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Abstract

The promising growth of Deep Learning in the last few years allows to perform highly com-

plex applications on IoT devices. In particular, computer vision applications like object

detection, object recognition, image segmentation, and object tracking can be realized with

the help of Convolutional Neural Networks (CNN). However, deploying high parametrized

and complex deep learning models, the hardware needs to face challenges in terms of com-

putational workload in computer vision and AI on the edge. Intel provides the Movidius

Vision Processing Unit (VPU) as such that exactly incurs these challenges.

In this project, we studied the feasibility of deploying di↵erent CNN models for image

classification on Intel’s VPU and tested their performance with regard to accuracy and

classification rate.
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1
Introduction

The interest in Artificial Intelligence (AI) arose with the question of whether we can make a

machine to automatically solve problems intelligently and detect patterns in data. In order

to build an AI model, we need a theoretical understanding of building intelligent systems

and an artifact, meaning a machine that can deploy the systems. The latter was problematic

at the beginning of AI Research since the hardware was slow and costly at that time. Later

on, further generations and optimizations in hardware improved the performance at a lower

cost. Applications of AI models on these hardware became realistic.

In today’s era of Big Data, AI models became useful to identify patterns in huge data

collection. Internet of Things devices (IoT devices) use Machine Learning (ML) models

that are typically hosted on a cloud based infrastructure connected to a remote server. So,

if a device wants to use a model, it sends a request for inference to the associated server

(Cloud Computing) as for example robots and sensors in industrial automation do. To get

rid of bandwidth restrictions in Cloud Computing, we would place a local server on the top

of the edge devices which can also host ML models (Edge Computing).

On the contrary, devices that work o✏ine are required to run AI models directly on their

local hardware. Common devices that use visual intelligence like security cameras, drones

and service robots apply typical visual applications like object detection with motion track-

ing, facial detection, image segmentation and image classification. Deep Learning models,

especially Convolutional Neural Networks (CNN) play an essential role in computer vision

applications, and have presented in the past many CNN models with promising accuracy.

Executing Deep Learning models on devices with restricted resources is not convenient.

The model can have a complex architecture with a high number of parameters that require

massive compute power to justify an inference [7]. A di↵erent processor can assimilate these

models. One artifact is the Movidius Neural Compute Stick (NCS) provided by Intel that

contains a Vision Processing Unit (VPU). It is a chip-level architecture that can balance

the computational workload and e�cient power consumption. Overall, the NCS can achieve

the following goals:
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• Accelerated Performance: Quick inference, e.g. rapid real-time detection

• Privacy: Data are not shared

• E�ciency: Computations at low power consumption

• Adaptivity: NCS can be plugged to various devices

• Scalability: Building a system with multiple NCS to distribute inference requests

The aim of this project was to study the feasibility of deploying di↵erent CNN models for

image classification on the NCS, and to test their performance in terms of accuracy and

classification rate.

The remaining of this report is structured as follows. In Chapter 2, we go through the

theoretical aspects of CNN, and describe the models we chose for our analysis. In Chapter

3, we briefly describe the technical details of the Movidius NCS. In Chapter 4, we delineate

the OpenVino environment which we mainly used to work with the NCS. In Chapter 5, we

present our approach for the performance evaluation which will be assessed in Chapter 6.

In Chapter 7, we amplify the challenges and issues we had while working with the NCS.

Finally, we conclude the work.



2
Artificial Neural Networks

Deep Learning is a sub-field of Machine Learning, and studies the way of extracting patterns

of input data with Artificial Neural Networks (ANNs), and assigning them to some class or

label. The idea of building a “Neural Network” [9][14] was inspired by the composition of

biological neurons in the central nervous system. This observation was introduced in 1943

by Warren McCulloch. He presented a computational model based on propositional logic.

This invention created the belief in intelligent machines, but quickly became impractical due

to the limited hardware of that time. In the beginning of the 1990’s, with the tremendous

increase of computing power, huge availability of data and improved training algorithms,

another wave of interest in ANNs was observable. ANNs have been studied very well since

then, and many ANN models were published.

2.1 Fundamentals of Artificial Neural Network

An ANN [8][16] is built of multiple computing units, called neurons, that are distributed

among multiple layers. The network is composed of an input layer, where the input data

are fed into, and the results are issued by the output layer. The intermediate layers are

called the hidden layers. Each neuron takes a weighted sum of the output from the previ-

ous layer, and applies some activation function. In order to solve hard, complex problems

we need to take nonlinearity into account, and therefore use nonlinear activation functions

like the Sigmoid function. The results of the output layer are evaluated by a loss function

whereby we can learn the network by updating the model parameters (weights and biases)

to improve the overall accuracy. This procedure is called the Backpropagation where we

apply the Gradient Descent technique to update these parameters. This method yields the

best approximation for the target values of the network.

Stacking multiple hidden layers became fundamental to better capture the underlying data

generation process of complex problems. However, they were unstable in training. The fa-

mous issues that appear are Vanishing and Exploding Gradients. Deep Learning introduced

the Backpropagation friendly ReLU function for activation, extensions and variations in the

architecture design and regularization techniques for preventing overfitting that have been

essential for better performance in learning. The two main diverged state-of-the-art archi-
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tectures in ANN are Convolutional Neural Networks (CNN) and Recurrent Neural Networks

(RNN). In Section 2.2, we focus on CNN architectures from which we chose four models,

see Section 2.3, for the performance analysis.

Modern libraries like TensorFlow1, PyTorch2 and Ca↵e3 support Backpropagation automat-

ically. With the help of Graphical Processing Units (GPUs), the training can be even more

simplified with parallelisms.

In the next section, we take a tour to CNN that is the core of this project work.

2.2 Convolutional Neural Networks

The importance of CNN arose from di↵erent types of multi-dimensional input data, e.g.

images. Images are composed of pixels, and each pixel expresses some color intensity. For

example an image of pixels 300 ⇥ 300 and assuming an RGB color system, we would feed

an image of dimension 300 ⇥ 300 ⇥ 3 to a fully connected ANN that would enormously

increase the number of parameters. Since we are limited by computational resources, we

need to constrain the network by sharing the weights, and reduce the dimension of hidden

layers [13]. The first intention of building a CNN came up by interpreting the human’s

perception and information processing by the visual cortex of the cat’s brain [8]. David H.

Hubel and Torsten Wiesel discovered in 1958/1959 that subsets of neurons only react to so-

called local receptive fields of the entire visual field. This inspiration led to the idea of CNN

where neurons of a convolutional layer evaluate only pixels in some receptive fields of the

image. By stacking multiple convolutional layers, each capturing only subsets of previous

layers, finally extract high-level features from low-level features of an input image. This

architecture became successful, and led to interesting applications in computer vision like

image classification, object detection and semantic segmentation, see Fig. 2.1. Apart from

visual applications, CNN found also interest in other areas like voice recognition, natural

language processing and bioinformatics.

Figure 2.1: Examples of visual applications by means of CNNs [13]

In the next two sections, we describe the two crucial building blocks of CNNs.

1
https://www.tensorflow.org/

2
https://pytorch.org/

3
https://ca↵e.berkeleyvision.org/
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2.2.1 Convolutional Layers

A convolutional layer is nothing else than a hidden layer. The neurons only take a weighted

sum of a subset from outputs from the previous layer, the so-called convolved feature. The

neurons in the first convolutional layer have to be fed by multiple convolved features of the

image which can be gathered by a so-called convolutional filter. A filter is a matrix of small

dimension, e.g. 3⇥3 or 5⇥5 containing some weights in each cell, and strides over the whole

image. This allows the network to capture features independent of feature variations and

distortions. This is essential since the same objects can be represented di↵erently in di↵erent

images. A simple filter would return a weighted sum of receptive fields. The resulting feature

map of a layer gives an abstraction of the pixel intensities.

Figure 2.2: Convolved feature [16] Figure 2.3: Convolutional layers [8]

Formally, a convolution is an operation of two functions, one the pixel values, and the other

the weights stored in a kernel [9][16]. In practice, di↵erent filters are used to extract di↵erent

patterns, and the parameters are learned by Backpropagation. Typically, each convolutional

layer will produce multiple feature maps, see Fig. 2.4, using di↵erent filters that allow to

extract complex structures.

Figure 2.4: Convolutional layers with resulting multiple feature maps [8]
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2.2.2 Pooling Layers

The large number of model parameters can be reduced by downsizing the feature maps with

pooling layers. Similar to convolutional layer, we use again a filter, but without any kernel.

The result is an aggregation of the captured inputs by the filter, and reduces the number of

parameters. This allows us to mitigate the computational overload, getting rid of overfitting,

and avoid some small invariances that can still take place. Commonly used pooling filters

are mean and max-pooling filters where the latter works better, see Fig. 2.5. The resulting

subsampled feature map will be fed to the next layer.

Figure 2.5: Max pooling [8]

Finally, a CNN can be built with convolutional layers and pooling layers, and is able to

classify any image. Fig. 2.6 shows a basic CNN architecture template:

Figure 2.6: Basic CNN architecture [8]

2.3 CNNs Models

In this project work, we considered four CNN architectures: AlexNet, GoogleNet, ResNet

and SqueezeNet. They all are trained with the ImageNet dataset4. We briefly describe each

CNN model in the next sections.

2.3.1 AlexNet

AlexNet was introduced by Krizhevsky et al. [12] in 2012. The network is built with five

convolutional layers and three fully connected layers. The neurons apply the non-linear

4
http://www.image-net.org/
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Rectified Linear Unit (ReLU) function for gaining a better performance in the training.

For downsizing the inputs, max-pooling filters are used for the first, second and fifth con-

volutional layer. The input image will be first downsized to 224 ⇥ 224 ⇥ 3, and filtered

by a convolutional filter of size 11 ⇥ 11 ⇥ 3 with 96 kernels, and strides the image by four

pixels. The last fully connected layer feeds the output to a softmax function producing a

probability distribution over 1000 classes. Due to the large size of the network, two GPUs

were used for training. Containing around 60 million parameters, the network was initially

prone to overfitting. Hence, they enlarged the Imagenet dataset by transforming images

through translations, horizontal reflections and augmenting the color channel intensities.

Additionally, they used the dropout technique that disables neurons with a probability of

0.5. This is a common method for tuning the network. In every training period, di↵erent

neurons were dropped out, but the parameters are still shared by convolutional layers. Fig.

2.7 illustrates the architecture.

Figure 2.7: AlexNet Architecture [12]

2.3.2 Inception v4

Szegedy et al. [17] introduced the Inception v4, also called GoogleNet v4. The network is

composed of so-called Inception blocks. It is a mix of convolutional and pooling layers with

di↵erent filters that can be stacked in parallel, and executed independently on an input.

The resulting feature maps of the layers in that block are then finally concatenated, see Fig.

2.8.

Figure 2.8: Schema of the first Inception block in Inception v4 [17]
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Inception modules allow to build deeper networks. Initially, the first Inception model was

partitioned among these inception blocks, and are trained individually which allowed them to

make decisions in terms of tuning the network. However, bringing all sub-networks together

made the resulting network complicated. Inception v4 overcomes this issue by restricting to

uniform decisions, and introduces more inception models than the former model.

The network can be further extended with residual frameworks, see Section 2.3.3, and makes

the Inception blocks cheaper. The resulting hybrid network is the Inception-ResNet. It has

roughly the same cost as the pure Inception Network, and has also around the same error

rate on the ImageNet classification task. We will not cover this network here. Details can

be found in the publication [17].

2.3.3 ResNet-50

ResNet stands for Resolutional Network, and was first introduced by He et al. [10] in 2016

and won first place in the ILSVRC classification task 20155. The network is based on so-

called residual frameworks, a way of reducing training overhead. The problem arose with

the large depth of the network. Deep networks are crucial for extracting patterns from

the input data, however, it can lead to higher training errors when it starts converging.

They introduced a deep residual learning framework with shortcut connections, meaning

performing a so-called residual mapping by skipping convolutional layers, see Fig. 2.9.

Figure 2.9: Residual Learning: Building block [10]

This framework asymptotically approximates the desired identity mapping that we would

originally do with stacked layers. We will not go further in details here, but consolidate

that the resulting network is easier to optimize, and gains high accuracy with no extra

parameters.

We considered for this project work the version ResNet-50 with 50 layers.

2.3.4 SqueezeNet

SqueezeNet was introduced by Iandola et al. [11] in 2016. They intended to build a smaller

CNN with competing accuracy based on AlexNet. The core building block is the so-called

Fire module, see Fig. 2.10. It squeezes a convolutional layer with 1 ⇥ 1 filters, and feeds

5
http://image-net.org/challenges/LSVRC/2015/
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into an expanded layer that is composed of 1 ⇥ 1 and 3 ⇥ 3 filters. This module helps to

reduce the number of parameters by nine times.

Figure 2.10: Abstract illustration of the Fire module [11]

Another strategy along with these Fire modules is the late placement of pooling. Feature

maps are preserved longer, and yield higher accuracy. With these building blocks, the

SqueezeNet is roughly constructed as follows: a convolutional layer with 3⇥3 filter followed

by eight Fire modules and at the end again a convolutional layer. The max-pooling takes

place after conv1, fire4, fire8 and conv1. Compared to AlexNet, this architecture has 50

times smaller parameters with nearly the same accuracy. By additionally compressing the

model by Deep Compression6, it becomes 510 times smaller than AlexNet, and fits a mem-

ory size less than 0.5 MB.

The advantages are the following: a better scaling among a distributed system with less com-

munication overhead, quicker model update (on-the-air update) on clients, e.g. autonomous

driving cars like Tesla, and storing the model for inference on the chip memory of an FPGA.

6
Han et al., 2015
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Intel’s Movidius Neural Compute Stick

In this chapter, we look at the Movidius Neural Compute Stick device containing the VPU.

In Chapter 1, we motivated us with AI applications on the edge, and in Chapter 2, we saw

Deep Learning as a complex Machine Learning concept for which the appropriate hardware

and acceleration techniques are required. An alternative to CPU and GPU is the VPU

for running ANN models whereby we conduct the goal of enabling accelerated AI solutions

under low power consumption.

The SDK for Movidius NCS is the Intel Movidius Neural Compute SDK. Unfortunately, we

had troubles working with this SDK which we cover in Chapter 7. Nevertheless, we will

still take a brief look at in Section 3.2. The environment we used for our evaluation is the

OpenVino Toolkit which we consider in the next chapter.

3.1 Movidius Neural Compute Stick

The Movidus NCS [2] comes with USB connection, a built-in architecture for loading and

prototyping Deep Learning models for AI application inference. The core component is

the Movidius Myriad 2 Vision Processing Unit7. It contains a Leon Microprocessor, a 4GB

LPDDR3 Memory and 12 so-called Streaming Hybrid Architecture Vector Engines (SHAVE)

processors that incorporate parallelism. Fig. 3.1 shows an abstract illustration of the NCS’s

architecture, and the following table consists of some technical specifications copied from

[3].

7
https://ark.intel.com/content/www/us/en/ark/products/122461/intel-movidius-myriad-2-vision-

processing-unit-4gb.html
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Figure 3.1: Architecture Movidius NCS [2]

Processor Base Frequency 933 MHz
Memory Types 4GB LP-DDR3 with 32-bit interface at 733 MHz

Maximum Memory Speed 733 MHz
Operating Temperature Range �40� C to 105� C

Table 3.1: Intel Movidius Myriad 2 Specifications [3]

The second generation is the Intel’s Neural Compute Stick 2 (NCS 2)8 with Intel’s Myriad X

processor that contains 16 SHAVE processors and an inference engine that allows to speed

up the performance up to 10 times. The NCS 2 is best compatible with the latest version

of OpenVino.

3.2 Intel Movidius NCSDK

The NCSDK [5] contains various software tools, the crucial one for compiling deep neural

network models with the associated parameters into a Graph file that can be loaded only

to Movidius NCS. Additionally, tools exist for checking the network and profiling, meaning

providing a statistical, and performance overview of the model in HTML. Along with the

software tools, it also comes with an API (NCAPI) for developing AI applications in Python

and C/C++. The progress of deploying models onto the NCS is the same as in OpenVino.

Therefore, any application written with NCAPI can be transitioned into an OpenVino based

application and vice versa9. For our project, we had problems working with NCSDK, and

therefore turned to OpenVino.

8
https://ark.intel.com/content/www/us/en/ark/products/140109/intel-neuralcomputestick-

2.html? ga=2.228662617.419505977.16097662941649145100.1605605305
9

https://software.intel.com/content/www/us/en/develop/articles/transitioning-from-intel-movidius-

neural-compute-sdk-to-openvino-toolkit.html
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OpenVino

For the performance analysis, we worked with OpenVino [6]. It is a software toolkit provided

by Intel. OpenVino stands for Open Visual Inference Neural Network Optimization, and was

introduced for developing AI applications with high-performance, especially CNN models,

on Intel’s architectures that is the Intel’s CPU, GPU, VPU and FPGA. Applications are

mainly deployed on the edge [4], e.g. surveillance cameras, healthcare products and driving

cars.

The OpenVino Toolkit is available for Windows, macOS and Linux, and works on the

command line. The current version is 2021.2, but we used version 2020.3 that is known to

work well for sending models to Intel’s Movidius NCS.

OpenVino is meant for inference, meaning directly deploying the model on a device, and

for creating a benchmark for inference. The full inference flow of OpenVino is illustrated in

Fig. 4.110:

Figure 4.1: OpenVino Workflow

10
Image source: https://hypraptive.github.io/2018/08/13/optimized-inferenceedge.html
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In the next two sections, we take a glance into the two main components, the Model Opti-

mizer and Inference Engine.

4.1 Model Optimizer

The Model Optimizer is responsible to transform the given CNN model into an Intermediate

Representation (IR) that is composed of XML and Binary file. The former defines the

network topology in a descriptive manner, and the latter contains the associated parameters

in binary format. The model must be trained before and frozen afterward, meaning saving

the model parameters as constants. This can be done with the Deep Learning library that

is used to develop the model. The necessary scripts for producing the IR files are available

for TensorFlow, Ca↵e, MXNet, ONNX and Kaldi models.

4.2 Inference Engine

The Inference Engine provides a facile API for C++ and Python for developing Deep Learn-

ing based applications. It reads the input network from the given IR files, and loads it to

the desired device for deployment. After that, for given input data, it infers the result.

4.3 OpenVino Model Zoo

The OpenVino Zoo contains a broad collection of pre-trained models, and most of them are

already frozen. Many of them are well-known CNN models, the models we described in Sec-

tion 2.3 are also included. Other models are provided by Intel itself. With OpenVino, these

models can be downloaded directly from the command line tool, and can be transformed

into IR representation with the Model Optimizer. The corresponding GitHub repository11

contains all details of all models and all necessary scripts.

11
https://github.com/openvinotoolkit/open model zoo
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Proposed Evaluation Approach

In this chapter, we describe our approach for the model evaluation. We used OpenVino

to deploy all models onto the NCS. We first installed the OpenVino distribution and all

required dependencies12. We wrote a Python script by applying the Inference Engine’s API.

All commands we describe here were executed on Windows. The OpenVino environment

must be initialized every time. For that, we have run the setupvars.bat script that is

located in OpenVino’s bin/ directory.

To get the models, we used the downloader.py script located in ../open model zoo/tools

/downloader/. By typing the --print all argument, it will list all available ANN mod-

els. We then chose our models by typing their name as an argument and our desired direc-

tory for storing the files. We then used the mo tf.py script for TensorFlow models and the

mo caffe.py script for Ca↵e models, both located in openvino/deployment tools/

model optimizer/. Several times, we had to add the corresponding input shape, mean

or scale values of the model. These are explicitly mentioned in the model’s Readme docu-

mentation in the OpenVino Zoo GitHub repository.

For the images, we considered the ImageNet dataset. We randomly selected 50 images from

the test set, and used them for the evaluation of all four models.

Our script classification evaluation.py is based on OpenVino’s sample script

classification sync.py, and we made our changes for the purpose of this project.

The following illustration shows roughly the process of the script:

12
https://docs.openvinotoolkit.org/2020.3/ docs install guides installing openvino windows.html
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In the beginning, the script loads the IR files of all models and the ImageNet label file. It

additionally initiate four data frames for each model using Pandas13. We wanted our results

to be exported as an Excel file. After that, two nested loops follows. The outer loop induces

one model, and the inner loop sends one image from the given path to the device in each

iteration. In the beginning of the outer loop, the Inference Engine is initiated, and the IR

files of the model are loaded into the Movidius NCS. In the second loop, the image is first

resized, and then sent to the model for inference. The model gives as output the labels and

the corresponding predictions. We decided to consider only the top-1 label for the accuracy

measure. The intermediate results are written in the corresponding data frame as a new

row. At the end, all data frames are written in a XLSX file, and the total inference time in

milliseconds are printed out.

13
https://pandas.pydata.org/



6
Evaluation Results

Our objective of this project work was to test and compare several CNN models on the VPU.

We first present our results for accuracy. Consequently, the latency of inferring images are

shown. After that, we show the classification rate. Along with the NCS, we also tested

the models on two CPUs. The following lists all three processors: Intel Movidius NCS with

Myriad 2 with 933 MHz, Intel processor i5 Dual-Core with 2.9 GHz and AMD processor

Ryzen 7 1700-X 8-Core with 3.8 GHz.

6.1 Results

For accuracy, we stored, as explained in Chapter 5, the predictions of all 50 images from

all four models in an Excel table. The ground truth for the test images from ImageNet was

not given. Therefore, we evaluated each prediction manually whether they are classified

correctly. The following table and chart show the classification results:

NN Models Correct Classified Misclassified

AlexNet 36 14
Inception v4 48 2
Resnet-50 39 11
SqueezeNet 41 9

Table 6.1: Classification results
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Figure 6.1: Classification results as bar chart

Subsequently to accuracy, we also measured the latency, meaning the time for inferring the

prediction of each image in milliseconds, and stored also in the Excel file. In the following

a table and a box chart are shown containing measurements for all four models:

Intel Movidius NCS:

NN Models Min 1. Quartile Median 3. Quartile Max

AlexNet 91.029ms 91.947ms 92.021ms 92.234ms 95.099ms
Inception v4 686.003ms 686.955ms 688.720ms 690.133ms 692.721ms
Resnet-50 224.548ms 225.263ms 226.054ms 227.018ms 228.766ms
SqueezeNet 43.006ms 43.009ms 43.010ms 43.011ms 44.011ms

Table 6.2: Latency measurements on NCS
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Figure 6.2: Latency measurements on NCS as box chart

Intel processor:

NN Models Min 1. Quartile Median 3. Quartile Max

AlexNet 31.074ms 33.161ms 35.112ms 37.018ms 40.154ms
Inception v4 277.354ms 280.131ms 282.223ms 285.566ms 288.543ms
Resnet-50 119.675ms 121.984ms 123.561ms 125.332ms 127.452ms
SqueezeNet 11.034ms 11.201ms 11.514ms 12.102ms 12.945ms

Table 6.3: Latency measurements on Intel’s processor
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Figure 6.3: Latency measurements on Intel processor as box chart

AMD processor:

NN Models Min 1. Quartile Median 3. Quartile Max

AlexNet 12.013ms 14.006ms 15.005ms 16.008ms 28.491ms
Inception v4 77.017ms 82.023ms 85.020ms 90.031ms 115.026ms
Resnet-50 26.000ms 29.008ms 30.009ms 31.016ms 45.013ms
SqueezeNet 3.000ms 4.001ms 5.001ms 5.002ms 7.003ms

Table 6.4: Latency measurements on AMD’s processor
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Figure 6.4: Latency measurements on AMD’s processor as box chart

Finally, we measured the classification rate of each model, meaning how many images it

classified within a second. For each model, we divided the number of images by the overall

inference time in seconds. In the following table and chart, the classification rates for all

four models are depicted, tested on all three processors.

NN Models Movidius NCS Intel Processor AMD Processor

AlexNet 10.8 30.16 67.93
Inception v4 1.45 3.57 12.74
Resnet-50 4.42 8.21 33.69
SqueezeNet 23.18 89.29 249.25

Table 6.5: Classification rates



Evaluation Results 21

AlexNet Inception v4 ResNet-50 SqueezeNet

0

50

100

150

200

250
m
il
li
se
co
n
d
s

Movidius NCS Intel Processor AMD Processor

Figure 6.5: Classification rates as bar chart
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6.2 Discussion

Overall, all models performed well. Especially, the Inception v4 model results in the best

accuracy. For given 50 images, it only misclassified two images that are ambiguous, see Fig.

6.6 and 6.7:

Figure 6.6: Misclassified as “plastic bag”
by Inception v4

Figure 6.7: Misclassified as “hook, claw”
by Inception v4

Another two ambiguous examples are shown in Fig. 6.8 and 6.9. The first image is classified

as “wig” by AlexNet with probability 0.24 and as “hair spray” by Inception v4, ResNet-50

and SqueezeNet with probabilities of 0.99, 1.0 and 0.36. The second image is predicted by

AlexNet as “eskimo dog, husky” with probability 0.44, by Inception v4 and Resnet-50 as

“malamute” with probabilities of 0.94 and 0.82, and as “siberian husky” by SqueezeNet with

probability 0.36.

Figure 6.8: Classified as “wig” and as
“hair spray”

Figure 6.9: Classified as “husky”,
“siberian husky” and as “malamute”
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These sort of images hindered us to decide the correctness of the classification. Since we did

not possess the ground truth of our test images, we eased the assessment and considered

multiple proposed labels as correct if they have made sense.

In the first round of the evaluation, we asserted that the models can still predict the images

correctly even if the probabilities are poor. This instance appeared seldom. Thus, we

decided to not set any confidence level for the inference, otherwise we would have discarded

many true positives. Fig. 6.10 shows an example that is classified correctly by AlexNet, but

with a probability of 0.29.

Figure 6.10: Classified correctly as “crash helmet” by AlexNet

The accuracy measure indicates that AlexNet has the most misclassifications. However, this

fact does not allow us to determine AlexNet as a non-prominent model. It won the ILSVRC

2012, and all further models are at least based on this model. To be more certain, a lot

more images are needed for the assessment.

The gain of accuracy with Inception modules is replicated in this result. However, the time

that took for inferring the results for 50 images is according to our perception too long.

This can be improved by applying the asynchronous inference request which we cover in

Chapter 7. Another interesting observation that we already predicted is the performance of

SqueezeNet with similar accuracy as AlexNet. It has fewer misclassifications than AlexNet,

and is around two times faster than AlexNet and 16 times faster than Inception v4. This

observation is crucial for running applications on the edge with low memory capacity.

Regarding the classification rate, we can clearly see that the NCS took much longer time

for inference than the CPUs. On average, the AMD’s processor can classify around 6-10x

and the Intel’s processor around 2-4x times more images per second than the NCS. For

example, the AMD’s processor is able to recognize roughly 250 images with SqueezeNet,

but the Movidius NCS only 23 images. The lowest classification rate is 1-2 by GoogleNet

v4 which is poor. For this reason, we rather use SqueezeNet for the NCS whose accuracy

is acceptable. With asynchronous inference method, however, the performance would be

invincible with Inception v4.
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6.3 Future Work

As future work, we can scale this evaluation to an HPC cluster. An example would be the

µ�cluster14 from the High-Performance Computing Research Group of the University of

Basel. It is composed of 64 Odroid computers, each equipped with a Movidius NCS. An ex-

tension of this work would be to develop a complete benchmark to measure the performance

over 64 NCSs with several measurements. The Benchmarking tool from OpenVino15 can

be taken as reference. Similar to this work, we could again test the performance of CNN

models and observe whether the NCSs behave di↵erently.

Along with that, multiple images or video frames can be distributed among the NCSs. The

distribution can be realized with Message Parsing Interface (MPI) for Python16 by selecting

one Odroid node as master and all others as slaves. Apart from image classification models,

other models for object detection and image segmentation can be considered.

Another idea for the future work, a sophisticated approach would be the distribution of

CNN models onto the HPC µ�cluster. Rivas-Gomez et al. [15] presented an exploration

of a multi-VPU configuration. They tested the performance by utilizing eight NCS devices

simultaneously, and determined that they can keep up with the CPU’s and GPU’s perfor-

mance. This could motivate us to develop a system for o✏oading scientific tasks on the

HPC µ�cluster with the help of OpenMP17.

14
https://hpc.dmi.unibas.ch/en/research/micro-cluster/

15
https://docs.openvinotoolkit.org/2020.3/ inference engine tools benchmark tool README.html

16
https://bitbucket.org/mpi4py/mpi4py/src/master/

17
https://www.openmp.org/
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Lessons Learned

In this chapter, we describe the sort of troubles we had to face, mainly while with NCSDK.

The first restriction was that NCSDK only works on Ubuntu 16.04. We, therefore, prepared

a virtual machine and installed NCSDK by downloading the corresponding GitHub reposi-

tory18. There exist two versions of NCSDK, but we considered v1.

Similar to OpenVino, a GitHub repository19 is available containing shared apps along with

pre-trained TensorFlow and Ca↵e models. The Make file for each model contains all com-

mands for downloading, compiling and checking the model (NCSDK software tools). But

the links to the model were deprecated. This was the case for many Ca↵e models. Alter-

natively, we tried to use the files from OpenVino Model Zoo and to compile the Graph file

from them, but it did not work.

The second try was with TensorFlow models. We tried Mobilenet-SSD, TinyYolo and

Inception. Only the Mobilenet-SSD model was working. TinyYolo has, same for Ca↵e

models, deprecated links in the Make file. For TensorFlow models, the Make file down-

loads the corresponding models as TAR-file directly from the TensorFlow page and ex-

tracts it. The issues arose for exporting model weights using the TensorFlow Library. The

error was: AttributeError: module ’tensorflow core.compat.v1’ has no

attribute ’contrib’. This error appeared for TensorFlow versions >1.14 which is not

supported anymore. When trying version <1.14 the following error arose: ImportError:

No module named ’tensorflow.compat.v1’. This problem turned up almost for all

models. Due to the lack of experience, we lost a lot of time in the beginning of this project.

For the future, we propose to download the models directly from the TensorFlow and Ca↵e

pages, and try to freeze them manually. We tried this way, but failed in exporting the Graph

file.

One challenge we had working with OpenVino is to employ synchronous and asynchronous

18
https://github.com/movidius/ncsdk

19
https://github.com/movidius/ncappzoo
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inference requests [1] in the performance evaluation script. These paradigms are utilized to

obtain results for multiply data, e.g. multiple images or batches from images. The di↵erence

is in terms of processing images through the model. The synchronous method conducts the

images sequentially, and the asynchronous method prepares the next image in parallel while

the former image is still be processed. These requests allow a higher throughput, especially

helpful for working with large number of images. Unfortunately, neither of them did work for

the Movidius NCS. We could not find any explanation, but we assume that these inference

requests are only supported by Intel Neural Compute Stick 2.
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Conclusions

The initiative of this project work was to test and compare CNN models on Intel’s Movidius

NCS. E�cient high-performance computing is essential for AI on the edge. We contem-

plated the VPU as a way for deploying and accelerating Deep Learning models. We saw

the general concept of ANN, particularly CNN, and chose four CNN models for our evalua-

tion. Furthermore, we delineated the basic network architecture of each model. After that,

we briefly registered some technical details of the Movidius NCS, and saw its possibility of

parallelizing the Deep Learning model with the embedded SHAVE processors. We had our

troubles with NCSDK that led us to work with OpenVino. It is able to create and deploy AI

based applications on various Intel platforms including the Movidius NCS. It comprises two

components: the Model Optimizer for creating IR files from CNN models and the Inference

Engine that facilitates developing AI applications.

For the evaluation part, we wrote a Python script based on OpenVino Inference Engine’s

API , where we loaded our CNN models onto the NCS and measured the performance.

As test data, we randomly picked 50 images from the ImageNet test set and inferred our

results. We measured the models in terms of accuracy, latency and classification rate for

VPU, and additionally on two further CPUs. In the results, we saw the Inception v4 model

as the best model for predicting the images with high accuracy, but is slow in inference.

The SqueezeNet, however, has a lower accuracy than Inception v4 but higher than AlexNet

and ResNet-50, and has the best classification rate with 250 images per second. In the end,

we proposed a potential improvement to include asynchronous request method from the

Inference Engine’s API, that can help to improve the accuracy of the models and to infer

batches of a larger data set.

In the future work, we suggested extending our evaluation approach to a complete Bench-

mark to enable further measurements of the models and to distribute the data among mul-

tiple NCSs. Another further work would be to scale tasks among multiple distributed NCSs

on the HPC µ-cluster.
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