5.3 Performance Evaluation and Discussion 73
54 Summary 80

6 Resourceful Coordination Approach (RCA) for Multilevel Scheduling 81
6.1 Coordination Between ALSand BLS 81
6.2 RCA Applied to a BLS Simulator and an ALS Simulator 83
6.3 Performance Evaluation and Discussion 86
64 Summary 94

7 The Multilevel Scheduling (MLS) Prototype 95
7.1 DCA in a Scheduling and Load Balancing Library 96

7.1.1 Performance Assessment of DCA in LB4MPI 98
7.2 RCA in a Production Batch Scheduler 103
7.3 Performance Evaluation and Discussion 106

8 Conclusions and Future Work 109
8.1 Conclusions 109
82 Future Work 111

Bibliography 113

Index 129

List of Figures

1.1

1.2
1.3

1.4
1.5

2.1

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Total number of cores in the top-ranked HPC system between 1996
and 2020. 2

Multiple levels of hardware parallelism of the Fugaku supercomputer. 2

Clustering of multilevel scheduling (MLS) into batch level schedul-
ing (BLS) and application level scheduling (ALS) 4

System components of modern HPC clusters.. 6

The four research stages of the work presented in this doctoral dis-

sertation 7
Chunk sizes generated by different DLS techniques. 23

The execution workflow of the SimGrid simulator and the proposed

extensions to support BLS. oo oo oL 34

The execution workflow of the GridSim simulator and the proposed

extensions to support ALS. o oo oL 35

Performance of the SimGrid and GridSim simulators in terms of sim-

ulation wall clock time for the selected ALS techniques.. 37

Performance of the SimGrid and GridSim simulators in terms of sim-

ulation wall clock time for the selected BLS techniques. 38
Bridging simulator instances. 0L 39
The two-level scheduling simulator. 42

The system makespan of the W124 workload for several BLS-ALS com-
binations. L 45
The system makespan of the W3* workload for several BLS-ALS com-
binations. 45

Effect of changing the task variation factor I considering the W

workload. 46
Effect of changing the task variation factor I considering the W3
workload. 46
The ratio between system makespan w/ and w/o task variation T
considering the W2* workload. 47
The ratio between system makespan w/ and w/o task variation

considering the W3* workload. 47

xiv List of Figures

3.13 Snapshot of the Vampir visualization tool showing the generated
OTF2 trace of the proposed two-level scheduling simulator.

3.14 The simulation wall clock time of the two-level scheduling simulator.

4.1 Variants of the master-worker execution model, as reported in the
literature.
42 Schematic execution of the proposed distributed chunk calculation
approach (DCA).
43 Theproposed DCA..
44 Performance of the proposed DCA vs. the existing master-worker
based approach for PSIA.
45 Performance of the proposed DCA vs. the existing master-worker
based approach for Mandelbrot.

5.1 The proposed hierarchical distributed chunk calculation approach
(HDCA). . . .
5.2 The undesired synchronization with the MPI+OpenMP implementa-
tionapproach. L
5.3 An ideal execution scenario at the shared-memory level.
5.4 Parallel execution time of the main loop using STATIC at the first
level of scheduling (inter-node scheduling).
5.5 Parallel execution time of the main loop using GSS at the first level of
scheduling (inter-node scheduling).
5.6 Parallel execution time of the main loop using TSS at the first level of
scheduling (inter-node scheduling).
5.7 Parallel execution time of the main loop using FAC2 at the first level
of scheduling (inter-node scheduling).

6.1 Proposed resourceful coordination approach (RCA)..
6.2 ESPjobarrival scheme.

72

73

87

6.3 Load imbalance profile of the jobs within the ESP-PSIA and ESP-Mandelbrot

workloads. L
6.4 System utilization for the ESP-PSIA workload.
6.5 System utilization for the ESP-Mandelbrot workload.
6.6 Visualization (obtained using Vampir) of the execution trace of the

ESP-Mandelbrot workload.

6.7 Visualization (obtained using Vampir) of the execution trace of the
ESP-PSIA workload.

88
90
90

List of Figures XV

7.1
7.2
7.3
74

7.5

7.6
7.7

The MLS prototype. 95
The centralized chunk calculation approach (CCA) in LB4MPL. 97
The distribution chunk calculation approach (DCA) in LB4MPIL. 97

Parallel application execution time of PSIA in the three slowdown
SCENATIOS. . . v v v v v v i e e e 101
Parallel application execution time of Mandelbrot in the three slow-
downscenarios. 102
The main components of Slurm. 104
System makespan of the ESP (Mandelbrot) with different application
level scheduling techniques. Slurm is configured to use FCFS for BLS. 108

List of Tables

2.1

3.1

3.2

4.1

4.2

51

6.1

7.1

Notation used to describe the selected loop scheduling techniques . .

Notation of the proposed connection layer for the two-level schedul-
ing simulation approach o0 0oL
Characteristics of the workloads selected from the parallel workload
archive (PWA) e

Execution parameters of PSIA and Mandelbrot selected to evaluate
the proposed DCA

Ratios between the KNL and Xeon corecount

Mapping between the DLS techniques and the OpenMP schedule

clauseoptions L

Characteristics of the two implemented versions of the ESP system
benchmark: ESP-PSIA and ESP-Mandelbrot.

Software and hardware components of the MLS cluster

16

List of Tables XiX

Introduction

Several domains of scientific research rely on powerful machines, known as high
performance computing (HPC) systems. HPC systems refer to those comput-
ing platforms that offer more performance than the mainstream computing sys-
tems [KT11]. HPC systems enable advanced research in Chemistry [GAB+96],
Biology [ST07], Medicine [SVP+10], Engineering [BLPP95], and Finance [BLR+12].
Scientists utilize these systems to model, study, and simulate complex phenom-
ena that are cost-prohibitive or not possible experimentally.

For HPC systems, performance is often defined as the number of double-
precision floating-point operations per time unit! (FLOP/s) that a given HPC
system delivers [Don04]. Performance is proportional to the processing fre-
quency and the number of processing units.

Between the 1960s and the beginning of the 2000s, the transistor technology
followed Moore’s law [Moo+65] closely. Gordon Moore expected that the num-
ber of transistors on a chip doubles every year, and later found to be every 18
months. Adding more transistors and scaling up their operating frequency sig-
nificantly increased system performance and allowed applications to gain per-
formance for free. However, the current fabrication technology of transistors
posed limited physical and thermal properties to support higher operating fre-
quencies [Sch97; Kis02]. This fact made increasing parallelism per system the
only sustainable way to increase systems’ performance. Figure 1.1 shows the
number of cores in the top-ranked HPC system in the world since 1996. One can
clearly notice that the number of cores increased significantly. Hence, for the
top-ranked HPC systems, the total number of cores is in the order of millions?.

Modern HPC systems are in the form of large-scale parallel computing clus-

! This metric is used to rank the top 500 HPC systems since 1993 (https://www.top500.0rg/)
2 https:/ /www.top500.0rg/lists /top500/2020/06 /

2 Introduction

107 - Thousands of
cores Hundred thousands
of cores

Millions of cores

Number of cores

Figure 1.1 Total number of cores in the top-ranked HPC system between 1996
and 2020. The total number of cores per system exponentially increased
since 1996.

ters. These parallel clusters aggregate hundreds or thousands of high-end multi-
cores and many-core computing nodes [CW10], which are connected with high-
speed interconnection networks, such as Infiniband [Pfi01] and Intel Omni-
path [BDH+15]. Thus, modern HPC systems offer a high level of hardware
parallelism at multiple (core, node, and system) levels. For instance, Figure 1.2
shows the different levels of hardware parallelism in the top-ranked HPC system
in June 2020 (Fugaku supercomputer).

CPU Memory Unit (CMU) Each rack has 8 shelfs
Each CMU has 2 CPUs

Each shelf has 3 BoBs Fugaku system has
Bunch of Blades (BoB) ’
Each BoB has 8§ CMUs

total of 152,064

BoB Shelf

48 compute cores
4 assistant cores
Tofu-D interconnect
PCle Gen3

7299072 cores

System

Figure 1.2 Multiple levels of hardware parallelism of the Fugaku
supercomputer (adapted and modified from [Don20]). Fugaku is the top
supercomputer in the top500 supercomputers June 2020 list with a peak
performance of 513.8 PetaFLOP/s.

Introduction 3

1.1 Motivation

The efficient utilization of hardware parallelism becomes more critical and chal-
lenging than ever. For instance, when a modern (large-scale) HPC system wastes
only 1% to 10% of its computing cycles, it wastes energy that could support a
small city [SLG+14]. In practice, HPC users aim to improve their applications’
execution time without particular regard for increasing system utilization. On
the contrary, HPC operators favor increasing the number of executed applica-
tions per time unit and increasing system utilization. This difference in the
preferences promotes the following operational model. Applications execute on
exclusively-allocated computing resources for a specific time, and applications are
assumed to utilize the allocated resources efficiently. In many cases, this opera-
tional model is inefficient, i.e., applications may not fully utilize their allocated
resources. This inefficiency results in increasing application execution time and
decreasing system utilization. The work in this doctoral dissertation is moti-

vated by the importance of overcoming such an operational inefficiency.

1.2 Problem Statement and Research Question

Scheduling is the cornerstone of the efficient usage of HPC resources. In gen-
eral, scheduling refers to computations’ assignment to computing resources
over a certain period of time [BW91; Ull75]. For HPC systems, scheduling
exists in various forms at different levels of hardware and software granular-
ity [BBHB+07], such as scheduling operating system (OS) threads, scheduling
application’s threads and processes, and scheduling batches of jobs (see Fig-
ure 1.3).

Each scheduling technique at a specific level has a different scheduling prob-
lem and certain performance targets to achieve. For instance, various jobs
compete to execute on the available computing resources of a given HPC sys-
tem [HKK+03]. Batch level scheduling (BLS) techniques manage such competi-
tion by prioritizing applications and achieving fairness among HPC users. BLS
techniques aim to increase the utilization of system resources and increase the
total number of executed applications. BLS techniques do not target minimizing
application execution time. Tasks (the finest granularity of work units) within
a given application coordinate to execute on the allocated resources. Applica-
tion level scheduling (ALS) techniques support such coordination by assigning

ready tasks to free computing resources to minimize the application execution

4 Introduction

time [BBHB+07]. ALS techniques aim to decrease application execution time.
ALS techniques do not target increasing system utilization. Batch and applica-
tion scheduling techniques work separately without coordination.

In 1993, the absence of coordination between job, task, and thread schedulers
at the operating system (OS) and application levels was identified and solved for
systems of that time (multiprocessor computers with shared memory) [Nag93].
However, for modern HPC systems, non-coordinated scheduling decisions of
batch and application schedulers is still relevant and remains an open research
problem [BBHB+07; DGGL+18].

Multilevel scheduling (MLS) refers to exchanging scheduling information be-
tween scheduling levels, such as batch, application, and OS level. MLS helps in
refining scheduling decisions at a certain level based on the available informa-
tion about the current scheduling workload at other levels. We formulate the
following research question to address the problem of coordination absence be-
tween schedulers at different scheduling levels: How can MLS exploit the multiple
levels of hardware parallelism of a modern HPC system to enhance scientific applica-

tions” performance and increase utilization of HPC resources?

Multilevel scheduling

Global .

Global . Grid
e batch [A LT i @4 level scheduling
B = ! *
0 Local ! : : Batch
© batch — level scheduling
S N o
Q L <
© Application Process =
2 level scheduling| ‘= '3
3 0S Thread %_ §
'S level scheduling | & —
@ thread 9| 2 o
o ()
:)2
— OR)

& level scheduling

SR

Levels of hardware parallelism

Figure 1.3 Clustering of multilevel scheduling (MLS) into batch level
scheduling (BLS) and application level scheduling (ALS)

Introduction 5

1.3 Scope of the Dissertation

Two dimensions define the scope in which one can answer the research question
above. The first dimension is the applications. HPC applications have different
characteristics [VMO02] and can be classified into tightly-coupled and loosely-
coupled parallel applications [SV09]. In tightly-coupled parallel applications,
processes often synchronize with each other. Applications containing routines
for solving linear systems are typical examples of tightly-coupled parallel ap-
plications [SV09; BCC+97]. On the contrary, in loosely-coupled parallel applica-
tions (also known as embarrassingly parallel applications), the synchronization
between the processes is negligible or may not exist. Monte-Carlo simulations,
image processing, and video rendering are typical examples of loosely-coupled

parallel applications.

The second dimension is the systems. HPC systems evolve rapidly, and many
HPC architectures existed since the end of the 1980s, such as vector processors,
symmetric multiprocessors (SMP), massive parallel processors (MPP), and clus-
ters [Don04; Don03; BG01]. In 2020, computing clusters represent 90% of the
top 500 HPC systems®. Computing clusters comprise a collection of indepen-
dent compute nodes. Each node can conduct operations independently, and
all nodes are developed and marketed for standalone purposes [DSS+05]. Fig-
ure 1.4 shows the typical components of modern HPC clusters.

In this doctoral dissertation, delineating the scope of the studied scheduling
techniques depends on the first and second dimensions above. This doctoral
dissertation focuses on loosely-coupled applications executing on HPC clus-
ters. Thus, two scheduling categories are relevant: batch level scheduling (BLS)
and application level scheduling (ALS), as shown in Figure 1.3. BLS refers to
mapping users’ applications (jobs) to the available HPC resources. ALS refers
to mapping tasks of a particular application to a set of computing resources
assigned to execute that application. The answer to the aforementioned re-
search question (see Section 1.2) is found in the context of two specific schedul-
ing classes: queuing-based job scheduling at the batch level and dynamic loop
self-scheduling (DLS) at the application level.

3 https:/ /www.top500.0rg/statistics/ overtime/

6 Introduction

HPC users Head node
[%2]
™ a 2 | Resource and job management system (RJMS)
PN a E % Main controller daemon
@) a Operating system
ab)
Network interface Compute resources
Compute node 1 II Compute node 2
4 R 4 N
Q é User applications Q s User applications
= % = GE)
s s
Parallel runtime systems ~ Parallel runtime systems
5]
. 3
Operating system ° Operating system
c
—N & <:>
mpute r r i = i
L Compute resources Network interface P, 1 5 L Network interface Compute resources)
j
c
Compute node 3 8 Compute node n
[0]
c ‘é c
Q g User applications o 4] g User applications
=0] =0
r e 2 r e
kel (@] kel
Parallel runtime systems Parallel runtime systems
Operating system Operating system
\Compute resources Network interface /<,il> <::>\ Network interface Compute resources)

Figure 1.4 System components of modern HPC clusters. The main software
components of HPC clusters include (1) Operating systems (usually a
Linux based OS), (2) parallel runtime systems (commonly MPI and
OpenMP runtime libraries), and (3) the daemons of the resource and job
management system (RJMS). Other software components may also exist,
such as compilers, profiling, and tracing tools. The main hardware
components of HPC clusters include (1) powerful computing nodes
(commonly multi- and many-core architectures with or without
accelerators) and (2) a powerful interconnection fabrics, such as
Infiniband [P£i01] or Intel Omnipath [BDH+15].

1.4 Research Approach

The work presented in this doctoral dissertation was conducted in four main
stages, as shown in Figure 1.5. In the first stage, we aimed to explore the relation
between DLS techniques (as ALS) and queuing-based scheduling techniques (as
BLS). The absence of methods, models, and tools to examine and analyze the
interaction and the mutual impact of BLS and ALS techniques was the main
challenge [EMC17b]. We introduced a two-level scheduling simulator that ad-
dressed this challenge and allowed us to conclude that idle times of computing
resources towards the end of applications” execution have a strong negative

impact on the performance at both the application and batch levels (see Chap-

Introduction 7

Research question
How can MLS exploit multilevel hardware parallelism of modern HPC systems?

Simulation |Simulation
1. Exploration 2. Exploitation

Resourceful
coordination
approach (RCA)

Two-level scheduling
simulator

shows the Impact of
idle resources’time on
BLS-ALS relation

exploits idle time of
computing resources
and increases system
utilization

Native |Native
3. Minimization 4. Prototype

Distributed chunk
calculation (DCA) and
its hierarchical DCA
(HDCA)

MLS prototype

— integrates a scheduling
library for DLS and
load balancing with a
production batch
system

eliminate the overhead
associated with
centralising
chunk calculation

Answer
¥ Minimizing scheduling overhead during application execution
v Exchanging information about idle resources during job execution
v Reassigning idle resources once they become idle, regardless of job completion

Figure 1.5 The four research stages of the work presented in this doctoral
dissertation (Exploration, Minimization, Exploitation, and Prototype).
The main outcomes of the four stages and how they contribute to the
answer of the research question are shown within the puzzle pieces.

ter 3).

In the second stage, the goal was to minimize the idle times, which have
been identified in the first stage. Several DLS techniques were introduced since
the late of 1980s to address idle times towards the end of applications’ execu-
tion [PD97]. Different DLS techniques fit for different application-system pairs.
We focused on examining implementation approaches of DLS techniques rather
than identifying a specific DLS technique that eliminates the idle times for a
given application-system pair.

The main conclusion of the second stage was that typical implementation

8 Introduction

approaches of DLS techniques introduce additional overhead, which contributes
to idle times of computing resources. We introduced a distributed chunk cal-
culation approach (DCA) and its hierarchical version (HDCA) to eliminate the
additional overhead. DCA avoids the overhead of centralizing chunk calculation
and assignment at a single computing resource (see Chapters 4 and 5).

Achieving a perfectly balanced execution of a given parallel loop is an ex-
tremely challenging task [BVDO03]. DLS techniques allow PEs to have nearly
equal finishing times by assigning chunks of independent loop iteration to free
processing elements (PEs). However, achieving the exact same finishing time is
practically infeasible [MC20].

In the third stage, the goal was to exploit idle time when PEs do not have the
same finishing times. We introduced a resourceful coordination approach (RCA)
that allows one application to share its idle computing resources with other ap-
plications through the batch system. RCA solves the problem discussed in Sec-
tion 1.2 by enabling coordination between the application and batch schedulers
(see Chapter 6). The coordination, in this case, refers to sharing information
about idle computing resources (by application schedulers) and decisions of re-
assigning these computing resources to other pending applications (by the batch
scheduler).

In the last stage, we provided a scheduling prototype that combines all our
proposed scheduling approaches. For instance, DCA was implemented in an
MPI-based scheduling library, called LB4MPI [MEC+20; MC20]. Also, RCA was
implemented in a production batch scheduler, called Slurm [YJG03]. Notifica-
tion messages were sent from LB4MPI to Slurm once a resource becomes idle,
and consequently, Slurm was able to reassign that resource to other pending
jobs. By combining DCA and RCA, the scheduling prototype presented in Chap-
ter 7 represents a production scheduler that employs MLS to exploit modern HPC
systems efficiently.

1.4.1 Evaluation Methodology

The work presented in this doctoral dissertation was evaluated via simulation
and native experiments. Both evaluation methods are used to assess perfor-
mance of scheduling techniques. Simulation experiments allow exploration of
various scenarios with minimum cost. For instance, executing large workloads
on an HPC system requires the full reservation of that system and can take
several days to complete. In the exploration stage (see Figure 1.5), we evalu-
ated twelve combinations of four ALS and three BLS techniques. The cost of

Introduction 9

executing such experiments as native experiments is not affordable, i.e., one ex-
periment takes 13 days (see Chapter 3). Similarly, for the exploitation stage (see
Figure 1.5), the proposed RCA at the batch level was evaluated via simulation
(see Chapter 6).

The main advantage of native experiments is the realistic and trustworthy
results [BFEM+06]. Native experiments let scheduling techniques experience all
variability of a real execution environment, which can be abstracted, simplified,
or ignored in simulation. In the minimization stage (see Figure 1.5), we exploited
such an advantage and evaluated the proposed DCA and HDCA via native
experiments (see Chapters 4 and 5). We also used native experiments to assess

the potential of the MLS prototype (see Chapter 7).

1.5 Contributions

Throughout the work in this doctoral dissertation, the following contributions
have been made to solve the research problem discussed in Section 1.2.

1. Two-level scheduling simulation approach: A novel simulation approach
that bridges two different scheduling simulators by exchanging scheduling
information among the bridged scheduling simulators [EMC17b]. The pro-
posed approach is exemplified with a two-level simulator that bridges two
well-known simulators: SimGrid [EMC16; MEC+20] for ALS and Grid-
Sim [KMRO7; KR10] for BLS. The newly introduced two-level scheduling
simulator stores simulation events produced by both simulators. It also
integrates all simulation events into a single file in the OTF2 [EWG+11]
format. This format is compatible with trace visualization tools, such as
Vampir [KBD+08].

The significance of this contribution is: enabling the simulations of HPC
workloads at fine (tasks within applications) and coarse (jobs within a
workload) scales, i.e., it allowed us to explore the relation between ALS and
BLS techniques by examining various combinations of these techniques
(see Chapter 3). The two-level simulation approach contributes to the
solution of the MLS problem by identifying idle times of computing re-
sources as a root-cause of the performance degradation at that batch and
application levels. Thus, our research focused on coordinating schedul-
ing decisions between batch and application schedulers to minimize and

exploit these idle times.

10

Introduction

2. Distributed chunk calculation approach (DCA): The proposed DCA en-

sures that every PE can calculate its chunk independently, i.e., the calcu-
lated chunk size at any PE does not rely on any information about the
chunk size calculated at other PEs. The proposed DCA requires all DLS
techniques to have a straightforward chunk calculation formula. A straight-
forward chunk calculation formula requires only constants and input parame-
ters, and it does not require prior information about previously calculated
chunk sizes. We provide the mathematical transformation needed to en-
sure that all the chunk calculation formulas of the selected DLS techniques

are straightforward formulas (see Chapter 4).

The significance of this contribution is replacing the common master-
worker execution model that is used mainly to implement DLS techniques
on distributed-memory systems. The proposed DCA overcomes certain well-
known limitations of the master-worker model. The DCA contributes
to the solution of the MLS problem by providing a generic execution
model that eliminates the overhead of centralizing chunk calculation and
assignment on a single computing resource. Thus, it reduces idle times of

computing resources.

. Hierarchical distributed chunk calculation approach (HDCA): DLS tech-

niques assume a centralized work queue. All PEs obtain chunks of iteration
to execute from that work queue. Similar to the hierarchical master-worker
execution model for DLS [WYL+12], HDCA maintains local work queues
for each group of PEs that share the same physical memory address space.
The local work queues are always filled with new work from the global
central queue. The novelty of the proposed HDCA is that the responsi-
bility of maintaining local work queues is shared among all PEs within
the same group. In the hierarchical master-worker execution model, such

responsibility is assigned only to specific PEs (local masters).

The significance of this contribution is enabling efficient and scalable im-
plementations of hierarchical DLS techniques. The HDCA contributes to
the solution of the MLS problem by eliminating another source of over-

head, and consequently, minimizing idle times of computing resources.

. Resourceful coordination approach (RCA): RCA enables the cooperation

between the currently independent batch and application level schedulers.
RCA enables application schedulers to share their allocated but idle com-
puting resources with other applications through the batch system. RCA

Introduction 11

avoids resource shrinking operations and associated performance penalties

typical of dynamic resource and job management systems.

The significance of this contribution is that the proposed RCA increases
the entire system utilization and decreases the system makespan when
the applications suffer from a severe load imbalance. For long-executing
HPC applications, the proposed RCA showed that exploiting idle times of
computing resources (which are in the order of a few seconds) can signif-
icantly improve the entire system utilization. To the best of our knowl-
edge and prior to this work, it was commonly accepted that the short
idle times of computing resources can only be exploited by Big Data work-
loads [MGG+17]. RCA highlights the potential of exploring such idle times
for HPC workloads as well (see Chapter 6). The RCA contributes to the
solution of the MLS problem by providing a mechanism to coordinate
scheduling decisions of batch and application schedulers to exploit idle

times of computing resources [EC21].

5. The multilevel scheduling (MLS) prototype: is a software solution that
implements the MLS concepts and addresses the absence of coordination be-
tween schedulers at different levels by employing;:

a) The proposed DCA to minimize application execution times.

b) The proposed RCA to increase system utilization.

The MLS prototype connects the job scheduler of Slurm [YJG03] with the
LB4MPI scheduling library [MEC+20; MC20].

The MLS prototype contributes to the solution of the MLS problem by gath-
ering, implementing, and applying all the contributions of this doctoral disser-
tation in a production HPC environment, i.e., the MLS prototype confirms the

usefulness of the MLS solution in real HPC production systems.

1.6 Outline of the Thesis

The remainder of this doctoral dissertation is organized as follows. In Chapter 2,
the two selected scheduling classes of queuing-based scheduling (at the batch
level) and dynamic loop scheduling (at the application level) are introduced.
Chapter 2 also focuses on the performance goals for each scheduling class and
various performance metrics used in the literature to assess the techniques of

both scheduling classes.

12 Introduction

Chapter 3 describes the first contribution of this doctoral work, which is the
two-level scheduling simulation approach. The need and advantages of bridging
two different simulators [MEC+20; KMRO07] are discussed. The limited benefit
of existing HPC workload traces for the two-level simulation is also discussed.
The strategy of using a task variation factor to overcome such a limitation is pre-
sented. The chapter ends with a performance evaluation of twelve combinations
of four DLS techniques and three queuing-based scheduling techniques.

The distributed chunk calculation approach [EC19a] and its hierarchical ver-
sion [EC19b] are described in Chapters 4 and 5, respectively. Both chapters start
by discussing the limitations of existing DLS implementations that motivate the
proposed DCA and HDCA. Both chapters end with a performance evaluation
of the proposed approach in different scenarios.

The resourceful coordination approach (RCA) is described in Chapter 6 with
details on how it is integrated into the Slurm simulator [SIJ+17]. Chapter 6 also
describes how the effective system performance (ESP) benchmark [WOK+00b]
is used to assess the proposed RCA in simulation.

In Chapter 7, the MLS prototype is introduced. The detailed modifications
and extensions made to LB4MPI and Slurm are presented and discussed. The
chapter ends with an evaluation and discussion regarding the performance of
the MLS prototype. Chapter 8 presents the conclusion of this thesis and an

outlook on future research.

1.7 Publications

Following is a list of the publications that are directly and tightly-connected to

the contributions of this doctoral dissertation.

[EC21] A. Eleliemy and E. M. Ciorba. A Resourceful coordination Approach for
Multilevel Scheduling. In Proceedings of the International Conference on

High Performance Computing & Simulation (HPCS 2021), virtual event,
2021.

[EC20] A. Eleliemy and F. M. Ciorba. A Distributed Chunk Calculation Approach
for Self-scheduling of Parallel Applications on Distributed-memory Sys-
tems. Journal of Computational Science (JOCS), 2021.

[EC19b] A. Eleliemy and E. M. Ciorba. Hierarchical Dynamic Loop Scheduling
on Distributed-Memory Systems Using an MPI+MPI Approach. In Pro-

Introduction 13

ceedings of the 20th IEEE International Workshop on Parallel and Dis-
tributed Scientific and Engineering Computing (PDSEC 2019) of the 33rd
IEEE International Parallel and Distributed Processing Symposium Work-
shops and PhD Forum (IPDPSW 2019), Rio de Janeiro, Brazil, 2019.

[EC19a] A. Eleliemy and E. M. Ciorba. Dynamic Loop Scheduling Using MPI Passive-
Target Remote Memory Access. In Proceedings of the 27th Euromicro
International Conference on Parallel, Distributed and Networked-based
(PDP 2019), Pavia, Italy, 2019.

[EMC17b] A. Eleliemy, A. Mohammed, and F. M. Ciorba. Exploring the Relation
Between Two Levels of Scheduling Using a Novel Simulation Approach.
In the proceedings of the 16th International Symposium on Parallel and
Distributed Computing (ISPDC 2017), Innsbruck, Austria, 2017.

[EMC17a] A. Eleliemy, A. Mohammed, and F. M. Ciorba. Efficient Generation of Par-
allel Spin-images Using Dynamic Loop Scheduling. In Proceedings of the
8th International Workshop on Multicore and Multithreaded Architectures
and Algorithms (M2A2 2017) in conjunction with the 19th IEEE Interna-
tional Conference for High Performance Computing and Communications
(HPCC 2017), Bangkok, Thailand, 2017.

During my doctoral work, I have also contributed to other research efforts.
I consider the following publications, which I have co-authored, are indirectly
related to my doctoral work. I could make benefit of them to my work in simu-
lation, performance analysis, and scheduling in general. These publications are

as follows:

[MEC+20] A. Mohammed, A. Eleliemy, F. M. Ciorba, F. Kasielke, and I. Banicescu. An
Approach for Realistically Simulating the Performance of Scientific Ap-
plications on High Performance Computing Systems. Journal of Future
Generation Computer Systems (FGCS), 111:617-633, 2020.

[MEC+18] A. Mohammed, A. Eleliemy, and F. M. Ciorba. Experimental Verifica-
tion and Analysis of Dynamic Loop Scheduling in Scientific Applications.

In Proceedings of the 17th International Symposium on Parallel and Dis-
tributed Computing (ISPDC 2018), Geneva, 2018.

[MEC18] A. Mohammed, A. Eleliemy, and F. M. Ciorba. Performance Reproduction

and Prediction of Selected Dynamic Loop Scheduling Experiments. In Pro-

14 Introduction

ceedings of the International Conference on High Performance Computing
& Simulation (HPCS 2018), Orléans, France, 2018.

[EFM+16] A. Eleliemy, M. Fayze, R. Mehmood, I. Katib, and N. Aljohani Loadbal-
ancing on Parallel Heterogeneous Architectures: Spin-image Algorithm on
CPU and MIC. In Proceedings of the 9th Eurosim Congress on Modeling
and Simulation (EUROSIM 2016), Oulu, Finland, 2016.

Scheduling in HPC Systems

Scheduling can be defined as mapping units of work to computing resources
over a specific period of time [BW91; Ull75]. Scheduling exists in various forms
at different levels of hardware parallelism of HPC systems (core, node, and
system). Hence, each level requires and employs techniques for appropriate
scheduling of the computational work at the respective level [BBHB+07].

This chapter focuses on dynamic loop self-scheduling (DLS) at the appli-
cation level and queuing-based job scheduling at the batch level. The most
well-known techniques from each class are presented in this chapter. Moreover,
the performance metrics that can be used to assess those scheduling techniques

are reviewed.

2.1 Application Level Scheduling (ALS)

An application refers to a computer program that executes on one or multiple
computing resources to accomplish a specific job. Computer applications often
consist of multiple tasks representing the finest granularity of computations. A
task cannot be divided into a finer granularity and cannot execute on multiple
computing resources simultaneously. Application level scheduling (ALS) refers
to mapping tasks of a particular application to a set of computing resources
assigned to execute that application.

The majority of applications that execute on HPC systems are scientific appli-
cations that often contain large computationally-intensive parallel loops. These
loops represent the prime source of parallelism, and their execution dominates
the entire application performance [FTY+90]. Scientific applications, such as

computational field simulation on unstructured grids, N-body, and Monte-Carlo

16 Scheduling in HPC Systems

simulations, are typical examples in which loop scheduling is crucial for the per-
formance [BVDO03; BFH95]. In the context of loop scheduling, a loop iteration
is the finest granularity that can be mapped to a computing resource. Hence, a

loop iteration can refer to a task.

Loop scheduling aims to minimize loop execution time and balance the loop
execution across all PEs, i.e., all PEs should have nearly equal finishing times.
Loop scheduling techniques are designed to mitigate all sources of load imbal-
ance by mapping chunks of independent loop iterations to different PEs. Loop
scheduling techniques can be static or dynamic. The time when scheduling de-
cisions are taken is the crucial difference between both categories. Table 3.1

summarizes all notation that describes the chunk size calculation.

Table 2.1 Notation used to describe the selected loop scheduling techniques

Symbol | Description

N Total number of loop iterations

P Total number of processing elements
S Total number of scheduling steps

B Total number of scheduling batches

i Index of current scheduling step, 0 <i < S-1

b Index of currently scheduled batch,0 <b < B-1

h Scheduling overhead associated with assigning loop iterations
R

; Remaining loop iterations after i-th scheduling step
Scheduled loop iterations after i-th scheduling step

Si Si+Ri =N
Ipstar Index of currently executed loop iteration,
0 <Ipstart < N -1
L A DLS technique,
L e {STATIC,FSC,GSS,TAP,TSS,FAC,TFSS,FISS,VISS,AF,RND,PLS}
KOL Size of the largest chunk of a scheduling technique L
K§_1 Size of the smallest chunk of a scheduling technique L
K- Chunk size calculated at scheduling step i of a scheduling technique L
pj Processing element j,0<j < P-1
W, Relfltive weight of processing element j, 0 < j < P -1,
J Zfzol Wpj =P
h Scheduling overhead for assigning a single iteration
Op, Standard deviation of the loop iterations’ execution times executed on p;
Hp, Mean of the loop iterations’ execution times executed on p;
Tp Parallel execution time of the entire application

T/°0P Parallel execution time of the application’s parallelized loops

Scheduling in HPC Systems 17

2.1.1 Static Loop Scheduling (SLS)

Static loop scheduling (SLS) takes scheduling decisions before application ex-
ecution. The chunk sizes and their assignment are known before the execu-
tion. Block, cyclic and block-cyclic represent various examples of SLS tech-
niques [LTS+93]. Block [LTS+93], also known as STATIC, is a straightforward
technique that divides the loop into P chunks of equal size, as shown in Eq. 2.1.
Each chunk is assigned to a corresponding PE, i.e., the i;; chunk is assigned to
the i, PE.

KSTATIC —]1\37 2.1)
Cyclic and block-cyclic also assign the same amount of loop iterations to each
PE, i.e., each PE gets a total number of iterations that is equal to %. However,
in cyclic, the loop iterations are distributed one by one in a cyclic fashion. In
contrast, block-cyclic scheduling distributes blocks of loop iterations in a cyclic
fashion. Because SLS techniques take scheduling decisions before application
execution, they incur the minimum scheduling overhead, and they have less
capability to balance the execution of loops in highly irregular execution envi-

ronments.

2.1.2 Dynamic Loop Self-scheduling (DLS)

Dynamic loop scheduling-self (DLS) techniques take scheduling decisions dur-
ing application execution. Compared to SLS, DLS techniques incur significant
scheduling overhead, but they are more capable of balancing the loop execu-
tion than SLS techniques, especially in highly irregular execution environments.
DLS techniques have been used in different applications, such as N-body sim-
ulation [BFH95], computational fluid dynamics [BVDO03], solar map genera-
tion [BWA16], spin-image generation [EMC17a], and heat conduction [BV02].
Furthermore, DLS techniques can be divided into non-adaptive and adaptive

techniques.

2.1.2.1 Non-adaptive DLS

The non-adaptive techniques utilize the information that is obtained before the
application execution. The non-adaptive techniques include self-scheduling (SS) [PPC86],
tixed size self-scheduling (FSC) [KW85], guided self-scheduling (GSS) [PK87],

taper (TAP) [Luc92], trapezoid self-scheduling (TSS) [TN93], factoring (FAC) [FHSF92],
weighted factoring (WF) [FHSU+96] trapezoid factoring self-scheduling (TFSS) [CAB+01],

18 Scheduling in HPC Systems

tixed increase self-scheduling (FISS) [PD97], variable increase self-scheduling (VISS) [PD97],
random (RND) [CIB18], and performance-based loop scheduling (PLS) [SYT07].
SS [PPC86] is a dynamic self-scheduling technique where the chunk size
is always one iteration, as shown in Eq. 2.2. SS has the highest scheduling
overhead because it has the maximum number of chunks, i.e., the total number
of chunks is N. However, SS can achieve a highly load-balanced execution in

highly irregular execution environments.

K3 =1 (2.2)

1

As a middle point between STATIC and SS, FSC assumes an optimal chunk
size that achieves a balanced execution of loop iterations with the smallest over-
head. To calculate such an optimal chunk size, FSC considers the variability
in iterations” execution time and the scheduling overhead of assigning loop it-
erations to be known before applications” execution. Eq. 2.3 shows how FSC

calculates the optimal chunk size.

KFSC_ \/ENh

/ S e (2.3)
o-P-ylogP

GSS [PK87] is also a compromise between the highest load balancing that can
be achieved using SS and the lowest scheduling overhead incurred by STATIC.
Unlike FSC, GSS assigns decreasing chunk sizes to balance loop executions
among all PEs. At every scheduling step, GSS assigns a chunk that is equal
to the number of remaining loop iterations divided by the total number of PEs,
as shown in Eq. 2.4.

R;
GSS i
K.’>> = —, where

i-1
Ri=N- > k&5
j=0

TAP [Luc92] is based on a probabilistic analysis that represents a general

(2.4)

case of GSS. It considers the average of loop iterations” execution time u and the
standard deviation o to achieve a higher load balance than GSS. Eq. 2.5 shows
how TAP tunes the GSS chunk size based on u and o.

v2 Va
KTAP = KGSS ¢ 2@ . 1[2- KGSS + 2% where
; i > i 4’ (2.5)

a-o
Vg = —

u

Scheduling in HPC Systems 19

TSS [TNO93] assigns decreasing chunk sizes similar to GSS. However, TSS
uses a linear function to decrement chunk sizes. This linearity results in low
scheduling overhead in each scheduling step compared to GSS. Eq. 2.6 shows

the linear function of TSS.

TSS _ pTSS
Ky Koy

TSS _ TSS
Ki - Ki—l - S—1

, Where

2-N
TSS TSS
KO + KS—l

KIS :[N },KTSS ~1

(2.6)

5. pl sl
FAC [FHSF92] schedules the loop iterations in batches of equally-sized chunks.

FAC evolved from comprehensive probabilistic analyses, and it assumes prior
knowledge about u and o. Another practical implementation of FAC denoted,
FAC2, assigns half of the remaining loop iterations for every batch, as shown in
Eq. 2.7. The initial chunk size of FAC2 is half of the initial chunk size of GSS.
If more time-consuming loop iterations are at the beginning of the loop, FAC2
may better balance their execution than GSS.

KFAC2 _ { [f—;],ifi mod P =0

KFAC2 , Where
i-1

,otherwise.
(2.7)

i-1
Ri=N- > kit

j=0
WF [FHSU+96] is based on FAC. However, each PE executes variably-sized
chunks of a given batch according to its relative weights. The processor weights,
W,; , are determined prior to applications” execution and do not change during
the execution. WEF2 is the practical implementation of WF that is based on FAC2,

as shown in Eq 2.8.
2 2
KiWF _ KiFAC Wy, (2.8)

TESS [CAB+01] combines certain characteristics of TSS [TN93] and FAC [FHSF92].
Similar to FAC, TFSS schedules loop iterations in batches of equally-sized chunks.
However, it does not follow the analysis of FAC, i.e., every batch is not half of
the remaining number of iterations. Batches in TFSS decrease linearly, similar to
chunk sizes in TSS. As shown in Eq. 2.9, TFSS calculates the chunk size as the
sum of the next P chunks that would have been computed by the TSS divided
by P.

P

ZETEP ifi mod P=0
K[TSS =0 "% : - (2.9)
Ki—l ’

otherwise.

20 Scheduling in HPC Systems

GSS [PK87], TAP [Luc92], TSS [TN93], FAC [FHSF92], and TFSS[CAB+01]
employ a decreasing chunk size pattern. This pattern introduces additional
scheduling overhead due to the small chunk sizes towards the end of the loop
execution. On distributed-memory systems, the additional scheduling overhead
is more substantial than on shared-memory systems. FISS [PD97] is the first
scheduling technique devised explicitly for distributed-memory systems. FISS
follows an increasing chunk size pattern calculated as in Eq. 2.10. FISS depends
on an initial value B defined by the user (suggested to be equal to the FAC’s

total number of batches).

B
k1S = k155 o 2 OBy e
vy Eeeb (2.10)
FISS _
O " 2+B)-P

VISS [PD97] follows an increasing pattern of chunk sizes. Unlike FISS, VISS
relaxes the requirement of defining an initial value B. VISS works similarly to
FAC2, but instead of decreasing the chunk size, VISS increments the chunk size
by a factor of two per scheduling step. Eq. 2.11 shows the chunk calculation of
VISS.

viss | K/ ..

K.VISS _ Ki—l + lT lfl mod P=0 Where

l K155, otherwise. (2.11)
VISS _ wFISS

Ky ™" = K,

RND [CIB18] is a DLS technique that utilizes a uniform random distribution
to arbitrarily choose a chunk size between specific lower and upper bounds.
The lower and the upper bounds were suggested to be % and 5%, respec-
tively [CIB18]. In the current work, we suggest a lower and an upper bound
as 1 and &, respectively. These bounds make RND have an equal probability
of selecting any chunk size between the chunk size of STATIC and the chunk
size of SS, which are the two extremes of DLS techniques in terms of scheduling
overhead and load balancing. Eq. 2.12 represents the integer range of the RND
chunk sizes.

KNP e [1,N/P] (2.12)
PLS [SYTO07] combines the advantages of SLS and DLS. It divides the loop

into two parts. The first loop part is scheduled statically. In contrast, the second
part is scheduled dynamically using GSS. The static workload ratio (SWR) is
used to determine the amount of the iterations to be statically scheduled. SWR is

calculated as the ratio between minimum and maximum iteration execution time

Scheduling in HPC Systems 21

of five randomly chosen iterations. PLS also uses a performance function (PF)
to statically assign parts of the workload to each processing element p; based
on the PE’s speed and its current CPU load. In the present work, all PEs are
assumed to have the same load during the execution. This assumption is valid
given the exclusive access to the HPC infrastructure used in this work. Eq. 2.13

shows the chunk calculation of PLS.

P

N-SWR -
, if R >N—(N-SWR
KPLS :{ I8 . () , Where
K722, otherwise. (2.13)

SWR minimum iteration execution time

maximum iteration execution time

2.1.2.2 Adaptive DLS

Adaptive techniques regularly obtain information during the application exe-
cution, and the scheduling decisions are taken based on that new information.
The adaptive techniques incur a significant scheduling overhead compared to
non-adaptive techniques and outperform the non-adaptive ones in highly irreg-
ular execution environments. One can find two main adaptive DLS techniques
in the literature: adaptive weighted factoring (AWF) [BVDO03] and adaptive fac-
toring (AF) [Ban00].

AWEF is similar to WF [FHSU+96]. i.e., each PE executes variably-sized
chunks of a given batch according to its relative weight. However, the weight
is updated during execution based on the performance of the processor. AWF
is devised for time-stepping applications., i.e., processor weights are only up-
dated at the end of each time-step. Variants of AWF(AWF-B and AWF-C) re-
laxed this constraint by updating processor weights at every batch and chunk,
respectively [CB08]. Additional variants of AWE, such as AWF-E and AWF-D,
are similar to AWF-B and AWF-C, respectively. However, AWF-E and AWF-D

consider the overhead of scheduling in measuring the relative weights.

AF [Ban00] is an adaptive DLS technique based on FAC. However, in contrast
to FAC, AF learns both y and o for each computing resource during application
execution to ensure full adaptivity to all factors that cause load imbalance. AF
adapts chunk size based on the continuous updates of loop iteration execution
p and their standard deviation o during application execution. Therefore, the
pattern of AF’s chunk sizes is unpredictable. Figure 2.1 shows examples of
calculated chunk size patterns generated by different DLS techniques. Eq. 2.14

22 Scheduling in HPC Systems

shows the chunk calculation of AF.

_D+2-E-R—\D>+4-D-E R

KAF , wh
l 20 where
P2
2.14
pi=1 Hpi ()
-1
P
1
E=|) —
(Pi‘l ﬂpi)

2.1.3 Performance Metrics

For ALS, the primary performance metric is the parallel execution time 7, of
the entire application. 7, is defined as the time when the latest PE finishes.
This doctoral dissertation focuses on applications with a single computationally-
intensive loop that dominates the application’s execution. Therefore, we con-
sider the parallel loop execution time 7. of the main loop of any given appli-
cation to be the main metric that assesses the application performance. When
processors execute the main loop of a given application, they often experience
uneven processor finishing times. This case is also known as load imbalanced
execution of loop iterations. Load imbalance is another primary performance
metric for parallel applications.

The load imbalance is often measured by two metrics: (1) the coefficient of
variation (c.0.v) of PEs’ finishing time [FHSF92] and (2) the percent load imbal-
ance [DHJ07; CBLO8]. The c.o.v. is the ratio between the standard deviation of
processor finishing time and the average processor finishing time, as shown in
Eq. 2.15.

cov=" (2.15)
ov=2 .

High values of the c.0.v indicate high imbalanced load execution, while values
close to zero indicate balanced execution. The percent load imbalance is calcu-
lated as shown in Eq 2.16 [DHJ07].

mean of processor finishing times

Load imbalance = (1 —) % 100 (2.16)

max of processor finishing times

Similar to the c.0.v metric, high values of percent load imbalance indicate sever
imbalanced execution, while values close to zero indicate balanced execution.
A slightly different form of this metric has been reported in the literature.

The load imbalance is measured directly as a ratio between the max and the

Scheduling in HPC Systems

Chunk Size

400
300
200
100

Chunk Size

500
400
300
200
100

Chunk Size

450

400

350

300

Chunk Size

800 ‘ ‘

Chunk Size

Q ’19 R &

Chunk ID

Figure 2.1 Chunk sizes generated by different DLS techniques. The data was
obtained from the main loop of Mandelbrot [Man80] with 512*512 loop
iterations and executing on 16 nodes (16 cores per node) such that one
MPI rank is mapped to each core.

24 Scheduling in HPC Systems

mean of processor finishing times [PGW+17]. In that case, the metric is called
(max/mean), and when the value of max/mean is close to one, the load execution

is balanced.

2.2 Batch Level Scheduling (BLS)

Users of HPC systems execute their applications as batch jobs. A batch job repre-
sents a request of specific computing resources for a limited time to execute particular
application binaries [FBP15][Rod17, page. 6]. Batch level scheduling (BLS) refers
to mapping users’ jobs to the available HPC resources. Resource and job man-
agement systems (RJMSs), also known as a batch system, are critical components
of HPC systems. RJMSs are responsible for BLS, job life cycle management, re-
source management, and job execution [RBA+18]. One may consider RJMSs as
operating systems for HPC systems [GH12]. There are two different classifi-
cations of RJMSs: (1) static vs. dynamic [FR96; PIR+14] and (2) planning vs.
queuing [HKK+03] systems.

2.2.1 Static vs. Dynamic Batch Systems

Static RIMSs are systems that provide static resource allocation to jobs, i.e., the
resource allocation cannot be changed once the job starts. In contrast, dynamic
RJMS change resource allocation during job execution. The concept of static
and dynamic resource allocation is tightly coupled with the four types of batch
jobs [FRS+97]: (1) Rigid jobs which are the most common type of job found
in HPC systems. A Rigid job is a request for a specific number of computing
resources that are necessary to execute the application binaries. (2) Moldable
jobs which are similar to rigid jobs. However, RJMSs have the flexibility to
change the number of the requested computing resources before the application
starts. Once applications start, the batch system cannot change their resource
allocation. (3) Malleable jobs which refer to the preferred jobs for any batch
system, i.e., the resource allocation of a malleable job can be changed by the
batch system at any time. (4) Evolving jobs which refer to jobs that request an
additional computing resource from the batch system during their execution.
Static RJMSs support the first two types of jobs (rigid and moldable jobs), while
dynamic RJMS support the other two types (malleable and evolving jobs). Most
batch systems support only static allocation [PIR+14]. A few production batch

systems, such as Slurm [Y]GO03], only provide certain sort of support for dynamic

Scheduling in HPC Systems 25

allocation. In Slurm, resource expansion is done by allowing a running job to
submit a new job with a dependency indicator and merging the allocations.
Slurm requires all the resources assigned dynamically for the job to be released
together [Pral6, page. 17].

2.2.2 Planning vs. Queuing Batch Systems

Planning batch systems, such as the computing center software (CCS) [KRO01],
create a schedule with start times of all requests. The execution estimate of sub-
mitted jobs is a mandatory information for planning systems. With every in-
coming request or request that ends before it was estimated, planning systems
compute a new schedule. The earliest suitable gap (ESG) and local search (LS)
based optimization routine are examples of planning-based scheduling [KR11].

Queuing batch systems, such as Slurm [YJGO03] and PBS [Hen95], hold sev-
eral queues with different configurations (limits on requested resources or on
requested time). Users of queuing batch systems submit their queues to spe-
cific queues. Batch queuing systems assign free resources to the waiting jobs in
the queues. They apply various queuing-based job scheduling techniques, also
known as priority scheduling techniques, to select a job for execution. First come
tirst serve (FCES), earliest deadline first (EDF), and shortest job first (SJF) are ex-
amples of queuing-based scheduling [KMR07; ABS+11]. Most of the existing
batch systems are queuing systems [HKK+03].

2.2.3 Queuing-based Job Scheduling

In FCEFS, the batch scheduler sorts the queue based on the job submission time.
Jobs with the earliest submission time become at the head of the queue. In
EDEF the batch scheduler sorts the queue based on the job due date (deadline).
The job with the soonest deadline becomes the head of the queue. In SJF, the
batch scheduler sorts the queue based on the job expected execution time. The
job with the minimum expected execution becomes the head of the queue. The
batch system does not start the job at the head of the queue unless all its required
resources are free. In many cases, the available resources may be sufficient to
start other jobs rather than the job at the head of the queue. These cases motivate
the backfilling (BF) scheduling technique [FW98].

BF is a supporting scheduling technique that allows scheduling of jobs out
of order from a given queue as long as those jobs do not delay the start time of
jobs placed at the beginning of the queue [FW98]. BF helps to execute small jobs

26 Scheduling in HPC Systems

(which request a small number of computing resources) when insufficient avail-
able computing resources are needed to execute the highest priority jobs. BF is
classified into conservative BF and EASY BE. Conservative BF only chooses for
execution the small jobs (with short execution time and requests a few comput-
ing resources) that their execution will not cause a delay to any of the waiting
jobs, including the job at the head of the queue. In contrast, EASY BF only
ensures that the waiting job at the queue’s head will not be delayed when the
small jobs are executed.

Most of the production batch systems, such as Slurm [Y]GO03], LSF [IBM16],
and PBS [Hen95], allow user to define custom priority scheduling. For instance,
the batch system may be configured to higher priorities to the jobs submitted
by a certain user or group of users. Also, many fairness policies may be ap-
plied. For instance, a fair-share scheduling technique prioritizes queued jobs
such that an under-serviced user is scheduled first. The goal of such a fair-share
scheduling technique is maintaining the same average job waiting time across

all users.

2.2.4 Other Job Scheduling Techniques

Gang scheduling [FR95; FJ97] allows all jobs to execute concurrently on the same
set of computing resources using a time-slicing mechanism. Each job receives
the request computing resources for a time slice (quantum). The scheduler then
switches the context to allow another job to execute on the same computing re-
sources set for another quantum. Gang scheduling relies on stopping one or
more low-priority jobs to let high-priority jobs execute (also known as Preemp-
tion).

Bin packing [CGJ83] scheduling selects groups of jobs to launch simultane-
ously on one or a set of computing resources. The packed jobs are selected
to maximize the utilization of the allocated resources. Gang and bin packing
scheduling are not commonly used. FCFS and EASY BF are the most common
job scheduling techniques for real productions HPC system [GGR+15].

2.2.5 Performance Metrics

System makespan (Tpucn) is measured as the total execution time of the entire
batch. System makespan is shown in Eq. 2.17 where T; is the time when the first

job starts and 7 is the time when the last job in the batch completes.

Tharen = T] -T; (217)

Scheduling in HPC Systems 27

Short system makespan indicates better system performance. However, one
may not be able to use it to assess the HPC systems’ scheduling techniques. In
production, HPC systems continuously accept new jobs as users submit them.
Hence, there is no fixed workload with a specific end. System utilization (SU)
is a crucial metric that one may use to assess batch systems’ performance. It
refers to the percentage of the resources used over a time frame [FTK14; Xha10].
Eq. 6.1 shows the calculation of SU where T is the time that a computing re-
source k spent executing jobs, P is the total number the computing resources.
SU ranges from 0% to 100%.

P-1
T
su= 2=0T% o0 (2.18)
P Tbalch

Higher values of system utilization indicate better system performance.

System throughput measures the number of jobs completed per unit time.
Batch schedulers should maintain high values of system throughput. Hence,
they indicate better system availability.

Average job waiting time is the average time that jobs spend waiting for
resources before execution. Eq. 2.19 shows the job average waiting time, where
Jstart and JS“bmit are the start and the submit time of job J;, respectively, and N
is the total number of jobs.

N-1 gstart _ ysubmit
K5y -

Average job waiting time = (2.19)

N

A lower average waiting time indicates better system performance.

2.3 Related State of the Art in Scheduling

The dynamic resource ownership management (DROM) is a recent research ef-
fort that allows RM]JS to address efficient resource usage challenge [DGGL+18].
DROM provides effortless malleability for RM]JS that requires no change in ap-
plications” source codes. DROM exploits the finest level of parallelism to sup-
port application malleability, i.e., changing the number of the threads assigned
to a computing resource to create a new room for other applications on the
same computing resource. One may use DROM with load balancing libraries
similar to LeWI [GCL09] (LeWI is a runtime library that uses standard mech-
anisms, such as OMPT [Ope20] to monitor application execution.). LeWI can
enhance application performance and increase resource utilization of individ-

ual computing nodes. A holistic dynamic scheduling policy, called slowdown

28 Scheduling in HPC Systems

driven (SD-policy) [DJC19] was proposed based on DROM. The SD-policy ap-
plies backfilling by selecting small jobs to share nodes with other running jobs.
The SD-policy depends on DROM to achieve efficient node-sharing.

DROM and the LeWI library are similar to the MLS prototype because they
target the same challenge of efficient resource usage. However, DROM relies
on the malleability of the parallel runtime systems used by the applications,
such as OpenMP or OmpSs to change the number of active threads without
affecting running applications. This may not be suitable for applications that
do not use a malleable parallel runtime system, such as the message-passing
interface (MPI). In contrast, the MLS prototype does not require applications
to be malleable. Furthermore, it enables coordination between the scheduling
of different applications via batch systems. For instance, waiting or running
applications (need more computing resources) may communicate their needs to
the RIMS, which requests other MPI-based applications to stop scheduling any
workload on the required computing resources certain period. In this scenario,
the schedulers of different applications coordinate with each other through the
RJMS. When an application scheduler decides not to schedule any workload on
a particular resource, the process can be entirely suspended by the operating

system, and other applications can use their computing resource.

A notable research effort implemented an elastic execution framework for
MPI applications [CMHG+16]. The framework introduced certain extensions
to the MPI standard and to Slurm [Y]JGO3]. These extensions permit a dynamic
change of the number of processes of a given application in a way that addresses
several challenges of the original dynamic process support of the MPI standard.
The elastic framework requires application scientists to use the new MPI func-
tions to support application malleability. Such a requirement could be a draw-
back or a limitation of the elastic MPI framework. A large-scale study that ex-
amined more than one hundred MPI applications showed that most of the MPI
applications only use MPI 1.0 features [LMM+19]. For instance, non-blocking
collectives and neighborhood collectives are MPI 3.0 features and found to be in
less than 1% of the examined applications. The cost of rewriting working codes

can be one of the reasons behind that fact.

This elastic MPI framework has the same goals as the MLS prototype. How-
ever, the MLS prototype shifts the responsibility of releasing or requesting com-
puting resource to the application scheduler rather than the application code
itself. Moreover, in the MLS prototype, allowing one application to share idle

computing resources with other applications does not require shrinking opera-

Scheduling in HPC Systems

29

tions at that application’s side, which keeps overhead low.

Two-level Scheduling Simulator

Studying mutual impacts of various scheduling levels requires conducting sev-
eral exploratory experiments. These experiments involve trials of many combi-
nations of scheduling techniques. In many cases, the associated cost of such an
exploratory study is unaffordable. Simulation approaches mitigate such costs
and enable the study of complex systems [STL+15; MEC+20].

This chapter introduces a novel scheduling simulation approach that bridges
two different scheduling simulators by exchanging scheduling information among
them [EMC17b]. Based on our approach, we have developed and assessed a
two-level scheduling simulator that employs well-known simulation toolkits:
SimGrid [CGL+14] and GridSim [BMO02]. Our two-level scheduling simula-
tor enables the simulations of HPC workloads at fine (tasks within applica-
tions) and coarse (jobs within a workload) scales. We visualize the simulation
events collected from both simulators by converting them into an OTF2-based
trace [EWG+11] that is compatible with trace visualization tools, such as Vam-
pir [KBD+08].

3.1 Application and Batch Level Scheduling
Simulations

SimGrid [CGL+14] is a widely used simulation toolkit for ALS [HCB17; SBS+13;
BSC+12]. SimGrid supports the development of parallel and distributed appli-
cations in heterogeneous and homogeneous environments. Recent releases of
SimGrid have three different interfaces: MetaSimGrid (MSG), SimDag (SD), and
Simulated MPI (SMPI). MSG simulates applications as a group of concurrent
processes. SD simulates directed acyclic graphs (DAGs). SMPI executes un-

32 Two-level Scheduling Simulator

modified applications written using the message passing interface (MPI) in a
simulation mode. SimGrid also has a new interface called S4U that is planned
to replace the other three interfaces in the future.

GridSim [BMO02] is another simulation toolkit that is widely used for BLS.
GridSim facilitates simulation of grids, clusters, and single processing elements.
It offers support for a broad range of heterogeneous resources, including shared
and distributed memory architectures. GridSim is built on top of a reliable
discrete event simulation library called SimJava [How98]. The GridSim toolkit
is fully implemented in Java, which promotes its portability and extensibility.

We use a SimGrid-based scheduling simulator that is based on the SD in-
terface [EMC16] for the ALS simulations. This specific SimGrid simulator has
the advantage of being experimentally verified and capable of achieving a close
agreement to native executions in various scenarios [MEC+18; MEC+20]. For the
BLS simulations herein, we use a GridSim-based scheduling simulator, called
Alea [KMRO07; KR10; KSS19]. This GridSim-based simulator has the advantage
of offering a wide range of implemented and verified BLS techniques, such as
ECFS, EDF, SJF, and BF [FW98].

The SimGrid [CGL+14] and GridSim [BM02] simulation toolkits are prefer-
ably used (not restricted) to support ALS and BLS, respectively. Certain re-
search efforts (described below) studied extensions of one of these two simula-

tion toolkits to support the simulation of other scheduling levels.

3.1.0.1 ALS Simulation Based on a BLS Simulation Toolkit

Alea [KMRO07] is a GridSim-based simulator. A remarkable research effort [SBC+11]
extended Alea to support ALS. Four scheduling techniques were implemented

in the extension, including SS [PPC86], FSC [KW85], GSS [PK87], and FAC [FHSF92].
The extension carried over all the Alea’s advantages to the ALS domain, such

as application tasks being expressed in standard workload format (SWF) [Fei20]
and the effect of system failures being examined with different ALS techniques.

However, the extension supported ALS in such a way that it can no longer sup-
port BLS.

3.1.0.2 BLS Simulation Based on an ALS Simulation Toolkit

Simbatch [Can08] is a SimGrid-based simulator. Simbatch uses the MSG inter-
face of SimGrid to support simulations and the development of BLS techniques.
Simbatch’s uniqueness comes from the fact that it swaps the focus of SimGrid
from the ALS perspective to the BLS perspective. However, Simbatch supports

Two-level Scheduling Simulator 33

two basic batch scheduling techniques FCFS [ABS+11] and BF [FW98]. Further-
more, Simbatch cannot support ALS.

Both SimGrid [CGL+14] and GridSim [BMO02] have been used to support ALS
and BLS simulation. However, none of these simulators was used to support
holistic simulation. In the context of this doctoral dissertation, holistic simula-
tion refers to ALS and BLS’s simultaneous simulation. This simulation is essen-
tial to understand the BLS-ALS relation and exploit the multilevel parallelism
aspect of contemporary HPC systems.

Two critical questions arise: (1) Which simulator should we extend to sup-
port BLS-ALS simulations? And (2) How does the selected simulator support
BLS-ALS simulations? The answer of the first question is not straightforward,
because the selected simulator has to be the most suitable one for both BLS
and ALS. An important question raises regarding how suitability is defined and
measured. Both the SimGrid [EMC16] and GridSim [BMO02] are event-based
simulators, i.e., both will have the same simulation results when one simulates
the same events as the other. Therefore, we judge the “suitability” with the
following two evaluation criteria: (1) the simulation wall clock and (2) the cus-
tomization effort. The simulation wall clock is the time one simulator takes to
conduct the simulation and produce the simulation results. The customization
effort is the development effort associated with extending a simulator to support
ALS or BLS simulation. The customization effort is proportional to the number
of lines of code.

Figures 3.1 and 3.2 show the proposed extensions (in the GridSim [BMO02]
and SimGrid [CGL+14] simulators) that enable simulation of ALS and BLS. The
extensions in both simulators rely on a flag called the ALS switch. If a user
sets the ALS switch to true, the simulation is considered as an ALS simula-
tion; otherwise, it is considered as a BLS simulation. One may wonder about
the reason for having such a flag, i.e.,, can we extend each of the two simula-
tors by implementing scheduling techniques at both levels directly? Of course,
both simulators require implementing the scheduling techniques at both lev-
els. For instance, we have implemented ALS techniques, such as FSC [KW85],
GSS [PK87], and FAC [FHSF92], for the GridSim simulator. Also, we have imple-
mented BLS techniques, such as FCFS, SJF, and EDF, for the SimGrid simulator.
However, the implementation of these scheduling techniques in both simulators
is insufficient to enable simulation of ALS and BLS. The entire simulation flow

in both cases is not the same.

Two-level Scheduling Simulator

34

‘S19 1oddns 0} suoisualxa pasodoid ay} pue Joje|nwis pLHWIS aY} JO MO|JIOM UOIINIAXS aY |

uona|dwoo
/Buiuuibaq ysel
JUBAS uole|NWIS 81015

pu3z

|=- $80In0Ssal 9P|
9IS YUNYO =+ SSB) Pa|NPayos

H

90IN0Sal B|PI 1X8U 8y} 0}
(az1s Yunyo) syse} ubissy

f

JUBA® 1Xau
|11} UONE|NWIS SOUBAPY

anbiuyos) SV palos|es ayl
Uo paseq 8zIs Yunyo aje|noe)

apo2 [eulbluO

SJUBA® UOIBINWIS

$804n0sal
d|p!1vH

uoIsueIXe 8poD

:puaba

[

aseq

asfed

!

Buinpsyos 607

sluane

sqol |ejol >
$)se} psInpayos

ani|

SYSEl ||e pesy

ani|

aoepalu| Bequis
puvwIs veis

L'¢ ainbi4

qol e|qeyng

|

qgol ejqeuns pui4

0<
$90IN0Sal 9|

payels qor
JUBA® UOlB|NWIS 810}S

JUBA® 1X8U

t

anbjuyos} Sg pelos|es
8y} uo paseq sqol ||e uos

ani)

11} UOIBINWIS 8oUBAPY

uona|dwoo qopr

paysiuy
sqol |Iv

JUBA® UOIB|NWIS 101G

ananb gol ay} 01
gol mau 8y} ppy

H

aull mau e
asled pue peay

sqol [ejo] >
unoo qop

an.|

| gol mau e ajeal)

sanuo

0

uoneNwIs azienu|

Heis

35

Two-level Scheduling Simulator

'SV Hoddns 0} suoisua)xa pasodoid ay} pue J0je|nwis WISPLIY) 3y} JO MO[JHIOM UOIINIAXd 3yl g'¢ ainbi4

|=- $92IN0Sai 3|p|

82IS YUNyd =+ SYSB)} P8|NPayds

!

aINPayds S1g

0] syse} ubissy

20IN0Sal B|pI 1X8U 8y}

I

[

i

qol mau ppy

azis
3unyo ajenoe)

§82In0sal

dIp! 18H

9poo [eulbLO
SJUSA® UoleINWIS
UOISUBIXd 8p0D
:puabe

oni|

uona|dwod
qor osje4

Ja|npayos
sreuIwIa]

oni|

SEYE)
uoljeuIwIS,

JUSAS UOlEINWIS
Xau 19

osjeq

pu3
®

H

Japeo| qol

aeulwIa)

——

uolssiwgns qop
uaAe g e1eal)

la|npayos yeis

as[eq

anil

i

as|eq

|

aul| mau e
assed pue peay

Jopeo| YSE}
areulwIs)

S)SE} |[e pesy

Jopeo] qof LelS

sqol |ejo} >
1unod qol

auibus uonenwis
wispuy yeis

sanud

1apeo|
Yse) Jels

as[ed

youms sy

voneinuis ozieny) [<O

uels

ani)

36 Two-level Scheduling Simulator

For ALS, all tasks are ready for scheduling at the same time and can be sched-
uled in any order. Also, each task is executed on a single PE (see Section 2.1).
For BLS, jobs are submitted at different times, the job execution order is crucial,
and each job may be executed on multiple PEs (see Section 2.2). The ALS switch
ensures the appropriacy of the simulation flow. For instance, in Figure 3.1, if the
ALS switch is true, the simulator reads all input tasks at once. The simulation
flow goes as follows. (1) Get all idle PEs, (2) Calculate a chunk size for each PE
based on the selected ALS technique, (3) Assign a chunk to each PE, (4) Update
the total scheduled tasks, and (5) Advance simulation to the next event. These
steps are repeated until all tasks are executed. When the ALS switch is set to
false, the simulator reads all jobs. The simulation flow then takes another path
as follows. (1) Sort all jobs based on the selected BLS technique, (2) Get idle PEs,
(3) Find a suitable job, (4) Assign selected job to the idle PEs, (4) Update the
total scheduled jobs, and (6) Advance simulation to the next event. These steps

are repeated until all jobs are executed.

In Figure 3.2, the GridSim simulator is a multithreaded application that is
based on Java. GridSim employs several objects that interact via sending/re-
ceiving scheduling events. When the ALS switch is set to true, a task loader
object is created. The task loader reads all input tasks at once. For each task, it
sends a scheduling event. The scheduler entity checks for idle resources. When
the total number of idle resources is larger than 0, the scheduler entity schedules

new tasks on the idle resources.

For the BLS simulation, the job loader reads all jobs. The scheduler entity
checks job events, such as job submission and completion. With each of these
events, the scheduler entity tries to schedule the waiting jobs by assigning them

the PEs they require.

To evaluate both simulators for ALS, Lublin [LF03] has been used to gener-
ate tasks of two synthetic applications, each containing 1,115 and 65,703 tasks,
respectively. We have considered three ALS techniques, namely FSC [KW85],
GSS [PK87], and FAC [FHSF92]. For BLS, we have used two real HPC work-
loads from the parallel workload archive (PWA) [FTK14] that contains several
workloads from large scale HPC systems worldwide. The first workload be-
longs to the High-Performance Computing Center North (HPC2N) in Sweden
and contains 3,100 jobs. The second workload belongs to the Czech National
Grid Infrastructure (NGI) MetaCentrum and contains 17,800 jobs. Also, We have
considered three BLS techniques, namely FCFS, EDF, and SJF [ABS+11].

Figure 3.3 shows the performance of the SimGrid and the GridSim simulators

Two-level Scheduling Simulator 37

in terms of simulation wall clock time for the selected ALS techniques. One can
notice that the SimGrid simulator outperforms the GridSim simulator in both
cases (small- and large-scale applications). In contrast, Figure 3.4 shows that the
GridSim simulator outperforms the SimGrid simulator in the case of large-scale

workloads. The reason for this advantage is that the BLS simulator has to sort

w
o

|- SimGrid =2 G?idSim]

N
u

N
o

._.
=

Simulation wall clock time (s)
o &

i~ { ~ A { 1
FSC GSS FAC
ALS technique

o

(a) Small-scale application — Total number of tasks 1,115

w
o

B SimGrid 24 GridSim

= - N N
o 0 o &

Simulation wall clock time (s)
U

o

FSC GSS FAC
ALS technique

(b) Large-scale application — Total number of tasks 65,703

Figure 3.3 Performance of the SimGrid and GridSim simulators in terms of
simulation wall clock time for the selected ALS techniques.

all the jobs with every incidence of simulation events, such as job submission and
completion. This repetitive sort is mandatory because simulation events change
the priority of the waiting jobs. The GridSim simulator exploits its underlying
toolkit that is written in Java. This allows the GridSim simulator to use complex
data structures, such as priority queues. The use of such complex data structures

reduces the high cost of the repetitive sort. Bringing the same advantage to the

38 Two-level Scheduling Simulator

30

I SimGrid 74 GridSim
25+ 1

20}
15¢

10f

Simulation wall clock time (s)

o A] 1
FCFS EDF SJF
BLS technique

(a) Small-scale workload (HPC2N) — Total number of jobs
3,100

w
o

B SimGrid Z=4 GridSim

N
[$))

N
o

=
o

Simulation wall clock time (s)
o o

0

EDF
BLS technique

(b) Large-scale workload (NGI) — Total number of jobs
17,800

Figure 3.4 Performance of the SimGrid and GridSim simulators in terms of
simulation wall clock time for the selected BLS techniques.

SimGrid simulator requires more development efforts to build and integrate the

same complex data structures that the GridSim simulator uses.

In the ALS simulations, scheduled tasks have no dependencies or priority to
execute. Therefore, these tasks are not required to be sorted for execution in
any order. Consequently, the SimGrid simulator, written in C, outperforms the

GridSim simulator.

We conclude that both simulators can support ALS and BLS. However, the
GridSim simulator has several advantages in simulating BLS techniques, while
SimGrid has other benefits in simulating ALS techniques [EMC16].

Two-level Scheduling Simulator 39

3.2 Proposed Scheduling Simulation Approach

Considering each simulator’s advantages, we propose a novel simulation ap-
proach by employing a simultaneous execution of two scheduling simulators.
Hence, each simulator is responsible for simulating scheduling at a certain level
(cluster and node level). The proposed simulation approach is inspired by the
multiscale modeling approach that provides knowledge about complex systems
by modeling the interaction between phenomena at different scales [BMB+13;
CFK+18; TES+19]. The proposed approach allows simulators to feed each other
with their scheduling decisions when needed throughout the simulation. Fig-
ure 3.5 illustrates an example in which the BLS simulator simulates a batch of

jobs and requires as input three critical parameters: a set of batch jobs, a set of

Jobs Resources
specifications specifications
1 !
B.LS - BLS simulator instance > Usage reports for
algorithm(s) - entire platform
Tasks Resources RJi Simulation results
of job Ji| assigned to job Ji of job Ji on resources RJi
\ 4 Y
ALS - ALS simulator instance i -> Usage reports for
algorithm(s) resources RJi
Legend

— - Simulator input/output
— Bridging messages

Figure 3.5 Bridging simulator instances for allocating resources RJ; to job J;
using a certain BLS techniques and executing J; on RJ; according to
a given ALS techniques.

cluster resources, and a selected BLS technique. The BLS simulator allocates the
cluster resources to execute a specific job from the batch at a particular time.
The BLS simulator feeds its decision to the ALS simulator, instantiated for that
particular job, with three parameters: tasks of that particular job, description of

the allocated resources, and the selected ALS technique.

40 Two-level Scheduling Simulator

3.3 Bridging an ALS Simulator with a BLS
Simulator

A new two-level scheduling simulator is designed and implemented by con-
necting and integrating two different simulators. The SimGrid-based simula-
tor [EMC16] is used to simulate ALS techniques, while the GridSim-based sim-
ulator [KMRO07] is used to simulate BLS techniques. The connection between
these simulators poses the following implementation challenges. (1) Interfacing
two different programming models: structured and object-oriented program-
ming were used for developing the SimGrid (in C) and the GridSim (in Java)
simulators, respectively. (2) Synchronizing the independent simulation clocks
of the simulators’ instance. SimGrid and GridSim are based on discrete events,
and each keeps its simulation clock that is only advanced when an internal event
occurs. (3) Merging the output results generated by the multiple instances of the
two simulators to enable a proper informative presentation. We propose a con-
nection layer that manages simulator instances, synchronizes the clocks of the
simulator instances, and exchanges necessary information regarding jobs, tasks,

and other simulation parameters.

Table 3.1 summarizes the notation we use to explain the proposed connection
layer in the following scenario. A batch J consists of four jobs {Jy, J1, J2, J3}. Each
job consists of three tasks. In each job, the sum of the length of the first two tasks
is equal to the length of the third task, i.e., LT} + LT, = LT3. A cluster R consists
of five homogeneous resources {Ry, R1, Ry, R3, R4}. The set of resources required
by job J; is denoted RJ;, 0 < i < 5. The following resource assignments are
requested: RJ() = {RO, Rl}, RJ1 = {Rz, R3}, RJZ = {Rz, R4}, and RJ3 = {Ro, R4}. The
arrival time of job J; is AT;, 0 < i < 5, where ATy = ATy = 0 and AT, < AT3. The
finishing time of job J; is FT;,0 < i < 5,and FTy = FT; > ATz > AT,. FCFS and
STATIC are used at BLS and ALS, respectively.

Since ATy = ATy = 0, the connection layer manages the BLS and ALS simulator
instances by starting two separate instances of the SimGrid-based simulator.
These independent instances simulate the execution of jobs Jy and J; on RJy and
RJ1 using STATIC. Given that FT1 > AT, and RJ1 N RJ = {Ry}, the connection
layer holds the simulation of J; until the SimGrid simulation instance for J;
reports its completion. Since AT3 > AT>, J; starts before J3. Thus, the connection
layer holds the simulation of J3 until the SimGrid simulation instances for Jy and
Jo report their completion. Given that RJ3NRJy = {Ro} and RJ3 N RJ, = {Ry)},

the time at which simulation of J3 begins depends on the time at which the

Two-level Scheduling Simulator 41

Table 3.1 Notation of the proposed connection layer for the two-level scheduling
simulation approach

Symbol Description

J Set of batch jobs

M Number of cluster resources

N Number of jobs

I Set of batch jobs

' {J;i |0<i<N)}

R Set of cluster resources
{R;10<j<M)

RJ, Set of resources allocated to job J;
RJ; CRRJ; #0,0<i<N

AT Set of jobs arrival times
{(AT; |0 <i < N}

FT Set of jobs finishing times
{FT; |0 <i < N}

ST Set of jobs starting times
{ST; |0 <i < N}

L Length of job J; (in GFLOP),
where 0 <i < N

I Set of all tasks belonging to job J;,
where 0 <i < N

LT, Length of task Ty (in GFLOP) of job J;,
where0 <k < |TJtland0<i< N

" Task variation factor

0<T<1

Time to complete all jobs of a certain workload,
System_makespan,, | where each job has an equal number of tasks
max(FT) —min(AT) | Y =0,YJ; € J

Time to complete all jobs of a certain workload,
where the sizes of tasks within each job varies
accordingto T

max(FT) —min(AT) |0< T <1,¥J; € J

System_makespany

simulation of Jyp or J, completes. The finishing times of Jy and J, are dominated
by the scheduling decisions of the ALS techniques. Recall that for jobs Jy and J,
the sum of the first two tasks equals the length of the third task. Due to using
STATIC as ALS and having homogeneous resources, load imbalance arises in
executing the three tasks of Jy and J> on the sets of resources RJy and RJ;.
Consequently, the BLS scheduler, FCFS, needs to delay the beginning of the
execution of J3. The influence between BLS and ALS becomes visible via the
fact that STATIC as ALS affects the individual performance of Jy and J, and the

42 Two-level Scheduling Simulator

performance achieved by FCFS, as well. In this scenario, if the FCFS technique
passed certain information to the STATIC technique to prioritize the release of
resources, the STATIC technique would assign the smallest chunk of tasks to the
resources needed to be released for other jobs, such as Ry and Rj.

The connection layer synchronizes the running simulators using two strate-
gies: simulation suspend /resume and event injection, as illustrated in Figure 3.6.
A simulation suspend/resume entity registered in GridSim-based is used to sus-
pend and resume the BLS simulation. It performs a busy loop that ends if and
only if all running instances of the SimGrid-based simulator report their com-
pletion and results. Because the suspend entity is a registered GridSim entity, its
busy loop can pause the simulation clock of the GridSim-based simulator until
the busy loop ends.

BLS simulator instance

GridSim-Alea simulation process
| Job loader entity | | Scheduler entity |
GridSim entity Job GridSim entity Job Job
registration submission registration ~ submission completion
| GridSim simulation engine @ |
GridSim entity Job execution Job
registration update submission
! l Suspend simulation 6
Simulation - — — — — — — — — BLS
suspend/resume . communication
. Job execution update
entity === manager
Starting Job execution Starting Job execution
parameters report parameters report
V- A 4 !
Job simplation E’;‘;;L“Jtrif“ ALS J({b simulation E’:;‘(’]‘::’“ ALS
usmigl glvelzlALS = = =—P>|communication Usmﬁ glVerziALS - - communication
on allocate: ® manager + «« ||onallocate ® manager
[resources resources
SimGrid-SD simulation process SimGrid-SD simulation process
ALS simulator instance 1 ALS simulator instance N

Legend

—> Internal GridSim events
—>» External messages of the connection layer
— + Internal synchronization events of the connection layer
[Connection layer entities
® Simulation clock within a simulation instance

Figure 3.6 The two-level scheduling simulator. The two-level simulator consists of
a single BLS and several ALS simulation instances. The connection layer
synchronizes the independent simulation clocks of the GridSim and
SimGrid simulators.

The internal synchronization events in Figure 3.6 are created by the BLS com-

munication manager and used to update the simulation suspend /resume entity.

Two-level Scheduling Simulator 43

Thus, the suspend/resume entity can incrementally inject the execution reports
of the running SimGrid simulation instances into the GridSim engine (see Figure
3.6). Furthermore, the suspend/resume entity can end the GridSim engine busy
loop when there are no more running SimGrid simulation instances. The sim-
ulation suspend/resume entity injects the execution reports as GridSim events.
Therefore, the GridSim engine can use them to advance its simulation clock.
Figure 3.6 depicts the GridSim and SimGrid simulators” independent simula-
tion clocks and their synchronization by connection layer..

The connection layer uses socket-based communication and application ar-
guments to exchange the information between the GridSim simulator and the
SimGrid simulator instances. The connection layer launches SimGrid simulator
instances as independent application processes and passes certain parameters as

application arguments to each established process.

3.4 From High Level to Detailed HPC Workload
Representation

A holistic simulation of ALS and BLS requires information relevant to both lev-
els. For the available HPC workloads [FTK14], it is often the case of keeping
only the information relevant to BLS. The workloads in PWA [Fei05] only keeps
information such as job ID, submission time, wait time, allocated resources and
user ID. Additional details regarding the ALS are essential. For instance, ALS
simulations require details regarding the characteristics of the application and
the number of parallel tasks within the application.

Since this information is not presented in the PWA workloads, we make the

following assumptions:

1. All jobs in the workload are computationally-intensive. Consequently, all
communication or I/O tasks that may exist in the original jobs are not
considered. This assumption is not a limitation of the proposed approach.
It is simply used to convert the existing workloads to one of the possible
cases where jobs are computationally-intensive, as such jobs are among the

main incentives for using HPC systems.

2. Although the number of tasks and the length of each task are application-
dependent, we consider the case of ideal parallelism. All available hard-
ware parallelism is exploited, execution is perfectly load balanced, com-

munication is virtually instantaneous, and the resources allocated to tasks

44 Two-level Scheduling Simulator

are identical. We consider that case of ideal parallelism as our baseline

case.

Also, other cases are generated and examined by introducing a variation
at the task length using the task variation factor Y. By considering job J;
and its allocated set of resources RJ;, the elements of the set TJ; of tasks of

job J; can be randomly generated according to a probability distribution with a

|RJi]

mean u = and a standard deviation oo = u x Y.

3.5 Performance Evaluation and Discussion

We consider two of the most recent workloads in PWA [Fei05]. Table 3.2 summa-

rizes the characteristics of these two workloads. We also consider combinations

Table 3.2 Characteristics of the workloads selected from the parallel workload
archive (PWA)

Workload Wi W,
Curie supercomputer | Thunder Linux cluster
Provenance
operated by CEA operated by LLNL
Period of time Feb, 2011 — Oct, 2012 | Jan, 2007 — Jun, 2007
Total number of jobs 312,000 121,000

of three BLS techniques: FCFS, EDF, and SJF [ABS+11], and four ALS techniques:
STATIC [LTS+93], SS [PPC86], GSS [PK87], and FAC [FHSF92]. For the coarse-
grain analysis, jobs of the most intensive 24 hours in terms of job arrival time
have been selected from both W; and W,. These most intensive 24-hour intervals
of Wi and W, are referred to as W124 and W224.

In all experiments, a simulated platform that consists of four hosts is used.
Each of the hosts has a processor that contains 64 cores. The maximum perfor-
mance of one host is 3 TFLOP/s. A fully connected network topology is used to
connect the four hosts. The network model used is an InfiniBand model with a
link bandwidth and latency of 50 Gbps and 500 ns, respectively.

Figures 3.7 and 3.8 show the total system makespan of W2* and W2* using the
twelve combinations of BLS-ALS techniques. Each job in the two workloads is
divided into a number of identical length tasks equal to the number of allocated
resources. The task length variation factor T is not used in these experiments.
The results showed in Figures 3.7 and 3.8 correspond to the best case scenario

in which all submitted applications are perfectly optimized for their allocated

Two-level Scheduling Simulator 45

48000

< 46000

C

(]

o

("))

2 44000

(o]

€

g4zooo~

(%]

>

[7p]

40000 1
,\\o‘oéo S o ,\\oQ(,;o e ,\\o(((g) I
FET G TG SV

S A

BLS-ALS combination

Figure 3.7 The system makespan of the Wl24 workload for several BLS-ALS
combinations. The W7* workload consists of 1,700 jobs. Three BLS
techniques (FCFS, EDEF, and SJF) and four ALS (STATIC, SS, GSS, and
FAC) techniques are used to form twelve BLS-ALS scheduling

combinations.
145000
—~ 142500
0
G 140000
o
0
2 1375001
©
€ 135000
E
(0]
+ 1325001
>
(7]
130000 |
%& 4 ’ ’ ’ ’
FEEE HC P AN
& & i

BLS-ALS combination

Figure 3.8 The system makespan of the W;* workload for several BLS-ALS
combinations. The W3* workload consists of 3,100 jobs. Three BLS
techniques (FCFS, EDEF, and SJF) and four ALS (STATIC, SS, GSS, and
FAC) techniques are used to form twelve BLS-ALS scheduling
combinations.

resources. Although such a scenario is highly desirable both at the cluster op-
eration level and at the user level, it is infeasible in practice. The task length
variation factor T is used to vary the lengths of tasks within a certain job to

represent more realistic applications.

Figures 3.9 and 3.10 show the effect of increasing " from 0.0 (as considered

46 Two-level Scheduling Simulator

140000 B Y=0.10 HE Y=0.20

1200004 H Y=0.15 B Y=0.25

1000001
80000

60000

System makespan (s)

40000+

20000 1

%2}
9
[T
w

FCFS-STATIC
FCFS-SS
FCFS-GSS
FCFS-FAC
EDF-STATIC
EDF-SS
EDF-GSS
EDF-FAC
SJF-STATIC
SJF-GSS
SJF-FAC

BLS-ALS combination

Figure 3.9 Effect of changing the task variation factor Y from 0.1 to 0.25 on the
total workload makespan for the twelve combinations of selected BLS and
ALS techniques for the jobs within W74,

300000

Em Y=0.10 HEm Y=0.20

- 2800007 mm V=015 mmm Y=0.25

= 2600001
(o]
2
% 240000 1
4
£ 220000{
€ 200000
i
2 1800001

160000

FCFS-STATIC
FCFS-SS
FCFS-GSS
FCFS-FAC
EDF-STATIC
EDF-SS
EDF-GSS
EDF-FAC
SJF-STATIC
SJF-SS
SJF-GSS
SJF-FAC

BLS-ALS combination

Figure 3.10 Effect of changing the task variation factor Y from 0.1 to 0.25 on the
total workload makespan for the twelve combinations of selected BLS
and ALS techniques for the jobs within W3*.

in Figure 3.7 and Figure 3.8) to 0.1, 0.15, 0.2, and 0.25, respectively for the twelve
combinations of BLS and ALS techniques. One can infer that increasing I leads
to an increase in the total makespan of both workloads W?* and W3*, regardless
of the BLS-ALS combination used. The amount of time corresponds to this

increase in the total makespan is not constant across all BLS-ALS combinations

System_makespany represents the amount of time required to complete all

jobs of a particular batch of jobs in the presence of Y, while system_makespan,

Two-level Scheduling Simulator 47

N
o

mEm Y=0.10 Em Y=0.20
Em Y=0.15 mm Y=0.25

System makespan (s)
Jun = N N N
2 & o b &

=
i

=
N

FCFS-SS
EDF-SS
EDF-GSS
EDF-FAC
SJF-SS
SJF-GSS
SJF-FAC

FCFS-STATIC
FCFS-GSS
FCFS-FAC

EDF-STATIC
SJF-STATIC

BLS-ALS combination

Figure 3.11 The ratio between system_makespan and system_makespan,, for
the twelve combinations of selected BLS and ALS techniques for the jobs
within W124.

2.6

Em Y=0.10 mm Y=0.20
E Y=0.15 mm Y=0.25

System makespan (s)
= = N N N
(o)} o] o N B

=
>

=
N
)

FCFS-SS
EDF-SS
EDF-GSS
EDF-FAC
SJF-SS
SJF-GSS
SJF-FAC

FCFS-STATIC
FCFS-GSS
FCFS-FAC

EDF-STATIC
SJF-STATIC

BLS-ALS combination

Figure 3.12 The ratio between system_makespan and System_makespan,, for
the twelve combinations of selected BLS and ALS for the jobs within W3*.

is the amount of time required to complete all jobs of a particular batch of jobs

. . system_makespan., o
in the absence of Y. The ratio identifies the BLS-ALS com-

system_makespan,,
binations that better absorb the effect of increasing Y. One can notice that SS’s

presence in the BLS-ALS combination fortifies the BLS technique’s performance,
i.e., the BLS-ALS combination absorbs the effect of increasing .

For the fine-grain analysis, the connection layer between GridSim and Sim-

48 Two-level Scheduling Simulator

Grid simulators was extended with an additional task: to collect all text-based
traces generated from the SimGrid-SD-based simulator and to combine them
into a single text-based trace file. The main challenge associated with this task is
that each instance of the SimGrid simulator does not have the global view of the
entire batch workload simulation. For instance, to simulate jobs J; and J, on the
sets of resources JR; and JR; at times t; and t,, respectively, the connection layer
runs two instances of the SimGrid simulator. Each SimGrid instance simulates

its corresponding job as J; on the set of resource JR; at time ..

44,025s 44,050s 44,075s 44,100s 44,125s 44,150s 44,175s 44,200s 44225s 44250s 44275s 44300s 44,325s 44350s 44,375s 44,400s

hosto core 0.0 [N Eé‘;

host 1 core 01 [N — 4 — —
host 1 core 1:1 [NN] \]]
host 1 core 2:1 |] \] —
host 1 core 3:1 [N] \ T I
host 1 core 4:1 | NN] \ e]
host 1 core 5:1 | s \ T ——
host 1 core 6:1 | b \] ———
host 1 core 7:1 [N] \
host 1 core 8:1 | NN — ——— ——
host 1 core 9:1 [N .
host 1 Y = — ——
host 1 1 [
host 1 1221 []]]
host 1 131 [b
host 1 e s —_— —
host 1 151 —— I —
host 1 e — T
host 1 core 17:1 ‘(ﬁb_
host 1 181 [/
host 1 1911 [I
host 1 core 20:1 NN TN]
host 1 core 21:1 | NN] T —
host 1 core 22:1 [e o ——
host 1 core 23:1 [N]

Job 1542 Job 1544 Job 1545 Job 1546

<)

<
-
w
'S
w

Cases of severe load imbalance

Figure 3.13 Snapshot of the Vampir visualization tool showing the generated
OTF2 trace of the proposed two-level scheduling simulator. The
execution of different jobs and their tasks are shown according to their
allocated resources at node and core levels, respectively. Tasks of the
same job are represented using horizontal bars of the same color, while
the white space between the job bars represents the idle state of the
allocated cores. For simplicity, this snapshot shows five different jobs
running over four simulated nodes (hosts). The illustration only contains
24 cores of host 1, while host 0 is collapsed, and hosts 2 and 3 are not
shown. The scheduling algorithms shown herein are FCFS and GSS at
BLS and ALS, respectively. Jobs are obtained from workload W*.

We developed a tool to convert the collected traces into a single binary trace
in the OTF2 [EWG+11] format. Using OTF2 traces with the Vampir [KBD+08]
trace visualizer, we visualized the cluster utilization from the node to the core
level and from batch level to application level scheduling, as shown in Fig-
ure 3.13. A snapshot captured from Vampir is included in Figure 3.13 and shows
the execution of five out of 1,700 running jobs, namely Ji542, J1543, J1544, J1545,
and Jis46, from the W124 workload. The execution was performed with FCFS-
GSS. Figure 3.13 illustrates a case of severe load imbalance of certain jobs, its
effects on the starting times of subsequent jobs in the batch, and, consequently,

the effects on the entire system performance and utilization.

Two-level Scheduling Simulator 49

0 512

Q

£ 256 /,/,é
% 128 /EIE,'
o 64 Sea

o =

= 32 et

3 a

c 16 //,/

S g | &

0

£

a 2

1,000 2,000 4,000 8,000 16,000
Number of simulated jobs

Figure 3.14 The simulation wall clock time of the two-level scheduling simulator
on an increasing number of jobs from workloads Wj.

Scalability in terms of increasing the number of jobs is a critical aspect of the
proposed two-level. An initial scalability assessment of the two-level scheduling
simulator is presented in Figure 3.14. In these experiments, the simulation wall
clock time is reported for executing an increasing number of jobs (from 1,000
to 16,000) from the workloads W;. The simulation wall clock is defined as the
total time required to simulate the execution of all jobs of a given workload. The
experiments were conducted with the least performing BLS-ALS combination,
i.e., FCFS-STATIC, with T = 0.25. selected from the results in Figure 3.9. Fig-
ure 3.14 includes the average, maximum, and minimum simulation wall clock
time, where each experiment was executed ten times. The results shows the rela-
tion between the increase in the number of simulated jobs and the proportional
increase in the simulation wall clock time produced by the two-level scheduling

simulator.

3.6 Summary

We presented a novel simulation approach that bridges two different schedul-
ing simulators by exchanging the bridged simulators” scheduling information.
The proposed simulation approach was exemplified with a two-level scheduling
simulator that connects two existing simulators: SimGrid [EMC16] and Grid-
Sim [KMRO07]. We used the proposed two-level scheduling simulator to explore

50 Two-level Scheduling Simulator

twelve combinations of 4 ALS techniques and 3 BLS techniques. We conclude
that ALS techniques affect the performance of their applications and the perfor-
mance of the entire batch system. Hence, the overall performance of any given
BLS technique is affected by the load imbalance at every individual job.

This conclusion guides our work into the following directions: (1) avoiding
or minimizing load imbalance, and if it is not avoidable, (2) exploiting load
imbalance. The first direction is covered by the work presented in Chapters 4
and 5, and the second direction is covered by the work presented in Chapter 6.

Distributed Chunk Calculation
Approach (DCA)

The advancements in modern HPC systems at both hardware and software lev-
els raise questions regarding the benefits of these advancements for successful
techniques proposed in the past. We need to revisit and re-evaluate these tech-
niques to fully leverage modern HPC systems’ capabilities at both hardware
and software levels. As discussed in Chapter 1, we focus on DLS techniques
at the application level. We showed in Chapter 3 that DLS techniques have a
substantial impact on application performance and batch system performance.
This chapter examines the typical execution approaches for DLS techniques,
specifically the master-worker execution model. We discuss the influence of
centralizing the chunk calculation at the master on the DLS techniques’ perfor-
mance. Motivated by the advancements in the MPI [For20] standard, we propose
a distributed chunk calculation approach (DCA) [EC19a] to eliminate the use of
the master-worker model. The DCA contributes to our envisioned MLS solution

by minimizing the idle time of computing resources.

4.1 Execution Models of DLS Techniques

The self-scheduling aspect is the distinguishing aspect of all DLS techniques.
Self-scheduling means that once a PE becomes free, it calculates a new chunk
of loop iterations to be executed. The calculated chunk size is not associated
with a specific set of loop iterations. The PE must synchronize with all other
PEs to map the calculated chunk size to a specific set of unscheduled loop it-

erations. There are two operations at every scheduling step: chunk calculation

52 Distributed Chunk Calculation Approach (DCA)

and chunk assignment. In principle, only the chunk assignment requires global
synchronization between all PEs, while the chunk calculation does not require
synchronization and can be distributed across all PEs.

In practice, existing DLS execution approaches, especially for distributed-memory
systems, do not consider the separation between chunk calculation and chunk
assignment. Hence, the master-worker execution model dominates all existing
DLS execution approaches. In the master-worker execution model, the master
performs chunk calculation and chunk assignment. This centralization renders
the master process a performance bottleneck in three scenarios. (1) The master
process has a decreased processing capability (this may happen in heteroge-
neous systems). (2) The master process receives a large number of concurrent
work requests (this may happen in large scale distributed-memory systems).
(3) System variation delays the processing at the master.

The distributed self-scheduling scheme (DSS) [CAB+01] is an example of
employing the master-worker execution model to implement DLS techniques
for distributed-memory systems. DSS relies on the master-worker execution
model, similar to the one illustrated in Figure 4.1(a). DSS enables the master
to consider the processing elements’ speed and their loads when assigning new
chunks. DSS was later enhanced by a hierarchical distributed self-scheduling
scheme (HDSS) [CPY+05] that employs a hierarchical master-worker model, as
illustrated in Figure 4.1(b).

DSS and HDSS assume a dedicated master configuration in which the mas-
ter PE is reserved for handling the worker requests. Such a configuration may
enhance the scalability of the proposed self-scheduling schemes. However, it re-
sults in low CPU utilization of the master. HDSS [CPY+05] suggested deploying
the global-master and the local-master on one physical computing node with
multiple processing elements to overcome the low CPU utilization of the mas-
ter (see Figure 4.1(b)). DSS and HDSS were implemented using MPI two-sided
communications. In both DSS and HDSS, the master is a central entity that

performs both the chunk calculation and the chunk assignment.

53

Distributed Chunk Calculation Approach (DCA)

“I9I0M e se uorrenduwod ayj ur seyeddipred I9)sew 9y} a19yM S[0I S[qNOP ISy} 9edIpur 0} isnl
st syuawapd 3urssadoid ure3rsd jo uonedriday "anjea)l] 8yl ul paliodal Se ‘[9pow UOIINIJXS 19)}I0M-19]SeW ay] JO sjuenep L'y 9inbi4

sobessaw papis-om| > spou sjndwoo [eoishyq [0

A|
Jayiom Bunsanbai pue a|gejieay JayIom Asng Jo)sew |eooT m Jajsew |eqo|9 §
AN3IO3T
[apow
sapou aindwod [eaisAyd sjdiynwi apou andwod [eaisAyd s|buis e uo uolNJaxe JayJIoM I8}
SS0JOB palNquISIp aJe sisjsew [0 (9) paled0| ale sisiSew [BJ0| pue [eqojn) (q) -SBew [BUOUBAUOY (B)

‘ :
5

‘ c
=)
2,

02

}senbay w\\V&

54 Distributed Chunk Calculation Approach (DCA)

Another MPI-based library that implements several DLS techniques is called
the load balancing tool (LB tool) [CB05]. At the conceptual level, the LB tool
is based on a single-level master-worker execution model (see Figure 4.1(a)).
However, it does not assume a dedicated master. It introduces the breakAfter
(user-defined) parameter and indicates how many iterations the master should
execute before serving pending worker requests. This parameter is required for
dividing the time of the master between computation and servicing of worker re-
quests. The optimal value of this parameter is application- and system-dependent.
The LB tool also employs two-sided MPI communications.

LB4MPI [MEC+20; MC20] is an extension of the LB tool [CB05] that includes
certain bug fixes and additional DLS techniques. Both LB and LB4MPI employ
a master-worker execution in which the master is a central entity that performs
both the chunk calculation and the chunk assignment operations.

The dynamic load balancing library (DLBL) [BCP+05] is another MPI-based
library used for cluster computing. It is based on a parallel runtime environ-
ment for multicomputer applications (PREMA) [BCC+04]. DLBL is the first tool
that employed MPI one-sided communication for implementing DLS techniques.
Similar to the LB tool, the DLBL employs a master-worker execution model. The
master expects work requests. It then calculates the chunk’s size to be assigned
and, subsequently, calls a handler function on the worker side. The worker is
responsible for obtaining the new chunk data without any further involvement
from the master. This means that the master is still a central entity that performs

both chunk calculation and chunk assignment.

4.2 From Centralized to Decentralized DLS
Techniques

The idea of DCA is to ensure that the calculated chunk size at a specific PE does
not rely on any information about the chunk size calculated at any other PE.
The chunk calculation formulas (Eq. 2.1 to 2.13) can be classified into straight-
forward and recursive formulas. A straightforward chunk calculation formula
only requires some constants and input parameters. A recursive chunk calcula-
tion formula requires information about previously calculated chunk sizes. For
instance, STATIC, SS, FSC, and RND have straightforward chunk calculation for-
mulas that do not require any information about previously calculated chunks,
while GSS [PK87], TAP [Luc92], TSS [TN93], FAC [FHSF92], TFSS [CAB+01],
FISS [PD97], VISS [PD97], AF [Ban00], and PLS [SYTO07] employ recursive chunk

Distributed Chunk Calculation Approach (DCA) 55

calculation formulas. Certain transformations are required to convert these re-
cursive formulas into straightforward formulas to enable DCA. For GSS and
FAC, the transformations were already introduced in the literature [FHSF92]
(Eq. 4.1 and 4.2).

P-1\' N
Kf“::(___)._ (4.1)
P P
) 1\ N| i
KiFAC2 _ [(E) . F , inew = {F| +1 4.2)

As shown in Eq. 2.5, TAP calculates K%5S and tunes that value based on y, o,
and «. Based on Eq. 4.1, the chunk calculation formula of TSS can be expressed

as a straightforward formula as follows.
AP ,GSS VCZY ,GSS VC%
K =K, +—5-va\[2-K] + —, where
2 4 (4.3)

For TSS, a straightforward formula for the chunk calculation is shown in
Eq. 4.4.
KIS - KIS
S-1
The mathematical derivation that converts Eq. 2.6 into Eq. 4.4 is as follows. The

TSS .
K" =K% i

| (4.4)

TSS chunk calculation formula can be represented as follows, where C is a con-

stant.
K% =KLy -c
TSS _ g TSS
Ko K S—1

€= S—1

KlTSS _ K({SS—C
K =k{¥-Cc= (¥ -0)-c=kKl*%-2.C
KTSS — KTSS _;. ¢
i -0
7SS _ gTSS
KTSS = KgSS—i-L 0 S-1| = g/

1

TSS
S-1

TFSS [CAB+01] is devised based on TSS [TN93] and FAC [FHSF92]. There-
fore, the straightforward formula of TSS (see Eq. 2.6) can be used to derive the
straightforward formula of TESS, as shown in Eq. 4.5.

Ziﬂ?—l KSs
R J

P

JTFSS

(4.5)

56 Distributed Chunk Calculation Approach (DCA)

For FISS [PD97], a straightforward formula for the chunk calculation is shown

in Eq. 4.6.
. 2-N-(1-52)
+l'[P-B-(B 1)] (4.6)

The mathematical derivation that converts Eq. 2.10 into Eq. 4.6 is as follows.

FISS L FISS
K: = KO

Given that A is a constant, the FISS chunk calculation formula can be represented
as follows, where C is a constant.

KFISS KFISS L C
2'N.(1_2+B)-|
P-B-(B-1)
KFISS KFISS L C
KFISS KFISS +C=(Kéwss +C)+C = Kéwss 12.C
KFISS KFISS +i-C
;. Z'N'(l_z%g)_l_ JFISS
P-B-(B-1) '

KFISS _ gFISS

For VISS [PD97], a straightforward formula for the chunk calculation is
shown in Eq. 4.7.

SJVISS FISS 1 (0 5)lnew
K] =K, S -a—
Inew =1 mod P

where i >0
4.7)

NVISS L FISS
K = KO

To derive Eq. 4.7, we calculate Kl‘”SS, K;ISS, and K;”SS, according to Eq. 2.11.
KFISS
KVISS KFISS 0 assume K(})FISS -4
KI/ISS =a+ a4
VISS u a
KVISS KVISS 1 —a+H+ 2
5 (a 2) (>)
VISS a aty
a+s ((a+35)+(=*)
KVISS KVISS = ((a+) (22))+ 22

According to the geomertlc summation theorem

1-(0.5)
K)ISS = KFISS.

0.5

since VISS assigns chunks in batches

1 - (0.5)new
KVISS = KFISS.

0.5

and i,y =i mod P.

NVISS .
= K ,where i > 0,

Distributed Chunk Calculation Approach (DCA) 57

For PLS, the loop iteration space is divided into two parts. In the first part,
the PLS chunk calculation formula is equivalent to STATIC, i.e., the chunk calcu-
lation formula is a straightforward formula that is ready to support DCA. In the
second part, PLS uses the GSS chunk calculation formula. Therefore, we replace
KOS in Eq. 213 with K;”” from Eq. 4.1 to derive the PLS chunk calculation
(Eq. 4.8).

b 4.8
Kl.’GSS, otherwise. (48)

s :{ NSWR - if R; > N~ (N - SWR)

AF adapts the calculated chunk size according to u,, and o, which can be
determined only during loop execution. Moreover, at every scheduling step,
AF uses R; with u, and o, to calculate the chunk size. This leads to an unpre-
dictable pattern of chunk sizes and makes it impossible to find a straightforward
formula for AF. Accordingly, we could not determine a way to implement AF
with a fully distributed chunk calculation. In our implementation, AF with DCA
requires additional synchronization of R; across all PEs. All PEs can simultane-
ously calculate D and E from Eq. 2.14. However, each PE needs to synchronize

with all other PEs to calculate each K%

4.3 Distribution of the Chunk Calculation

In the proposed DCA, we replace the master role with a coordinator role. The
coordinator holds a central work queue that contains the global scheduling in-
formation, such as the last scheduling step i and the last loop index start Ipstart.
One can consider the value of the last scheduling step i as the only required
input parameter for the newly derived chunk calculation formulas (see Sec-
tion 4.2). DCA has three major steps:
Step 1. Workers synchronize through the coordinator to exclusively get a local
copy of i and increment the global i by one.
Step 2. Workers use their local copies of i to calculate their chunk sizes.
Step 3. Workers synchronize once again to exclusively get a local copy of the last
loop index start psiart and increment the global Ipgiare by the calculated chunk
size.
At that point, every worker can execute loop iterations from [pstart t0 [pstart +
the calculated chunk size. In the proposed DCA, the coordinator acts like a
worker with one exception that is holding the central work queue.

Figure 4.2 illustrates the DLS execution using the proposed DCA. Processors

po and p; calculate Ky and K7 simultaneously. The time required to calculate Ky

58 Distributed Chunk Calculation Approach (DCA)

Get a copy of i (i = 0)
pO and increment the original i
by 1
Calculate Ky
Get a copy of Ipstart
(/pstart = K1) and
increment the original
Geta copyof i (i= 1) Ipstart by Ko
and increment the original /
Py by 1
Calculate K
Geta copy of Ipstan (Ipstanz 0)
and increment the original
IPstart by K4

Figure 4.2 Schematic execution of the proposed distributed chunk calculation
approach (DCA) on two processors that calculate one chunk each.

overlaps with the time taken to calculate K;. In the traditional master-worker
execution model, there is no such overlap since all the chunk calculations are
centralized and performed by the master in sequence. The time required to
serve the first work request (including chunk calculation and chunk assignment)
delays the second work request. Moreover, the time required to serve the work
requests is proportional to the processing capabilities of the master processor,
which may result in additional delays.

DCA may result in a different ordering of assigning and executing loop iter-
ations than the traditional master-worker execution model. For instance, when
GSS is the chosen scheduling technique in Figure 4.2 and N = 10, py obtains a
local copy of the last scheduling index i = 0 at #4. Also, p; obtains at 75 a local
copy of the last scheduling index i = 1. Both py and p; use their copies of i
and calculate Ky = 5 and K; = 3, respectively. DCA does not guarantee that py
and p; will execute loop iterations from [pstart = 0 t0 Ipstart = 4 and [pstart = 5 to
Ipstart = 7. Figure 4.2 shows the case when the chunk calculation on py is longer
than on pj, and results in assigning p1, loop iterations between Ipgtar = 0 and
Ipstart = 2, while py is assigned loop iterations between Ipsiart = 3 and Ipstart = 7.
Given that DLS techniques address, by design, independent loop iterations with
no restrictions on the execution order of the loop iteration, DCA does not affect

the correctness of the loop execution.

4.3.0.1 Proposed Implementation of DCA

The latest advancements in the MPI 3.1 standard [For20], namely the revised
and the clear semantics of the MPI remote memory access (RMA) [HDT+15;

Distributed Chunk Calculation Approach (DCA) 59

ZBG16], enabled its usage in different scientific applications [HGC14; SWZ+16;
ZG16]. The MPI RMA model, also known as one-sided communication, pro-
vides the necessary function calls to implement the proposed DCA. In the MPI
RMA model, each process’s memory is by default private, and other processes
cannot directly access it. The MPI RMA model allows MPI processes to expose
different regions of their memory, called windows. One MPI process (origin) can
directly access a memory window without any involvement of the other (target)

process that owns the window.

The MPI RMA has two synchronization modes: passive- and active-target. In
the active-target synchronization, the target process determines the time bound-
aries, called epochs, when its window can be accessed. In the passive-target
synchronization, the target process has no time limits when its window can
be accessed. The DCA can benefit from the passive-target synchronization be-
cause it requires a minimal amount of synchronization, and it efficiently allows
the most significant overlap of computation and communication. Moreover, it
yields the development of DLS techniques for distributed-memory systems to

be very similar to their original implementations for shared-memory systems.

Figure 4.3 illustrates the main steps of the proposed DCA as follows. (1) the
processing element p; obtains a copy of the last scheduling step index, i, and
atomically increments the global i by one. (2) p; only uses its local copy of i
(before the increment) to calculate K; with the new derived straightforward
formulas for the selected DLS technique. (3) p; obtains a copy of the last
loop index start, Ipstart, and atomically accumulates the size of the calculated

28
[Last scheduling step i] :
AY ~ . 1
~~ ()Getacopyofi (1)Get a copy of i
and increment the original i by 1 and increment the original i by 1
Tra — 17
IS P
- Phe (2) Calculate T (2) Calculate
(3) Get a copy of Ipsrt , Ki | _lK
and increment the original Ipg. 1
- by K; 1
A |
]
[Last start loop index Ipg..] 1
(3) Get a copy of Ipg.t 1
- and increment the original Ipg, — = — = -
LEGEND
MM Coordinator [] Available and requesting worker = Chunk-calculation () Memory region

Physical compute node Busy worker <€ => Atomic operations

Memory ownership relation

Figure 4.3 The proposed DCA using MPI RMA and passive-target synchronization.

60 Distributed Chunk Calculation Approach (DCA)

chunk, K;, into it. Finally, p; executes loop iterations between [pst.rt (before ac-
cumulation) and min(/pstart + Ki, N). The atomic operations in Steps 1 and 3
guarantee the exclusive access to i and [psiart. The coordinator MPI process
can use MPI_Win_create to expose the shared variables, such as i and Ipgart, to
all other MPI processes. The passive-target synchronization mode (MPI_Win_-
lock (MPI_LOCK_SHARED)) can be used with certain MPI atomic operations, such
as MPI_Get_accumulate, to grant the exclusive access to i and Ipsart by all MPI
processes.

4.4 Performance Evaluation and Discussion

We evaluated two implementations. The first implementation, denoted One_-
Sided_DLS, employs the proposed DCA, and uses one-sided MPI communication
in the passive-target synchronization mode. The second implementation, de-
noted Two_Sided_DLS, employs a master-worker model and uses the two-sided
MPI communication. Both implementations assume a non-dedicated coordina-
tor (or a non-dedicated master) processing element.

We considered two computationally-intensive parallel applications in the
evaluation. The first application, called PSIA [EFM+16; EMC17a], uses a parallel
version of the well-known spin-image algorithm (SIA) [Joh97]. SIA converts a
3D object into a set of 2D images. The generated 2D images can be used as
descriptive features of the 3D object. The second application calculates the Man-
delbrot set [Man80]. The Mandelbrot set is used to represent geometric shapes
that have the self-similarity property at various scales. Studying such shapes
is essential and of interest in different domains, such as biology, medicine, and
chemistry [JTS09].

Both applications contain a single large parallel loop that dominates their
execution times. Algorithm 4.1 and 4.2 show the pseudocodes of both applica-
tions.

Table 4.1 summarizes the execution parameters used for both selected appli-
cations. These parameters were selected empirically to guarantee a reasonable
average iteration execution time that is larger than 0.2 for PISA and 0.02 seconds
for Mandelbrot.

Two types of computing resources are used in our evaluation. The first type,
denoted KNL, refers to a standalone Intel Xeon Phi 7210 manycore processors
with 64 cores, 96 GB RAM (flat mode configuration), and 1.3 GHz CPU fre-
quency. The second type, denoted Xeon, refers to two-socket Intel Xeon E5-2640

Distributed Chunk Calculation Approach (DCA) 61

Table 4.1 Execution parameters of PSIA and Mandelbrot selected to evaluate the
proposed DCA

Application | Input Size Output size Other parameters [EMC17a; Man80]
5x5 2D image
PSIA 800,000 3D points [WLD+10] | 288,000 images | bin-size = 0.01

support-angle = 2
image-width = 1152x1152
Mandelbrot | No input data One image number of iterations = 1000
Z exponent = 4

processors with 20 cores, 64 GB RAM, and 2.4 GHz CPU frequency.

These platform types are part of a fully-controlled computing cluster, called
miniHPC !. The miniHPC cluster consists of 26 nodes: 22 Xeon nodes and 4 KNL
nodes. All nodes are interconnected in a non-blocking fat-tree topology. The
network characteristics are: Intel Omni-Path fabric, 100 GBit/s link bandwidth,
and 100 ns network latency. Each KNL node has one Intel Omni-Path host fabric
interface adapter. Each Xeon node has two Intel Omni-Path host fabric interface
adapters. All host fabric adapters use a single PCle x16 100 Gbps port. As this

computing cluster is actively used for research and educational purposes, only

Algorithm 4.1 Parallel spin-image calculations. The main loop is highlighted in
the blue color.

Inputs : W: image width, B: bin size, S: support angle, OP: list of 3D points,
M: number of spin-images

Output: R: list of generated spin-images

for i=0—-> M do

P = OP[i];

tempSpinIlmage[W, W];

forj =0 — length(OP) do

X = OP[jJ;

np; = getNormalVector(P);

np; = getNormalVector(X);

if acos(np; - np;) < S then

. [W/2—npi-(X—P)w

7

B
,_ { VIIX = PI12 = (np; - (X_P))W
B

7

if0<k<Wand0<I<W then
| tempSpinlmage[k, 1]++;

Riappend(tempSpinImage) ;

1 https:/ /hpc.dmi.unibas.ch/HPC/miniHPC.html

62 Distributed Chunk Calculation Approach (DCA)

Algorithm 4.2 Mandelbrot set calculations. The main loop is highlighted in the
blue color.

Inputs : W: image width, CT: Conversion Threshold

Output: V: Visual representation of Mandelbrot set calculations

for counter =0 — W? do

x = counter / W;

y = counter mod W;

c= complex(x_min + x/(W*(x_max-x_min)) , y_min + y/(W*(y_max-y_-

min)));

z = complex(0,0);

fork=0—-> CT OR |z] <2.0do

2=zt +¢

i{ k = CT then
set V(x,y) to black;

else
set V(x,y) to blue;

40% of the cluster could be dedicated to the present work, at the time of writing,
specifically 288 cores out of the total 696 available cores.

In the present work, the total number of cores is fixed to 288 cores, whereas
the ratio between the KNL and the Xeon cores is varied. Two ratios have been
considered: 2:1 represents the case when the KNL cores are the dominant type
of computing resources, and 1:2 represents the complementary case where the
Xeon cores are the dominant computing resources. Table 4.2 illustrates these
two ratios. Also, 48 KNL cores and 16 Xeon cores per node are used, while the
remaining cores on each node were left for other system-level processes.

Two mapping scenarios are considered for the assessment of the One_Sided_DLS
approach vs. the Two_Sided_DLS approach. In the first mapping scenario, the
process that plays the coordinator’s role for One_Sided_DLS or the master’s role
for Two_Sided_DLS is mapped to a KNL core. The CPU frequency of a single
KNL core is 1.3 GHz, while the CPU frequency of a single Xeon core is 2.4 GHz.
Therefore, this mapping represents a case when the coordinator (or the master)

process is mapped to one of the cores that has the lowest processing capabilities.

Table 4.2 Ratios between the KNL and Xeon core count

Ratio ‘ KNL cores ‘ Xeon cores ‘ Total cores
2:1 192 96 288
1:2 96 192 288

Distributed Chunk Calculation Approach (DCA) 63

In the second mapping scenario, the process that plays the coordinator’s role (or
the master) is mapped to a Xeon core, which is the most powerful processing

element in the considered system.

Comparing the results of both scenarios shows the adverse impact of re-
duced processing capabilities of the master on the performance of the DLS
techniques using Two_Sided_DLS. On the contrary, the same mapping for the
coordinator process did not affect the performance of the DLS techniques using
One_Sided_DLS.

The straightforward parallelization (STATIC) is used as a baseline to assess
the performance of the selected DLS techniques on the target heterogeneous
computing platform. STATIC assigns [N/ P] loop iterations to each processing
element. The considered implementation of STATIC follows the self-scheduling
execution model where every worker obtains a single chunk of size [N/ P] loop
iterations at the beginning of the application execution. By employing STATIC,
the percentage of the parallel execution time of the selected applications” main
loops T;,OOP are 98% and 99.4% of the parallel execution times for PSIA and
Mandelbrot, respectively. Such high percentages show that the performance of
both applications is dominated by the execution time of the main loop. Hence,
for the remaining results in this section, the analysis concentrates on the parallel
loop execution time, TII)OOP. All experiments were repeated 20 times, and the

median results are reported in all figures.

For the PSIA application, Figure 4.4(a) shows that SS, GSS, and TSS im-
plemented with One_Sided_DLS outperformed their respective versions using
Two_Sided_DLS. For instance, when the ratio of the KNL cores to the Xeon cores
was 2:1, the parallel loop execution time, T;OOP, of SS required 109 and 233 sec-
onds with One_Sided_DLS and Two_Sided_DLS, respectively. Similarly, when the
ratio was 2:1, the parallel loop execution time, TFI,OOP, of GSS and TSS increased

from 185 and 125 seconds to 236 and 136 seconds, respectively.

When the ratio was 1:2, the total processing capabilities of the system in-
creased because the number of Xeon cores increased. However, the parallel loop
execution time, TFI,OOP, of SS, GSS, and TSS implemented using Two_Sided_DLS
did not take the advantage of increasing the total number of Xeon cores. For in-
stance, using One_Sided_DLS, changing the ratio from 2:1 to 1:2 reduced the T;OOP
of SS from 109 to 68.5 seconds. FAC2 and WF behaved similarly using both,

One_Sided_DLS and Two_Sided_DLS.

The performance degradation of the DLS techniques with Two_Sided_DLS is

due to mapping the master to a KNL core, which has the lowest processing ca-

64 Distributed Chunk Calculation Approach (DCA)

pabilities. Recall that in Two_Sided_DLS, the master is responsible for serving
work requests, and therefore, it has to divide the time between serving the work
requests and performing its own chunks. Therefore, if the master has a lower
processing capability than the other processes, it becomes a performance bot-
tleneck. Also, recall that One_Sided_DLS is designed to addresses this scenario.
The coordinator process executes its own chunks and is not responsible for the
chunk calculation to the other processes.

Figure 4.4(b) shows that the DLS techniques with One_Sided_DLS perform
comparably to their versions with Two_Sided_DLS. For instance, using the ratio
2:1, the One_Sided_DLS implementation of SS, GSS, TSS, FAC2, and WF required
108, 177, 125, 125, and 110 seconds, respectively. The Two_Sided_DLS implemen-
tation of the same techniques required 105, 175, 135.6, 125, and 106.45 seconds,
respectively. Also, using the ratio 1:2, the DLS techniques behaved similarly
regardless of their implementation approach.

For the Mandelbrot application, Figure 4.5 confirms the same performance
advantages of the proposed approach as for the PSIA application. The DLS tech-
niques implemented with One_Sided_DLS performed equally whether the coor-
dinator was mapped to a KNL core or a Xeon core. The performance of certain
DLS techniques with Two_Sided_DLS degraded when the master was mapped to
a KNL core compared to their performance when the master was mapped to a

Xeon core.

Overall, figures 4.4 and 4.5 highlight two important observations. First obser-
vation: the performance variation for executing a certain experiment using the
One_Sided_DLS approach is higher than the performance variation when execut-
ing the same experiment using the Two_Sided_DLS approach. The reason behind
such variation is how concurrent messages are implemented at the MPI layer in
One_Sided_DLS and Two_Sided_DLS. In the current work, the Intel MPI is used to
implement both approaches, One_Sided_DLS and Two_Sided_DLS. Intel MPI uses
the Lock Polling strategy to implement MPI_Win_lock in which the origin process
repeatedly issues lock-attempt messages to the coordinator process until the
lock is granted [ZBG16].

On the contrary, Two_Sided_DLS uses MPI_Send, MPI_Recv and MPI_Iprobe
functions. For Intel MPI, in the case of simultaneous sends of multiple work
requests to the master process, the master checks the outstanding work requests
using MPI_Iprobe and serves them by giving a priority to the request of the
process with the smallest MPI rank. The One_Sided_DLS has a high probability of
granting the lock to different MPI processes at each trial, whereas Two_Sided_DLS

Distributed Chunk Calculation Approach (DCA)

65

250

200 1

SS
50
0
2:1 1:2

Time (s)

250

200 A

GSS
50 A
0
2:1 1:2

Time (s)

250

200

Time (s)

200 1

Time (s)

200 A

Time (s)

(a)

150

100 A

150

100

150 A

100

250

150

100 A

250

150

100 ~

50 _ |_—I ’_—.
0
2:1 1:2

[One_Sided_DLS (DCA)

I Two_Sided DLS (master-worker model)

TSS

FAC2

WF

KNL:Xeon core count

The coordinatorjmaster

mapped to a KNL core

is

250

200 1

150 1

100 A

Time (s)

50 1

SS

|

250

200 A

150 1

Time (s)

100

50

GSS

250

L

200

150 1

Time (s)

100 1

50 1

TSS

250

11

200 1

150 1

Time (s)

100 1

50 1

FAC2

|8

250

200 A

150 1

Time (s)

100 1

50

WF

(b)

|

KNL:Xeon core count

The coordinatorimaster is

mapped to a Xeon core

Figure 4.4 Performance of the proposed approach vs. the existing
master-worker based approach for PSIA. The x-axis represents the two
ratios between the KNL cores and the Xeon cores.

66 Distributed Chunk Calculation Approach (DCA)

1 One_Sided DLS (DCA) B Two_Sided DLS (master-worker model)

80 80
SS SS
60 4 60
D @
(0] - (] .
£ 40 £ 40
= =
20 1 20

=]

(=]
N
e

[e
1:2
80 80

2:1 1:2
GSS GSS
60 60
40 1 40
20 7 20 |_I
0 0
2:1 1:2

Time (s)
Time (s)

—

2:1 1:2
80 80
TSS TSS
60 60
D D
g 40 g 40
= =
20 - 20 - |_I
0 0
2:1 1:2 2:1 1:2
30 80
FAC2 FAC2
60 60
D D
[0)] - -
g 40 g 40
= =
20 20
0 0
2:1 1:2 2:1 1:2
80 80
WF WF
60 60
D D
(0] - -
£ 40 _g 40
[[

pEl s BEeEl B

2:1 1:2 2:1 1:2
KNL:Xeon core count KNL:Xeon core count
(@) The coordinatormaster is (o) The coordinatorjmaster is
mapped to a KNL core mapped to a Xeon core

Figure 4.5 Performance of the proposed approach vs. the existing
master-worker based approach for Mandelbrot. The x-axis represents
the two ratios between the KNL cores and the Xeon cores.

Distributed Chunk Calculation Approach (DCA) 67

always prioritizes requests from the process with the smallest MPI rank. The
GSS has the largest non-linear decrement among the decrements of the selected
DLS techniques. Therefore, GSS is highly-sensitive to the chunk assignment.
Second observation: FAC2 and WF exhibit a reduced sensitivity to mapping
the master to a KNL or to a Xeon core. This low sensitivity could be due to the
factoring-based nature of these techniques. Among all the assessed DLS tech-
niques, FAC2 and WF assign chunks in batches, which increases the possibility
for the master to have chunks of the same size as the other processing elements.

4.5 Summary

The distributed chunk calculation approach (DCA) [EC19a] can be applied to
different DLS techniques. DCA requires the mathematical chunk calculation
formulas to be straightforward, i.e., they must only depend on constants and
the index of the last scheduling step i. Many DLS techniques have their math-
ematical chunk calculation formulas in a recursive format, i.e., they depend on
the value of previously calculated chunk sizes [Luc92; TN93; CAB+01; PD97;
Ban00]. However, we provided the mathematical transformations to change
these recursive formulas into straightforward formulas.

We implemented the proposed DCA using MPI RMA and passive target
synchronization mode to exploit the latest advancements in the MPI standard
(MPI 3.1). When the master was not mapped to the processing element with
the highest computing power, the results showed that the DLS techniques im-
plemented with the proposed DCA outperformed their corresponding ones that
were implemented with the conventional master-worker model execution model.
When the master was mapped to the processing element with the highest com-
puting power, the results showed that the DLS techniques implemented with
the proposed DCA performed competitively against their corresponding ones
that were implemented with the conventional master-worker model execution
model. We conclude that the proposed DCA has a strong performance potential

for irregular execution environment.

Hierarchical Distributed Chunk
Calculation Approach (HDCA)

As discussed in Chapter 4, DLS techniques typically employ a master-worker
execution model [CB05; BCP+05; CBR+04]. This model includes a processing
entity called master. The master responsible for calculating and assigning chunks
of loop iterations to all the other entities (workers). This model has scaling
limitations [CBR+04], and therefore, the DLS techniques have evolved to employ
a hierarchical master-worker execution model [CPY+05]. This model includes
two levels of masters: global and local masters. The global master calculates
and assigns chunks to local masters. Then, each of them becomes responsible
for calculating and assigning sub-chunks to its group of workers. The global
master and local masters may exploit different DLS techniques. The use of DLS
techniques at two levels is also referred to as a hierarchical DLS technique.

Hybrid MPI+OpenMP is a common programming approach to implement
hierarchical DLS techniques. However, it has specific performance challenges,
such as the added overhead for managing two levels of parallelism using two
different runtime systems. The OpenMP threads (workers) require synchro-
nization before requesting and executing chunks, i.e., only the main thread is
allowed to call MPI communication functions, such as MPI_Send and MPI_-
Receive [WYL+12]. Otherwise, a complex implementation is needed to allow
individual OpenMP threads to perform MPI calls.

In this chapter, we propose a novel approach for designing and develop-
ing hierarchical DLS techniques for distributed-memory systems. It extends
the proposed DCA [EC19a] by allowing any group of workers that reside on a
shared-memory system to form a shared work queue. The novelty of the pro-
posed approach lies in the fact that the work queue’s responsibility is shared

70 Hierarchical Distributed Chunk Calculation Approach (HDCA)

among the workers of the group rather than one specific entity (local master).
We consider the shared-memory features offered in the MPI-3 standard. This
feature enables assigning chunks to individual MPI processes in two stages. In
the first stage, the fastest MPI process within a compute node obtains a chunk
based on a selected DLS technique and then uses the obtained chunk to fill a
local shared queue. In the second stage, the MPI processes within the same
shared-memory system use a different or a similar DLS technique to obtain

sub-chucks from the shared local work queue.

5.1 Hierarchical DLS Techniques

In the master-worker execution model, the number of requests that could be re-
ceived by the master process is proportional to the total number of workers. For
a large number of workers, the master may simultaneously receive a large num-
ber of work requests, and if the handling of the work requests is inefficient, the
master becomes a performance bottleneck. To overcome such limitation, certain
research efforts proposed the use of the hierarchical master-worker approach.
For instance, a distributed self-scheduling scheme (HDSS) using the hierarchi-
cal master-worker model was introduced [CPY+05]. Unlike the LB-tool, HDSS
dedicated the master process for handling the worker requests. The proposed
scheme was implemented using MPI and its classical two-sided communication.

Another research effort discussed the adverse impact of the foreman-worker
(master-worker) model [CBR+04] on DLS techniques. The authors suggested
a new execution model using processor groups. The idea was to form a few
groups of processors, where each group executes a specified portion of the iter-
ation space using the master-worker model. The master process of each group
has to periodically update a global master process called manager. The masters
update the manager with the ratio of the remaining iterations and the available
workers. When the reported ratio exceeds a certain threshold, the manager mi-
grates workers between processor groups. Migrating workers to a certain group
may result in a large number of workers within that group. This research ef-
fort [CBR+04] is similar to our proposed HDCA [EC19b] as both balance the
loop execution using two levels scheduling levels. However, the present work
differs by exploiting different DLS techniques at the first level, while the sug-
gested execution model in [CBR+04] statically divides the loop iteration space
among processor groups. Moreover, the present work avoids worker migration

that may result in performance degradation when the cost of managing and

Hierarchical Distributed Chunk Calculation Approach (HDCA) 71

serving requests from the migrated workers becomes relatively large. The sug-
gested execution model was implemented using MPI, and it did not take the
advantage of the shared-memory between processing elements.

Modern HPC systems are clusters of multi- and many-core systems con-
nected via high-speed interconnection networks [CW10]. Developers often com-
bine two different programming models to target such systems. A common ap-
proach is to use MPI [For20] for inter-node communication and OpenMP [Boal8]
for programming the shared-memory systems [SBO1]. In the context of DLS
techniques, the hierarchical loop scheduling (HLS) [WYL+12] was one of the
earliest efforts to use the MPI+OpenMP programming model. In HLS, a free
worker (MPI process) requests a chunk from the master rank, which calculates
and assigns the chunk based on a certain performance function [SYT07]. The
workers (MPI processes) locally use OpenMP loop scheduling techniques, such

as static, dynamic, and guided to execute the assigned chunk.

5.2 Maintaining Local Work Queues

The proposed approach applies two DLS techniques at the intra- and inter-node
levels as follows. One MPI process creates a global shared-memory region called
the global work queue. This global queue stores information regarding the
latest scheduling step and the total scheduled loop iterations [EC19a]. Using
MPI_Win_allocate_shared, the MPI processes within one compute node cre-
ate another shared-memory region called the local work queue. This local queue
stores information regarding the latest scheduling step and the total scheduled
loop iterations by the MPI processes within that physical node. Whenever an
MPI process becomes free, it obtains a sub-chunk from the local work queue. If
there are no sub-chunks, the MPI process tries to obtain a chunk from the global
work queue and fills the empty local work queue. In the proposed HDCA, the
MPI processes do not wait for each other to fill the local work queue. The re-
sponsibility of obtaining work is not assigned to a specific MPI process, as the
tastest MPI process always takes this responsibility. Figure 5.1 illustrates the
proposed HDCA using the MPI shared memory feature, known as MPI+MPI
approach [HDB+13].

Unlike existing MPI+OpenMP implementations of DLS techniques, the pro-
posed approach avoids the implicit synchronization that is required at the end
chunks” execution. Figure 5.2 illustrates the undesired implicit thread synchro-
nization when using the MPI+OpenMP approach. OpenMP Thread 1 finished

72

Hierarchical Distributed Chunk Calculation Approach (HDCA)

Global

work queue

(1)
Get a chunk
for my group

Compute node 1

Get a chunk
for my group

Compute node N

1

1

|

I

|

v v

1= P1 €71 Pn Pi 1= pn [€ -1

I
|

1 (3) 2)
(3) () Get Fill the local
Get Fill the local sub-chunk queue
Sub-chunk queue ' 1
2 N4 \ 2 N4
[Local work queue] [Local work queue]
LEGEND

[l Coordinator [] Available and requesting worker —> Chunk-calculation(____) Memory region

Physical compute node Busy worker <« - > Atomic operations Memory ownership

Figure 5.1 The proposed hierarchical DLS techniques using the MPI+MPI
approach. Only one coordinator exposes a window of its memory as the
global work queue (see Section 4.3).

its sub-chunk earlier than the rest of the threads. However, it has to wait for the
slowest OpenMP Thread (OpenMP Thread 7). At the second chunk, the same
scenario was repeated when OpenMP Threads 6 and 7 finished earlier than the

rest.

Figure 5.3 shows the desired optimal execution scenario at the shared-memory
level. Worker 1 finished earlier than the rest; however, it immediately obtained
a new chunk to fill the local work queue, and then it obtained a sub-chunk for
itself. Once any other worker finished its sub-chunk, it could directly obtain a
sub-chunk from the most recent chunk obtained by Worker 1. In Figure 5.3, the
parallel time to execute the loop 7/, , is less than t,,, in Figure 5.2.

Compared to the proposed approach, one could state that the main issue
of the MPI+OpenMP approach is the implicit barrier at the end of executing
each chunk of a loop iteration. Such an issue could be solved using the nowait
clause that allows OpenMP threads to continue their execution when there are
no more loop iterations to execute. However, the use of the nowait clause re-
quires all OpenMP threads to initiate MPI_Send and MPI_Recv calls, i.e., the
fastest OpenMP thread may differ from one chunk to another. Therefore, the
implementation would require many synchronization statements to guarantee
the exclusive request of new chunks for only one thread at a time. This leads to

more complicated codes, which are hard to tune and maintain.

Hierarchical Distributed Chunk Calculation Approach (HDCA) 73

5.3 Performance Evaluation and Discussion

Hierarchical DLS techniques can be implemented using either the hierarchical
master-worker [CPY+05] or the distributed chunk calculation model [EC19a].
We evaluated the use of two different implementations, MPI+OpenMP and
MPI+MP], to complement the distributed chunk calculation approach.

The MPI+OpenMP implementation complements the distributed chunk-calculation
approach by the use of OpenMP at the shared-memory level. It maps one MPI
process per each compute node. The mapped MPI processes communicate and
cooperate to obtain chunks using one of the following DLS techniques: STATIC,
SS, GSS, TSS, and FAC2. Every MPI process uses the OpenMP runtime to create
a number of threads equal to the number of its computing cores. The threads
use the OpenMP loop scheduling techniques (static, dynamic, and guided) to

Loop begin Loop end

tstart tend

OMP Thread 0
OMP Thread 1

OMP Thread 2

OMP Thread 3

OMP Thread 4
OMP Thread 5

OMP Thread 6

OMP Thread 7

LEGEND

|
. Implicit synchronization time |:| Computation time . Obtain a new chunk via MPI } Implicit synchronization points D Idle time

Figure 5.2 The undesired synchronization with the MPI+OpenMP implementation
approach at the shared-memory level.

Loop begin Loop end

t r
start tond

Worker 0

Worker 1 .

Worker 2

Worker 3

|
[
[
L1
Worker 4 : :
[
[
[
[
[
[

Worker 5

Worker 6

Worker 7

LEGEND

|:| Computation time . Obtain a new chunk via MPI :Implicitsynchronization points l:l Idle time
|

Figure 5.3 lllustration of an ideal execution scenario at the shared-memory level.

74 Hierarchical Distributed Chunk Calculation Approach (HDCA)

Table 5.1 Mapping between the DLS techniques and the OpenMP schedule
clause options

DLS technique | OpenMP schedule clause

STATIC schedule(static)
SS schedule(dynamic,1)
GSS schedule(guided,1)

execute the chunks obtained from their (owner) MPI process. The MPI+MPI
implementation complements the distributed chunk calculation approach using
MPI shared-memory capabilities, as explained in Section 5.2, i.e., it forms shared
local queues at the compute node level (see Figure 5.1).

Similar to Chapter 4, we used PSIA and Mandelbrot to evaluate the proposed
HDCA and used miniHPC as the target platform (see Section 4.4).

The OpenMP standard currently supports three loop scheduling techniques:
static, dynamic, and guided (see Table 5.1). More loop scheduling techniques
were implemented in an OpenMP runtime library called LaPeSD-1libGOMP [CIB18].
However, for accurate performance measurements, we wanted to use the most
optimized software installed on miniHPC. Given that miniHPC (the target sys-
tem) is an Intel-based cluster, the Intel software stack was selected, and there-
fore, scheduling experiments that have TSS and FAC2 at the shared-memory
level were only performed using the proposed MPI+MPI approach. The use of
LaPeSD-libGOMP, instead of Intel OpenMP runtime library, enables more DLS
techniques, and it is planned as future work.

In this section, the X+Y notation is used to represent scheduling combina-
tions, where X is a DLS technique used at the inter-node level and Y is a DLS
technique used to at the intra-node level. X and Y refer to only one DLS tech-
nique.

Figures 5.4 to 5.7 show the performance of executing Mandelbrot and PSIA
with two levels of DLS techniques.

Figure 5.4 shows the first combination of DLS techniques where STATIC is
used to schedule the workload across multiple compute nodes. An important
observation is that when SS is selected to schedule the workload within one
computing node, the proposed MPI+MPI approach has the poorest performance
compared to the MPI+OpenMP. The reason is due to the use of MPI_Win_-
lock and MPI_Win_sync. These functions provide exclusive access to the local
work queue (see Figure 5.1), and consequently, maintain the work queue. The
MPI_Win_lock uses a lock polling technique where an MPI process repeatedly
issues lock-attempt messages until the lock is granted [ZBG16]. Consequently,

Hierarchical Distributed Chunk Calculation Approach (HDCA)

75

I Existing hierarchical DLS approach (MPI+OpenMP)

100

80 1
60 1
40 A
20 1

100

80 1
60 1
40 1
20 1

100

80 1
60 1
40 1
20 1

100

80 1
60 1
40 1
20 1

100

80 1
60 1
40 1
20 1

Figure 5.4 Parallel execution time of the main loop of both applications,
Mandelbrot and PSIA. For the MPI+OpenMP approach, each worker is

STATIC
| I 1 .
Al < [e0] O
SS
I I 1
Al <t o0} ©
GSS
I. I
Al <t o0} ©
TSS
T e o
FAC2
T e o

~—

Number of compute nodes

(a) Mandelbrot

Proposed HDCA (MPI+MPI)

600
STATIC
400 1
200 - I
0 . I. . .
(qV] < [o0] (o]
600 =
SS
400 1
200 1 I
0 II II .
(qV] < [o0] (o]
600 =
GSS
400 1
200 1 I
0 II II -
Al <+ [e0] (o}
600 =
TSS
400 1
200 1
0
(qV] <+ [e0] ((o}
600 =
FAC2
400 1
200 1
0
Al <+ o0} ((o}

~—

Number of compute nodes

(b) PSIA

an OpenMP thread, and the total MPI processes per one compute node is
one process. For the MPI+MPI approach, each worker is an MPI process,

and the total MPI processes per one compute node is 16 processes.
STATIC is the first level of scheduling (inter-node scheduling).

76 Hierarchical Distributed Chunk Calculation Approach (HDCA)

the number of lock-attempt messages increases when multiple processes try to

acquire the same lock simultaneously, and more overhead is introduced.

Another observation is that all hierarchical DLS techniques, except SS, im-
plemented with the proposed MPI+MPI approach have the same performance
compared to their counterparts implemented using the MPI+OpenMP approach.
The reason is that using STATIC at the inter-node level means there is only one
scheduling round at that level. However, achieving the same results also indi-
cates that the proposed approach did not introduce significant overhead to the
DLS techniques.

Figure 5.5 shows the second combination of DLS techniques where GSS is
used to schedule the workload across the compute nodes. For both applications,
the proposed MPI+MPI approach outperformed the MPI+OpenMP. The results
of the GSS+STATIC combination show the advantage of the proposed approach,
where avoiding the unnecessary synchronization between the workers (OpenMP
threads) has a significant adverse impact. For instance, in Mandelbrot and us-
ing the proposed approach, the parallel execution times of the GSS+STATIC
combination were 19.6 and 3.1 seconds on the smallest and the largest sys-
tem sizes, respectively. The same scheduling combination GSS+STATIC using
MPI+OpenMP took 61.5 and 4.5 seconds on the smallest and the largest sys-
tem sizes, respectively. In PSIA, the performance trend was repeated, i.e., the
GSS+STATIC using the proposed MPI+MPI approach outperformed its coun-
terpart implemented using the MPI+OpenMP approach. For instance, on the
smallest systems size, the parallel execution times were 233 and 245 seconds us-
ing the proposed MPI+MPI approach and the MPI+OpenMP approach, respec-
tively. However, the two approaches had the same performance when executing
on the largest system size. The reason is the decreased load imbalance in PSIA
compared to that in Mandelbrot. For the GSS+GSS combination, the DLS tech-
niques implemented using the proposed MPI+MPI approach also outperformed
their counterparts implemented using the MPI+OpenMP approach.

As discussed earlier in this Section, we decided to use the Intel software
stack. Therefore, it was not possible to perform the remaining combinations:
GSS+TSS and GSS+FAC2 using MPI+OpenMP, i.e., the Intel OpenMP runtime
library only supports the following loop scheduling techniques: static, dynamic,
and guided.

Figures 5.6 and 5.7 show the third and the fourth combinations of the DLS
techniques where TSS and FAC2 are used to schedule the workload across mul-

tiple compute nodes, respectively. Similar to Figure 5.5, the proposed approach

Hierarchical Distributed Chunk Calculation Approach (HDCA)

77

I Existing hierarchical DLS approach (MPI+OpenMP)

100

80 1
60 1
40 A
20 1

100

80 1
60 1
40 1
20 1

100

80 1
60 1
40 1
20 1

100

80 1
60 1
40 1
20 1

100

80 1
60 1
40 1
20 1

Figure 5.5 Parallel execution time of the main loop of both applications,
Mandelbrot and PSIA. For the MPI+OpenMP approach, each worker is

STATIC

i .

Al < (¢} ©
SS

I I. B -

Al <+ (s} ©
GSS

I II B -

[§\ <+ (¢} o
TSS

N <+ © ©
FAC2

N <+ © ©

~—

Number of compute nodes

(a) Mandelbrot

Proposed HDCA (MPI+MPI)

600

400 1

200 1

STATIC

600

400 1

200 1

SS

600

400 1

200 1

GSS

600

400 1

200 1

TSS

600

400 1

200 1

FAC2

Al <t [ce] (]

—
Number of compute nodes

(b) PSIA

an OpenMP thread, and the total MPI processes per one compute node is
one process. For the MPI+MPI approach, each worker is an MPI process,

and the total MPI processes per one compute node is 16 processes.

GSS is the first level of scheduling (inter-node scheduling).

78 Hierarchical Distributed Chunk Calculation Approach (HDCA)

I Existing hierarchical DLS approach (MPI+OpenMP) Proposed HDCA (MPI+MPI)
100 600
80 - STATIC STATIC
60 4 400 -
401 200 - I
20 I
0 r II II .I 0 . II II | |
Al < o0 © [qV] < [ce] (o]
100 — 600 —
%0] SS SS
60 4 400 -
401 2001 I
20 I
0 : I : | : - 0 : I : I : | =
Al <t [ce] © (9] < [ce] (o]
100 — 600 —
%0] GSS GSS
60 4 400 -
401 2001 I
20 1 I
0 : II .I - 0 : II II o
Al <t o0 © Al < [eo) O
100 — 600 —
%0] TSS TSS
60 4 400 -
401 200 -
20 1
0 T T T T 0 T T T T
Al <t o) O A < (ee] O
100 — 600 —
%0] FAC2 FAC2
60 4 400 -
401 200 -
20 1
0 T T T T 0 T T T T
Al < [e0) O A < (ee] O
Number of compute nodes Number of compute nodes
(a) Mandelbrot (b) PSIA

Figure 5.6 Parallel execution time of the main loop of both applications,
Mandelbrot and PSIA. For the MPI+OpenMP approach, each worker is
an OpenMP thread, and the total MPI processes per one compute node is
one process. For the MPI+MPI approach, each worker is an MPI process,
and the total MPI processes per one compute node is 16 processes.

TSS is the first level of scheduling (inter-node scheduling).

Hierarchical Distributed Chunk Calculation Approach (HDCA)

79

I Existing hierarchical DLS approach (MPI+OpenMP)

100

80 1
60 1
40 A
20 1

100

80 1
60 1
40 1
20 1

100

80 1
60 1
40 1
20 1

100

80 1
60 1
40 1
20 1

100

80 1
60 1
40 1
20 1

Figure 5.7 Parallel execution time of the main loop of both applications,
Mandelbrot and PSIA. For the MPI+OpenMP approach, each worker is

STATIC

I, L s .

(qV] < [e0] (o]
sS

I I u .

(qV] < [o0] O
GSs

I |

(qV] < [o0] O
TSS

N <+ ®© ©
FAC2

N <+ ®© ©

~—

Number of compute nodes

(a) Mandelbrot

Proposed HDCA (MPI+MPI)

600

400 1

200 1

STATIC

600

400 1

200 1

SS

600

400 1

200 1

GSS

600

400 1

200 1

TSS

600

400 1

200 1

FAC2

Al <t [ce] (]

—
Number of compute nodes

(b) PSIA

an OpenMP thread, and the total MPI processes per one compute node is
one process. For the MPI+MPI approach, each worker is an MPI process,

and the total MPI processes per one compute node is 16 processes.

FAC2 is the first level of scheduling (inter-node scheduling).

80 Hierarchical Distributed Chunk Calculation Approach (HDCA)

significantly outperformed the MPI+OpenMP approach when STATIC is se-
lected for scheduling the computational workload within one compute node.
For the rest of the scheduling combinations, both approaches have the same
performance. The only exception is when applying SS at the shared-memory
level. The proposed approach has the worst performance compared to the
MPI+OpenMP approach. The reason is that SS achieves the maximum load bal-
ance, and most of the workers (OpenMP threads) finish at the same time. This
scenario will avoid the long synchronization time before getting new chunks.
The last observation is related to the performance of the PSIA when applying
any combination that has the SS using the proposed approach. PSIA has less
load imbalance than Mandelbrot, and the proposed approach has a significant
overhead when employing SS. Consequently, the adverse impact of the large

associated scheduling overhead of SS is more visible in PSIA than Mandelbrot.

5.4 Summary

The implementation of hierarchical DLS techniques is essential to enable scal-
able application performance. Because of the centralized work queue (loop it-
erations), efficient implementations of hierarchical DLS techniques may be bet-
ter than non-hierarchical ones. When STATIC is used for the intra-node level
scheduling, the proposed HDCA that employs the MPI+MPI approach outper-
formed the one that uses the hybrid MPI+OpenMP approach. This highlights
and confirms the capability of our proposed HDCA to eliminate the unrequired
synchronization at the intra-node level. On the contrary, the MPI+MPI ap-
proach shows a limited performance when many MPI processes on the same
shared-memory system try to access the local work queue simultaneously. The
important observation of the present work is that the scheduling overhead asso-
ciated with using MPI shared-memory to implement DLS techniques is higher
than OpenMP. Therefore, the use of the MPI+MPI approach is only recom-
mended for developing hierarchical DLS techniques when its associated over-

head is less than the synchronization overhead associated with the use of OpenMP.

Resourceful Coordination Approach
(RCA) for Multilevel Scheduling

The multilevel Scheduling (MLS) refers to exchanging scheduling information
between all scheduling levels, such as batch, application, and thread level. MLS
helps to refine scheduling decisions at a certain level based on the available
information regarding the current scheduling workload at other levels. We pro-
pose a resourceful coordination approach (RCA) that enables the cooperation
between, currently independent, batch- and application-level schedulers. RCA
enables application schedulers to share their allocated but idle computing re-
sources with other applications through the batch system. With enabling this
coordination, RCA avoids resource shrinking operations and associated perfor-
mance penalties that are typical of dynamic resource and job management sys-
tems. To evaluate RCA, we bridged a Slurm-based simulator(at the batch-level)
and a SimGrid-based simulator flowing the same principle of the two-level sim-

ulation approach that we presented in Chapter 3.

6.1 Coordination Between ALS and BLS

The resourceful coordination approach (RCA) requires information exchange
between batch and application schedulers: (1) From the application schedulers
to the batch scheduler. The application schedulers report the status of their free
computing resources and the remaining amount of work. (2) From the batch
scheduler to the application schedulers. The batch scheduler can take advantage
of knowing the execution history of certain applications and can benefit from

additional hints that the user may provide, such as expected applications” exe-

82 Resourceful Coordination Approach (RCA) for Multilevel Scheduling

cution time, communication/computation ratio, etc. The information exchange
allows the batch scheduler to reuse computing resources as soon as they become
idle, and there are no more tasks from the job that can be assigned to them. User
hints allow the batch scheduler to identify applications that experience minimal
performance degradation when they exclude a specific number of allocated re-
sources. The exclusion means that the application schedulers will not schedule
further tasks on the excluded resource. This exclusion differs from shrinking
the resource allocation of malleable jobs. In RCA, the application still owns the
temporarily relinquished computing resource, but it allows other applications to
use it. RCA allows application schedulers to accept or reject resource exclusion
requests from the batch scheduler.

Figure 6.1 illustrates three executing applications (Appl, App2, App3) and
two queued applications (App4 and App5). First-come-first-serve (FCFS) is em-
ployed at the batch-level to schedule the five jobs. App4 has a higher priority

than App5. App4 requests four computing resources, and only two resources

#Requested 4 8 Batch-Level Scheduling
resources
Job queue App4 App5
> RJMS 4—,

R4 is Canyou free Reject R7 is

free a resource request free

App1 App2 App3
Work Work Work Work Work Work

request assignment

|

¢

|

'

request assignment request assignment

'

2 |R1||R2 R5 || R6 R7 || R8
5 |R3||R4| | [R9|[R10|:
@ " Unallocated
resources Application-Level Scheduling

Figure 6.1 The proposed resourceful coordination approach (RCA). Applications
(e.g. Appl) cooperate with other applications (e.g. App4) by yielding idle
resources (e.g. R4) through the batch system.

Resourceful Coordination Approach (RCA) for Multilevel Scheduling 83

are available: R9 and R10. However, the batch system cannot start App4 due
to insufficient free resources. Assuming that BF [FW98] is enabled, the batch
system launches any job from the queue that requests at most two resources.
In the example, App5 requests eight resources, and no other applications ex-
ist in the queue. Existing batch scheduling systems would leave App4 waiting
in the queue and R9 and R10 idle until one of the executing applications fin-
ish. In contrast, in RCA, the batch system receives information form application
schedulers during applications” execution. Appl and App3 report that R4 and
R7 became free. R4 and R7 can be reassigned to other applications through the
batch system. The information from Appl and App3 may be reported at differ-
ent times. Once the batch system receives these two reports, and if App4 is still
in the queue, the batch system can assign R4, R9, R10, and R7 to App4, which
can then begin execution.

The batch system can identify (based on applications” execution history) ap-
plications that can relinquish specific resources without performance degrada-
tion. In the example illustrated in Figure 6.1, the batch system identified App2
as such an application. The application scheduler of App2 rejected the request
and did not release any resources. In RCA, the batch scheduler does not con-
trol the ALS decisions. Application schedulers can reject the release of resource
requests. Accepting or rejecting batch requests can be seen as a higher level of
cooperation than reporting resource idle time that can be enabled or disabled
based on users’ preferences. Moreover, the batch system leaves the decision re-
garding which resource to be freed to the application scheduler. RCA aims to
separate the concerns between BLS and ALS. BLS tries to provide the required
number of resources to waiting jobs, while ALS decides which resource(s) is

(are) ready to be released right away.

6.2 RCA Applied to a BLS Simulator and an ALS
Simulator

Design details: At batch-level scheduling, the current work employs the widely
used Slurm simulator [Lucll]. The current work extends and modifies one of
the latest versions of the Slurm simulator [SDI+18]. Listing 6.1 shows the modi-
tications required to support RCA.

In Algorithm 6.1, Line 2 shows the new code that has been added to al-
low the Slurm simulator to read ALS information, such as the ALS scheduling

method. Line 3 represents the modified code that extends the Slurm simula-

1

84 Resourceful Coordination Approach (RCA) for Multilevel Scheduling

Algorithm 6.1 Batch-level scheduling

slurm_sim_controller(){
read_slurm_sim_configuration(sim_config);

2 extract_als_configuration(als_config);
3 sim_read_job_trace(trace_head);

4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20

synchronize_with_app_simulator(als_config);

while True do

run_scheduling_round(); /*Listing 2%/

update_SimGrid_simulation_clock());

if no_jobs_to_submit() then

if no_running_apps() then

collect_simulation_trace();
end_app_simulator();
exit();

sim_submit_jobs();
sim_process_finished_jobs();
sim_cancel_jobs();
sim_schedule();
sim_run_priority_decay();
schdeule_plugin_run_once();
sim_sinfo();

sim_squeue();

} /*xoriginal, new, modified codex/

tor to accept workloads in the standard workload format (SWF) [FTK14]. This
modification enables the simulation of various workloads from production HPC
systems that are available in the public workload archive [FTK14]. Lines 4 to 12
represent a newly added code that connects the SimGrid-based simulator with
the Slurm simulator. Hence, the SimGrid-based simulator works as an internal
clock for the Slurm simulator. SimGrid simulations are event-based simulations,
and consequently, the simulation time is only advanced by the occurrence of
simulation events. In our approach, the simulation time will only be advanced
when scheduling events happen at either the batch- or application-level. Lines 13
to 16 represent certain functions of the original Slurm simulator [SDI+18] that
we extended to produce or consume scheduling events of the SimGrid-based

simulator.

The communication between the two simulators employs a shared data struc-
ture called all_apps, which holds all information about jobs” execution (Line 1 in
Algorithm 6.2). Scheduling events, such as starting a job on a specific set of
resources, are produced by the Slurm-based simulator and stored in the all_apps

data structure. Also, scheduling events, such as job completion, are produced by

© 0 NN S U R W N =

=
o

Juy
=

Resourceful Coordination Approach (RCA) for Multilevel Scheduling 85

the SimGrid-based simulator and are stored in the all_apps data structure. Each

simulator consumes the events produced by the other simulator.

For ALS, the present work designs and extends an accurate SimGrid-based
simulator [MEC+20] to simulate applications” executions with various DLS tech-
niques. This simulator simultaneously simulates the execution of several applica-
tions executing on the same HPC platform. The intention behind this difference
is to let the simulator account for application interference. Earlier research ef-
tforts [EMC17b; MEC+20] focused on studying applications” performance under
various scheduling techniques. In contrast, the current work relaxes the assump-
tion of applications executing on separate sets of resources during their entire
execution, thereby increasing the realism of the simulation.

Algorithm 6.2 shows a single scheduling round of our extended SimGrid-based
simulator. A scheduling round refers to a scanning procedure where all simu-
lated applications and their assigned resources are examined to identify the idle
resources and to self-schedule the remaining work. Algorithm 6.2 illustrates the
logic of the function run_scheduling_round() of Algorithm 6.1.

Algorithm 6.2 Application-level scheduling
run_scheduling round(){

foreach app in all_apps do

unscheduled = check_unscheduled_tasks(app);
hosts = get_free_hosts(app);

foreach host in hosts do

if unscheduled >0 then

scheduling_method= schedudling_method(app);
tasks=chunk_size(app, scheduling_method);
schedule_tasks(host, tasks);

unscheduled = unscheduled - tasks;
continue; /*Go to Line 4%/

rglease_host(host,app);

} /*scheduling round in SimGridx/

For native Slurm RJMS, the BLS-ALS communication can be implemented via
remote procedure call (RPC) similar to the communication between the Slurm
daemons (slurmctl and slurmd). The Slurm daemons periodically exchange
messages to monitor resources’ status. These small messages have minimal im-
pact on the performance of the running application. The BLS-ALS communi-
cations are not periodic, and they are occasionally sent. For instance, BLS-ALS

communication messages are sent when the originating entity is not executing

86 Resourceful Coordination Approach (RCA) for Multilevel Scheduling

any workload. The BLS-ALS communication messages in that sense will not

degrade applications’ performance.

6.3 Performance Evaluation and Discussion

Experimental design: In all experiments reported herein, a simulated platform
with 256 compute hosts is used. A fully-connected network topology is used to
connect all hosts. The network fabric is assumed InfiniBand with a link band-
width and latency of 50 Gbps and 500 ns, respectively.

The effective system performance (ESP) [WOK+00b; WOK+00a] benchmark
is used to evaluate the usefulness of the proposed approach. ESP describes batch
workloads that can be used to assess batch systems’ performance. The descrip-
tion includes guidelines regarding the total number of jobs, estimated job execu-
tion time, number of requested resources per job, and job arrival times [WOK+00b;
WOK+00a; PNR+15; GH12]. Table 6.1 illustrates the characteristics of the ESP
system benchmark, which consists of 230 jobs divided into 14 job categories.
Jobs of different categories require various numbers of computing resources,
from 3.12% to 100% of the available computing resources. For instance, one
job in Category A requires eight computing resources (3.12% of the entire sys-

tem), while one job in Category Z requires 256 computing resources (the entire

system).
Table 6.1 Characteristics of the two implemented versions of the ESP system
benchmark: ESP-PSIA and ESP-Mandelbrot.

Category | Requested | Total | ESP-PSIA | ESP-Mandelbrot

ID Hosts | Jobs #images #iterations

A 8 75 32K 0.635 M

B 16 9 76.5K 1.2M

C 128 3 800 K 15M

D 64 3 582 K 85M

E 128 3 595 K 8.8 M

F 16 9 440 K 6.5M

G 32 6 635 K 1M

H 40 6 630 K 10 M

I 8 24 170 K 3.35M

J 16 24 1745 K 2.75 M

K 24 15 172.6 K 2.85M

L 32 36 1725 K 2725 M

M 64 15 176.5 K 2.65M

Z 256 2 375K 525 M

Resourceful Coordination Approach (RCA) for Multilevel Scheduling 87

Another essential factor in the ESP system benchmark is the job arrival time.
The authors of the ESP system benchmark suggested a job arrival scheme in
which Category Z jobs arrive in such a way that they divide the arrival timeline
into three parts (see Figure 6.2) [WOK+00b; WOK+00a]. In this way, the jobs
arrive during batch execution. This arrival pattern prevents the batch sched-
uler from knowing the entire workload before the execution, which would be
unrealistic.

ESP jobs are synthetic and can be represented by various applications [WOK+00b;
WOK+00a]. In the present work, we exemplify the ESP system benchmark with
the PSIA [EFM+16; EMC17a] and Mandelbrot [Man80] applications (See Sec-
tion 4.4). We generate and use two different workloads of the ESP system bench-
mark called ESP-PSIA and ESP-Mandelbrot. PSIA and Mandelbrot are chosen to
represent two extremes of interest for testing our approach: a balanced execu-
tion (PSIA) and a high load imbalanced execution (Mandelbrot). Moreover, in-
dividual research efforts [MEC+20; MEC+18] proposed an accurate and verified
representation of the computational workload of both applications in SimGrid.

PSIA [EFM+16; EMC17a] is a computationally-intensive application from
computer vision that consists of a large loop that dominates the entire execu-
tion. Loop iterations in PSIA have different computational loads and require
efficient loop scheduling to achieve a balanced execution of these iterations. Var-
ious dynamic scheduling techniques can achieve a balanced execution for PSIA.
Consequently, there are few differences in computing resource finishing times
that execute the PSIA application. Such times are important in this work as

they represent idle resources that can be relinquished. The Mandelbrot set is a

Job arrival time

© £ o © £ o © £

ES8|| B2 = Ball E38
B o 7 B o 72| 2T 0o
Qq)-—n _q) QGJ-—\ _q) QGJ-—\
Q_E% = Q_E% = Q_E%
E=i o JS) = Q E=i ol = Q E=i o R
5 C®» (ORR S5 C 0 GCJ‘” S C®n
> ®© 8 > ®© S > ®©

Figure 6.2 ESP job arrival scheme (adapted from [WOK+00b; WOK+00a]). Full
system scale jobs refer to jobs from Category Z. Multiple and small scale
jobs refer to jobs from other categories.

88 Resourceful Coordination Approach (RCA) for Multilevel Scheduling

well-known mathematical kernel. It contains a set of irregular and independent
loops and has been used to evaluate DLS techniques in the literature [SYTO07;
CAB+01].

The last two columns of Table 6.1 show the characteristics of the two ver-
sions of the ESP system benchmark workload that contain PSIA and Mandel-
brot jobs. Various input parameters control the execution of PSIA and Mandel-
brot [EMC17a; Man80]. One parameter for each application is changed to let the
applications meet the ESP’s job execution category [PNR+15]. For PSIA, #images
indicates the total number of generated spin-images. For Mandelbrot, #iterations
indicates the maximum number of iterations per pixel. The two parameters
are chosen because they had a linear relation to the application execution time.
Therefore, it is more precise to estimate their initial values that meet the job
execution category.

Figure 6.3 shows the load imbalance profile of the two versions of the ESP
system benchmark: ESP-PSIA and ESP-Mandelbrot. The metric max/mean de-
notes the ratio between the finishing time of the latest computing resource and
the average finishing time of all computing resources that execute a certain job.
When the ratio max/mean of a certain job is very close to one, the job has a

balanced load execution on its allocated resources.

|04 [STATIC mmm GSS T AF|_ 1.4 |HEM STATIC —mEm GSS [AF|

1.02} 1.3
[
5 G

v 1.00 E 1.2}
£ E
P53 x
© ©

€ 0.98 €11}

0.96] 1.0

JAJB JC gD gE gF G i gl g7 gE gL M gz JAJB e gP gE JgF ¢ gE gl g7 gE gL M gz
Job ID Job ID
(a) ESP-PSIA (b) ESP-Mandelbrot

Figure 6.3 Load imbalance profile of the jobs within the ESP-PSIA and
ESP-Mandelbrot workloads. The ratio max/mean indicates the degree of
balanced execution for each job J¥, where x is a job category (see
Table 6.1) and i ranges according to the size of each job category. Values
that are close to 1 denote a balanced execution.

Resourceful Coordination Approach (RCA) for Multilevel Scheduling 89

In Figure 6.3(a), for all job categories, the values of max/mean are close
to one. This reflects the balanced load execution of the PSIA. For ESP-PSIA,
AF achieved the most balanced execution compared to GSS and STATIC (see
Figure 6.3(a)). AF also achieved a fully-balanced execution for ESP-Mandelbrot
compared to STATIC and GSS (see Figure 6.3(b)). The results in Figure 6.3
indicate less idle resources when executing ESP-PSIA than when executing ESP-
Mandelbrot. Therefore, the ESP-PSIA workload represents a challenging case
for the proposed approach, i.e., computing resources have short idle times that
can only briefly be exploited by other applications.

Experimental Evaluation and Discussion: System utilization (SU) is an im-
portant metric that indicates the efficiency of batch scheduling techniques. We
calculate system utilization as shown in Eq. 6.1, where T} is the time that ac
computing resource k spent executing jobs, P is the total number the computing
resources, and Tj4, denotes the system makespan measured as the total execu-
tion time of the entire batch, i.e., Tpaiern = Tj — T;, where T; is the time when the first
job starts execution and 7 is the time when the last job in the batch completes
execution. System utilization ranges from 0% to 100%. Higher values of system
utilization indicate better system performance.

su= 20T 0 6.1)
P Tharch

Figure 6.4 shows the system utilization over batch execution time for the
ESP-PSIA with and without the proposed approach. When our resourceful schedul-
ing approach is not enabled in the simulation, the makespan of the ESP-PSIA
using STATIC, GSS, and AF is 13,000, 12,875, and 12,875 seconds, respectively
(see Figure 6.4(a)). This corresponds to the increase in the system utilization in
Figure 6.4(a); the GSS (blue) and AF (black) curves are slightly higher than the
STATIC (red) curve.

Figure 6.4(b) shows that the system makespan improved with our resource-
ful scheduling approach. For instance, the system makespan for ESP-PSIA with
STATIC is 12,965 instead of 13,000 seconds. For GSS and AF the improvement is
not impressive. As discussed earlier in this section, ESP-PSIA is an extreme case
of a highly balanced execution. This means that the differences in resource fin-
ishing times that execute the PSIA application are minimal. In this case, enabling
RCA will have limited advantages. One can still notice that the gap in system
utilization when using STATIC, GSS, and FAC with RCA (see Figure 6.4(b)) is
slightly smaller than the gap in Figure 6.4(a)(without RCA).

90 Resourceful Coordination Approach (RCA) for Multilevel Scheduling

ESP-PSIA ESP-PSIA
100 100
— STATIC — STATIC| | it
_ Average system utilization _ verage system utiliza '0:1
95 GSS for GSS.and AF is 83.05% 95 GSS for GSS and AF is 83.06%
- AF - AF
X X
c 90 c 90
.© e
+ +J
ﬁ Average system utilization ﬁ Average system utilization
= 85 of STATIC is 82.22% = 85 of STATIC is 82.47%
-~ -
=} S
£ 2 £ A
E 80 Difference in the system makespan 3 80 Difference in the system makespan
g is 130 seconds g is 90 seconds
(7] wn
75 75
78 — 78 —
.0 05 1.0 1.5 2.0 25 3.0 3.5 4.0 .0 05 1.0 15 2.0 25 3.0 35 4.0
Batch execution time (h) Batch execution time (h)
(a) FCFS + BF (without RCA) (b) FCFS + BF + RCA
Figure 6.4 System utilization for the ESP-PSIA workload.
100 ESP-Mandelbrot 100 ESP-Mandelbrot
Average system utilization — STATIC Average SYSteT utiization — STATIC
95| for AF is 89.96% — GSS 95f forAFis 89.96% — Gss
< — AF — — AF
< 9 \ < 92 : :
< - Difference in the
c ! : [system makespan
Difference in the i o Sy P
'_8 85 system makespan .8 85 ;40!|rl|éasuor_l 5767 seconds
S is 2,175 seconds S
= 80 Average system utilization = 80
5 for GSS is 89.28% 5
g 75 g 75
() 0]
- -
2 \ 2
@ 70 & 70
Average system utilization
65 for STATIC is 71.20% 65 Average system utilization
for STATIC is 84.82%
69 ‘ ‘ N ‘ ‘ - 69 ‘ ‘ ‘ ‘ ‘ ‘ ‘
.0 05 1.0 1.5 2.0 25 3.0 35 4.0 .0 05 1.0 15 20 25 3.0 35 4.0
Batch execution time (h) Batch execution time (h)
(a) FCFS + BF (without RCA) (b) FCFS + BF + RCA

Figure 6.5 System utilization for the ESP-Mandelbrot workload.

For ESP-Mandelbrot, Figure 6.5 shows that RCA increased the average sys-
tem utilization when the jobs used STATIC from 71.2% to 83.82%. When jobs are
executed using GSS and AF, RCA only increase the average system utilization by
0.5% and 0.05%, respectively. This is because AF can achieve a highly balanced

Resourceful Coordination Approach (RCA) for Multilevel Scheduling 91

execution of all jobs (see Figure 6.3(b)). By enabling our resourceful scheduling
approach, the system makespan of the ESP-Mandelbrot using STATIC is reduced
from 11,020 to 8,840 seconds (the red curves in Figures 6.5(a) and 6.5(b)).

In general, when all jobs are highly load-balanced, our approach offers slight
improvements in terms of increased system utilization. However, this slight
improvements in system utilization are of high value for HPC operators as they
translate into efficient power consumption [SLG+14]. Future work will explore
the relation between RCA and power consumption efficiency.

Because of the new feature that we added to the Slurm simulator [SIJ+17], we
can also visualize the execution trace of the workload at coarse- and fine-grain
scales. The left side of Figure 6.6 shows the entire ESP-Mandelbrot execution
trace in which STATIC is used at the ALS, FCFS+BF is used at the BLS, and the
proposed resourceful ordination approach is not enabled. The right side of Figure 6.6
is a horizontal zoom into the timeline of the execution trace from 415 to 550
seconds. Zooming at such a fine-time resolution helps to understand the poor
system utilization, i.e., certain jobs J8,]9, J10, and J11 are waiting for the latest
computing resources of job J7 to become free.

Figure 6.7 shows the execution trace of the same scenario (STATIC at ALS
and FCFS+BS at BLS) with the proposed resourceful coordination approach enabled.
At the coarse-grain time scale (left side), the intensity of the green color (busy
computing resources) is higher in Figure 6.7 than Figure 6.6. The total system
makespan is shorter in Figure 6.7 than Figure 6.6 by 1,413 seconds. On the right
side of Figure 6.7 (horizontal zoom from 415 to 550 seconds), due to the usage
of the proposed resourceful coordination approach, jobs J8,]9, J10, and J11 started
earlier than in Figure 6.6. This reduces the idle times of the computing resource
and increases the overall system utilization.

Jobs J8, J9, J10, and J11 in Figure 6.7 are assigned to non-contiguous hosts
compared to their resource allocation in Figure 6.6. In practice, such a non-contiguous
resource allocation may cause performance degradation for communication-intensive
applications. The applications PSIA and Mandelbrot used in the current work
are computationally-intensive. Therefore, such a non-contiguous allocation bears

no effect on their simulated performance.

Resourceful Coordination Approach (RCA) for Multilevel Scheduling

92

‘uonarduwod saypeordde /[a[Tym ‘s901n0sax S[pI 03 NP 94,07’ T ¥e VO UM UOTIeZI[IIN WDISAS 100 dPIS

3391 93 UO SUI[dWI} 3} JO [EAISIUL W} UTLLIDD B OJUI WOO0Z € ST 21n3y-qns oes Jo apIs JYSLI 3} U0 SUI[ow) }I0ys 3y, 'sqol

Sunnoaxa 930udp SI0[0d J[TYM ‘s901nosax Surnduwod o[pr ayedrpur sadeds aIYM ‘ST1g Y3 e pasn St Jg+SIDd S[TYM ‘STV 93 je
pasn st DIIVIS "Peopiom joiqiapue-dS3 ay} Jo adet) uonnaaxa ayy jo ([8o+ag] sidwep Buisn pauielqo) uonezijensip 9'9 ainbi4

A

WOOZ [BJUOZIIOH

SpuUooss QGG 01 GL1 |
MOPUIM WO0Z

LLP

2S2-7SZ IS0y
EvZ-evZ Isoy
YEZVECT ISOY
§¢Z-S¢Z IS0y
91Z:9TZ 3soy
L0Z-L0Z SOy
861:86T IS0y
681:68T IS0y
08T-:08T 3soy
TLT-TLT IS0y
Z9T-29T Isoy
EST-EST IS0y
vv1-¥11 3soy
SET-GET Isoy
9Z1-92T 3Isoy
LTT-LTT IS0y
80T-80T Isoy

:__.._r ._'.)

....—: LL]

..l.____

2§¢-Z¢SZ Isoy
EVZ-eEvZ ISoy
YEZ-VET ISOY
SZ¢C-S¢Z IS0y
91Z:9TC Isoy
L0C-L0Z Is°Y
86T-86T IS0y
68T-68T IS0y
08T-08T Isoy
TLT-TLT IS0y
Z91-29T Isoy
€GT-EST IS0y
YyI-v11 Isoy
SET-GET IS0y
9ZT-92T Isoy
LTT-LTT IS0y
80T-80T Isoy

66:66 IsoY 66:66 IsoY
06:06 3Isoy 06:06 3Isoy
18:18 3soy 18:T8 Isoy
ZL-TL3Isoy ZL:ZL 3Isoy
€9:€9 3soy €9:€9 3soy
¥S:¥§ Isoy 7S:¥9 Isoy
S-S Isoy St G Isoy
9€.9€ Isoy 9£:9€ 3soy
LT LT 30y LZ:LZ Isoy
81-8T Isoy 8T:8T 3Isoy

6:6 Isoy 6:6 Isoy

0:0 ¥3soy 0:0 3soy

, s oom.h SO,

4 SPU028S 00°'020°L L cmamov_m_,t walsAg

93

Resourceful Coordination Approach (RCA) for Multilevel Scheduling

“§90IN0SAI I[Pl

3} 9ZIIn pue I3T[Ies 3ae)s 6f pue g "uonajdwod sayoeordde /[a[rym ‘0,78 F8 1 VI UM UOTJeZI[IN Wd)sAs pasordwi "oprs

3J9[93} UO dUI[oW} 9} JO [EAISJUI WL} UIL}IdD € OJUl WO00Z B ST 9INJIJ-qns dea JO 9pIs JYSLI 9y} U0 SuI[Ddwii} }I0ys Y[, ‘sqol

Sunmnoaxa 930usp SI0[0d J[TYM ‘sadanosar Surnduwod o[pr ayedrpur sadeds aIYM ‘S1g Y3 e pasn St Jg+SID S[TUM ‘STV a3 je
pasn st DIIVIS "Peopiom joiqiapuey-dS3 ay} Jo adet) uonnaaxa ayy jo ([80+ag] Jidwep Buisn paurelqo) uonezijensip 29 ainbi4

0GG 01 Gl wol
>>OUc_>> EOON

ar
S00S S OSP

2S2:252 350y
€VZ:EHZ 3504
YEZ:VET ISOY
§22:G2Z 3504
91Z:91Z 3s0Y
£0Z:10Z 3s0Y
86T:86T 350Y
68T:68T 3sO0Y
08T:08T 3s0Y
TLT:TLT 350y
Z91:297T 350y
EST:EST 350y
vy T:vPT 3S0Y
SET:GET IS0y
9ZT:9ZT 350y
LTT:LTT 30y
80T:80T 3sOY
66:66 35OY
06:06 3s0Y
18:18 350
ZL:21 3504
€9:€9 350
¥S:G 350y
S5 Isoy
9€:9€ 350y
1Z:1Z 3504
8T:8T 3s0Y
6.6 350y

0:0 3s0Y

WOO0Z |BlUOZIIOH
A

2S2:252 350y
EVZ:EVT 3S0Y
YEZYET ISOY
§22:522 350y
91Z:91Z 3s0Y
£0Z:10Z 3s°Y
861:86T 3s0Y
681:68T 3s0Y
08T1:08T 3s0Y
TLT:TLT 3504
Z91:29T 350y
EST'EGT 350Y
v T:vPT 3s0Y
SET'SET 350Y
9Z1:92T 350y
LTT:LTT 350Y
80T:80T 3s0Y
66:66 350U
06:06 350
18:18 3s0Y
2L:7L3s0Y
€9:€9 350y
¥S:tS 350y
bGP Isoy
9€:9€ 350y
LT:17 3s0Y
8T:8T 350
6.6 350Y

0:0 3s0Y

7/ Spu028s 00°209‘6 cmamov_mmc walsAg

94 Resourceful Coordination Approach (RCA) for Multilevel Scheduling

6.4 Summary

This chapter showed the resourceful coordination approach (RCA) that allows
application schedulers to cooperate by involving the batch scheduler. The pro-
posed approach is implemented in a two-level scheduling simulator using realis-

tic and well-known simulators (a Slurm-based simulator [SIJ+17] and a SimGrid-based
simulator [MEC+20]). The effective system performance (ESP) benchmark was
used to assess the proposed approach. ESP jobs were instantiated with the par-

allel spin-image generation and the Mandelbrot set.

RCA increased the entire system utilization by 12.6% and decreased the sys-
tem makespan by the same percentage when the applications had a severe load
imbalance. System utilization was slightly improved by 0.05% when applications
had balanced execution. These improvements are of high value for HPC oper-
ators as they translate to efficient power consumption [SLG+14]. The present
work also shows that for long-executing HPC applications, exploiting comput-
ing resources’ idle times (in the order of a few seconds) can significantly improve
the entire system utilization. Prior to this work, it was commonly accepted that
short computing resource idle times filled by Big Data workloads [MGG+17].
The current work highlighted the potential of exploring such idle times also for
HPC workloads as well.

The proposed extensions to the Slurm-simulator [SIJ+17] enabled the visual
analysis of the workload execution at coarse- and fine-grain temporal resolu-
tions using Vampir [KBD+08]. With RCA, the visual analysis showed that idle
resources were exploited efficiently and jobs were not assigned to contiguous
computing resources. Such a non-contiguous resource allocation may cause per-
formance degradation of communication-intensive applications, which were not

in the scope of the present work but planned as future work.

The Multilevel Scheduling (MLS)
Prototype

This chapter introduces the MLS prototype and highlights the prototype’s imple-
mentation details. The MLS prototype connects the job scheduler of Slurm [Y]GO03]
(at the batch level) with the LB4MPI scheduling library [MEC+20; MC20] (at
the application level). Figure 7.1 shows how the MLS prototype connects the
batch and application level scheduling. The wide scheduling portfolio offered
in LB4MPI and implemented using the DCA allows applications to minimize
their execution times and avoid computing resources’ idle time. The connection
between LB4MPI and the Slurm scheduler allows LB4MPI to report idle com-
puting resources instantaneously. The RCA (implemented as a thread in the
Slurm scheduler) allows Slurm to reassign idle computing resources of one job

to execute pending jobs.

Slurm
Application A | main scheduler | Application B
LB4MPI (DCA) H—* RCA thread [= LB4MPI (DCA) |
MPI runtime library MPI runtime library

Figure 7.1 The MLS prototype. LB4MPI (at the application level) manages the
allocated computing resources. When there is no more work to schedule
on a particular computing resource, LB4MPI instantaneously reports such
information to a specific thread in the Slurm, called RCA thread. The
RCA thread marks that resource as a free and allows the main Slurm
scheduler to reassign that resource to pending applications.

96 The Multilevel Scheduling (MLS) Prototype

7.1 DCA in a Scheduling and Load Balancing
Library

LB4MPI ! [MEC+20; MC20] is a recent MPI-based library for loop scheduling
and dynamic load balancing. LB4MPI extends the LB tool [CB05] by including
certain bug fixes and additional DLS techniques. LB4MPI has been used to en-
hance the performance of various scientific applications [MC20]. We extend the
LB4MPI in two directions: (1) We enable the support of DCA. All the DLS tech-
niques originally supported in LB4MPI were implemented with a centralized
chunk calculation approach (CCA), as shown in Figure 7.2. We re-implement
them with DCA, as shown in Figure 7.3. (2) We add six additional DLS tech-
niques and implement them with CCA and DCA. These DLS techniques are
TAP [Luc92], TESS [CAB+01], FISS [PD97], VISS [PD97], RND [CIB18], and
PLS [SYTO07].

LB4MPT has six API functions: DLS_Parameters_Setup, DLS_StartLoop, DLS_-
Terminated, DLS_StartChunk, DLS_EndChunk, and DLS_EndLoop. For backward
compatibility reasons, our extension of LB4MPI maintained the six original
APIs and their signature. However, we added a new API: Configure_Chunk_-
Calculation_Mode that selects between CCA and DCA. We changed each of the
six APIs” functionality to include a condition that checks the selected approach
(CCA or DCA). When the selected approach is CCA, the six APIs work as in the
original LB4MPI. For instance, DLS_StartChunk calls either DLS_StartChunk_-
Centralized or DLS_StartChunk_Decentralized based on the selected approach.
DLS_StartChunk_Centralizedis a function that wraps the original CCA of LB4MP],
while DLS_StartChunk_Decentralized provides the newly added functionality
that supports DCA.

One can use LB4MPI as in Listing 7.1. One important observation regarding
Listing 7.1 is that LB4MPI does not perform any data exchange related to the
allocated chunks. LB4MPI assumes that each MPI process has access to the data
associated with the loop iterations it executes. The simplest way to ensure the
validity of this assumption is to replicate the data of all loop iterations across all
MPI processes. Users can also centralize or distribute data of the loop iterations
across all MPI processes. In this case, however, users need to provide a way
to their applications to exchange the required data associated with the loop
iterations.

When a worker calls DLS_EndLoop, this means that LB4AMPI will not sched-

I https://github.com/unibas-dmi-hpc/DLS4LB.git

https://github.com/unibas-dmi-hpc/DLS4LB.git

The Multilevel Scheduling (MLS) Prototype

97

Figure 7.2

Start

Start
o

loop iterations
T

Execute a chunk of ‘

No

Compute and assign
chunk to the master

Yes

Calculate the chunk
size

Identify the start and ‘

Report termination to
the master

end index of the chunk
L]

chunk details (size,

Respond to the worker with

l

start index)

Terminate
the worker

No

Wait for all workers to
terminate

master

End

Master side

Terminate the

End

]

Start

?7

Request
chunk

No

Yes

Execute the ‘
received chunk

Worker side

The centralized chunk calculation approach (CCA) in LB4MPI. The

master performs chunk calculation and assignment for all worker
requests. The operations written in the red font represent the centralized
operations performed by the master.

Start (0

Execute a chunk of
loop iterations

Respond to the worker with

information require to
calculate a chunk

Receive calculated chunk

size and update scheduled

Yes
Compute and assign
chunk to the coordinator

loop iterations
[

Request information
to calculate a chunk

size

Calculate a chunk

'

Terminate the

coordinator

Coordinator side

chunk size

!

Terminate
the worker

End

Request the total
scheduled loop iterations

[
I
[
[
|
|
|
I
! Send the calculated
|
[
[
|
|
|
|
I

Execute the
calculated chunk

Worker side

Figure 7.3 The distribution chunk calculation approach (DCA) in LB4MPI. Each
worker calculates its chunk and the coordinator allow worker to
synchronize for chunk assignment.

98 The Multilevel Scheduling (MLS) Prototype

Listing 7.1: Usage of LB4MPI for loop scheduling and dynamic load balancing
in scientific applications

#include<mpi.h>
#include <LB4MPI.h>
int main ()
{
/*...application code ...*/
int mode = DECENTRALIZED; /* Or CENTRALIZED */
Configure_Chunk_Calculation_Mode (mode);
infoDLS iInfo; /*¥ a data structure that holds
the scheduling information */
DLS_Parameters_Setup(&ilInfo); /* Scheduling params
tnclude number of tasks, scheduling method,
scheduling parameters mean, std, ... etc */
DLS_StartLoop(iInfo, start_index,end_index, scheduling_method);
while{!DLS_Terminated(info)}
{
int start;
int chunk_size;
DLS_StartChunk (iInfo, &start, &chunk_size);
/*... application code to process loop from start to
start + chunk_size ...#*/
DLS_EndChunk (iInfo);
}
DLS_EndLoop (iInfo);
/*¥... rest of the application code that does not dominate
the performance ...*/
}

ule any chunks to be executed on the computing resource of that worker. We
consider DLS_EndLoop to be the communication point where LB4MPI sends a
messages to Slurm that one resource becomes idle and can be reassigned to an-
other jobs. Therefore, we extend DLS_EndLoop as shown in Listing 7.2. As one
may notice, the extension does not depend on the chunk calculation mode, i.e.,
both CCA and DCA modes report idle resources.

7.1.1 Performance Assessment of DCA in LB4MPI

PSIA and Mandelbrot are used to evaluate the performance of the scheduling
techniques in LB4MPI (implemented using both chunk calculation approaches:
DCA and CCA). DCA and CCA were assessed in three different scenarios. These
scenarios represent cases when a system slowdown affects the PEs and results
in slowing down the chunk calculation function.

In the first scenario, no delay is injected during the chunk calculation. In the
other two scenarios, a constant delay is injected in the chunk calculation. The
injected delay was 10 and 100 microseconds for these two scenarios, respectively.
The target experimental system is miniHPC (see Section 4.4). We used sixteen
dual-socket nodes (Intel Xeon E5-2640 with 10 cores per socket).

In Figure 7.4(a), using CCA, the parallel loop execution time Tl’; Z; is 73.41

The Multilevel Scheduling (MLS) Prototype

99

Listing 7.2: Connection point between LB4MPI and Slurm

#include <LB4MPI .h>

#include <utmpx.h>

#include <sys/socket.h>
#include <arpa/inet.h>

#include <unistd.h>

#include <string.h>

void DLS_EndLoop(infoDLS #*info)
{

switch (Chunk_Calculation_Mode)

{
case DECENTRALIZED:

DLS_EndChunk_Decentralized (info);
break;
default:
DLS_EndChunk_Centralized (info);
break;

}

char host_name [100];

gethostname (host_name, 100);

sprintf (message,"’s", host_name);

int sock = 0, valread;

struct sockaddr_in serv_addr;

if ((sock = socket (AF_INET, SOCK_STREAM, 0)) < 0)

{
log("\nySocketcreationgerror ,\n");
return;

}

serv_addr.sin_family = AF_INET;

serv_addr.sin_port = htons (PORT);

int error=inet_pton (AF_INET, SLURM_IP, &serv_addr.sin_addr);

if (error <=0)

{
log("\nInvalid address/ Address notsupported, \n");
exit (error);

}

error=connect (sock, &serv_addr, sizeof (serv_addr));

if (error<0)

{
log("\nConnection Failed, \n");
exit (error);

}

send (sock, message, strlen(message), 0);

close(sock);

100 The Multilevel Scheduling (MLS) Prototype

seconds with STATIC, while the best T Z; is 69.37 with FAC2. With FAC2, the
performance of PSIA is enhanced by 5.5%. Other techniques achieve compa-
rable performance. For instance, T}, ‘;; is 69.53 seconds with PLS. In contrast,
other techniques degrade the performance of PSIA. GSS and RND degrade the
PSIA performance by 2.7% and 61.2% compared STATIC. For the DCA, one can
make the same observations regarding the best and the worst techniques. The
CCA and DCA versions of all techniques are comparable to each other, i.e., the

difference in performance ranges from 2% to 3%.

Figures 7.4(b) and 7.4(c) show the performance of both CCA and DCA with
different techniques for PSIA when the injected delay is 10 and 100 microsec-
onds, respectively. In Figure 7.4(b), one can notice that when the injected delay
is 10 microseconds, the performance differences between CCA and DCA with
all techniques range from 2% to 3%. Considering the variation in 7} 7 of the 20
repetitions of each experiment, one observes that both approaches still have a

comparable performance.

For the largest injected delay, the DLS techniques implemented with CCA
are more sensitive than the DLS techniques implemented with DCA (see Fig-
ure 7.4(c)). For Mandelbrot, one can notice the same behavior, i.e., when there
is no injected delay or when the inject delay is 10 microseconds, the perfor-
mance differences between CCA and DCA with all techniques are minor (see
Figures 7.5(a) and 7.5(b)). In contrast, Figure 7.5(c) shows that the DCA version
of all the DLS techniques is more capable of maintaining its performance than
the CCA version.

Another interesting observation is the poor AF performance with CCA (see
Figure 7.5(c)). AF is an adaptive technique, and it accounts for all sources of
load imbalance that affect applications during the execution. However, AF only
considers mu,; and o ;. Since we inject the delay in the chunk calculation func-
tion, AF cannot account for such a delay, and it works similarly to the case of
no injected delay. Considering the Mandelbrot application’s characteristics, the
majority of the AF chunks are equal to 1 loop iterations. This fine chunk size
leads to an increased number of chunks, i.e., the performance significantly de-
creased because the injected delay is proportional to the total number of chunks.
For PSIA, the corresponding AF implementation (with CCA) does not have the
same extreme poor performance (see Figure 7.4(c)) because the AF chunk sizes

in the case of PSIA are larger than the chunk sizes in the case of Mandelbrot.

The Multilevel Scheduling (MLS) Prototype 101

w

— 58

o The best technique The worst technique

E _,||mmm CccA [DCA FAC using CCA RND using CCA

520 takes 69.37 seconds takes 114.11 seconds

c

O 46

520

]

o 2°

3

c 2t

e

w© 2°

L

G2l

oy 2

|

K

® 50

<2
O [%9) [%2] (2] %] %] [a) w

2 n %) < 0 < %] %] 0 = < -
i i) = [w = I S x o

Scheduling technique

(a) Without an injected delay

The best technique The worst technique

I CCA 7 DCA PLS using CCA RND using CCA .
[nds’

takes 69.37 seconds takes 114.10secol

Parallel application execution time (s)
N
S

FS
GSS
TAl

%)
2 b

TFSS
FISS
VISS
RND
A
PL

Scheduling technique

(b) With low injected delay (10 microseconds)

—
L s
o2
The best technique The worst technique
g 27 B CCA 1 DCA FAC using DCA RND using CCA
c takes 70.35 seconds \ takes 116.28 seconds
O 56
22
]
o2’
b
c2*
h=l
© 2°
Y
2 -2
22
L
i)
® 50
=2
[@] %) [(%] %] [%2] (%] [a) w
& = @ a < o s 0 U) = < et
'<_(= w s o
%]

Scheduling technique

(c) With severe injected delay (100 microseconds)

Figure 7.4 Parallel application execution time of PSIA in the three slowdown
scenarios.

102

The Multilevel Scheduling (MLS) Prototype

Parallel application execution time (s) Parallel application execution time (s)

Parallel application execution time (s)

20

N N N N N N N N
- N w > 5 E) ~)

N
=)

ccA DCA The best technique
PLS using DCA
The worst technique takes 11.07 seconds

RND using CCA
takes 17.5 seconds

|

@] 7 0 0 n 0 [a) [
[0 %] < 0 E wn %) %) = < o
,‘E w [G] = = = e S o
%]
Scheduling technique
(a) Without an injected delay
B CCA [DCA The best technique
r PLS using DCA
takes 11.25 seconds
The worst technique
AF using CCA
takes 18.5 seconds
0 %)) [(%] [a)
[0 < 0 i n %) [%)] b= < a
'<_(e o = = t [S 4
%]
Scheduling technique
(b) With low injected delay (10 microseconds)
: ‘ : ’ The wo;'st lechniquev
BN CCA [DCA AF using COA
takes 200 seconds\ The best technique
PLS using DCA
takes 11.6 seconds
Q n o 0 wn [0 a w [7)
[a 0 < 0 < 0] v = < z
S b (G = [t o S "4
n

Scheduling technique

(c) With severe injected delay (100 microseconds)

Figure 7.5 Parallel application execution time of Mandelbrot in the three

slowdown scenarios.

The Multilevel Scheduling (MLS) Prototype 103

7.2 RCA in a Production Batch Scheduler

Slurm is an open-source software, which is commonly used to manage HPC
clusters in government laboratories, universities, and companies worldwide.
Since Slurm was introduced in 2003 and until now, its usage constantly spreads
in the HPC community. For instance, in 2013, Slurm was used on 50% of the
ten most powerful supercomputers [Sch20]. Slurm has a unique design that
relies on three components that interact to manage jobs’ execution and system
resources. Figure 7.6 shows the main three components of Slurm: slurmctld,
slurmd, and slurmdbd.

The slurmd component is a multithreaded daemon (a process that executes
in the background). Each computing node executes a single slurmd daemon.
Every slurmd daemon notifies about the status of its compute node. The slurmd
daemons are responsible for executing jobs on their resources and exchanging
job and node status with the slurmctld daemon (main controller).

The slurmdbd component is another daemon that is responsible for storing
the job accounting information. The job accounting information includes job
arrival time, request resource, start time, execution time, etc. The user can query
job accounting information with a command utility, called sacct. The slurmdbd
either interfaces with a database server to store the job accounting information
or directly writes job information to an ordinary file as plain text.

The slurmctld component, also known as the main controller, is the central

component of Slurm. It has three responsibilities:

— Polling slurmd daemons to receive their periodic updates to ensures that

nodes their intended configuration

— Gathering nodes into local groups, called partitions. The partitions are
used to apply a common configuration to a group of compute nodes.
For instance, jobs submitted to a specific partition should finish execution

within a time limit.

— Scheduling jobs by accepting user jobs, assigning jobs to compute nodes,
and adding pending jobs in a priority ordered queue. Jobs can be pending

because there are insufficient compute nodes to start.

The slurmctld daemon has a unique multithreaded design that preferably re-
quires the slurmctld daemon to execute on a dedicated node, called a head
node. The slurmctld daemon carries out its responsibilities by spinning off sev-

eral threads. Certain threads have the lifetime of the slurmctld daemon.

104 The Multilevel Scheduling (MLS) Prototype

sbatch — oo
» Submitajob — | . Job
2 _—" slurmetld (— Storejob ___| slurmdbd |<—— Insert data ™| accounting DB
© Allocate resource L7 info ither i 9
S salloc either in MySQL DB
£ / \ or plain text file
S Execute a job
o srun — \ Job
P \ accounting
5 . List) Update Execute Update Execute Update Execute file
5 : ist running status job status job status job
b and queued N
5 iob —— ¥ ¥
squeue jobs
\II/ slurmd slurmd slurmd
Computing T Computing o Computing
node node node

Figure 7.6 The main components of Slurm.

The job scheduling functionality (slurmctld_background) executes as a separate
thread. The slurmctld daemon also starts short lifetime threads to initiate/retire
jobs. Such a design of the slurmctld daemon supports high scalability, availabil-
ity, and high computing throughput [YJGO03].

Inspired by the multithreaded design of the slurmctld daemon, we add a
new thread, called RCA thread. The newly added RCA thread handles com-
munication messages from the ALS library (LB4MPI in our case). This thread
accepts ALS communication messages on a specific port that the user can de-
fine as a Slurm configuration parameter (slurm.conf file). The message contains
information regarding the node that the ALS scheduling library wants to share
with other applications. The thread extracts the node’s hostname and calls a
function that makes the node available for reassignment by the main scheduler.

Such a function is called share_node_with_others and described in Listing 7.3.

Slurm intensively uses certain global variables that we also reuse to develop
share_node_with_others. For instance, we use two global variables, called
job_list and node_record_table_ptr, defined in slurmctld.h. job_list rep-
resents a linked list that maintains a detailed record of each job submitted to
Slurm. Each item in this linked list is of type job_record that is defined in
slurmctld.h. The node_bitmap is among the several pieces of information that
a job_record holds. A bitmap is an efficient representation that Slurm uses to
represent node status, i.e., each bit in the map corresponds to a compute node.
The corresponding bit of the node_bitmap of the job_record is set to true for
all allocated computing nodes. Otherwise, it is false. node_record_table_ptr
also represents a linked list that maintains a detailed record of each node in
the system. Each item in this linked list is of type node_record that is defined

in node_conf.h. The hostname is among the several pieces of information a

The Multilevel Scheduling (MLS) Prototype

105

Listing 7.3: Marking a compute node as available for other applications

{

void share_node_with_others(char * target_node)

struct job_record * job_ptr=NULL;

// job_list is a global wvariable defined by Slurm
// holds information about all jobs submitted to the system
ListIterator job_iterator = list_iterator_create(job_list);

//node_record_table_ptr s a global wariable deined by slurm
// holds information about all nodes in the systems
struct node_record *node_ptr = node_record_table_ptr;

// iterate over all jobs
while ((job_ptr = (struct job_record *)1list_next(job_iterator)))
{

if (job_ptr->job_state!=JOB_RUNNING)

{

// continue to check another job
continue;
}
// converts the node bitmap to list of node hostnames
char * nodes_list= bitmap2node_name (job_ptr->node_bitmap);

// check whether the nodes_list has the target_node
int res= has_node(target_node, nodes_list);

if (res!=-1)
{
//Job that ezecutes on the target node is identified
break;
}
}
// free the job_iterator
list_iterator_destroy(job_iterator);

if (job_ptr==NULL)

{
// this share request is not walid. ignore %t
return;

}

// make sure that the job has more than one node
int nodes_count=bit_set_count (job_ptr->node_bitmap);
if (nodes_count >1)

{
node_record=get_node_record(target_node,target_node);
excise_node_from_job(job_ptr ,node_ptr);
info("job,%d shared %s",job_ptr->job_id, node_ptr->name);
queue_job_scheduler ();

}

106 The Multilevel Scheduling (MLS) Prototype

node_record holds.

The incoming messages (from the ALS library) contain only the hostname of
the node to be shared. The message has no information about the job itself
(job id, allocated nodes, start time, execution constraints, etc.). The logic in
share_node_with_others has two parts; the first part is to identify the job that
is associated with the incoming message; the second part is to free and reassign
the resource(s) identified in the incoming message.

In the first part, the code iterates overall jobs in the job_list, and uses the
node_bitmap of each job_record in the job_list to check whether the hostname
in the message belongs to the current job allocation. Once this check returns
true, the current job_record represents the target job. We also identify the
target node record by checking the hostname of each job_record in the node_-
record_table_ptr.

In the second part, we use certain functions that are defined in the Slurm
source code. The first function is excise_node_from_job. This function takes
the two input parameters (job_record and node_record) that have been identi-
fied in the first part. The two parameters are used by excise_node_from_job to
remove the given node from the allocation of the given job as follows. It marks
the node’s corresponding bit in the Slurm’s global bitmaps (idle_node_bitmap,
avail_node_bitmap). Marking nodes as available and idle does not mean that
the job binaries have been killed on the node, i.e., the job executes and owns
the allocation. However, the scheduling library at the application level will not
schedule any tasks on the node. Thus, the node can be shared with other appli-
cations via the batch level scheduler.

As discussed before, Slurm has a multithreaded design in which the primary
scheduling function runs on a separate thread. The scheduling thread is peri-
odically awakened or whenever scheduling events occur, such as job arrival and
completion. Therefore, share_node_with_others calls a Slurm function, called
queue_job_scheduler that immediately causes the main scheduling thread to

wake up.

7.3 Performance Evaluation and Discussion

Evaluating the MLS prototype in a production system is challenging because it
means interrupting and disturbing the original RM]JS of that production system.
Furthermore, all Slurm daemons require root privileges to execute appropri-

ately. Therefore, 16 compute nodes were segregated from miniHPC [Ciol8] and

The Multilevel Scheduling (MLS) Prototype 107

dedicated to install and evaluate the prototype. The 16 nodes form an HPC clus-
ter (MLS cluster) with one head node and 15 compute nodes. Table 7.1 describes
the hardware and the software specification of the MLS cluster.

Table 7.1 Software and hardware components of the MLS cluster

Parameter Value

Operating system CentOS Linux release 7.2.1511
Job scheduler Slurm 20.02.1

Compiler OpenMPI 2.0.2/GCC-6.3.0-2.27
Number of nodes 16

Processor Intel Xeon E5-2640 v4
Hyper-threading disabled

Operating frequency | 2.4 GHz

RAM 64 GB per node

Topology non-blocking fat tree
Interconnection Intel Omni-Path

Bandwidth 100 Gbit/s

Latency 100 ns

In our evaluation, we use the ESP [WOK+00b; WOK+00a] benchmark. As
discussed in Chapter 6, the ESP benchmark can be exemplified with any par-
allel application. For the MLS evaluation, we exemplify ESP with Mandel-
brot [Man80]. We selected FCFS with BF at the batch scheduling level. We
selected STATIC, GSS, FISS, and AF at the application level.

Another challenge is the expected variation in jobs” execution time. Such a
variation does not exist when event-based simulators (like the proposed one in
Chapter 6) are used. For the MLS prototype, the expected variation necessi-
tates multiple times of repetitions per scheduling experiment. Each scheduling

experiment has been repeated five times.

Figure 7.7(a) shows the performance of the MLS prototype in two scenarios:
(1) the coordination between ALS and BLS is disabled, and (2) the coordination
is enabled. In the first scenario, the average system makespan is 3630 seconds,
while in the second scenario, the average system makespan is 3455 seconds. The
difference between the two scenarios is 175 seconds. This result means that by
enabling the coordination, the makespan is reduced by 4.82%.

Such improvement is justified by employing STATIC as the ALS technique
used by all the ESP jobs. The ESP jobs are exemplified with Mandelbrot. As
explained in Section 4.4, Mandelbrot with STATIC represents the maximum load

imbalance execution.

108 The Multilevel Scheduling (MLS) Prototype

3700 3700

- 3600 - 3600
§3500 §3500
2] =
© 3400 © 3400
© ©
€ 3300 € 3300
€ €
£ 3200 £ 3200
> >
3100 ¥ 3100
3000 3000
Disabled Enabled Disabled Enabled
Coordination status Coordination status
(a) STATIC (o) GSS
3700 3700
- 3600 - 3600
§3500 §3500
(%] wn
© 3400 & 3400
© ©
€ 3300 € 3300
€ €
[1
3200 3200 —
Ji —_— “i =
¥ 3100 3100
3000 3000
Disabled Enabled Disabled Enabled
Coordination status Coordination status
(c) FISS (d) AF

Figure 7.7 System makespan of the ESP (Mandelbrot) with different application
level scheduling techniques. Slurm is configured to use FCFS for
BLS.

Figures 7.7(b), 7.7(c) and 7.7(d) represent other cases when GSS, FISS, and
AF were used at the application level. With GSS, FISS, and AF, Mandelbrot has
a balanced execution. This is reflected in the achieved improvement in these
cases. For instance, employing GSS, FISS, and AF lead to 0.9%, 2.5%, and 0.6%
improvement in the system makespan.

When the coordination between BLS and ALS is enabled, the selected ALS
technique’s influence becomes less significant on the system makespan. For
instance, without enabled coordination, the average system makespan is 3630,
3452, 3159, 3181 seconds for STATIC, GSS, FISS, and AF, respectively. By en-
abling the coordination, the average system makespan is 3455, 3420, 3078, and
3161 seconds. In general, the results confirm the same patterns observed in the
simulation (see Section 6.3). Therefore, we can conclude that sharing informa-
tion about idle computing resources enables coordination between batch and

application schedulers and has significant performance potential.

Conclusions and Future Work

This chapter describes and summarizes the main conclusions that came out of
the work presented in this doctoral dissertation. This chapter also outlines the

future extensions of this work.

8.1 Conclusions

Throughout this doctoral dissertation, it has been shown that idle times of com-
puting resources towards the end of applications” execution negatively impact
performance at the batch and application levels. Idle times degrade performance
at the batch level because they decrease system utilization. They also degrade
performance at the application level because they increase applications” execu-
tion time. Therefore, a coordination between schedulers at various levels of
hardware parallelism exploits these idle times.

This conclusion is supported by analyzing simulation results of an exploratory
study, which has been conducted on workload traces obtained from large-scale
HPC systems in production. The exploratory study includes twelve combina-
tions of three BLS and four ALS techniques and is enabled by the two-level
scheduling simulator proposed in Chapter 3.

The two-level scheduling simulator connects two well-known simulators (Grid-
Sim and SimGrid), i.e., each simulator is responsible for a certain scheduling
level. By collecting the simulation events of both simulators and storing these
events in an OTF2 format, we are able to visualize using Vampir [KBD+08], for
the first time, the system utilization from system to core level. This visualiza-
tion allowed us to conclude that coordination absence between BLS and ALS
techniques hinders exploiting idle times of computing resources.

110 Conclusions and Future Work

Also, we have learned that the standard workload format (SWF), which was
used to store workload traces for the past two decades, is of limited usefulness
for simulating BLS and ALS. SWF does not preserve any information about
how applications schedule their tasks on the allocated resources. To overcome
this limitation, we have proposed the task variation factor that varies the tasks’
length within a certain application randomly (see Chapter 3). However, the pro-
posed task variation factor does not eliminate the need for storing additional
information about how applications schedule their tasks on the allocated re-

sources.

Dynamic loop scheduling (DLS) techniques are essential to improve applica-
tions” performance by mitigating all sources of load imbalance. We examined
and assessed the performance of twelve well-known DLS techniques at the ap-
plication level. We highlighted a shift in their development. Originally, DLS
techniques are devised for shared-memory systems. In the middle of the 1990s,
Beowulf clusters and the first MPI standard appeared. Since that time, DLS tech-
niques have been implemented on distributed-memory systems by employing a
master-worker execution model that centralizes chunk calculation and chunk

assignment at the master side.

We have concluded that the centralization of chunk calculation and chunk
assignment contributes to idle times of computing resources, i.e., a worker waits
for the master to calculate and assign work to all other workers. Thus, the dis-
tribution of chunk calculation across all workers is essential for applications’
performance. We proposed a distributed chunk calculation approach (DCA)
and its hierarchical DCA (HDCA). For both approaches, we have presented the
need for straightforward formulas that do not depend on any information about
previously calculated chunks. We have shown the mathematical transformation
required to change the formulas of the considered DLS techniques into straight-
forward formulas. We recommend to use these straightforward formulas and

the DCA approach for implementing DLS techniques.

Both approaches (DCA and HDCA) are implemented on distributed-memory
systems using the latest features (one-sided communications and MPI shared
memory) of the latest MPI standard (MPI 3.1). One primary lesson learned is
that the performance of these latest features significantly depends on the MPI
runtime library. For instance, the lock polling strategy (employed by Intel MPI)
significantly increases scheduling overhead (see Chapter 4). Also, when a large
number of MPI processes simultaneously access a shared-memory region, the

associated overhead of such an access is higher than the overhead associated

Conclusions and Future Work 111

with simultaneous access of OpenMP threads (see Chapter 5).

In practice, we have observed and learned that none of the considered DLS
techniques completely eliminates load imbalance. The considered DLS tech-
niques allow computing resources to have nearly equal finishing times, but
computing resources do not have the exact finishing times, i.e., certain comput-
ing resources experience idle times. In this case, we have proposed a resourceful
coordination approach (RCA) that allows batch systems to exploit computing re-
sources once they become free. RCA leverages and combines the advantages of
node sharing and dynamic resource and job management. It offers an efficient
resource sharing (of idle resources only) and avoids shrinkage and expansion
operations on the application side (see Chapter 6).

Employing DCA and RCA in the MLS prototype confirms and promotes
our primary conclusion: enabling coordination between batch and application
schedulers via exchanging scheduling information is crucial to fully exploit

computing resources of modern HPC systems (see Chapter 7).

8.2 Future Work

Possible extensions can be explored based on the work presented in this the-
sis. These possible extensions cover various research directions. In the DLS
direction, recent research efforts [KCY+] expanded specific OpenMP runtime li-
braries by adding more DLS techniques. One possible extension is to apply the
proposed DCA in such libraries. We also discussed and implemented specific
DLS techniques (TFSS, PLS, FISS, and VISS) in the LB4MPI library (see Chap-
ters 4 and 7). These techniques have not yet been implemented in any of the
OpenMP runtime. Adding these techniques to OpenMP runtime libraries, such
as LLVM, is essential as it widens the scheduling portfolio for selecting the best
performing scheduling.

Few DLS techniques, such as self-adapting scheduling (SAS) [RCA+06], were
designed to support scheduling tasks with data dependencies. These techniques
consider a centralized chunk calculation. Furthermore, they have never been
implemented in any OpenMP runtime library nor any MPI scheduling library.
One immediate extension to our work is to study the potential of applying the
proposed DCA to such techniques and implement them in the LLVM OpenMP
runtime library and in the LB4MPI library.

Another exciting research direction is how to eliminate the required synchro-
nization for the work assignment in the DLS techniques. All DLS techniques

112 Conclusions and Future Work

(except Fractiling [BFH95]) assume a central work queue that necessitates syn-
chronization for the work assignment between all workers.

In the direction of batch scheduling, the proposed RCA allows applications to
share their idle computing resources with other applications through the batch
system. One future extension is to develop batch techniques that use such idle
resources to achieve specific performance targets. For instance, a batch technique
that reuses these idle resources to execute only jobs with short execution time
may increase system throughput.

Furthermore, the current doctoral dissertation focused on idle resource times
towards the end of applications” execution. One future extension is to study ex-
ploiting idle resource times during applications” execution. Such idle times exist
in communication-intensive applications, i.e., data transfer between compute
nodes happens frequently, and in many cases, compute nodes often remain idle
until the data transfer completes.

With the existing computer technology, parallelism remains the gateway for
HPC. Future HPC systems will continue to offer massive parallelism at the core,
node, and system levels. Various scheduling techniques are employed to sched-
ule computations across all parallelism levels. In this doctoral dissertation, we
addressed the following research problem: the absence of coordination between
schedulers at different scheduling levels in HPC systems. We have shown how mul-
tilevel scheduling efficiently exploits multiple levels of hardware parallelism of

modern HPC systems.

Bibliography

[ABS+11]

[BSC+12]

[BCP+05]

[BFH95]

[BVO02]

[BVDO03]

[Ban00]

Zafril Rizal M. Azmi, Kamalrulnizam Abu Bakar, Mohd Shahir
Shamsir, Wan Nurulsafawati Manan, and Abdul Hanan Abdul-
lah. Scheduling Grid Jobs Using Priority Rule Algorithms and
Gap Filling Techniques. Journal of Advanced Science and Technology,
37:61-76, 2011.

Mahadevan Balasubramanian, Nitin Sukhija, Florina M. Ciorba,
Ioana Banicescu, and Srishti Srivastava. Towards the Scalability
of Dynamic Loop Scheduling Techniques via Discrete Event Sim-
ulation. In Proceedings of the International Parallel and Distributed

Processing Symposium Workshops, 2012, pages 1343-1351.

Ioana Banicescu, Ricolindo L. Carifio, Jaderick P. Pabico, and
Mahadevan Balasubramaniam. Design and Implementation of a
Novel Dynamic Load Balancing Library for Cluster Computing.
Journal of Parallel Computing, 31(7):736-756, 2005.

Ioana Banicescu and Susan Flynn Hummel. Balancing Processor
Loads and Exploiting Data Locality in N-body Simulations. In
Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage, and Analysis, 1995, pages 43—43.

Ioana Banicescu and Vijay Velusamy. Load Balancing Highly Ir-
regular Computations With the Adaptive Factoring. In Proceedings
of the International Parallel and Distributed Processing Symposium,
2002, 12 pp.

Ioana Banicescu, Vijay Velusamy, and Johnny Devaprasad. On
the Scalability of Dynamic Scheduling Scientific Applications
With Adaptive Weighted Factoring. Journal of Cluster Computing,
6(3):215-226, 2003.

Banicescu, Ioana and Liu, Zhijun. Adaptive Factoring: A Dy-
namic Scheduling Method Tuned to the Rate of Weight Changes.

In Proceedings of the High performance computing Symposium, 2000,
pages 122-129.

114

Bibliography

[BEM+06]

[BCC+04]

[BWI1]

[BGO1]

[BLR+12]

[BLP95]

[BDH+15]

[BCC+97]

[BBHB+07]

Marinho P. Barcellos, Giovani Facchini, Hisham H. Muhammad,
Guilherme B. Bedin, and Paulo Luft. Bridging the gap between
simulation and experimental evaluation in computer networks.

In Proceedings of the Annual Simulation Symposium, 2006, 8—pp.
Kevin Barker, Andrey Chernikov, Nikos Chrisochoides, and Ke-

shav Pingali. A Load Balancing Framework for Adaptive and

Asynchronous Applications. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(2):183-192, 2004.

Katherine M. Baumgartner and Benjamin W. Wah. Computer
scheduling algorithms: past, present and future. Journal of Infor-
mation Sciences, 57:319-345, 1991.

Gordon Bell and Jim Gray. High Performance Computing: Crays,
Clusters, and Centers. What Next? Communications of the ACM,
2001.

Wes E. Bethel, David Leinweber, Oliver Riibel, and Kesheng Wu.
Federal Market Information Technology in the Post-FlashCrash
Era: Roles for Supercomputing. The Journal of Trading, 7(2):9-25,
2012.

Prashanth B. Bhat, Young Won Lim, and Viktor K. Prasanna. Is-
sues in using heterogeneous hpc systems for embedded real time
signal processing applications. In Proceedings of the International
Workshop on Real-Time Computing Systems and Applications, 1995,
pages 134-141.

Mark S. Birrittella, Mark Debbage, Ram Huggahalli, James Kunz,
Tom Lovett, Todd Rimmer, Keith D. Underwood, and Robert C.
Zak. Intel Omni-Path Architecture: Enabling scalable, high per-
formance fabrics. In Proceedings of the Annual Symposium on High-

Performance Interconnects, 2015, pages 1-9.

Susan L. Blackford, Jaeyoung Choi, Andy Cleary, Eduardo
D’Azevedo, James Demmel, Inderjit Dhillon, Jack Dongarra, Sven
Hammarling, Greg Henry, Antoine Petitet, et al. ScaLAPACK
Users” Guide, 1997.

Guy E. Blelloch, Lenore Blum, Mor Harchol-Balter, and Robert
Harper. Multiscale Scheduling: Integrating Competitive and Co-
operative Scheduling in Theory and in Practice. http://lambda-

Bibliography

115

[Boal8]

[BMB+13]

[BWA16]

[BMO02]

[Can08]

[CBO5]

[CBO08]

[CBR+04]

the-ultimate.org/node/2337. [Online; accessed 08 August 2020].
2007.

OpenMP Architecture Review Board. OpenMP Application Pro-
gramming Interface. https: //www . openmp . org/wp - content /
uploads/OpenMP-API-Specification-5.0.pdf. [Online; accessed
23 August 2020]. 2018.

Joris Borgdorff, Mariusz Mamonski, Bartosz Bosak, Derek Groen,
Mohamed Ben Belgacem, Krzysztof Kurowski, and Alfons G
Hoekstra. Multiscale Computing With the Multiscale Modeling
Library and Runtime Environment. Journal of Procedia Computer
Science, 18:1097-1105, 2013.

Anthony Boulmier, John White, and Nabil Abdennadher. Towards
a Cloud Based Decision Support System for Solar Map Genera-
tion. In Proceedings of the International Conference on Cloud Comput-
ing Technology and Science, 2016, pages 230-236.

Rajkumar Buyya and Manzur Murshed. GridSim: A Toolkit for
the Modeling and Simulation of Distributed Resource Manage-
ment and Scheduling for Grid Computing. Journal of Concur-
rency and Computation: Practice and Experience, 14(13-15):1175-1220,
2002.

Caniou, Yves and Gay, J. -S. Simbatch: An API for Simulating
and Predicting the Performance of Parallel Resources Managed
by Batch Systems. In Proceedings of the European Conference on Par-
allel Processing, 2008, pages 223-234.

Ricolindo L. Carifio and Ioana Banicescu. A Load Balancing
Tool for Distributed Parallel Loops. Journal of Cluster Computing,
8(4):313-321, 2005.

Ricolindo L. Carifio and Ioana Banicescu. Dynamic Load Balanc-
ing With Adaptive Factoring Methods in Scientific Applications.
Journal of Supercomputing, 44(1):41-63, 2008.

Ricolindo L. Carino, Ioana Banicescu, Thomas Rauber, and
Gudula Riinger. Dynamic loop scheduling with processor groups.
In Proceedings of the 17th international conference on parallel and dis-
tributed computing systems. 2004, pages 78-84.

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

116

Bibliography

[CGL+14]

[CBLO8]

[CFK+18]

[CW10]

[CAB+01]

[CPY+05]

[CIB18]

[Ciol8]

[CGJ83]

Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quin-
son, and Frédéric Suter. Versatile, Scalable, and Accurate Simula-
tion of Distributed Applications and Patforms. Journal of Parallel
and Distributed Computing, 74(10):2899-2917, 2014.

Marc Casas, Rosa Badia, and Jestis Labarta. Automatic Analysis
of Speedup of MPI Applications. In Proceedings of the International
Conference on Supercomputing, 2008, pages 349-358.

Bastien Chopard, Jean-Luc Falcone, Pierre Kunzli, Lourens Veen,
and Alfons Hoekstra. Multiscale Modeling: Recent Progress and
Open Questions. Journal of Multiscale and Multidisciplinary Model-
ing, Experiments and Design, 1(1):57-68, 2018.

Martin J. Chorley and David W. Walker. Performance Analysis
of a Hybrid MPI/OpenMP Application on Multi-core clusters.
Journal of Computational Science, 1(3):168-174, 2010.

Anthony T. Chronopoulos, Razvan Andonie, Manuel Benche, and
Daniel Grosu. A Class of Loop Self-scheduling for Heterogeneous
Clusters. In Proceedings of International Conference on Cluster Com-
puting, 2001, pages 282-291.

Anthony T. Chronopoulos, Satish Penmatsa, Ning Yu, and Du Yu.
Scalable Loop Self-scheduling Schemes for Heterogeneous Clus-
ters. Journal of Computational Science and Engineering, 1(2-4):110-
117, 2005.

Florina M. Ciorba, Christian Iwainsky, and Patrick Buder.
OpenMP Loop Scheduling Revisited: Making a Case for More
Schedules. In Proceedings of the 2018 international workshop on
openmp, 2018, pages 21-36.

Ciorba, Florina M. The miniHPC Cluster. https : //hpc . dmi .
unibas.ch/HPC/miniHPC.html. [Online; accessed 08 August 2020].
2018.

Edward G. Coffman Jr, Michael R. Garey, and David S. Johnson.
Dynamic Bin Packing. SIAM Journal on Computing, 12(2):227-258,
1983.

https://hpc.dmi.unibas.ch/HPC/miniHPC.html
https://hpc.dmi.unibas.ch/HPC/miniHPC.html

Bibliography

117

[CMHG+16]

[DGGL+18]

[DJC19]

[DHJ07]

[Don03]

[Don04]

[Don20]

[DSS+05]

[EC19a]

Isaias Comprés, Ao Mo-Hellenbrand, Michael Gerndt, and Hans-
Joachim Bungartz. Infrastructure and API Extensions for Elastic
Execution of MPI Applications. In Proceedings of the European MPI
Users” Group Meeting, 2016, pages 82-97.

Marco D’Amico, Marta Garcia-Gasulla, Victor Loépez, Ana
Jokanovic, Raiil Sirvent, and Julita Corbalan. DROM: Enabling Ef-
ficient and Effortless Malleability for Resource Managers. In Pro-
ceedings of the International Conference on Parallel Processing Com-

panion, 2018, pages 1-10.

Marco D’Amico, Ana Jokanovic, and Julita Corbalan. Holistic
slowdown driven scheduling and resource management for mal-
leable jobs. In Proceedings of the International Conference on Parallel

Processing, 2019, page 31.

Luiz DeRose, Bill Homer, and Dean Johnson. Detecting Appli-
cation Load Imbalance on High End Massively Parallel Systems.
In Proceedings of European Conference on Parallel Processing, 2007,
pages 150-159.

Jack Dongarra. High Performance Computing Trends and Self
Adapting Numerical Software. In Proceedings of the International
Symposium on High Performance Computing, 2003, pages 1-9.

Jack Dongarra. The Boole Lecture. Trends in High Performance
Computing. Computer Journal, 47(4):399-403, 2004.

Jack Dongarra. Report on The Fujitsu Fugaku System. https://
www.icl.utk.edu/files/publications/2020/icl-utk-1379-
2020.pdf. [Online; accessed 02 September 2020]. 2020.

Jack Dongarra, Thomas Sterling, Horst Simon, and Erich
Strohmaier. High-performance Computing: Clusters, Constella-
tions, MPPs, and Future Directions. Computing in science & engi-
neering, 7(2):51-59, 2005.

Ahmed Eleliemy and Florina M. Ciorba. Dynamic Loop Schedul-
ing Using MPI Passive-Target Remote Memory Access. In Proceed-
ings of the Euromicro International Conference on Parallel, Distributed
and Network-based Processing, 2019, pages 75-82.

https://www.icl.utk.edu/files/publications/2020/icl-utk-1379-2020.pdf
https://www.icl.utk.edu/files/publications/2020/icl-utk-1379-2020.pdf
https://www.icl.utk.edu/files/publications/2020/icl-utk-1379-2020.pdf

118

Bibliography

[EC19Db]

[EC20]

[EC21]

[EFM+16]

[EMC16]

[EMC17a]

[EMC17b]

[EWG+11]

Ahmed Eleliemy and Florina M. Ciorba. Hierarchical Dynamic
Loop Self-Scheduling on Distributed-Memory Systems Using an
MPI+MPI Approach. In Proceedings of the International Parallel and
Distributed Processing Symposium Workshops, 2019, pages 689-697.

Ahmed Eleliemy and Florina M. Ciorba. A Distributed Chunk
Calculation Approach for Self-scheduling of Parallel Applications
on Distributed-memory Systems. Journal of Computational Science,

2020, revised and resubmitted.

Ahmed Eleliemy and Florina M Ciorba. A Resourceful Coordi-
nation Approach for Multilevel Scheduling. In Proceedings of the
International Conference on High Performance Computing & Simula-
tion, 2021.

Ahmed Eleliemy, Mahmoud Fayze, Rashid Mehmood, Iyad.
Katib, and Naif Aljohani. Loadbalancing on Parallel Heteroge-
neous Architectures: Spin-image Algorithm on CPU and MIC. In
Proceedings of the 9th EUROSIM Congress on Modelling and Simula-
tion, 2016, pages 623-628.

Ahmed Eleliemy, Ali Mohammed, and Florina M. Ciorba. Sim-
ulating Batch and Application Level Scheduling Using GridSim
and SimGrid. Extended Abstract at the International Confer-
ence for High Performance Computing, Networking, Storage, and
Analysis. 2016.

Ahmed Eleliemy, Ali Mohammed, and Florina M. Ciorba. Effi-
cient Generation of Parallel Spin-images Using Dynamic Loop
Scheduling. In Proceedings of the 8th International Workshop on Mul-
ticore and Multithreaded Architectures and Algorithms in conjunction
with the 19th IEEE International Conference for High Performance
Computing and Communications, 2017, page 8.

Ahmed Eleliemy, Ali Mohammed, and Florina M. Ciorba. Explor-
ing the Relation between Two Levels of Scheduling Using a Novel
Simulation Approach. In Proceedings of the International Symposium

on Parallel and Distributed Computing, 2017, pages 26-33.

Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas
Kniipfer, Wolfgang E. Nagel, and Felix Wolf. Open Trace Format
2: The Next Generation of Scalable Trace Formats and Support

Bibliography

119

[FTY+90]

[Fei05]

[Fei20]

[E]97]

[FR95]

[FR96]

[FRS+97]

[FTK14]

[FW98]

Libraries. In Proceedings of the International Conference on Parallel
Computing, 2011, pages 481-490.

Zhixi Fang, Peiyi Tang, Pen-Chung Yew, and Chuan-Qi Zhu.
Dynamic Processor Self-scheduling for General Parallel Nested
Loops. IEEE Transactions on Computers, 39(7):919-929, 1990.

Dror G. Feitelson. Parallel Workloads Archive.
http:/ /www.cs.huji.ac.il/labs /parallel /workload /. [Online;
accessed 08 August 2020]. 2005.

Dror G. Feitelson. Standard Workload Format. http://www.cs.
huji.ac.il/labs/parallel/workload/swf . html. [Online; ac-
cessed 08 August 2020]. 2020.

Dror G. Feitelson and Morris A Jettee. Improved Utilization
and Responsiveness with Gang Scheduling. In Proceedings of the
Workshop on Job Scheduling Strategies for Parallel Processing, 1997,
pages 238-261.

Dror G. Feitelson and Larry Rudolph. Parallel Job Scheduling: Is-
sues and Approaches. In Proceedings of the Workshop on Job Schedul-
ing Strategies for Parallel Processing, 1995, pages 1-18.

Dror G. Feitelson and Larry Rudolph. Toward Convergence in
Job Schedulers for Parallel Supercomputers. In Proceedings of the
Workshop on Job Scheduling Strategies for Parallel Processing, 1996,
pages 1-26.

Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth
C Sevcik, and Parkson Wong. Theory and Practice in Parallel Job
Sscheduling. In Proceedings of the Workshop on Job Scheduling Strate-
gies for Parallel Processing, 1997, pages 1-34.

Dror G. Feitelson, Dan Tsafrir, and David Krakov. Experience
with using the Parallel Workloads Archive. Journal of parallel and
distributed computing, 74(10):2967-2982, 2014.

Dror G. Feitelson and Ahuva Mu’alem Weil. Utilization and Pre-
dictability in Scheduling the IBM SP2 With Backfilling. In Proceed-
ings of the Merged International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing, 1998, pages 542—
546.

http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html

120

Bibliography

[FBP15]

[FHSU+96]

[FHSF92]

[For20]

[GCL09]

[GGR+15]

[GH12]

[GAB+96]

[HGC14]

Edson Flérez, Carlos J. Barrios, and Johnatan E. Pecero. Methods
for Job Scheduling on Computational Grids: Review and Com-
parison. In Proceedings of latin american high performance computing

conference, 2015, pages 19-33.
Susan Flynn Hummel, Jeanette Schmidt, R. N. Uma, and Joel

Wein. Load-sharing in Heterogeneous Systems via Weighted Fac-
toring. In Proceedings of the 8th annual ACM symposium on Parallel
algorithms and architectures, 1996, pages 318-328.

Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn.
Factoring: A Method for Scheduling Parallel Loops. Journal of
Communications of the ACM, 35(8):90-101, 1992.

MPI Forum. Message-Passing Interface. https : / / www . mpi -
forum.org. [Online; accessed 23 August 2020]. 2020.

Marta Garcia, Julita Corbalan, and Jesus Labarta. LeWI: A Run-
time Balancing Algorithm for Nested Parallelism. In Proceedings of

the International Conference on Parallel Processing, 2009, pages 526—
533.

Eric Gaussier, David Glesser, Valentin Reis, and Denis Trys-
tram. Improving Backfilling by Using Machine Learning to Pre-
dict Running Times. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2015, pages 1-10.

Yiannis Georgiou and Matthieu Hautreux. Evaluating Scalability
and Efficiency of the Resource and Job Management System on
Large HPC Clusters. In Proceedings of the Workshop on Job Schedul-
ing Strategies for Parallel Processing, 2012, pages 134-156.

Martyn F. Guest, Edoardo Apra, David E. Bernholdt, Herbert A.
Friichtl, Robert J. Harrison, Ricky A. Kendall, RA Kutteh, X. Long,
John B. Nicholas, Jeffrey A. Nichols, et al. High-performance
Computing in Chemistry: NW Chem. Future Generation Computer
Systems, 12(4):273-289, 1996.

Jeft R. Hammond, Sayan Ghosh, and Barbara M. Chapman. Im-
plementing OpenSHMEM Using MPI-3 One-sided Communica-
tion. In Proceedings on the Workshop on OpenSHMEM and Related
Technologies, 2014, pages 44-58.

https://www.mpi-forum.org
https://www.mpi-forum.org

Bibliography

121

[Hen95]

[HDB+13]

[HDT+15]

[HCB17]

[HKK+03]

[How98]

[IBM16]

[Joh97]

[JTS09]

Robert L. Henderson. Job Scheduling Under the Portable Batch
System. In Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing, 1995, pages 279-294.

Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji,
Brian Barrett, Ron Brightwell, William Gropp, Vivek Kale, and
Rajeev Thakur. MPI + MPI: a new hybrid approach to par-
allel programming with MPI plus shared memory. Computing,
95(12):1121-1136, 2013.

Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett, Pa-
van Balaji, William Gropp, and Keith Underwood. Remote Mem-
ory Access Programming in MPI-3. ACM Transactions on Parallel
Computing, 2(2):9, 2015.

Franziska Hoffeins, Florina M. Ciorba, and Ioana Banicescu. Ex-
amining the Reproducibility of Using Dynamic Loop Schedul-
ing Techniques in Scientific Applications. In International Parallel
and Distributed Processing Symposium Workshops, 2017, pages 1579—
1587.

Matthias Hovestadt, Odej Kao, Axel Keller, and Achim Streit.
Scheduling in HPC Resource Management Systems: Queuing vs.
Planning. In Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing, 2003, pages 1-20.

Howell, Fred and McNab, Ross. A Discrete Event Simulation Li-
brary for Java. In Proceedings of the International Conference on Web-

based Modeling and Simulation, 1998, page 6.

IBM LSE. Queue-Level User-based Fairshare. [Online; accessed 13
August 2020]. 2016.

Andrew E. Johnson. Spin-Images: A Representation for 3-D Sur-
face Matching. PhD thesis. Robotics Institute, Carnegie Mellon
University, 1997.

Raka Jovanovic, Milan Tuba, and Dana Simian. A New Visualiza-
tion Algorithm for the Mandelbrot Set. In Proceedings of the 10th
WSEAS International Conference on Mathematics and Computers in
Biology and Chemistry, 2009, pages 162-166.

122

Bibliography

[KRO1]

[KT11]

[Kis02]

[KMRO7]

[KR10]

[KR11]

[KSS19]

[KBD+08]

[KCY+]

Axel Keller and Alexander Reinefeld. Anatomy of A Resource
Management System for HPC Clusters. Annual review of scalable
computing, 3(1):1-31, 2001.

Volodymyr Kindratenko and Pedro Trancoso. Trends in High-
performance Computing. Computing in science & engineering,
13(3):92-95, 2011.

Laszlo B Kish. End of Moore’s Law: Thermal (Noise) Death of In-
tegration in Micro and Nano Electronics. Physics Letters A, 305(3-
4):144-149, 2002.

Dalibor Klusacek, Ludék Matyska, and Hana Rudova. Alea—Grid
Scheduling Simulation Environment. In Proceedings of the Inter-
national Conference on Parallel Processing and Applied Mathematics,
2007, pages 1029-1038.

Dalibor Klusacek and Hana Rudova. Alea 2: Job Scheduling Sim-
ulator. In Proceedings of the International Conference on Simulation

Tools and Techniques, 2010, page 61.

Dalibor Klusa¢ek and Hana Rudova. Efficient Grid Scheduling
Through the Incremental Schedule-based Approach. Journal Com-
putational Intelligence, 27(1):4-22, 2011.

Dalibor Klusdcek, Mehmet Soysal, and Frédéric Suter. Alea -
Complex Job Scheduling Simulator. In Proceedings of the Inter-

national Conference on Parallel Processing and Applied Mathematics,
2019, pages 217-229.

Andreas Kniipfer, Holger Brunst, Jens Doleschal, Matthias Ju-
renz, Matthias Lieber, Holger Mickler, Matthias S Miiller, and
Wolfgang E. Nagel. The Vampir Performance Analysis Tool-set.
In Proceedings of the International Workshop on Parallel Tools for High
Performance Computing, 2008, pages 139-155.

Jonas H. Miiller Korndorfer, Florina M. Ciorba, Akan Yilmaz,
Christian Iwainsky, Johannes Doerfert, Hal Finkel, Vivek Kale,
and Michael Klemm. A Runtime Approach for Dynamic Load
Balancing of OpenMP Parallel Loops in LLVM. Poster at Interna-
tional Conference on High Performance Computing, Networking,

Storage and Analysis.

Bibliography

123

[KWS85]

[LMM+19]

[LTS+93]

[LFO03]

[Luc92]

[Lucl1]

[Man80]

[MGG+17]

[MC20]

[MEC18]

Clyde P. Kruskal and Alan Weiss. Allocating Independent Sub-
tasks on Parallel Processors. IEEE Transactions on Software Engi-
neering, SE-11(10):1001-1016, 1985.

Ignacio Laguna, Ryan Marshall, Kathryn Mohror, Martin Rue-
fenacht, Anthony Skjellum, and Nawrin Sultana. A Large-scale
Study of MPI Usage in Open-source HPC Applications. In Pro-
ceedings of the International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, 2019, page 31.
H. Li, S. Tandri, M. Stumm, and K. C. Sevcik. Locality and loop

scheduling on numa multiprocessors. In Proceedings of the interna-

tional conference on parallel processing, 1993, pages 140-147.
Uri Lublin and Dror G. Feitelson. The workload on parallel su-

percomputers: modeling the characteristics of rigid jobs. Journal
of Parallel and Distributed Computing, 63(11):18, 2003.

Steven Lucco. A Dynamic Scheduling Method for Irregular Paral-
lel Programs. In Proceedings of the ACM Conference on Programming
Language Design and Implementation, 1992, pages 200-211.

Alejandro Lucero. Simulation of Batch Scheduling Using Real
Production-ready Software Tools. In Proceedings of the 5th IBER-
GRID, 2011.

Benoit B. Mandelbrot. Fractal Aspects of the Iteration of z —
Az (1-z) for Complex A and z. Journal of Annals of the New York
Academy of Sciences, 357(1):249-259, 1980.

Michael Mercier, David Glesser, Yiannis Georgiou, and Olivier
Richard. Big Data and HPC collocation: Using HPC Idle Re-
sources for Big Data Analytics. In Proceedings of International Con-
ference on Big Data, 2017, pages 347-352.

Ali Mohammed and Florina M. Ciorba. SimAS: A Simulation-
assisted Approach for the Scheduling Algorithm Selection Under

Perturbations. Concurrency and Computation: Practice and Experi-
ence, 32(15):e5648, 2020.

Ali Mohammed, Ahmed Eleliemy, and Florina M. Ciorba. Perfor-
mance Reproduction and Prediction of Selected Dynamic Loop

Scheduling Experiments. In Proceedings of the international confer-

124

Bibliography

[MEC+18]

[MEC+20]

[Moo+65]

[Nag93]

[Ope20]

[PGW+17]

[PPC86]

[Pfi01]

[PD97]

ence on high performance computing & simulation, 2018, pages 398—
405.

Ali Mohammed, Ahmed Eleliemy, Florina M. Ciorba, Franziska
Kasielke, and Ioana Banicescu. Experimental verification and
Analysis of Dynamic Loop Scheduling in Scientific Applications.
In Proceedings of the international symposium on parallel and dis-
tributed computing, 2018, pages 141-148.

Ali Mohammed, Ahmed Eleliemy, Florina M. Ciorba, Franziska
Kasielke, and Ioana Banicescu. An Approach for Realistically
Simulating the Performance of Scientific Applications on high

Performance Computing Systems. Journal of Future Generation
Computer Systems, 111:617-633, 2020.

Gordon E. Moore et al. Cramming More Components onto Inte-
grated Circuits. 1965.

Wolfgang E. Nagel. A Distributed Scheduler System for Multi-
processor Computers with Shared memory: Investigations into
the Scheduling of Parallel Programs. PhD thesis. RWTH Aachen,
1993, pages 1, 174.

OpenMP Architecture Review Board. OpenMP Application Pro-
gramming Interface. https://www . openmp . org/wp - content /
uploads/OpenMP-API-Specification-5.0.pdf. [Online; accessed
10 September 2020]. 2020.

Arnab K. Paul, Arpit Goyal, Feiyi Wang, Sarp Oral, Ali R. Butt,
Michael J. Brim, and Sangeetha B. Srinivasa. I/o0 Load Balancing
for Big Data HPC Applications. In Proceedings of the international
conference on big data (big data), 2017, pages 233-242.

Tang Peiyi and Yew Pen-Chung. Processor Self-scheduling for
Multiple-nested Parallel Loops. In Proceedings of the International
Conference on Parallel Processing, 1986, pages 528-535.

Gregory F. Pfister. An introduction to the Infiniband architecture.
High Performance Mass Storage and Parallel 1/O, 42:617-632, 2001.

Teebu Philip and Chita R Das. Evaluation of Loop Scheduling Al-
gorithms on Distributed Memory Systems. In Proceedings of the
International Conference on Parallel and Distributed Computing Sys-
tems, 1997, pages 76-94.

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

Bibliography

125

[PK87]

[Pral6]

[PIR+14]

[PNR+15]

[RBA+18]

[RCA+06]

[Rod17]

[STO7]

[SV09]

Constantine D. Polychronopoulos and David J. Kuck. Guided
Self-Scheduling: A Practical Scheduling Scheme for Parallel Su-
percomputers. IEEE Transactions on Computers, 100(12):1425-1439,
1987.

Suraj Prabhakaran. Dynamic Resource Management and Job
Scheduling for High Performance Computing. PhD thesis. Tech-
nische Universitat Darmstadt, 2016.

Suraj Prabhakaran, Mohsin Igbal, Sebastian Rinke, Christian
Windisch, and Felix Wolf. A Batch System With Fair Scheduling
for Evolving Applications. In Proceedings of the International Con-
ference on Parallel Processing, 2014, pages 351-360.

Suraj Prabhakaran, Marcel Neumann, Sebastian Rinke, Felix Wolf,
Abhishek Gupta, and Laxmikant V Kale. A Batch System With
Efficient Adaptive Scheduling for Malleable and Evolving Appli-
cations. In Proceedings of the International Parallel and Distributed

Processing Symposium, 2015, pages 429-438.

Albert Reuther, Chansup Byun, William Arcand, David Bestor,
Bill Bergeron, Matthew Hubbell, Michael Jones, Peter Michaleas,
Andrew Prout, Antonio Rosa, et al. Scalable System Scheduling
for HPC and Big Data. Journal of Parallel and Distributed Computing,
111:76-92, 2018.

I. Riakotakis, F. M. Ciorba, T. Andronikos, and G. Papakonstanti-
nou. Self-adapting Scheduling for Tasks with Dependencies in
Stochastic Environments. In Proceedings of the International Confer-

ence on Cluster Computing, 2006, pages 1-8.

Gonzalo P. Rodrigo. HPC Scheduling in a Brave New World. PhD
thesis. Umea Universitet, 2017.

K. Y. Sanbonmatsu and C. S. Tung. High Performance Computing
in Biology: Multimillion Atom Simulations of Nanoscale Systems.
Journal of Structural Biology, 157(3):470-480, 2007.

H. A. Sanjay and Sathish S Vadhiyar. A Strategy for Scheduling
Tightly Coupled Parallel Applications on Clusters. Concurrency
and Computation: Practice and Experience, 21(18):2491-2517, 20009.

126

Bibliography

[SLG+14]

[Sch97]

[Sch20]

[SWZ+16]

[SYTO7]

[SDI+18]

[STJ+17]

[SBO1]

Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant
Kale. Maximizing Throughput of Overprovisioned HPC Data
Centers Under a Strict Power Budget. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis, 2014, pages 807-818.

Robert R. Schaller. Moore’s Law: Past, Present and Future. IEEE
Spectrum, 34(6):52-59, 1997.

SchedMD. SchedMD: Slurm Development and Support. https :
//slurm.schedmd . com/pdfs/schedmd_slurm_data.pdf. [Online;
accessed 26 August 2020]. 2020.

Hongzhang Shan, Samuel Williams, Yili Zheng, Weiqun Zhang,
Bei Wang, Stephane Ethier, and Zhengji Zhao. Experiences of Ap-
plying One-sided Communication to Nearest-neighbor Commu-
nication. In Proceedings of the Workshop on PGAS Applications, 2016,
pages 17-24.

Wen-Chung Shih, Chao-Tung Yang, and Shian-Shyong Tseng. A
Performance-based Parallel Loop Scheduling on Grid Environ-
ments. Journal of Supercomputing, 41(3):247-267, 2007.

Nikolay A. Simakov, Robert L. DeLeon, Martins D. Innus,
Matthew D. Jones, Joseph P. White, Steven M. Gallo, Abani K. Pa-
tra, and Thomas R. Furlani. Slurm Simulator: Improving Slurm
Scheduler Performance on Large HPC Systems by Utilization of
multiple Controllers and Node Sharing. In, Proceedings of the Prac-
tice and Experience on Advanced Research Computing, pages 1-8,
2018.

Nikolay A. Simakov, Martins D. Innus, Matthew D. Jones, Robert
L. DeLeon, Joseph P. White, Steven M. Gallo, Abani K. Patra,
and Thomas R. Furlani. A Slurm Simulator: Implementation and
Parametric Analysis. In Proceedings of the International Workshop on
Performance Modeling, Benchmarking and Simulation of High Perfor-
mance Computer Systems, 2017, pages 197-217.

Lorna Smith and Mark Bull. Development of mixed mode
MPI/OpenMP applications. Scientific Programming, 9(2-3):83-98,
2001.

https://slurm.schedmd.com/pdfs/schedmd_slurm_data.pdf
https://slurm.schedmd.com/pdfs/schedmd_slurm_data.pdf

Bibliography

127

[SBC+11]

[STL+15]

[SVP+10]

[SBS+13]

[TES+19]

[TNO93]

[ULl75]

[VMO02]

[WLD+10]

Srishti Srivastava, Ioana Banicescu, Florina M. Ciorba, and Wolf-
gang E. Nagel. Enhancing the Functionality of a GridSim-based
Scheduler for Effective Use with Large-Scale Scientific Applica-
tions. In Proceedings of the International Symposium on Parallel and
Distributed Computing, 2011, pages 86-93.

Luka Stanisic, Samuel Thibault, Arnaud Legrand, Brice Videau,
and Jean-Frangois Méhaut. Faithful Performance Prediction of a
Dynamic Task-based Runtime system for Heterogeneous Multi-
core Architectures. Concurrency and Computation: Practice and Ex-
perience, 27(16):4075-4090, 2015.

Tony Stocker, Kaveh Vahedipour, Daniel Pflugfelder, and N Jon
Shah. High-performance Computing MRI Simulations. Magnetic
resonance in medicine, 64(1):186-193, 2010.

Nitin Sukhija, Ioana Banicescu, Srishti Srivastava, and Florina M.
Ciorba. Evaluating the Flexibility of Dynamic Loop Scheduling
on Heterogeneous Systems in the Presence of Fluctuating Load
Using SimGrid. In Proceedings of the International Parallel and Dis-
tributed Processing Symposium Workshops, 2013, pages 1429-1438.

A. Totounferoush, N. Ebrahimi Pour,]J. Schrdoder, S. Roller,
and M. Mehl. A New Load Balancing Approach for Coupled
Multi-Physics Simulations. In Proceedings of the international par-
allel and distributed processing symposium workshops (ipdpsw), 2019,
pages 676—682.

Ten H. Tzen and Lionel M. Ni. Trapezoid Self-Scheduling: A Prac-
tical Scheduling Scheme for Parallel Compilers. IEEE Transactions
on Parallel and Distributed Systems, 4(1):87-98, 1993.

J. D. Ullman. NP-complete Scheduling Problems. Journal of Com-
puter and System Sciences, 10(3):384-393, 1975.

Jetfrey S. Vetter and Frank Mueller. Communication Characteris-
tics of Large-scale Scientific Applications for Contemporary Clus-
ter Architectures. In Proceedings of the International Parallel and Dis-
tributed Processing Symposium, 2002, 10—pp.

K. Wang, G. Lavoué, F. Denis, A. Baskurt, and X. He. A Bench-
mark for 3D Mesh Watermarking. In Proceedings of the 9th IEEE
International Conference on Shape Modeling and Applications, 2010,
pages 231-235.

128

Bibliography

[WOK+00a]

[WOK+00b]

[WYL+12]

[Xhal0]

[Y]GO03]

[ZBG16]

[ZG16]

Adrian T. Wong, Leonid Oliker, William Kramer, Teresa L. Kaltz,
and David H. Bailey. ESP: A System Utilization Benchmark. In
Proceedings of the International Conference on Supercomputing, 2000,

pages 15-19.

Adrian T. Wong, Leonid Oliker, William Kramer, Teresa L. Kaltz,
and David H. Bailey. System Utilization Benchmark on the Cray
T3E and IBM SP. In Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, 2000, pages 56—67.

Chao-Chin Wu, Chao-Tung Yang, Kuan-Chou Lai, and Po-Hsun
Chiu. Designing Parallel Loop Self-scheduling Schemes Using the
Hybrid MPI and OpenMP Programming Model for Multi-core
Grid Systems. Journal of Supercomputing, 59(1):42-60, 2012.

Xhafa, Fatos and Abraham, Ajith. Computational Models and
Heuristic Methods for Grid Scheduling Problems. Future Gener-
ation Computer Systems, 26(4):608-621, 2010.

Andy B. Yoo, Morris A. Jette, and Mark Grondona. Slurm: Sim-
ple Linux Utility for Resource Management. In Proceedings of the
Workshop on Job Scheduling Strategies for Parallel Processing, 2003,
pages 44-60.

Xin Zhao, Pavan Balaji, and William Gropp. Scalability Chal-
lenges in Current MPI One-Sided Implementations. In Proceedings
of International Symposium on Parallel and Distributed Computing,
2016, pages 38—47.

Huan Zhou and José Gracia. Asynchronous Progress Design for a
MPI-based PGAS One-sided Communication System. In Proceed-
ings of the International Conference on Parallel and Distributed Sys-
tems, 2016, pages 999-1006.

Index

AFE 21
Alea, 32
ALS, 5,15
AWFE, 21
AWE-B, 21
AWE-C, 21
AWE-D, 21
AWEF-E, 21

BE, 25
BLS, 5, 24

c.0.v., 22
CCA, 96
CCS, 25

DCA, 10
DLS, 5, 15, 17
DSS, 52

EASY BE, 26

EDE, 25

ESG, 25

ESP, 86
ESP-Mandelbrot, 87
ESP-PSIA, 87

FAC, 17, 19
FAC2, 19
FCEFS, 25
FISS, 18, 20
FLOP/s, 1
FSC, 17, 18
Fugaku, 2

GridSim, 32
GSS, 17, 18

HDCA, 10
HDSS, 52
HPC, 1

job, 24

LB tool, 54
LSF, 26
Lublin, 36

MLS, 4, 81, 95
MPI], 32
MSG, 31

PBS, 26

percent load imbalance, 22
Performance, 1

PEs, 8

PLS, 18, 20

PWA, 36, 43, 44

RCA, 10, 81
RJMSs, 24
RMA, 58
RND, 18, 20

54U, 32
Scheduling, 3, 15
SD, 31
SimGrid, 31
SJE, 25

SLS, 17
Slurm, 26
slurmctld, 103
slurmd, 103
slurmdbd, 103
SMPI, 31

130

Index

SS, 17,18
STATIC, 17
Sy, 27
SWE, 32
SWR, 20

TAP, 17, 18
TFSS, 17, 19
TSS, 17, 18

VISS, 18, 20

WE, 17, 19
WEF2, 19

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement and Research Question
	1.3 Scope of the Dissertation
	1.4 Research Approach
	1.4.1 Evaluation Methodology

	1.5 Contributions
	1.6 Outline of the Thesis
	1.7 Publications

	2 Scheduling in HPC Systems
	2.1 Application Level Scheduling (ALS)
	2.1.1 Static Loop Scheduling (SLS)
	2.1.2 Dynamic Loop Self-scheduling (DLS)
	2.1.3 Performance Metrics

	2.2 Batch Level Scheduling (BLS)
	2.2.1 Static vs. Dynamic Batch Systems
	2.2.2 Planning vs. Queuing Batch Systems
	2.2.3 Queuing-based Job Scheduling
	2.2.4 Other Job Scheduling Techniques
	2.2.5 Performance Metrics

	2.3 Related State of the Art in Scheduling

	3 Two-level Scheduling Simulator
	3.1 Application and Batch Level Scheduling Simulations
	3.2 Proposed Scheduling Simulation Approach
	3.3 Bridging an ALS Simulator with a BLS Simulator
	3.4 From High Level to Detailed HPC Workload Representation
	3.5 Performance Evaluation and Discussion
	3.6 Summary

	4 Distributed Chunk Calculation Approach (DCA)
	4.1 Execution Models of DLS Techniques
	4.2 From Centralized to Decentralized DLS Techniques
	4.3 Distribution of the Chunk Calculation
	4.4 Performance Evaluation and Discussion
	4.5 Summary

	5 Hierarchical Distributed Chunk Calculation Approach (HDCA)
	5.1 Hierarchical DLS Techniques
	5.2 Maintaining Local Work Queues
	5.3 Performance Evaluation and Discussion
	5.4 Summary

	6 Resourceful Coordination Approach (RCA) for Multilevel Scheduling
	6.1 Coordination Between ALS and BLS
	6.2 RCA Applied to a BLS Simulator and an ALS Simulator
	6.3 Performance Evaluation and Discussion
	6.4 Summary

	7 The Multilevel Scheduling (MLS) Prototype
	7.1 DCA in a Scheduling and Load Balancing Library
	7.1.1 Performance Assessment of DCA in LB4MPI

	7.2 RCA in a Production Batch Scheduler
	7.3 Performance Evaluation and Discussion

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography
	Index

