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Summary

Algorithms used in scientific and other applications mostly have some sort of dependencies,
preventing embarrassingly parallel implementations. Among others, loop dependencies pose
a problem which occurs quite frequently. To maximise performance of such problems while
exploiting available parallelism with OpenMP, we compare different scheduling techniques
for For-loops. Additionally, the same tests are made with OpenMP Tasks to see whether
For-loops or Tasks leads to better performance results. More precisely, we conduct a set of
experiments to assess and compare eleven scheduling techniques. At the time this report is
written, there are still things to be adjusted, so no final conclusion can be made yet. The

work continues while this results represent the current state of work.



Introduction

Algorithms used in scientific and other applications mostly have some sort of dependencies,
preventing embarrassingly parallel implementations. The goal of this project is to explore
the performance of loops with cross-iteration dependencies (DOACROSS loops) in OpenMp
For-loops and compare them to equivalent implementations with OpenMP Tasks. Due to
the small extent of this project, the tests were made exemplary on the Fibonacci algorithm
and on parts of the Parallel Research Kernels (PRK)!. Three parts of the P2P kernel are
tested in this project: p2p-doacross-openmp.cc, p2p-hyperplane-openmp.cc and p2p-tasks-
openmp.cc. The p2p-doacross-openmp.cc implementation is additionally tested with eleven
different scheduling techniques. The point of interest is which implementation gives better

performance for cross-iteration dependencies.

L https://github.com/jeffhammond/PRK



Background

A brief background on some important topics for this project is presented in this section,
including a study on DOACROSS loops [4] and a master thesis about scheduling algorithms
in an OpenMP library [5].

3.1 DOACROSS loops

Unlike DOALL loops (i.e. loops without cross-iteration dependencies[4]), DOACROSS loops
can have data or control dependencies crossing iteration boundaries[4]. The more interesting
type of dependencies are data dependencies, since control dependencies can be detected

statically by a control dependence analysis. There are three types of data dependencies:
e Flow dependencies
e Anti dependencies
e Output dependencies

Many loops with only anti- and output dependencies can be transformed into DOALL
loops by a good optimising compiler [4]. Ding-Kai Chen 1991 states that directives from
programmers could help to fully exploit parallelism on DOACROSS loops and that the loss
of parallelism after serialising DOACROSS loops is quite significant.

3.2 Scheduling techniques

Parallelising loops can have very positive impacts on the performance of programs. Dis-
tributing chunks of iterations over different processing units (PUs) increases the performance
of the program. However, not all iterations of a loop necessarily contain the same amount
of computational work, which can lead to load imbalance. If one PU finishes before others
and is idling, its computational power is partially wasted. To minimise wasted resources, we
need different scheduling techniques for different applications. However, scheduling involves

overhead which again can lead to bad performance. That said, there is always a trade-off
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between load balancing and scheduling overhead. Depending on the application, different
scheduling techniques may lead to vastly different performances.

Common variable used in the following description of different scheduling techniques are

Variable Description
N Number of iterations.
P Number of PUs.
C The chunk size.
r Number of remaining iterations.

3.2.1 Static Chunking
Static Chunking (static) is a static loop scheduling technique, where a loop is decomposed
into P equal sized chunks of iterations. The chunk size is therefore

C=% (3.1)

This scheduling techniques leads to close to zero overhead.

3.2.2 Self Scheduling
Self Scheduling (dynamic) is on the other side of the trade-off scale of loop scheduling

techniques. It always assigns a single new iteration to an idling PU. The chunk size is
c=1 (3.2)

Intuitively, Self Scheduling provides the best possible load balancing while producing the
biggest scheduling overhead.

3.2.2.1  Guided Self Scheduling
Guided Self Scheduling (guided) tries to reduce the overhead time of Self Scheduling by
assigning decreasing chunk sizes to the PUs. It tries to reduce overhead with less chunks
while still providing good load balance. The chunk size is

ri

Ci:[P

] (3.3)

where 7; is the remaining number of iterations and r; = N.

3.2.3 Trapezoid Self-Scheduling

Trapezoid Self-Scheduling (trapezoidal) wants to extract the advantage of GSS and at the
same time provide a simple linear function for decreasing chunk sizes. Furthermore, it takes
two inputs from the user which specify the size of the first chunk, f, and last chunk [.[5]

The chunk size is
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2N
A= (mh (3.4)

f-1
b= (3.5)
ca) = f, (3.6)
Ct)y=C(t—1) -4 (3.7)

where t is the number of the current scheduling operation and A is the number of total

scheduling operations.

3.2.4 Factoring and Adaptive Factoring Techniques

The factoring techniques are more sophisticated versions of Guided Self-Scheduling. They
also implement decreasing chunk sizes for better load balancing while trying to be more
resistant to iteration execution time variance. To achieve this, batches of iterations are
scheduled with different chunk sizes. Adaptive loop scheduling methods use (additional)
information obtained during runtime for their scheduling decisions. More mathematical
background and further explanations for all scheduling techniques used in this project can
be found in [5].

3.3 OpenMP

The OpenMP ARB (Architecture Review Boards) mission is to standardize directive-based
multi-language high-level parallelism that is performant, productive and portable. Jointly
defined by a group of major computer hardware and software vendors and major paral-
lel computing user facilities, the OpenMP API is a portable, scalable model that gives
shared-memory parallel programmers a simple and flexible interface for developing paral-
lel applications on platforms ranging from embedded systems and accelerator devices to

multicore systems and shared-memory systems|3].
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Experimental Setup

4.1 MiniHPC

All of the results of this project were acquired using the miniHPC cluster? from the Univer-
sity of Basel. The cluster has two types of nodes, Intel Xeon nodes (Xeon) and Intel Xeon
Phi Knights Landing (KNL) nodes. One Xeon node is used for login, one fore storage and
the remaining 22 for computing. The four Intel Xeon Phi nodes are solely computing nodes.
All nodes are interconnected through two different types of interconnection networks. The
first network is an Ethernet network with 10 Gbit/s speed, reserved for users and admin-
istrators access. The second network is the fastest network, an Intel Omni-Path network
with 100 Gbit/s speed, reserved for the high-speed communication between the computing
nodes. The topology of this second network interconnects the 28 nodes (24 Xeons and 4

KNLs) of the miniHPC cluster via a two-level fat-tree topology.|[2]

4.2 Fibonacci series application

The fibonacci series implementations are straight forward. Due to the sequential nature of
the algorithm, the use of parallel computation is not expected to bring any speedup. It
was done for exemplary reason and so see how the different schedules work. The doacross
loop version works with the ordered clause to take account of the data dependencies. The
temporary fibonacci numbers are stored in a global array, so other threads can access the
data. All version of the algorithm perform the task of calculating the 20000th element of
the fibonacci series. This is close to the limit which is given by the high numbers resulting

from the calculations exceding the storage capacity of 128-bit doubles.

4.2.1 Fibonacci with OpenMP for loop

long doublex a=(long doublex) malloc (Nksizeof(long double));
#pragma omp parallel for schedule(runtime) ordered (1)
for (int i = 0;i<N++1){

if (1<2){

2 https://hpc.dmi.unibas.ch/HPC/miniHPC.html
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ali] = i;
#pragma omp ordered depend(source)
} else {
#pragma omp ordered depend(sink:i—1) depend(sink:i—2)
{
ali] = a[i—-1] + a[i—2];
#pragma omp ordered depend(source)
}
}
}

4.2.2 Fibonacci with OpenMP Tasks

long double fibonacci(int n){
if (n<2){
a[n] = n;
return n;
} else {
#pragma omp task
{
if (a[n=2]== 0){
a[n—2]=fibonacci(n—2);
}
if (a[n—-1]== 0){
a[n—1]=fibonacci(n—1);
}
}
#pragma omp taskwait
a[n] = a[n—1]4+a[n—2];
return a[n];
}
}

4.3 Parallel Research Kernels (PRK)

The second part of the test was made with a number of kernel operations, called Parallel
Research Kernels. Namely parts of the P2P kernel implemented in C++11 from [1] were

used:

e p2p-doacross-openmp.cc 2D-matrix calculations in for loops with cross iteration data

dependencies

e p2p-hyperplane-openmp.cc 2D-matrix calculations in for loops in a hyperplane fashion

with cross iteration data dependencies

e p2p-tasks-openmp.cc 2D-matrix calculations in OpenMP tasks with cross tasks data

dependencies
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For compilation the enclosed Makefile with the necessary adjustments for the intel compiler
was used. Different compiler flags were used depending on if the code was run on the Xeon

or the KNL nodes according to the directions in the ./commons/make.defs.intel file.

4.4 Design of Experiments

Factors Values Properties
Fibonacci Series N = 20000
Applications N = 4000
PRK P2P Chunksize = 1
static static scheduling

Thread level load

dynamic, guided, trapezoidal, fac2,

dynamic scheduling

balancing af, af-a, awf-b, awf-c, awf-d, awf-e

Xeon node without hyperthreading Intel Xeon node; 20 threads

Xeon node with hypertreading Intel Xeon node; 40 threads
miniHPC Intel Xeon Phi Knights Landing

computing system

KNL node without hyperthreading

(KNL) node; 64 threads

KNL node with hyperthreading

Intel Xeon Phi Knights Landing

(KNL) node; 256 threads

Table 4.1: Details used in the design of the experiments for performance analysis

There are 2 different applications which were tested in 4 different environmental settings.
DOACROSS for loops were additionally tested multiple times with different scheduling

techniques. More details are included in table 4.1

4.5 Visualisation
To be able to visualise the assignment of the calculation steps to the calculating thread,

simple print statements inside the loops and tasks were used:

printf (”Index:[%d,%d], Time: %f,

pipeline_time ,

CalcThread:%d\n”, i, j,
omp_get_thread_num () ) ;

prk :: wtime ()—

To get the plots from the resulting entries, a Python script was used. To compare execution

times the print statements were omitted for obvious reasons.




Performance Results And Discussion

5.1 Compiler optimiser flag: -O0 vs -O2

To make sure the compiler doesn’t interfere with the tests by optimising things, the standard
optimisation flag (-O2) was compared to no compiler optimisation. This was made with the
PRK codes. The results can be seen in figure 5.1. While the absolute values are of no
interest at this point, we can see that there is no influence of the -O2 optimisation across
the different scheduling techniques. Compiled with Intel compiler version 2019 and the -O2
flag, every tested configuration is a bit faster than the -O0 counterpart, but the relation

stays about the same.
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Figure 5.1: Comparison of execution times with Intel compiler version 2019 and
optimisation flags O0 and O2
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5.2 Fibonacci

The execution time measurements for the Fibonacci algorithm show some huge differences
between the doacross for loop version and the tasks version. While the 20000th element of
the fibonacci series is computed in milliseconds with for loops, it takes some dozen seconds
with tasks. An interesting fact is also, that the task version is very inconsistent in its time

consumption. Execution times vary between 10s and 32s.

Fibonacci [ms]

100000
“
o 10000
S
=] 1000
S
2 100
35
Q
] 10
: 101l
, 1 N [ | [ | E NN
N 2 .90 ¢ > ¢ ¢ 9% > ¢ > )
‘-)’b ’s\/ \ﬁx/ \Y{\/ \Y\\/ \Y{\/ 6\\ ‘\,bcl '\0 \:b\ 6\6% \,’ba)b
O o © > 3 > & & @ S
S S & g B @ L7 & R
SIS ’béo ,béo ,béo ,béo \4—, bo,bo & &7
S R SEEE

Scheduling techniques

Figure 5.2: Execution time of fibonacci(20000) tasks compared to for loops
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Figure 5.3: Execution time of fibonacci(20000) for loops with different scheduling
techniques only

One of the things that need some refinement in this project is the automated plotting of the
load assignment. With 20000 calculations to be plotted, it is necessary to display chunks
of data assigned to a given thread rather than having a dot for every single calculation.

Otherwise there can’t be seen anything because of indistinguishable data points. This is the
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reason we omit those plots at this time.
From the tasks output file can be seen that huge chunks of calculations are done by the

same thread. This is surprising, since every thread should have the same chance to get to

calculate the next fibonacci iteration when the previous is done.

5.3 Parallel Research Kernels

The measurements for all PRK environment setups were taken with an arbitrary grid size of
4000 x 4000. The execution times are averaged over five complete calculations. This seems
to take a reasonable amount of time for comparison. All three codes (doacross, hyperplane
and tasks) can be provided with another parameter (pair) called chunksize. At the time of
this report, it’s still to clarify if this parameter does the very same for all of the three codes.
It defines the size of blocks of calculations which are then assigned to tasks, for instance.
Since this is what we’re trying to achieve with different load balancing techniques, it was at

this point set to 1 at both dimension of the grid for all calculations.

5.3.1 PRK on Xeon node without hypertreading

The execution time measurements on a Xeon node without hyperthreading can be seen on
figure 5.4. The task version didn’t get a result because it wasn’t finished with the calculations
even after 30 minutes and got cancelled. On the other hand, the hyperplane code was more
than 10 times faster than the fastest doacross version. The scheduling techniques awf.b,

awf-d and dynamic seem to perform worse than the other scheduling techniques.
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Figure 5.4: Execution times on Xeon node without hyperthreading
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5.3.2 PRK on Xeon node with hyperthreading

The execution time measurements on a Xeon node with hyperthreading can be seen on
figure 5.5. The task version again didn’t finish with the calculations in under 30 minutes,
and is therefore ignored. The overall picture is the same, the scheduling techniques awf_b,
awf-d and dynamic seem to perform worse than the others, while the hyperplane code
performs best by far. The results for the doacross versions are a bit worse than without

hyperthreading, while staying roughly the same for the hyperplane code.
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Figure 5.5: Execution times on Xeon node with hyperthreading

5.3.3 PRK on KNL node without hyperthreading

The execution time measurements on a KNL node without hyperthreading can be seen on

figure 5.6. Once more, there is no value for the task version. The overall performance on all

of the other codes is substantially worse for the KNL node.

5.3.4 PRK on KNL node with hyperthreading

The execution time measurements on a KNL node with hyperthreading can be seen on
figure 5.7. Unsurprising, there is yet again no value for the task version. With some of the
scheduling techniques, the results fall a bit out of line compared to the other measurements.
Dynamic scheduling still performs worst, and awf.-b, awf-d worse than others. But with
hyperthreading on the KNL node, also af and af-a perform significantly worse compared to

the other measurements. The overall performance is also worse with hyperthreading, similar

to the measurements on the Xeon node.
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Figure 5.6: Execution times on KNL node without hyperthreading
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Figure 5.7: Execution times on KNL node with hyperthreading

5.3.5 Discussion

The hyperplane code performs best independent of the setup. This is most likely due to the
fact that the hyperplane fashioned code uses OpenMP SIMD instructions while chunksize
is set to 1. To really have comparable results, more tests with other chunksize values have

to be and will be made.

A further question is probably, why SIMD instructions work

particularly well on this type of problem. But since the SIMD implementation is restricted
on chunksize equals 1, it’s probably not that interesting at all. OpenMP Tasks perform
really bad or are erroneous. No further investigations have been made at this point. It is

assumed that creating 4000-4000 = 16-10° tasks (one for every single calculation) with cross
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task dependencies leads to so much overhead, it’s not feasible to compute anymore. Having
40 instead of 20 threads on a Xeon node and 256 instead of 64 threads on a KNL node seems
to lead to much more overhead. This is assumed to also be a problem of the small chunksize
value. Every single calculation is assigned to a thread. This seems to be quite inefficient.
Due to this, we could also expect better performance from increasing the chunksize value
for any configuration. Since the KNL node operates with more threads than the Xeon node
and the assignment to the threads seems to cause a lot of overhead compared to the actual
calculation, this is probably the explanation here as well. With bigger values for chunksize,
this relation will probably change. Overall, a lot of the performance differences are likely to
come from massive overhead in scheduling due to the smallest possible chunksize, therefore

additional experiments will give much more insights.



Conclusion and Upcoming Work

With the current setup, the following observations can be made:

a. The hyperplane code performs better than any scheduling techniques or tasks.
b. OpenMP tasks are erroneous or perform really bad.

c. While hyperthreading is activated, all scheduling techniques perform worse than with-

out hyperthreading.
d. The overall performance on the Xeon node is better than on the KNL node

e. Independent of the hardware configuration, dynamic scheduling seems to perform
worst for this problem. Awfb and awf.d perform worse than the other scheduling
techniques, dynamic excluded. All other scheduling techniques perform roughly at the

same level, the exception being af and af-a with KNL hyperthreading.

At this point, with the results at hand, more measurements with different chunksize val-
ues is the obvious next step. The hyperplane code will also work with for loops for any
other chunksize value than 1 and therefore would also be interesting to test with different
scheduling techniques.

The second thing to be done is a working visualisation of the task assignments to the threads
to increase the understanding of what the different scheduling techniques actually do. One
way will be with more sophisticated print statements and a graphical representation using
python.
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