
Optimizing Parallel Processes to Nodes
Mapping in Contemporary High

Performance Interconnection Topologies

Master Project

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science
High Performance Computing Group

Submitted by: Examiner:

Fatjon Lala Prof. Dr. Florina M. Ciorba

Matriculation No.: Supervisor:

18-063-412 Jonas H. Müller Korndörfer

Email: Submission date, place:

fatjon.lala@stud.unibas.ch 31.12.2020, Basel

Contents

1 Introduction 1

2 Related Work 2

3 Background 3

3.1 Evaluation Metrics . 3

3.2 Mapping algorithms . 5

3.3 Applications and Communication Matrices 6

3.4 Network Topology . 7

3.5 LibTopoMap Assumptions . 8

4 Proposed Workflow 9

5 Performance Results and Discussion 13

5.1 Experimental Setup . 13

5.1.1 HPC System . 13

5.1.2 Design of Experiments . 13

5.2 Results and Discussion . 14

6 Conclusions and Future Work 19

Bibliography 20

A Appendix 23

A.1 Steps followed to install LibTopoMap . 23

A.2 Steps to install LibTopoMap . 24

A.3 Network topologies configuration files . 26

A.4 Script to convert communication matrices to graph communication pattern . 27

Declaration on Scientific Integrity 27

Summary

Parallel applications’ performance is influenced by the mapping (kwown also as placement)

of the processes onto the computing nodes, the frequency and volume of exchanges among

the processing elements, the network capacity, and the routing protocol, among others.

A poor mapping of application processes degrades performance and wastes computing re-

sources. The mapping of an application is a well-known NP-hard problem, also known as

task-to-nodes mapping problem. Mapping processes in an application- and topology-aware

manner is expected to minimize application performance degradation and optimize system

resource usage. Both goals are critical for advancing scientific discovery and the efficient

use of high performance parallel and distributed computing systems. This project focuses

on exploring LibTopoMap (htor.inf.ethz.ch/research/mpitopo/libtopomap/) [15][14],

a generic mapping library and reproducing the work with different applications. That will

help us find opportunities for improvements and extension of LibTopoMap with another

library named MapLib (github.com/unibas-dmi-hpc/MapLib) [21], which is a library that

provides algorithms for generating mapping of processing elements to processor unities. The

extension of the libraries should result in supporting more mapping algorithms and more

processor network topologies in the resulting mapping library.

1 Introduction

Every year the list of High Performance Computing (HPC) systems [9] changes due to dif-

ferent improvements done on these systems. One of the improvements that one might think

of is increasing number of computing elements. The increasing number of the computing

elements inside the HPC systems, increases the number of problems that are needed to be

solved in these systems. These problems among researches are known as bottlenecks which

interfere with the parallel applications’ performance. One of the most important bottlenecks

is the communication between processes executing on HPC systems.

A lot of research is being conducted to reduce the communication time between processes

in a HPC system. To achieve a better performance, an efficient mapping of tasks to processes,

of a parallel application, is needed. Reducing the communication time is a well known

problem, also known as task to nodes mapping problem. It is shown in [15][14] to be a

NP-hard problem. Therefore, to solve this problem, we need to find a sub-optimal solution.

Different mapping libraries consider the problem as a graph problem and try to find the

solution using different algorithms that work on graphs.

Regarding that the problem is still not solved, a lot of evaluation metrics are presented

to measure possible sub-optimal solutions. The most important evaluation metrics are con-

gestion and dilation as shown in [15] [17].

In this project we are focused on exploring a generic library named LibTopoMap [15]. We

try to reproduce the work done presented by Hoefler et al., [15] with different applications.

The purpose of this work is to evaluate the efficiency of different mapping strategies and

network topologies. That will help us find opportunities for improvements and extension

of LibTopoMap with another library named MapLib [3], which is a library that provides

algorithms for generating mapping of processing elements to processor unities. The extension

of the libraries should result in supporting more mapping algorithms and more processor

network topologies in the resulting mapping library.

This work is organized as follows. In Section 2, the related work for our topic is carefully

reviewed. Some background information about the mapping problem is described in Section

3. The workflow that is used for this project is presented in Section 4. Section 5 provides

the information about the experimental setup, the results for the benchmarking experiments

and a discussion regarding the performance based on evaluation metrics. Section 6 concludes

the work and mentions the future work(s) on this topic.

1

2 Related Work

Topology mapping problem is an interesting topic among researchers. Different researches

go beyond on-node mapping and consider also the in-node mapping as a second scale for per-

formance gains. Therefore, the complexity of parallel application can be efficiently exploited

with the right task mapping algorithm.

Hoefler et al., [15] present LibTopoMap, the generic mapping library. LibTopoMap con-

siders different fast heuristics such as (greedy heuristic algorithm), bisection mapping (re-

cursive bisection mapping) and mapping based on graph similarity (Reverse Cuthill McKee

(RCM)[12]). Hoefler et al., also show that the benefit of topology mapping grows with the

network size. Their mapping strategies have shown to reduce network congestion up to 80%,

reduce average dilation up to 50%, and improve benchmarked communication performance

by 18%.

Pilla et al. [19] present a load balancing algorithm named HwTopoLB. This algorithm

is topology-aware and works on clustered multi-core machines. The goal of the algorithm

is to reduce idle time and the communication delay between computation nodes. With this

approach, based on their experimental results, the performance improvement was 23% when

executing without load balancers and 19% when executing with the existing load balancing

strategies on different clusters(systems).

Deveci et al., [13] discuss about the mapping problem in the context of geometric parti-

tioning. They consider sparse node allocation in a parallel machine. Based on this consider-

ation, their goal is to map tasks, that are more dependent, to computations nodes close to

each other. With this approach the distance that the messages need to travel is lower and

therefore also the congestion in the network is lower, which would end up in reduced cost

for the overall communication. Their results show an improvement with 15% in MiniGhost

application (mini application) and 10% in MiniMD (molecular dynamics mini application)

compared to LibTopoMap. Even thought their results shown improvement, they have not

tested their methods with large applications, and therefore we can not come to the conclusion

that it will always end up in a performance improvement.

Jeannot et al., [16] introduce extended version of TreeMatch, named TopoMatch. It is a

partially distributed algorithm that performs an optimized process placement in multi-core

parallel machines. The goal of this algorithm is to improve performance of parallel appli-

cations by matching the patterns of communication with the hardware architecture that it

runs on. As in LibTopoMap, this algorithm has some phases such as: getting the informa-

tion about the application communication pattern, modeling the hardware architecture and

2

computing the process placement. After computing the re-ordering, the algorithm makes it

possible to map the application based on the new order, to reduce communication time.

Wu et al., [22] take in consideration two types of mapping: inter-node mapping and

intra-node mapping. They also consider two types of network topologies: fat tree and

torus and two mapping algorithms: generic recursive tree mapping algorithm and recursive

bi-partitioning mapping algorithm for torus topology. Their results show a significantly

improvement of the communication performance up to 77%.

3 Background

We have explored LibTopoMap, a generic topology mapping library [15], in this project.

This library addresses the problem of task-to-nodes mapping by using different mapping

algorithms, graph communication patterns and network topologies. In the following subsec-

tions we have explained the most important parts that LibTopoMap needs in order to be

used. Due to time constraints and complications during the exploration of LibTopoMap we

could not manage to explore MapLib.

3.1 Evaluation Metrics

In this section we will discuss about the evaluation metrics used in this project. As explained

in [15], LibTopoMap considers congestion and dilation as evaluation metrics. The main goal

is to reduce the maximum congestion or better know as worst-case congestion. In our

experiments we are focused more on congestion measure. Before showing the notations for

these metrics, first we need to get familiar with some terms and formulas that are used in

order to derive to the main metrics (detailed in [15]), as following:

• Diameter: maximum distance between two processes.

• Bisection bandwidth: the minimum total bandwidth of links that need to be cut in

order to divide the processors into two equal sets.

• Topology mapping: finding the allocation of processes to nodes such that the sparse

application communication topology efficiently utilizes the physical links in the net-

work.

• Logical communication pattern:

G = (VG, wG)

3

where:

VG set of processes

wG the weight of the edge connecting u to v. Represents the volume

of communication from u to v (0 if there is no connection)

• Physical communication pattern:

H = (VH , CH , cH , RH)

where:

VH set of physical nodes (processes and switches)

CH(u) number of processes that can be hosted to u ∈ VH

(0 if it is switch)

cH(uv) bandwidth of the link connecting u to v

RH routing algorithm

As we can see, this approach takes in consideration two types of communication patterns.

The logical communication pattern is a weighted, directed graph that defines the volume

communication between processes (by the weight of the edge when the communication oc-

curs) or 0 when the communication does not occur [15]. The physical communication pat-

tern represents the network interconnection of physical nodes (processors and switches) [15].

Based on these communications, the calculations for the two main metrics, dilation and

congestion, are done.

• Dilation(uv): the average length of path taken by a message sent from u to v [15].

Dilation(uv) =
∑

u,v∈VG

RH(Γ(u)Γ(v))(p)· | p |

where:

RH(Γ(u)Γ(v))(p) fraction of the traffic from u to v that is routed

through p, when a mapping exists

| p | length of the path p

Γ function that maps VG −→ VH

There are different calculations for dilation in [17][11], but we will be focused to use the ones

from LibTopoMap since our work is focused on this library. In short, dilation means the

4

number of edges traversed by packets, which is a measure of the total "communication work"

performed by interconnection network [15]. Congestion of a link uv of the interconnection

network is the ratio between the amount of traffic on that link and the capacity of the

link.[15]

• Congestion(uv) is computed by the traffic on the link and it capacity as follows:

– Traffic(uv):

Traffic(uv) =
∑

u,v∈VG

wG(uv) ·
(∑

p∈P (Γ(u)Γ(v));e∈p

RH(Γ(u)Γ(v))(p)

)

where:

wG(uv) the weight of the edge connecting u to v.

Represents the volume of communication from u to v

(0 if there is no connection)

RH(Γ(u)Γ(v))(p) fraction of the traffic from u to v that is routed

through p, when a mapping exists

Γ function that maps VG −→ VH

– Congestion(uv):

Congestion(uv) =
Traffic(uv)

cH(uv)

where:

cH(uv) capacity of the link connecting edge (uv)

In this project, the worst case congestion is considered. This means that the maximum over

all congestions for each vertice of the graph is measured as a result. The same measure is

also done when re-mapping (if the worst congestion of the original mapping is higher then

the worst congestion of the re-mapping). So:

Congestion(Γ) = maxuvCongestion(uv)

3.2 Mapping algorithms

LibTopoMap considers different mapping algorithms to do the re-mapping of tasks-to-nodes.

These different techniques consider heuristic approach (greedy heuristic algorithm), bisection

mapping (recursive bisection mapping) and mapping based on graph similarity (Reverse

Cuthill McKee (RCM)[12]).

5

The heuristic approach, greedy heuristic algorithm, is based on the following execution

steps [15]:

1. Algorithms starts from a vertex in H (explained in Subsection 3.1).

2. It chooses the heaviest vertex in G (explained in Subsection 3.1).

3. Maps greedily, the heaviest vertices from G to the heaviest neighbor vertices to H with

the heaviest communication.

4. Performs recursively steps 1, 2, 3, until the algorithm stops.

Bisection mapping divides the graph into two equal halves recursively by determining

the minimum over edge weights. It uses SCOTCH [18] and METIS [20] libraries for this

achieve this purpose.

Graph similarity approach to map tasks to nodes is a well know technique. The basic

idea is to make adjacency matrices between the physical and logical topology mapping into

similar shape. Reverse Cuthill McKee (RCM) algorithm is used to solve the reduction of

bandwidth problem in a heuristic way.

3.3 Applications and Communication Matrices

In this subsection we discuss about the applications and communication matrices used for

experimental purposes in our work. To explore the application, we have used the sparse

matrix collection, SuiteSparse [6] (formerly known as University of Florida sparse matrix

collection). This collection is distributed along with LibTopoMap to test the installation

of the library. It is collected from a wide range of applications, from different domains,

and commonly used for benchmarking purposes. Figure 3, shows a part of the structure

and the information that this sparse matrix collection has. We have also considered other

applications during our experiments such as: the applications CG and BT-MZ from NAS

parallel benchmarks [10][5], AMG and LAGHOS from CORAL2 [8] and LULESH from

CORAL [7]. From these applications we have considered the communication matrices taken

from Korndörfer et al. [17]. These application were executed using 64 processes, therefore

their communication matrix is a 64 x 64 matrix and they show the amount of data transferred

from one process to another during the whole execution.

6

3.4 Network Topology

One of the most important parts of the communication between processes is network topol-

ogy. Since LibTopoMap considers the on-node mapping, which is a mapping of tasks to

computing nodes, we can say that network topology can be a bottleneck to the performance.

Therefore, in this project we consider two types of network topology: 3x3x3 torus (provided

by LibTopoMap distribution) and a two-level fat tree (miniHPC network topology[4], de-

tailed in Section 4). A graphical illustration of both network topologies used in this project

is shown in Figure 3.

Figure 1: 3x3x3 direct torus network topology (illustrated in 2D mode).

As shown in Figure 1, 3D torus is a direct network topology since the computing nodes

are connected directly with each-other without any switches.

7

Figure 2: Two-level fat tree network topology.

In Figure 9, a two-level fat tree (switch based) network topology is illustrated. This

topology is non-blocking (due to the equality of input and output channels for each switch)

and is the same used in miniHPC [4], for which you will find detailed information in Section

4, with some small changes. The storage, login and KNL nodes are not considered in the

experimental setup. In Appendix A, you will also find the configuration files of the network

topology used in this project.

3.5 LibTopoMap Assumptions

This library is focused to achieve on-node mapping while taking into consideration the

application communication pattern and also the network topology in which the application

is executed on. In this library, there are also some assumptions and constraints, according

to the authors [15], that have to be considered when benchmarking different applications as

following:

1. each process can store the whole graph,

2. on-node mapping (after the global communication graph has been mapped to the

network), an infinite in-node bandwidth is assumed.

8

4 Proposed Workflow

The initial step to use LibTopoMap is to get to understand the inputs that it considers. In

the paper presented from Hoefler et al., [15] and in the website https://htor.inf.ethz.

ch/research/mpitopo/libtopomap/, there is not a clear information of how and what

LibTopoMap needs as an input. Therefore, we started our exploration with the command

that is provided to test LibTopoMap:

$ mpirun -n 12 ./reader 0 ./aug2dc/aug2dc.mtx ../3x3x3.map ../3x3x3.fake

From the execution command we could observe that LibTopoMap is taking in consideration

some inputs. According to our observation, reader, is a gateway application that is using the

matrix (aug2dc.mtx), the mapping file (3x3x3.map) and the nodes naming (host names) file

(3x3x3.fake) in this case. The sparse matrix collection SuiteSparse (introduced in Subsection

3.3) has the following structure as shown in Figure 3.

Figure 3: SuiteSparse(formerly know as University of Florida) sparse matrix collection. [6]

By looking at the matrix, we have derived the information that the first line (after

the description part) provides the information about the rows, columns and the number of

9

non-zero elements. We are not sure how this matrix or graph communication pattern is

derived because we do not have the information for the application(s). For the same reason,

we also do not know what exactly the values in this graph communication pattern show.

In the workflow that we have followed, we assume that graph communication pattern is

derived from the communication matrix of the application. We also show how to achieve

this conversion.

The other inputs that are being used are, the node mapping file and node naming file,

as shown in Figure 4.

(a) Node naming
(host names) file.

(b) Node mapping
file.

Figure 4: Configuration file for 3x3x3 (3D) Torus network topology.

The configuration file shown in Figure 4 refers to the network topology introduced in

10

Subsection 3.4 and visualized in Figure 1. As explained in LibTopoMap website [2], the

node naming file defines the host names of the nodes used in the network topology. The

node mapping file defines three important informations:

1. Number of vertices (switches or nodes) in line 1.

2. Host names for each vertex from line 2 to <number of vertex> + 1 line.

3. Adjacency list of each vertex from line <number of vertex> + 1 to the end of the file.

Regarding this valuable information that we could get from our observation we propose the

workflow that we have been using during this project. The workflow that we have followed

during this project is a as shown in Figure 5:

Figure 5: Proposed workflow.

As shown in Figure 5, the first step of the workflow is to execute the applications. First

of all, the applications are executed in order to extract the communication matrices between

processes. The information in the communication matrices can represent different quantities

such as number of message exchanges, the volume of exchanges, the average message transfer

time, and others [17]. All our communication matrices have been taken from Korndörfer et

al. [17], and we are focused on volume (in Byte) of point-to-point message exchanges. This

means that we have to take in consideration the following structure:

cell[pi, pj] =

0 if i 6= j and pi does not communicate with pj

n if i 6= j and pi communicates with pj

where:

p process.

cell[pi, pj] the cell for process (pi) and process (pj).

n the value for cell[pi, pj] based on the communication matrix.

All of the communication matrices are saved in CSV (comma-separated value) files. To

create graph communication patterns we have used a python-based script that considers the

CSV files and does the conversion, from communication matrices to graph communication

patterns. A visualization of this transformation you can find it in Figure 6 below:

11

(a) Communication matrix. (b) Graph communication
pattern of (a).

Figure 6: Example of the conversion from CG benchmarking application.

Figure 7: CG application graph communication pattern.

Figure 7 presents the graph communication pattern of CG application that we used in

the our work. In the first line (after the title of the file), it is defined the number of rows,

columns and non-zero elements that this communication pattern has. In the next lines, there

is the information about the row process (row process rank of the communication matrix),

column process (column process rank of the communication matrix) and the volume (in

12

Byte) of point-to-point message exchanges.

After we converted all communication matrices to graph communication patterns and de-

fined the network topologies (refer to Subsection 3.4), we used them as input for LibTopoMap.

Detailed information about the script used for the conversion from communication matrix

to graph communication pattern, network topologies configuration files and challenges of

this work can be found in the Appendix A. In the following section we will discuss about

the results of the experiments.

5 Performance Results and Discussion

5.1 Experimental Setup

5.1.1 HPC System

All the experiments where executed using miniHPC cluster https://hpc.dmi.unibas.ch/

en/research/minihpc/, provider from High Performace Computing research group at Uni-

versity of Basel. The miniHPC has a peak performance of 28.9 double precision TFLOP/s.

The miniHPC has two types of nodes, Intel Xeon nodes and Intel Xeon Phi Knights Landing

(KNL) nodes. The Intel Xeon nodes amount to 22 computing nodes, 1 login node, and 1

node for storage. The Intel Xeon Phi nodes amount to 4 computing nodes. All nodes are

interconnected through two different types of interconnection networks. The first network is

an Ethernet network with 10 Gbit/s speed, reserved for users and administrators access. The

second network is the fastest network, an Intel Omni-Path network with 100 Gbit/s speed,

reserved for the high-speed communication between the computing nodes. The topology of

this second network interconnects the 28 nodes (24 Xeons and 4 KNLs) of the miniHPC

cluster via a two-level fat-tree topology. [4]

5.1.2 Design of Experiments

Before going into the results part, we introduce in Table 1 a summarized information about

all the applications, systems, mapping strategies, network topologies and number of pro-

cesses used for experimental purposes.

13

Applications
and/or

communication matrices
System Number of Processes Mapping Strategies Network Topologies

SuiteSparse matrix collection

miniHPC

4 RCM
3x3x3 (3D) TorusAMG 8 GREEDY

BT-MZ 16 RECURSIVECG 32
Two Level Fat TreeLAGHOS 64 SCOTCHLULESH

Table 1: Experiments design table.

5.2 Results and Discussion

In this section we will discuss the results taken from the experiments performed in miniHPC

[4]. In order to do some benchmarking we had to use some communication matrices taken

from different application, as shown in Table 1. These applications are: CG and BT-MZ

from NAS parallel benchmarks, AMG and LULESH from CORAL2 benchmark suite [17].

In [17], you can find more details about these applications and their characteristics. These

application matrices were taken, while running the applications with 64 processes or MPI

ranks. In our work, although we know the number of the processes used to produce these

communication matrices, we have run LibTopoMap with different number of processes for

testing purposes. As you can also see the result tables, we have run the application with 4,

8, 16, 32 and 64 processes. Since miniHPC [4] has only 22 computing nodes, to make 32

and 64 processes we have use the following configuration:

Number of processes Number of nodes Number of MPI ranks per node
32 16 2
64 16 4

Table 2: Nodes configuration for the experiments.

The tables of the results below, are created based on the results taken from the executions

performed in miniHPC [4] with differend configurations. These tables have the following

information:

1. The name of the application.

2. The original and mapping strategy congestion (refer Subsection 3.1).

3. The number of processes.

4. The name of the mapping strategy used for each congestion.

5. The name of the network topology used (in caption).

14

The original mapping considers the application to be mapped in a sequential numbering

order from the processes with the lowest id value to the ones with the highest id value (eg.,

0 1 2 3 4 5 ...). If the congestion value of the mapping strategy is higher or equal to the

original congestion value, it means that the re-mapping can not improve the communication

time needed for the given specifications. The re-mapping has to be considered when the

congestion value of the mapping strategy is lower than the original congestion value.

One of the limitations that we experienced is that due to the installation of LibTopoMap

version without SCOTCH[18] , we observed from the results that there is no re-mapping

happening because the library is missing, when SCOTCH mapping strategy is used. Another

important limitation to mention is that, we experienced for most of the applications (as

shown in the result tables), segmentation faults while trying to use LibTopoMap with 32

and 64 processes. We assume that this error is triggered when the number of processes to

run LibTopoMap is higher then the number of processes or nodes defined in the network

topology, but it is still a assumption. When there is not information about the congestion

(defined as - in the result tables), we run into segmentation error and therefore we could not

get that information.

SuiteSparse matrix collection
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00
8 120.00 120.00 120.00 120.00 123.00 68.00 98.00 120.00
16 81.00 81.00 81.00 81.00 94.00 80.00 106.00 81.00
32 - 83.00 - - - 59.00 - -
64 - 144.00 - - - 114.00 - -

Table 3: SuiteSparse matrix collection results with torus network topology.

SuiteSparse matrix collection
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 143.00 143.00 143.00 143.00 143.00 143.00 143.00 143.00
8 198.00 198.00 198.00 198.00 198.00 198.00 198.00 198.00
16 321.00 321.00 321.00 321.00 152.00 320.00 152.00 321.00
32 - 361.00 - - - 243.00 - -
64 - 394.00 - - - 273.00 - -

Table 4: SuiteSparse matrix collection results with two level fat-tree network topology.

From Table 3 and 4 we can observe that LibTopoMap can achieve e lower(better) conges-

tion with different mapping strategies when the number of processes increases. If we would

look at the results when the number of processes is 4, then we would see that the congestion

does not change, therefore no re-mapping can be possible to improve the communication

time. As the number of processes increases, then we can also see that some of the mapping

15

strategies are able to find a lower congestion than the original congestion, and perform a

re-mapping. In this specific example the library faced segmentation errors while running

with 32 and 64 processes and using RCM, Recursive and SCOTCH as mapping strategies.

The only mapping strategy that we could get results for was Greedy, while using 32 and 64

processes.

AMG (commMatrix size)
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 256.00 256.00 256.00 256.00 256.00 255.00 256.00 256.00
8 317.00 317.00 317.00 317.00 255.00 255.00 313.00 317.00
16 159.00 159.00 159.00 159.00 172.00 128.00 160.00 159.00
32 - - - - - - - -
64 - - - - - - - -

Table 5: AMG application benchmarking results with torus network topology.

AMG (commMatrix size)
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 766.00 766.00 766.00 766.00 766.00 766.00 766.00 766.00
8 448.00 448.00 448.00 448.00 448.00 448.00 448.00 448.00
16 949.00 949.00 949.00 949.00 939.00 938.00 948.00 949.00
32 - - - - - - - -
64 - - - - - - - -

Table 6: AMG application benchmarking results with two level fat-tree network topology.

As we can see from Table 5 and 6, we have run AMG[1] application with different

specifications with LibTopoMap. Based on the results, we can see that the algorithms used

in LibTopoMap (RCM, Recursive and Scotch) were not able to find a better mapping than

the original mapping, in most of the cases. Therefore their congestion is equal or higher

compared to the original congestion. While the mapping strategy named Greedy is able to

find a better mapping of tasks-to-nodes than the original, in most of the cases, and therefore

the congestion of this strategy is lower than the original one. Also, in the results of this

application we observe that the congestion can not be improved when the library is running

on a small number of processes. We, can also say that the re-mapping is performed more

often when the direct (torus) network topology is used compared to the two level fat-tree

(indirect) network topology.

16

BT-MZ (commMatrix size)
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00
8 56.00 56.00 56.00 56.00 63.00 45.00 51.00 56.00
16 32.00 32.00 32.00 32.00 32.00 27.00 35.00 32.00
32 - - - - - - - -
64 - - - - - - - -

Table 7: BT-MZ application benchmarking results with torus network topology.

BT-MZ (commMatrix size)
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 131.00 131.00 131.00 131.00 131.00 131.00 131.00 131.00
8 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00
16 155.00 155.00 155.00 155.00 170.00 162.00 156.00 155.00
32 - - - - - - - -
64 - - - - - - - -

Table 8: BT-MZ application benchmarking results with two level fat-tree network topology.

Table 7 and 8, present the results for the application BT-MZ. Also in this application,

as in AMG we observed that there is a slightly improvement on some mapping strategies for

both network topologies that we consider. This might come as a result of the application

specifications. In most of the cases, the original mapping can not be improved further by

using different mapping strategies. The congestion values, either the original or mapping

strategy congestion, are relatively small compared to AMG application.

CG (commMatrix size)
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
8 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
16 8.00 8.00 8.00 8.00 9.00 6.00 6.00 8.00
32 - - - - - - - -
64 - - - - - - - -

Table 9: CG application benchmarking results with torus network topology.

CG (commMatrix size)
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
8 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
16 23.00 23.00 23.00 23.00 27.00 15.00 15.00 23.00
32 - - - - - - - -
64 - - - - - - - -

Table 10: CG application benchmarking results with two level fat-tree network topology.

In Table 9 and 10 we can see the results for CG application. The congestion of this

17

application is very small for both mappings, the original and mapping strategies one. This

comes as a result of the characteristics of the application communication. The improvement

in this application is very small, and the re-mapping is only possible in a small number of

cases. From here we can also see that, when the number of processes is small the probability

of the re-mapping to happen is 0. This means that, the original mapping is considered to

have a lower congestion and the re-mapping will not decrease it more.

LAGHOS (commMatrix size)
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00
8 94.00 94.00 94.00 94.00 79.00 64.00 61.00 94.00
16 43.00 43.00 43.00 43.00 37.00 41.00 57.00 43.00
32 - 48.00 - - - 32.00 - -
64 - - - - - - - -

Table 11: LAGHOS application benchmarking results with torus network topology.

LAGHOS (commMatrix size)
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 162.00 162.00 162.00 162.00 162.00 162.00 162.00 162.00
8 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00
16 184.00 184.00 184.00 184.00 195.00 210.00 157.00 184.00
32 - 254.00 - - - 241.00 - -
64 - - - - - - - -

Table 12: LAGHOS application benchmarking results with two level fat-tree network topol-
ogy.

In LAGHOS application, Table 11 and 12, we can observe that the re-mapping of the

application is possible nearly in 60% of the cases in both topologies. This might come as a

result of the application communication even though we are not quite sure about it. In this

application, we could get the congestion results while running with 32 processes and only for

Greedy mapping strategy, while for the other mapping strategies we run into segmentation

errors.

LULESH (commMatrix size)
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00
8 65.00 65.00 65.00 65.00 36.00 32.00 37.00 65.00
16 35.00 35.00 35.00 35.00 34.00 29.00 39.00 35.00
32 - 28.00 - - - 20.00 - -
64 - - - - - - - -

Table 13: LULESH application benchmarking results with torus network topology.

18

LULESH (commMatrix size)
Original Congestion Mapping Strategy Congestion

Number of processes RCM Greedy Recursive SCOTCH RCM Greedy Recursive SCOTCH
4 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
8 61.00 61.00 61.00 61.00 61.00 61.00 61.00 61.00
16 109.00 109.00 109.00 109.00 111.00 111.00 111.00 109.00
32 - 153.00 - - - 107.00 - -
64 - - - - - - - -

Table 14: LULESH application benchmarking results with two level fat-tree network topol-
ogy.

In Table 13 and 14, the results for the LULESH application are presented. This applica-

tion follows nearly the same mapping characteristics as LAGHOS application. This might

be the case as a result of similarity of the intensity of communication between processes in

both applications.

From the results above we could learn some of the LibTopoMap characteristics. Firstly,

we can mention the segmentation fault error while trying to use more processes than defined

in the network topology configuration file. This might be a limitation that LibTopoMap has

which should be considered while using the library for different benchmarking experiments.

Secondly, as we observed for most of the applications that we used, LibTopoMap was not able

to find a better mapping when the number of processes used in the system was relatively

small. This reason might be considered as a future work improvement for LibTopoMap

algorithms.

6 Conclusions and Future Work

From this project, we could get a lot of knowledge about the task-to-nodes mapping problem,

which indeed has been (is) an interesting topic for the community. Also, a better under-

standing about the parallel applications and machines could be retrieved from this project.

In the end, also a hands-on experience with the libraries developed from the researchers was

part of the lessons learned from this work.

Based on our exploration, we could achieve to perform experiments with different ap-

plications and different network topologies. To enhance LibTopoMap with more algorithms

used as mapping techniques, we will have to explore MapLib [3] and make both libraries

work together. Another possible future work will be to consider, based on the re-mapping

we could get from LibTopoMap, the re-mapping of the application while being executed to

measure the execution time. Therefore we will have both execution times of the application,

with and without re-mapping, which would help us measure the performance gain for every

19

application when the re-mapping is possible. Lastly but not less important point to be

considered as a future work would be to also perform some intra node (in-node) mapping,

from which Jeannot et al. [16] have shown some promising results.

References

[1] Application AMG from CORAL2 Benchmarks. https://asc.llnl.gov/

coral-2-benchmarks. (Accessed on December 20, 2020).

[2] LibTopoMap website. https://htor.inf.ethz.ch/research/mpitopo/libtopomap/.

(Accessed on December 20, 2020).

[3] MapLib GitHub repository. https://github.com/unibas-dmi-hpc/MapLib. (Ac-

cessed on December 20, 2020).

[4] miniHPC: small but modern HPC. https://hpc.dmi.unibas.ch/en/research/

minihpc/. (Accessed on December 20, 2020).

[5] The NAS Parallel Benchmarking Suite. https://www.nas.nasa.gov/publications/

npb.html. (Accessed on December 20, 2020).

[6] SuiteSparce Matrix Collection. https://www.cise.ufl.edu/research/sparse/

matrices/GHS_indef/aug2dc. (Accessed on December 20, 2020).

[7] The CORAL Benchmarks Suite. https://asc.llnl.gov/coral-2-benchmarks. (Ac-

cessed on December 20, 2020).

[8] The CORAL2 Benchmarks Suite. https://asc.llnl.gov/coral-benchmarks. (Ac-

cessed on December 20, 2020).

[9] TOP500 supercomputers site. https://top500.org/. (Accessed on December 20,

2020).

[10] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,

Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S

Schreiber, et al. The NAS parallel benchmarks. The International Journal of Super-

computing Applications, 5(3):63–73, 1991.

[11] Abhinav Bhatelé, Gagan Raj Gupta, Laxmikant V Kalé, and I-Hsin Chung. Automated

mapping of regular communication graphs on mesh interconnects. In 2010 International

Conference on High Performance Computing, pages 1–10. IEEE, 2010.

20

[12] Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric

matrices. In Proceedings of the 1969 24th national conference, pages 157–172, 1969.

[13] Mehmet Deveci, Sivasankaran Rajamanickam, Vitus J Leung, Kevin Pedretti,

Stephen L Olivier, David P Bunde, Umit V Çatalyürek, and Karen Devine. Exploit-

ing geometric partitioning in task mapping for parallel computers. In 2014 IEEE 28th

international parallel and distributed processing symposium, pages 27–36. IEEE, 2014.

[14] Torsten Hoefler, Rolf Rabenseifner, H. Ritzdorf, Bronis R. de Supinski, Rajeev Thakur,

and Jesper Larsson Träff. The Scalable Process Topology Interface of MPI 2.2. Con-

currency and Computation: Practice and Experience, 23(4):293–310, Aug. 2010.

[15] Torsten Hoefler and Marc Snir. Generic topology mapping strategies for large-scale

parallel architectures. In Proceedings of the international conference on Supercomputing,

pages 75–84, 2011.

[16] Emmanuel Jeannot, Guillaume Mercier, and François Tessier. Process placement in

multicore clusters: Algorithmic issues and practical techniques. IEEE Transactions on

Parallel and Distributed Systems, 25(4):993–1002, 2013.

[17] Jonas H Müller Korndörfer, Mario Bielert, Laércio L Pilla, and Florina M Ciorba.

Mapping matters: Application process mapping on 3-D processor topologies. arXiv

preprint arXiv:2005.10413, 2020.

[18] François Pellegrini and Jean Roman. Scotch: A software package for static mapping

by dual recursive bipartitioning of process and architecture graphs. In International

Conference on High-Performance Computing and Networking, pages 493–498. Springer,

1996.

[19] Laércio L Pilla, Christiane P Ribeiro, Pierre Coucheney, François Broquedis, Bruno

Gaujal, Philippe OA Navaux, and Jean-François Méhaut. A topology-aware load bal-

ancing algorithm for clustered hierarchical multi-core machines. Future Generation

Computer Systems, 30:191–201, 2014.

[20] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel static and dynamic multi-

constraint graph partitioning. Concurrency and Computation: Practice and Experience,

14(3):219–240, 2002.

[21] Viacheslav Sharunov. Optimized parallel tasks to nodes mapping in 3-D high perfor-

mance interconnection topologies. Master’s thesis, University of Basel, 2017.

21

[22] Jingjin Wu, Xuanxing Xiong, and Zhiling Lan. Hierarchical task mapping for paral-

lel applications on supercomputers. The Journal of supercomputing, 71(5):1776–1802,

2015.

22

A Appendix

A.1 Steps followed to install LibTopoMap

First we tried with ParMETIS v-4.0.3-foss-2016a and METIS v-5.1.0-foss-2016a that are in-

stalled in miniHPC. Following the suggestion to try different compilers accordingly: mpicxx

and mpic++ for OpenMPI and mpiicpc for intel.

• For OpenMPI and mpicxx compiler we did try the following versions:

– OpenMPI/2.0.2-GCC-6.3.0-2.27-opa

– Result: error idxtype

– OpenMPI/2.0.2-iccifort-2017.1.132-GCC-6.3.0-2.27-opa

– Result: error idxtype

– OpenMPI/2.0.2-iccifort-2017.1.132-GCC-6.3.0-2.27

– Result: error idxtype

– OpenMPI/3.0.0-GCC-7.2.0-2.29

– Result: error idxtype

– Some of the other versions of OpenMPI I could not load.

• For OpenMPI and mpic++ compiler we did try the following versions:

– OpenMPI/2.0.2-GCC-6.3.0-2.27-opa

– Result: error idxtype

– OpenMPI/2.0.2-iccifort-2017.1.132-GCC-6.3.0-2.27-opa

– Result: error idxtype

– OpenMPI/2.0.2-iccifort-2017.1.132-GCC-6.3.0-2.27

– Result: error idxtype

– OpenMPI/3.0.0-GCC-7.2.0-2.29

– Result: error idxtype

– Some of the other versions of OpenMPI I could not load.

• For compiler mpiicpc we did try different intel versions:

– intel/2018a

23

– Result: errors in compiling

– intel/2018b

– Result: errors in compiling

– intel/2019a

– Result: errors in compiling

– intel/2019b

– Result: errors in compiling

Compiler OpenMPI version Result Intel version
mpicxx OpenMPI/2.0.2-GCC-6.3.0-2.27-opa Error __GKfree -
mpicxx OpenMPI/2.0.2-iccifort-2017.1.132-GCC-6.3.0-2.27-opa Error __GKfree is undefined -
mpicxx OpenMPI/3.0.0-GCC-7.2.0-2.29 Error __GKfree -
mpicxx OpenMPI/3.1.1-iccifort-2018.3.222-GCC-7.3.0-2.30 Error __GKfree is undefined -
mpic++ OpenMPI/3.1.1-iccifort-2018.3.222-GCC-7.3.0-2.30 Error __GKfree is undefined -
mpic++ OpenMPI/3.0.0-GCC-7.2.0-2.29 Error __GKfree -
mpic++ OpenMPI/2.0.2-iccifort-2017.1.132-GCC-6.3.0-2.27-opa Error __GKfree is undefined -
mpic++ OpenMPI/2.0.2-GCC-6.3.0-2.27-opa Error __GKfree -
mpiicpc intel/2018b - Error __GKfree is undefined
mpiicpc intel/2019a - Error __GKfree is undefined
mpiicpc intel/2018a - Error __GKfree is undefined

Table 15: Summary table for the failing steps.

A.2 Steps to install LibTopoMap

1. Download LibTopoMap package:

wget https://htor.inf.ethz.ch/research/mpitopo/libtopomap/libtopomap-0.9.tgz

2. Unpack the package:

tar -xvf libtopomap-0.9.tgz

3. Create a directory for ParMETIS inside libtopomap-0.9:

mkdir MPIParMETIS

4. Change to that directory:

cd MPIParMETIS

5. Get ParMETIS v3.1.1:

wget http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/OLD/ParMetis-3.1.1.tar.gz

6. Unpack ParMETIS:

tar -xvf ParMetis-3.1.1.tar.gz

7. Get METIS v4.0.1:

wget http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/OLD/metis-4.0.1.tar.gz

24

8. Unpack METIS:

tar -xvf metis-4.0.1.tar.gz

9. Load the C++ compiler in order to compile ParMETIS

10. Change the directory to ParMETIS:

cd ParMetis-3.1.1

11. Compile ParMETIS:

make

12. Change directory to METIS:

cd metis-4.0

13. Open the file proto.h:

vi Lib/proto.h

14. Add the diff lines from https://htor.inf.ethz.ch/research/mpitopo/libtopomap/

metis_4.0-extern_c-patch.diff to this file. Specifically when there is + sign in

front, those lines should be added.

15. Change the directory to LibTopoMap directory

16. Compile LibTopoMap:

make

17. Refer to https://htor.inf.ethz.ch/research/mpitopo/libtopomap/ for testing

the library.

25

A.3 Network topologies configuration files

(a) Node
naming file.

(b) Node mapping
file.

Figure 8: Configuration file for 3x3x3 (3D) Torus network topology.

26

(a) Node naming file. (b) Node mapping file.

Figure 9: Configuration file for two-level fat tree network topology.

A.4 Script to convert communication matrices to graph communi-

cation pattern

Below you will find the script used to convert the communication matrices of the applications

into graph communication patterns to be used for LibTopoMap.

import numpy as np

from scipy import sparse, io

import pandas as pd

comm_matrix = np.genfromtxt('input.csv', delimiter=',', dtype=np.int32)

sparse_matrix = sparse.csr_matrix(comm_matrix)

io.mmwrite('output', sparse_matrix)

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)

Bachelor’s / Master’s Thesis (Please cross out what does not apply)

Title of Thesis (Please print in capital letters):

__

__

__

First Name, Surname (Please print in capital letters): ________________________________

Matriculation No.: _______________________________

I hereby declare that this submission is my own work and that I have fully acknowledged the
assistance received in completing this work and that it contains no material that has not been
formally acknowledged.

I have mentioned all source materials used and have cited these in accordance with recognised
scientific rules.

In addition to this declaration, I am submitting a separate agreement regarding the publication of or
public access to this work.

 Yes  No

Place, Date: ____________________________

Signature: ____________________________

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis .

Optimizing Parallel Processes to Nodes Mapping in Contemporary

High Performance Interconnection Topologies

FATJON LALA

18-063-412

Basel, 31/12/2020

Master Project

28

