University
of Basel

|
>

AN
\/\/\/
NN
ZON

Towards parallel computation of
linguistic concordance procedures

Master project (2 credit points)

Natural Science Faculty of the University of Basel)
Department of Mathematics and Computer Science)
High Performance Computing
https://hpc.dmi.unibas.ch/en/

Examiner: Prof. Dr. Florina Ciorba

Supervisor: Ahmed Hamdy Mohamed Eleliemy

Lesther Zulauf- Bal-ut
lesther.zulauf@unibas.ch
13-053-863

15 January 2021

Acknowledgments

I would like to thank Prof. Dr. Florina Ciorba and my supervisor Ahmed Eleliemy for their

input, for their encouragements and for making this project possible.

Table of Contents

Acknowledgments ii
1 Introduction 1
2 Related Work 2
3 Proposed approach 3
4 Design of the experiments 4
5 Strong-scaling analysis 5
5.1 Shared memory system oL L 5
5.2 Distributed memory system L Lo Lo 6
5.3 Hybrid system 6
6 Weak-scaling analysis 7
6.1 Shared memory systemo Lo 7
6.2 Distributed memory system L oL o 8
6.3 Hybrid system 8
7 Conclusion 9

Bibliography 10

Introduction

Common procedures in Corpus Linguistics (e.g. ngram search, keyword comparison, concor-
dance, and collocational search) rely on term frequency counts and pattern matches provided
by exhaustive search algorithms [4]. As datasets of widespread linguistic corpora continue to
increase in size [3], it is unsurprising that larger datasets incur higher computational costs.
However, longstanding and widely-available linguistic concordancers are not designed with
performance in mind, and/or the underlying engines used for search are not evaluated in
terms of their performance [1] [5]. This project fills this twofold research gap by extending
the existing BalConc concordance engine [6] such that it exploits the affordances provided
by modern high performance computing (HPC) architectures.

In this report, I present the results of the strong- and weak-scaling analysis of various HPC
systems (i.e. shared-memory, distributed-memory, hybrid) to assesses the performance of
the reimplemented engine’s core search functionality. In doing so, the possible benefits
of parallel programming in this problem domain in terms of reduced execution time are

assessed.

Related Work

Concordance search and collocational search are functions offered by Corpus Linguistic
software (which are typically referred to as concordancers) such as AntConc[1], Wordsmith
[5], and Corpus Workbench [2]. Both of these search functions rely on finding all matches
in the documents of a corpus (i.e. a collection of documents containing naturally-occurring
language) given a pattern containing a span of token and/or annotations. In concordance
search, linguists are interested in studying matches in context (i.e. neighbouring tokens to
the left and to the right). In collocational search, linguists are interested in the collocates
which are the neighbours which co-occur with a given pattern with high relative frequency.
Both of these search functions rely on performing an exhaustive search on the documents of
the corpus to obtain the matches. Each document of a given corpus has to be traversed all

(series of) tokens matching a certain pattern.

Proposed approach

The approach explored by this paper is to traverse the documents of a given corpus in
parallel using shared-memory systems, distributed memory systems and hybrid systems.
The proposed approach is a straightforward one: instead of traversing the corpus’ documents
sequentially, the documents of a corpus are distributed to available processing elements and

are traversed in parallel.

Design of the experiments

The search engine was reimplemented to run on shared-memory systems, distributed-memory
systems and hybrid systems. For experiments using shared-memory systems, we use t
€ {1,2,4,8,16} threads. For experiments using distributed-memory systems, we use m
€ {1,2,4,8,16} processors. For experiments using hybrid systems, we use n € {1, 2,4, 8,16}
processors each with 16 threads. The programming language used was Python and the

execution times were measured five times for each search system.

Strong-scaling analysis

5.1 Shared memory system

Execution times of shared-memory systems

1 1 —=— Brown
4000 1) —4— Amazon
\ —— Wikipedia
\
— II"l
) 1 \
2 3000 a
=] i 4
(%)
@
(]
B
£ 2000
=] N
5 \ .
S T
é 4 H‘E""‘-.._ _
ﬁ 1000 B E———
0
2 4 5] 8 10 12 14 16

Mumber of threads

Strong-scaling analysis

5.2 Distributed memory system

Execution time (in seconds)

5.3 Hybrid system

Execution time (in seconds)

5000 1
4000
3000 1
2000

1000

1000
800 -
600
400

200

Execution times of distributed-memory systems

—=— Brown !
\ —a— Amazon
—— Wikipedia
_
‘B —______———_
2 4 51 8 10 12 14 16

Execution times of hybrid systems

MNumber of threads

A

T
—— Brown

—a— Amazon
—— Wikipedia |

50

100

150
Mumber of threads

200

250

Weak-scaling analysis

6.1 Shared memory system

Execution times in weak-scaling analysis of shared-memory systems

5[)g /
] /

45 4

40

35

30

Execution time (in seconds)

25 1

20; /

2 4 5] 8 10 12 14 16
Mumber of threads

Weak-scaling analysis

6.2 Distributed memory system

6.3

Execution times in weak-scaling analysis of distributed-memory systems

120

100

80

Execution time (in seconds)

40

20

2 4 5] 8 10 12 14 16
MNumber of threads

Hybrid system

Execution times in weak-scaling analysis of hybrid systems

2

350 4

w
=]
o

%]
un
[=]

=
un
[=]

Execution time (in seconds)
kJ
o
(=]

100 - //

50 =S

50 100 150 200 250
Mumber of threads

Conclusion

In this project, we measured the speedup of the execution times and reimplemented search
functionality of the BalConc concordance engine to run on different HPC systems includ-
ing distributed-memory and shared-memory systems. The experiments show that parallel
programming reduces the required execution time.

All in all, while not every person doing Corpus-based research may have access to HPC
systems, it is a worthwhile to look into the application of parallel algorithms in this domain

because the vast majority of personal computers nowadays have multiple processors.

Bibliography

Laurence Anthony. Antconc: A learner and classroom friendly, multi-platform corpus
analysis toolkit. proceedings of IWLeL, pages 7-13, 2004.

Oliver Christ, Bruno M Schulze, Anja Hofmann, and Esther Koenig. The ims corpus
workbench: Corpus query processor (cqp): User’s manual. University of Stuttgart, 8,
1999.

Eric Friginal, Marsha Walker, and Janet Beth Randall. Exploring mega corpora: Google
ngram viewer and the corpus of historical american english. FuroAmerican Journal of
Applied Linguistics and Languages, 1(1):48-68, 2014.

Christopher Manning and Hinrich Schutze. Foundations of statistical natural language

processing. MIT press, 1999.
AP Berber Sardinha. Wordsmith tools. Computers & Texts 12 (1996), 1996.

Lesther Zulauf-Bal-ut. Balconc. Computer software.

	Acknowledgments
	Table of Contents
	1 Introduction
	2 Related Work
	3 Proposed approach
	4 Design of the experiments
	5 Strong-scaling analysis
	5.1 Shared memory system
	5.2 Distributed memory system
	5.3 Hybrid system

	6 Weak-scaling analysis
	6.1 Shared memory system
	6.2 Distributed memory system
	6.3 Hybrid system

	7 Conclusion
	Bibliography

