
PAP: Performance Analysis Portal
for HPC Applications

Master Thesis

University of Basel

Faculty of Science

Department of Mathematics

and Computer Science

Examiner: Prof. Dr. Florina M. Ciorba

Supervisor: Jonas H. Müller Korndörfer

Thomas Jakobsche

thomas.jakobsche@stud.unibas.ch

14.02.2020



Abstract

Current HPC system architects strive for more performance by relying on
larger numbers of processing units that work in parallel, instead of further de-
veloping the speed of an individual processing unit. In order to exploit the
parallelism provided by these HPC systems, scientific applications increasingly
use parallel programming paradigms. Performance analysis of these parallel
applications can help to solve large-scale scientific problems more efficiently.
We identified several shortcomings and possible improvements in the context
of performance analysis: (a) vague and inconsistent analysis methodologies, (b)
manual selection of applications for performance analysis, and (c) high-level
comparison of multiple application profiles. In this master thesis we present
the following solutions to the aforementioned problems: (a) representative per-
formance metrics based on data collected by Score-P and a semi-automatic
analysis workflow, embedded in a complete analysis methodology, (b) an ap-
plication database that stores performance data and supports querying, and
(c) performance analysis of individual and multiple applications, investigation
of programming paradigm usage (MPI, SHMEM, OpenMP, Pthreads, CUDA,
OpenCL, OpenACC), and application similarity grouping based on k-means
clustering. The proposed solutions are components of PAP: Performance Anal-
ysis Portal for HPC Applications, a web based portal for performance analysis
of parallel applications.



Contents

Abstract 1

1 Introduction 4
1.1 High Performance Computing . . . . . . . . . . . . . . . . . . . . 4
1.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Motivation - Stating the Problem . . . . . . . . . . . . . . . . . . 6

1.3.1 Summarising the Problem . . . . . . . . . . . . . . . . . . 6
1.4 Goals - Planning the Solution . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Summarising the Solution . . . . . . . . . . . . . . . . . . 7
1.5 The Performance Analysis Portal . . . . . . . . . . . . . . . . . . 8

2 Related Work and Competitors 10
2.1 Performance Analysis Frameworks and Tools . . . . . . . . . . . 10

2.1.1 Score-P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 TAU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Scalasca . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Vampir . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 HPCToolkit . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.6 Paraver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.7 mpiP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.8 Overview and Comparison . . . . . . . . . . . . . . . . . . 26

2.2 Methodologies and Characteristics . . . . . . . . . . . . . . . . . 27
2.2.1 Oxbow and PADS . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 A Large-Scale Study of MPI Usage . . . . . . . . . . . . . 32
2.2.3 Benchmark Similarity . . . . . . . . . . . . . . . . . . . . 34
2.2.4 Empirical Performance Evaluation . . . . . . . . . . . . . 37
2.2.5 Communication Patterns . . . . . . . . . . . . . . . . . . 39

3 Proposed Methodology 45
3.1 Server Side - Data Access Layer . . . . . . . . . . . . . . . . . . . 45

3.1.1 Node.js - JavaScript Runtime Environment . . . . . . . . 45
3.1.2 MongoDB - Document Oriented NoSQL Database . . . . 46
3.1.3 PHP - Server Management . . . . . . . . . . . . . . . . . 46

3.2 Client Side - Presentation Layer . . . . . . . . . . . . . . . . . . . 46
3.2.1 HTML - Hypertext Markup Language . . . . . . . . . . . 46
3.2.2 CSS - Cascading Style Sheets . . . . . . . . . . . . . . . . 47
3.2.3 JavaScript - Scripting Language . . . . . . . . . . . . . . 47
3.2.4 Google HTML/CSS Style Guide . . . . . . . . . . . . . . 47

1



3.3 Additional Third-Party Libraries . . . . . . . . . . . . . . . . . . 48
3.3.1 jQuery - JavaScript Library . . . . . . . . . . . . . . . . . 48
3.3.2 Plotly.js - Graphing Library . . . . . . . . . . . . . . . . . 48
3.3.3 Mask.js - Input Masking . . . . . . . . . . . . . . . . . . . 48
3.3.4 Simple Statistics - Statistical Methods . . . . . . . . . . . 48

4 Design and Development 49
4.1 Server Side - Decisions and Development . . . . . . . . . . . . . . 49

4.1.1 Database Interaction . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Computation on the Client . . . . . . . . . . . . . . . . . 49
4.1.3 PHP - Command Line Access . . . . . . . . . . . . . . . . 50
4.1.4 Dealing with JavaScript Code Injection . . . . . . . . . . 50

4.2 Client Side - Preparation and Measurement . . . . . . . . . . . . 50
4.2.1 Performance Data Parsing . . . . . . . . . . . . . . . . . . 51
4.2.2 Score-P Function Groups . . . . . . . . . . . . . . . . . . 52
4.2.3 SLURM Job Script Generator . . . . . . . . . . . . . . . . 52

4.3 Client Side - The Application Database . . . . . . . . . . . . . . 52
4.3.1 Application Database Structure . . . . . . . . . . . . . . . 53
4.3.2 Metadata - Identifying Database Entries . . . . . . . . . . 53
4.3.3 Additional Characteristics and Input Fields . . . . . . . . 54
4.3.4 Data Upload and Input Form Masking . . . . . . . . . . . 55
4.3.5 Programming Paradigm Assignment . . . . . . . . . . . . 56
4.3.6 Filtering and Scope Selection . . . . . . . . . . . . . . . . 57

4.4 Client Side - Analysis and Visualisation . . . . . . . . . . . . . . 57
4.4.1 Application Group Summary . . . . . . . . . . . . . . . . 58
4.4.2 Application Region List . . . . . . . . . . . . . . . . . . . 59
4.4.3 Application Group Comparison . . . . . . . . . . . . . . . 60
4.4.4 Programming Paradigm Statistics . . . . . . . . . . . . . 61
4.4.5 K-Means Similarity Clustering . . . . . . . . . . . . . . . 62

5 Analysis Methodology and Workflow 63
5.1 Introducing the Analysis Methodology of PAP . . . . . . . . . . 63

5.1.1 Workflow Steps - Overview . . . . . . . . . . . . . . . . . 64
5.2 Step 1: Preparation and Measurement . . . . . . . . . . . . . . . 65

5.2.1 Performance Data Collection with Score-P . . . . . . . . . 65
5.2.2 SLURM Job Script Generator . . . . . . . . . . . . . . . . 66
5.2.3 Extracting Data from a Score-P Profile . . . . . . . . . . 67

5.3 Step 2: Application Database Interaction . . . . . . . . . . . . . 68
5.3.1 Add and Update Database Entries . . . . . . . . . . . . . 68
5.3.2 Export Database Entries . . . . . . . . . . . . . . . . . . 73
5.3.3 Listing and Querying Database Entries . . . . . . . . . . 74
5.3.4 Removing Database Entries . . . . . . . . . . . . . . . . . 76

5.4 Step 3: Performance Analysis . . . . . . . . . . . . . . . . . . . . 77
5.4.1 Analysis Scope Selection . . . . . . . . . . . . . . . . . . . 77
5.4.2 Individual Application Summary . . . . . . . . . . . . . . 78
5.4.3 Application Comparison and Scaling . . . . . . . . . . . . 80
5.4.4 Programming Paradigm Statistics . . . . . . . . . . . . . 81
5.4.5 Application Similarity Clustering . . . . . . . . . . . . . . 82

2



6 Discussion 83
6.1 Measuring Success . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1 Comparison of Performance Metrics . . . . . . . . . . . . 84
6.1.2 Di↵erences in Sub Groups of MPI . . . . . . . . . . . . . 85
6.1.3 K-Means vs. Hierarchical Clustering . . . . . . . . . . . . 85
6.1.4 Comparison of Programming Paradigm Statistics . . . . . 86
6.1.5 Other Web-Based Application Databases . . . . . . . . . 86

6.2 Extensibility and Future Work . . . . . . . . . . . . . . . . . . . 87
6.2.1 Addressing Limitations . . . . . . . . . . . . . . . . . . . 87
6.2.2 Further Development . . . . . . . . . . . . . . . . . . . . . 87

References 91

3



Chapter 1

Introduction

This chapter contains an introduction into the scientific background and the
context of this master thesis. It also contains the motivation, goals, and a
summary of the presented work at the end of the chapter.

1.1 High Performance Computing

Scientific applications need high computing power provided by high performance
computing (HPC) systems in order to solve large-scale problems [15]. Instead
of further developing the speed of an individual processing unit, current HPC
system architects strive for more performance by relying on larger numbers of
processing units that work in parallel. Increasing power dissipation and little
room for improvement of instruction-level parallelism are some of the reasons
for this strategy [14].

Processing units of parallel architectures solve problems by distributing the
work and performing parallel computation. It is necessary for scientific appli-
cations to adopt the higher degrees of parallelism in current architectures, to
expand their potential and efficiency. It is an ongoing task to close the gap be-
tween sustainable production performance and peak performance achieved by
HPC systems in the face of increasing numbers of processing units [30].

There are di↵erent strategies and programming paradigms for applications in
order to exploit the parallelism provided by HPC systems. The most prominent
approaches are MPI [15] and OpenMP [11]. Generally, MPI (Message Pass-
ing Interface) is a method to program on distributed memory devices: parallel
processes are working in their individual memory space and exchange messages
to share data. OpenMP (Open Multi-Processing) is a method to program on
shared memory devices: parallel threads have access to the same data. Fur-
thermore hybrid approaches are possible, where MPI handles inter-node and
OpenMP intra-node parallelism.

4



1.2 Performance Analysis

Application developers try to achieve high performance by fully utilizing the ca-
pabilities provided by programming paradigms and HPC systems. Performance
analysis tools enable the investigation and analysis of representative metrics and
characteristics. These tools help the user to investigate application performance
behaviour and find performance bottlenecks. There are several di↵erent perfor-
mance analysis tools which vary in the capabilities that they o↵er, but also in
the programming languages and paradigms they support. Therefore, a single
tool is frequently not enough for the analysis of complex parallel applications.

The performance of parallel applications can also provide information about
the system they are running on. Evaluating the performance of HPC systems
can be achieved with dedicated performance evaluation applications (bench-
marks), that are often derived from real scientific applications in order to mimic
their parallel execution behaviour. By supporting the analysis and comparison
of performance characteristics, benchmarks also support the development and
improvement of applications and HPC systems. Therefore, they play a crucial
role in the investigation of di↵erent architecture approaches and programming
paradigms.

Although necessary for the development of a new HPC system, benchmark-
ing with real scientific applications proved to be impractical because they are
limited by their own complexity [17]. Real applications are usually complicated
and have many requirements, therefore they are not suited for the evaluation
of HPC systems in an early development stage. Even with requirements met,
there is still major e↵ort associated with the porting of a large program to a
new architecture [8].

Given an increasing number of scientific applications, benchmarks and per-
formance analysis tools, the decision on an appropriate performance analysis
approach becomes increasingly difficult. While scientific studies often state the
experimental setup, tools, and performance metrics, they seldom provide the
workflow for their analysis. This becomes a problem when studies are to be
replicated or extended. An analysis workflow provides a step-by-step guide on
how to setup the experiment, collect metrics, and analyse performance data.
The analysis workflow together with the metrics form a methodology, which
is a representation of the complete analysis process. A good methodology can
provide orientation in the landscape of performance analysis.

5



1.3 Motivation - Stating the Problem

The general motivation for the presented work, is to gain better understanding
of programming paradigm usage in order to analyse parallel application per-
formance. We investigated the overall landscape of performance analysis, and
how other studies approach this issue. We identified several shortcomings and
possible improvements.

Vague and Inconsistent Analysis Methodologies

We noticed that a lot of work follows di↵erent analysis workflows with di↵erent
performance metrics. This becomes a problem for researchers that want to
gather and compare performance results about a high number of applications.
Another problem arises when the analysis methodology is not fully stated, and
work needs to be replicated. This calls for an analysis methodology, that clearly
states performance metrics and the corresponding analysis workflow.

Manual Selection of Applications for Performance Analysis

In order to select one or more candidates for experiments and performance op-
timization, researchers need to compare a high number of applications. The
problem is that manual selection and comparison of candidates is a Sisyphean
task in the face of an increasing number of scientific applications and bench-
marks. Approaches that organise performance data and provide dynamic fil-
tering thereof, can support the selection process of candidate applications for
performance analysis.

High-Level Comparison of Multiple Application Profiles

Comparison of multiple applications has been mentioned as part of the problem
in preceding paragraphs. When analysing a single application, investigation
of the event trace can provide very detailed insight into individual performance
behaviour. However, researchers that want to compare multiple applications can
also benefit from approaches that provide high-level comparison of aggregated
performance data from application profiles.

1.3.1 Summarising the Problem

The following list summarises the shortcomings and possible improvements that
we want to address with the work presented in the subsequent Chapters:

(a) Vague and inconsistent analysis methodologies (di↵erent performance met-
rics, incomplete analysis workflows).

(b) Manual selection of applications for performance analysis (requiring dy-
namic filtering and grouping of applications).

(c) High-level comparison of multiple application profiles (high-level compar-
ison instead of in-depth single analysis).

6



1.4 Goals - Planning the Solution

Our goals are rooted in our experiences with the related work in performance
analysis, summarised in the preceding section. The overarching goal is a perfor-
mance analysis portal that provides: a complete analysis methodology, a way
of organising and filtering performance data, comparative performance analysis,
and similarity grouping of multiple applications.

Analysis Methodology with Semi-Automatic Workflow

We aim for a transparent analysis methodology that supports the user with
an analysis workflow that guides from preparation to measurement, execution,
performance data collection and finally performance analysis. The portal should
provide instructions and functionality embedded in a semi-automatic workflow
with graphical user interface.

Application Catalogue for Performance Data

As part of the methodology we also define a list of representative performance
metrics and characteristics that help to investigate parallel performance be-
haviour. The organisation of performance data shall be in the form of a cata-
logue that stores information and characteristics of multiple applications. En-
tries should be distinguished by version, and other suitable metadata. The
catalogue should support dynamic filtering and querying of entries.

Performance Analysis and Application Similarity

The user shall be able to compare all applications inside the catalogue with
di↵erent visualisation methods. The focus should be on profile comparison
of multiple applications and application similarity grouping based on di↵erent
characteristics.

1.4.1 Summarising the Solution

The following list summarises the solutions that we developed to address the
problems mentioned in the preceding Section 1.3:

(a) Analysis methodology with semi-automatic workflow (list of performance
metrics, analysis workflow embedded in graphical user interface).

(b) Application catalogue for performance data (extensible application cata-
logue that supports filtering and querying of entries).

(c) Performance analysis and application similarity (comparison of multiple
application profiles and grouping of applications based on similarity).

7



1.5 The Performance Analysis Portal

The result of this master thesis is a web-based Performance Analysis Portal for
HPC Applications (PAP). It was designed to fulfil the aforementioned goals and
follows a client-server architecture. Figure 1.1 gives an overview of the portal
and the technologies we used to develop it.

Figure 1.1: The Client - Server Architecture of PAP: Performance Analysis Por-
tal for HPC Applications, showing the technologies we used for each component.

The client side presents itself as a graphical user interface written in HTML,
CSS and JavaScript. The server side is build upon the Node.js JavaScript
runtime environment, it provides access to the application database that was
developed with the document-oriented database program MongoDB.

The portal provides a semi-automatic performance analysis workflow with step-
by-step instructions on (1) Preparation & Measurement, (2) Database Access,
and (3) Performance Analysis. The preparation and measurement phase relies
on the profiling capabilities of Score-P for performance data collection. The
portal also o↵ers a SLURM job script generator for convenience. Figure 1.2
gives an overview of the components of step 1: Preparation & Measurement.

Figure 1.2: Step 1 of our performance analysis workflow. The Preparation
& Measurement step relies on Score-P for instrumentation and compilation of
parallel applications, in order to generate aggregated profile data. This step
also provides a SLURM job script generator.

8



The application database is capable of storing multiple di↵erent metrics,
either uploaded in the form of a Score-P generated profile or manually entered
by the user. With the option of manually entering performance data, the user
can also work outside of the Score-P infrastructure. Figure 1.3 gives an overview
of the components of step 2: Database Access.

Figure 1.3: Step 2 of our performance analysis workflow. The Application
Database supports the upload of profile data generated in step 1, but it also
accepts manual insertion of performance data. The user can query the database
to filter for specific applications and export the contents of database entries in
various formats.

The analysis and visualisation phase o↵ers functionality for the investigation of
individual applications, comparing multiple applications, generating statistics
about programming paradigms, and grouping applications with k-means clus-
tering. Figure 1.4 gives an overview of the components of step 3: Performance
Analysis.

Figure 1.4: Step 3 of our performance analysis workflow. The Performance
Analysis step presents itself as a series of individual and multiple comparison
views, that provide the user with a number of plots and tables about applica-
tions, as well as programming paradigms.

9



Chapter 2

Related Work and
Competitors

The following chapter explores related work in the context of parallel appli-
cations performance analysis. We focus on performance analysis frameworks
and tools, as well as analysis workflows and performance metrics embedded in
methodologies.

2.1 Performance Analysis Frameworks and Tools

This section presents an overview of popular performance analysis frameworks
and tools. Performance analysis tools can be broadly categorized into online
monitoring and postmortem tools. Monitoring in this context means during
execution and postmortem after execution [14].

On the next lower level performance analysis, tools can be distinguished based
on their techniques for collecting performance data, namely sampling and in-
strumentation. Sampling is an interrupt-based technique, which records perfor-
mance data at specific time intervals. Instrumentation on the other hand, is an
event-based technique, that records performance data when specific events are
reached in the code. While sampling introduces less overhead, instrumentation
makes sure that all events of interest are recorded.

Profiling and tracing are the next lower levels of di↵erentiating. Profiling is
a method that aggregates and summarizes event information during runtime,
generating a profile. Profiles contain aggregated information about the applica-
tion. Tracing is a method that collects individual event information and records
them as an event flow, generating a trace. Traces contain information about
individual events on a timeline. In contrast to profiles, traces contain much
more detailed information and can get very large.

Visualization of profiles and traces in the form of graphs and charts is another
aspect of performance analysis tools. Not all tools provide visualization, while
other tools are dedicated to only provide visualisation.

10



2.1.1 Score-P

Score-P is a scalable performance measurement infrastructure for parallel codes,
that supports profiling and tracing of parallel applications [24]. Score-P is an
instrumentation and measurement system with connection points to popular
performance analysis tools, such as: Scalasca, Vampir, and TAU.

Joint Measurement Infrastructure

Many performance analysis tools have overlapping and redundant basic func-
tionality. Examples are instrumentation, profiling, tracing, and data formats.
Score-P aims to present a joint approach to o↵er basic functionality. The Score-P
components are: an instrumentation framework, runtime libraries, and helper
tools. The instrumentation framework enables the insertion of measurement
probes into C, C++, and Fortran code. These probes record performance met-
rics when they are triggered during execution of the application. It supports
the programming paradigms MPI, SHMEM, OpenMP, Pthreads, CUDA, and
OpenCL.

Figure 2.1: The Score-P architecture. It contains the components OTF2 (Open
Trace Format Version 2), CUBE4 (a data model and profiling format), and
OPARI2 (an instrumenter). It also shows connection points to performance
analysis tools such as Periscope, that monitors applications during runtime [10].
Reprinted from [24].

11



Architecture

Figure 2.1 shows an overview of the Score-P architecture and also the supported
analysis tools [24]. The overview contains the high-level components OTF2,
CUBE4, and OPARI2.

• OTF2 (Open Trace Format Version 2) is a software package developed
with regards to the two predecessor formats OTF1 and EPILOG, which
are the native formats of VampirTrace and Scalasca [12].

• CUBE4 is a profiling format and data model [13]. It represents the be-
haviour of an application along three dimensions. The first dimension
contains performance metrics. The second dimension contains the call
tree (location of a certain issue). The third dimension contains the sys-
tem description.

• OPARI2 is an instrumenter used to wrap OpenMP constructs with calls
to the performance monitoring interface POMP [28].

Summary

Score-P provides a single platform for performance measurements of parallel ap-
plications, while supporting di↵erent languages (C, C++, and Fortran) and pro-
gramming models (MPI, SHMEM, OpenMP, Pthreads, CUDA, and OpenCL).
The measurement results of Score-P can be explored using several di↵erent anal-
ysis tools like Scalasca, Vampir, and TAU. The joint measurement framework
succeeds in o↵ering uniform access to otherwise redundant basic functionality
of individual tools.

2.1.2 TAU

TAU (Tuning and Analysis Utilities) is an open-source performance evalua-
tion tool-set developed to support profiling and tracing of parallel applica-
tions [33]. TAU o↵ers instrumentation, measurement, and analysis. PDT (Pro-
gram Database Toolkit) was developed as part of TAU and o↵ers automatic in-
strumentation. Profile visualization is done via ParaProf [9], which is included
in the TAU distribution. Data mining is done via PerfExplorer [19]. Figure 2.2
and 2.3 provide an excellent overview of the TAU architecture, consisting of the
high level components instrumentation, measurement, and analysis.

Instrumentation and Measurement

An overview of the instrumentation and measurement components is given in
Figure 2.2. Instrumentation involves source code instrumentation by using
pre-processors and compiler scripts, wrapping external libraries (MPI, CUDA,
OpenCL), and rewriting the binary executable. Measurement involves hardware
counters, profiling, and/or tracing. TAU generates performance data by instru-
menting functions, methods, and statements. It is also capable of event-based
sampling [33]. TAU uses its own binary trace format but has a built in trace
translator, which makes TAU compatible with other tools like Vampir.

12



Figure 2.2: Overview of instrumentation and measurement provided by the
TAU framework, showing details for Profiling, Tracing, and other components.
Reprinted from [33].

Analysis and Visualization

An overview of the analysis and visualization components is given in Figure 2.3.
Analysis involves visualisation of the generated profiles and traces. ParaProf
o↵ers visualisation of profiles. TAU is also capable of tracing which opens in-
vestigation by third-party trace visualizers like Vampir or Paraver [33].

Summary

TAU is compatible with a lot of di↵erent tools and therefore holds a central
position among them. It combines instrumentation, measurement, analysis,
and visualization by use of profiling and tracing applications written in vari-
ous languages (C, C++, Fortran, UPC, Java, Python, and Chapel) and with
di↵erent programming models (MPI, OpenSHMEM, ARMCI, PGAS, DMAPP,
Pthreads, OpenMP, OMPT, GPU, CUDA, OpenCL, and OpenACC).

13



Figure 2.3: Overview of the analysis and visualization provided by the TAU
framework, showing details for Profile Data Management, Trace Data Manage-
ment and corresponding visualisation. Reprinted from [33].

2.1.3 Scalasca

Scalasca (Scalable performance Analysis of large-Scale parallel Applications) is a
tool-set specifically designed for the analysis of large-scale systems [14]. Scalasca
o↵ers an analysis procedure which includes runtime summaries, event tracing,
and a unique ability to identify wait states. The basic analysis workflow of
Scalasca is shown in Figure 2.4 reprinted from [14], which explores the di↵erent
phases when working with Scalasca. It starts with the instrumentation of a
target application, followed by measurement of representative data, the analysis
of said data and the presentation of results in a report.

Instrumentation and Measurement

The first step in the Scalasca workflow is to instrument the target application.
The user is o↵ered a manual and automatic instrumentation option. By prefix-
ing compilation commands with the Scalasca instrumenter (based on Score-P),
the application is linked to the measurement library.

14



Figure 2.4: Performance data flow of Scalasca. Gray stands for programs,
white for files, and hatched boxes represent third-party components. Reprinted
from [14].

Event Summarization and Analysis

After the instrumentation process the user can choose to enable a summary
report and/or a pattern-analysis report [14]. The summary report is a runtime
summarization of performance metrics and a compact representation of execu-
tion behaviour (profiling). The pattern-analysis report uses event traces for the
analysis (tracing). The trace files are analysed by Scalasca in parallel by using
the same number of computing units as the original application used during exe-
cution. The pattern-analysis report contains information about communication
and synchronization inefficiencies. Scalasca derives inefficiencies with its ability
to detect characteristic patterns that indicate wait states and other performance
properties. Alternatively the trace files can also be analysed with the help of a
visualization tool like Vampir.

Report Manipulation and Exploration

Both the summary and pattern-analysis report are XML files, which can be
explored with the interactive analysis report explorer of Scalasca [14]. There
are sophisticated options for report combination, manipulation (hide specific
phases), and comparison (calculate di↵erences).

Summary

Scalasca is a performance analysis tool-set focused on large-scale systems with
many thousand computing units. It o↵ers powerful automatic and parallel trace
analysis. Scalasca does not include a trace browser (or visualizer), but is highly
compatible with third-party tools like Vampir, TAU and Paraver. Figure 2.5
shows an overview of the architecture of Scalasca [14], including its di↵erent
components, as well as functional and temporal analysis phases. It also shows
where analysis can be extended by suitable third-party programs.

15



Figure 2.5: The architecture of Scalasca. Each box is a component of Scalasca
(third-party components are hatched). Analysis phases are shown vertically and
di↵erent options in each phase are shown horizontally. Functional phases are
described on the left and temporal phases on the right. Reprinted from [14].

2.1.4 Vampir

Vampir (Visualization and Analysis of MPI Resources) is a commercial per-
formance analysis tool. It was originally developed to support the analysis
and visualization of MPI applications [29] and later extended to support other
programming models such as OpenMP [23]. Vampir is using the OTF2 trace
format. Related tools are the open source VampirTrace, as well as the commer-
cial product VampirServer. Despite the existence of VampirTrace, Score-P [24]
is currently recommended as code instrumentation and runtime measurement
framework for Vampir.

16



Vampir Tool Family

The Vampir tool family enables visualization and parallel performance analysis
via profiling and tracing. Vampir translates trace files into graphical views which
include timeline and statistical charts. VampirTrace performs instrumentation
and runtime measurement. Instrumentation can be automatic by using special
compiler flags, or manual by specific API calls which mark functions or code
regions. Runtime measurement includes the recording of: hardware performance
counters, memory usage, I/O activity, etc. VampirServer is the parallel successor
of Vampir and implemented in a client-server framework, as shown in Figure 2.6.
It introduces parallel analysis which increases scalability [4]. In the following
we will focus on the visualization tool Vampir.

Figure 2.6: Comparison of Vampir and VampirServer setup. Highlighting the
increased scalability and client-server framework of VampirServer. Reprinted
from [4].

Timeline Charts

The timeline charts of Vampir show recorded individual event information on
a time axis (the chain of events). They enable analysis of the behaviour and
event flow of an application. Vampir o↵ers several di↵erent types of charts, we
show the master timeline in Figure 2.7 which shows information about function,
communication and synchronization events for all processes [5].

Functions have di↵erent colours according to their function group. For exam-
ple MPI Wait belongs to the MPI function group. It is possible to distinguish
di↵erent application phases at a given time, on the basis of the function colours.

17



Figure 2.7: The master timeline is the main view and starting point for per-
formance analysis. It shows information about function, communication and
synchronization events for all processes. Reprinted from [5].

Process and Counter Data Timeline

The process timeline holds the same information as the master timeline, only for
one individual process and divided into call stack levels of function calls. The
counter data timeline shows the value of a counter during the execution time
of the application. Counter values can be floating point operations or cache
misses.

Statistical Charts

The statistical charts of Vampir show summarized event information for selected
time intervals. Vampir provides di↵erent charts highlighting di↵erent aspects of
the application. The communication matrix is shown in Figure 2.8 which shows
information about messages which are sent between processes. The function
summary and call tree view are briefly discussed below.

Function Summary and Call Tree

The function summary shows the aggregated elapsed time of individual func-
tions and function groups. The call tree contains the invocation hierarchy of
all functions, as well as the number of invocations and the time spent in the
respective calls.

18



Figure 2.8: The communication matrix shows information about messages which
are sent between processes. This view o↵ers di↵erent metrics like: number
of messages, average message size, average message data rate, etc. Reprinted
from [5]

Summary

Vampir provides powerful features for the performance analysis of parallel ap-
plications. The di↵erent timeline and statistical charts lift analysis to a user-
friendly graphical level and help understand application behaviour and individ-
ual event flow.

2.1.5 HPCToolkit

HPCToolkit is an open-source tool-set for application performance analysis [6].
HPCToolkit supports profiling and tracing. It achieves a low overhead of 1-5%
by using sampling to generate profiles [2] and is therefore able to scale to large
parallel systems. HPCToolkit also comes with presentation tools, which allow
for visualization of various application characteristics. The tool-set supports
di↵erent programming models (MPI, OpenMP, Hybrid and Pthreads).

19



General Methodology

Figure 2.9 shows the primary components of HPCToolkit and the workflow
that combines them. What follows is the basic structure of the workflow, taken
from [6]:

1. Measurement of performance metrics while an application executes.

2. Analysis of application binaries to recover the program structure.

3. Correlation of dynamic performance metrics with source code structure.

4. Presentation of performance metrics and associated source code.

Workflow

The following paragraph explains the workflow depicted in Figure 2.9.First com-
pile and link the target application. Second run the application with hpcrun,
which generates a profile using sampling. Third use hpcstruct to analyse the
application binary. Fourth use hpcprof which combines performance metrics
with the structure of an application into a performance database. Fifth use
hpcviewer to explore the generated performance database.

Figure 2.9: Showing the main components of HPCToolkit and the underlying
performance analysis workflow that combines them. Reprinted from [2].

20



hpcrun

Calling-context-sensitive performance measurements are collected by the com-
ponent hpcrun [2]. It is using system timers and performance monitoring unit
(PMU) events to trigger sampling, which achieves a low overhead of 1-5%. the
hpcrun component is collecting call path profiles and also has the option to
enable tracing.

hpcstruct

The calling-context-sensitive measurements which are collected by hpcrun are
associated with the source code structure of the target application by the com-
ponent hpcstruct [2]. It generates information about the relationship between
the application binary and its source code. the hpcstruct component identifies
relations between object code and source code, procedures, and loop nests. It
also identifies inlined code.

hpcprof

The hpcprof component takes call path profiles and traces generated by hpcrun,
overlays them with the application structure from hpcstruct and correlates the
result with source code [2]. The sub-component hpcprof/mpi is able to do this
correlation is parallel. and can handle thousands of profiles from a parallel
execution. The result is a performance database which can be presented with
hpcviewer and hpctraceviewer.

hpcviewer

One of the visualization components is hpcviewer, which presents performance
data and provides a graphical view of performance variability across processes
and threads [2]. The component is designed to highlight scalability losses and
inefficiencies instead of only focusing on application hot spots.

hpctraceviewer

The other visualization component is hpctraceviewer, which shows the pro-
gram execution behaviour along a time axis [2]. The hpctraceviewer component
presents activity over time at di↵erent call stack depths and therefore renders
traces at multiple levels of abstraction.

Summary

HPCToolkit is a very structured tool-set, where every component has a clear
role and distinct function. The provided methodology, which is embodied in
the workflow shown in Figure 2.9, provides a good step-by-step guide utilizing
the full potential of HPCToolkit and arriving at a qualitative and quantitative
analysis including timeline and statistical information.

21



2.1.6 Paraver

Paraver was developed to visualize and analyse parallel applications after exe-
cution [31]. A key feature is the capability to handle large trace files by using
filters to block uninteresting information and summarize data. In order to filter
information. Paraver uses a method called soft counters [14]. Paraver uses its
own distinct trace format without semantics, which makes it easy to upgrade
the tool for new performance data or programming models. The trace files are
generated by the runtime measurement system Extrae [1]. Metrics of Paraver
are very flexible because they can programmed by the user, with the help of
various time functions and filter modules. Additionally Paraver has convenient
features like multi-trace comparison and cooperative analysis.

Visualization

Paraver visualizes trace files through a minimal set of views [1]. The time-
line display is shown in Figure 2.11 and the statistics display in Figure 2.10.
The timeline display is very similar to the master timeline view of Vampir,
representing the application behaviour over time. The statistics display shows
quantitative analysis data.The user can chose specific values and events which
are passed either to the visualization module or the quantitative representation,
as well as colours and scales. The many options for adjustments make Paraver
a highly flexible tool.

Figure 2.10: The statistics display of Paraver shows summarized numerical anal-
ysis of the target application. It is the quantitative analysis part of Paraver.
Reprinted from [1].

22



Figure 2.11: The timeline display o↵ers an overview of the application behaviour
along a time axis, this allows identification of phases, patterns, and communi-
cation events. Reprinted from [1].

Expressive Power

The semantic module decides about the values which are to be displayed. The
user is given access to basic semantic functions (Sum, Sign, Last Event Value,
etc.) on every level. These basic functions can be combined to powerful repre-
sentations of the application. Possible values are: total per CPU consumption
when several tasks share a node, evolution of the value of a selected variable,
instructions per cycle executed by each thread, etc. [1].

Summary

Paraver o↵ers a pragmatic approach for application analysis. The tool is capa-
ble of handling large trace files and multiple programming models through its
distinctive trace format. Paraver o↵ers a high number of possible adjustments
that allow the user to combine metrics and chose the way they are visualized.
Paraver proved to be highly adaptive and open for new programming models
and performance metrics, making it a future oriented tool.

2.1.7 mpiP

The mpiP library provides lightweight and scalable profiling for MPI applica-
tions by using the MPI profiling interface layer [36]. It generates less overhead
and data than tracing tools, by only accumulating statistical measurements for
MPI library routines used by each process. The results collected by mpiP are
task-local and in order to merge these results mpiP uses communication at the
end of the experiment. Merging the task-local results generates a report which is
stored in a textual output file. The mpiP library supports several programming
languages (C, C++, Fortran) and was tested with up to 262144 processes [36].

23



Sample Output

Sample output from mpiP using a simple application with 4 MPI calls, is shown
in the following paragraphs. Starting with Figure 2.12 that shows general in-
formation about the execution, mpiP version, etc.. The outputs are reprinted
from [36]. It is important to note that mpiP omits certain local MPI calls, such
as MPI Comm size, in order to reduce perturbation. The documentation also
mentions the Qt mpiP viewer which provides visualization for the reports [36].

Figure 2.12: Showing header information provided by mpiP, which contains
general information about the execution, mpiP version, etc. Reprinted from [36].

In the following paragraphs we will show an excerpt of the textual output report
of mpiP, which gives an insight of the capabilities and information provided by
this MPI profiling library. Figure 2.13 shows a list of all tasks used during
the execution of the application, and their individual time spent in MPI [36].
Apptime measures the time between MPI Init and MPI Finalize. MPI Time
measure the time for MPI calls within Apptime. MPI % denotes the ratio of
MPI Time to Apptime. (*) is the aggregated time.

Figure 2.13: An overview of MPI Time in seconds using the wall-clock time is
part of the data collected by mpiP. Reprinted from [36].

24



Figure 2.14 shows MPI callsites of the application [36]. In order of columns:
ID is the callsite ID, Level is the stack depth, File/Address provides the file
name, Line denotes the line number, Parent Funct is the parent function, and
the last column contains the type of MPI call without MPI prefix.

Figure 2.14: MPI callsites of the application are also tracked by mpiP, to-
gether with Line, Parent Function and the corresponding MPI call. Reprinted
from [36].

Figure 2.15 shows an overview of the top callsites regarding time consumption
in the target application [36]. In order of columns: Call is the type of MPI func-
tion, Site is the callsite ID, Time denotes the aggregate time in milliseconds,
App% is the ratio to total application time, MPI% is the ratio to total MPI
time, COV holds the coefficient of variation from the individual process time
(indicating variation in times of individual processes).

Figure 2.15: Top callsites with regards to aggregated time consumption is also
part of the mpiP output. Reprinted from [36].

Summary

The textual output of mpiP provides statistical information about MPI library
routines. Because mpiP is using profiling it generates very low overhead and
is easy to setup. On the other hand it does not provide qualitative analysis
in the sense of showing timeline behaviour of the application, mpiP enables a
quantitative analysis of the application by looking at aggregated performance
data.

25



2.1.8 Overview and Comparison
T
o
ol
s

P
ro
gr
.

L
an

gu
ag
es

P
ro
gr
am

m
in
g

P
ar
ad

ig
m
s

L
ic
en
si
n
g

S
am

p
li
n
g
/

In
st
ru
m
en
ta
ti
on

P
ro
fi
li
n
g
/

T
ra
ci
n
g

T
ra
ce

F
o
rm

at
V
is
u
al
iz
at
io
n

P
er
fo
rm

a
n
ce

A
n
a
ly
si
s

V
am

p
ir

C
,

C
+
+
,

F
or
tr
an

M
P
I,

S
H
M
E
M
,

O
p
en
M
P
,

P
th
re
ad

s,
C
U
D
A
,

O
p
en
C
L
,

O
p
en
A
C
C

co
m
m
er
ci
al

-
-

O
T
F
2

y
es

p
os
tm

o
rt
em

S
ca
la
sc
a

C
,

C
+
+
,

F
or
tr
an

M
P
I,
O
p
en
M
P

P
th
re
ad

s
op

en
-s
ou

rc
e

In
st
ru
m
en
ta
ti
on

P
ro
fi
li
n
g

an
d

T
ra
ci
n
g

O
T
F
2

n
o

p
os
tm

o
rt
em

T
A
U

C
,

C
+
+
,

F
or
tr
an

,
U
P
C
,

J
av
a,

P
y
th
on

,
C
h
ap

el

M
P
I,
O
p
en
S
H
M
E
M
,

A
R
M
C
I,
P
G
A
S
,

D
M
A
P
P
,
P
th
re
ad

s,
O
p
en
M
P
,
O
M
P
T
,

G
P
U
,
C
U
D
A
,

O
p
en
C
L
,
O
p
en
A
C
C

op
en
-s
ou

rc
e

S
am

p
li
n
g

an
d

In
st
ru
m
en
ta
ti
on

P
ro
fi
li
n
g

an
d

T
ra
ci
n
g

T
A
U

tr
a
ce

fo
rm

at
y
es

p
os
tm

o
rt
em

P
ar
av
er

C
,

C
+
+
,

F
or
tr
an

,
J
av
a,

P
y
th
on

M
P
I,
O
p
en
M
P
,

P
th
re
ad

s,
O
m
p
S
s,

C
U
D
A

op
en
-s
ou

rc
e

-
-

P
a
ra
v
er

tr
a
ce

fo
rm

at
y
es

p
os
tm

o
rt
em

H
P
C
T
o
ol
k
it

C
,

C
+
+
,

F
or
tr
an

M
P
I,
O
p
en
M
P
,

P
th
re
ad

s
op

en
-s
ou

rc
e

S
am

p
li
n
g

P
ro
fi
li
n
g

an
d

T
ra
ci
n
g

C
C
T

tu
p
le
s

y
es

p
os
tm

o
rt
em

S
co
re
-P

C
,

C
+
+
,

F
or
tr
an

M
P
I,

S
H
M
E
M
,

O
p
en
M
P
,

P
th
re
ad

s,
C
U
D
A
,

O
p
en
C
L
,

O
p
en
A
C
C

op
en
-s
ou

rc
e

S
am

p
li
n
g

an
d

In
st
ru
m
en
ta
ti
on

P
ro
fi
li
n
g

an
d

T
ra
ci
n
g

O
T
F
2

n
o

-

m
p
iP

C
,

C
+
+
,

F
or
tr
an

M
P
I

op
en
-s
ou

rc
e

In
st
ru
m
en
ta
ti
on

P
ro
fi
li
n
g

-
n
o

p
os
tm

o
rt
em

Table 2.1: Comparison of performance analysis tools. CCT (Calling Context
Tree) are call paths for events. Score-P and Vampir are often used together.
The Paraver trace format is generated by Extrae.

26



2.2 Methodologies and Characteristics

This section contains literature relevant to methodologies, analysis workflows,
and performance metrics. We will focus on conceptual approaches and the
performance metrics.

2.2.1 Oxbow and PADS

Oxbow is a toolkit that supports collecting information about application be-
haviour [37] [34]. PADS (Performance Analytics Data Store) is a web-based
infrastructure that supports collecting, storing, querying, and visualization of
information gathered by Oxbow [34]. Oxbow also provides a uniform method-
ology in the form of a workflow and key metrics. The methodology helps to
identify specific application characteristics. A primary goal of Oxbow is to
determine how well proxy applications mimic the respective full applications.

Oxbow + PADS Workflow

Figure 2.16 shows an overview of the Oxbow and PADS workflow, as explained
in [34]. We will now briefly summarize the workflow:

1. Use Oxbow to compile and execute the target application while measuring
computation, communication and memory behaviour

2. Store the measured performance data and upload it to the PADS data
store as part of the Oxbow workflow.

3. Use PADS to dynamically visualize the collected performance data and
compare the behaviour of di↵erent applications.

Figure 2.16: Overview of the Oxbow and PADS workflow. Divided into three
di↵erent phases: data collection, data management, and data visualization.
Reprinted from [34]

27



Application Characterization

Oxbow di↵erentiate between several di↵erent categories of performance metrics.
The collected data can be grouped into: computation, communication, mem-
ory, and source code. In the following paragraphs we will briefly discuss the
aforementioned groups.

Computation Profiling

The computational profile is defined by Oxbow as the set of executed micro-
operations, shown in Table2.2, reprinted from [34]. These micro-operations are
decoded instructions, the decoding is done using MIAMI [27]. MIAMI is a
tool-set build on top of Pin [26], a dynamic binary instrumentation tool.

Category Description

BrOps Conditional / unconditional branches; direct and indirect jumps.
FpOps Scalar floating-point arithmetic.
FpSIMD Vector floating-point arithmetic.
IntOps Scalar integer arithmetic.
IntSIMD Vector integer arithmetic.
MemOps Scalar load and store operations.
MemSIMD Vector load and store operations.

Moves Integer and floating-point register copies;
data type and precision conversions.

Misc Other miscellaneous operations, including pop count,
memory fence, atomic operations, privileged operations.

Table 2.2: Descriptions of the recognized micro-operations categorized in groups.
A high level grouping would be: memory, control, and arithmetic. Reprinted
from [34]

Memory Behaviour Measurement

Oxbow recognizes several metrics for memory behaviour, such as bandwidth.
The number of read and writes to compute bandwidth are measured through
PAPI [35], which provides access to the performance counter hardware. Oxbow
also provides a reuse distance that estimates data locality, as explained in [37].
Reuse distance is defined as how often other data elements are accessed between
two consecutive references to an individual data element. This metrics largely
indicates cache performance.

28



Source Code Analysis

Oxbow is also capable of static analysis of an application’s source code. The
toolkit can determine language, lines of code, type of parallelism, and number
of functions. Oxbow also determines software cyclomatic complexity, which is
a metric for the amount of decision logic of an application, further explained
in [34].

Communication Analysis

The analysis is done by investigating the use of the MPI library through mpiP [36],
which is a MPI profiling library. Oxbow records point-to-point and collective
communication between ranks. Figure 2.17 shows communication matrices of
di↵erent applications.

The communication matrix gives insight on the message passing behaviour
of the target application, and can support finding a communication pattern.
For example Figure 2.17(a), the repeated pattern indicates a three-dimensional
nearest-neighbour communication, explained in more depth in [37].

Figure 2.17: Multiple communication matrices for di↵erent applications, show-
ing average volume of point-to-point communication and the corresponding com-
munication pattern. Reprinted from [37].

29



Trade-o↵s

In the publications surrounding Oxbow and PADS [37] [34], the authors state a
number of trade-o↵s, which we will briefly summarize in the following paragraph.

• Several input files for MIAMI have to be generated by hand (this problem
has been overcome in a newer version according to the authors [34]).

• Di↵erent compilers and compilation flags alter the micro-operations recorded
by Oxbow. So in order to compare on even ground the same compiler and
compilation flags have to be used for all applications.

• The measurement of reuse distance introduces significant overhead, in
order to use this feature smaller problem sizes have to be used.

Clustering of Application Characterization Data

In order to compare performance data of di↵erent applications, the toolkit uses
a hierarchical clustering with any normalized metric. The result of this cluster-
ing process is a dendrogram tree, that groups applications by their similarity,
and measures similarity across groups [34].

The clustering is computed by a distance metric that measures the di↵erence
between applications. Figure 2.18 shows a clustering with micro-operations as a
distance metric, explained in depth in [34]. Micro-operation are defined above as
decoded instructions. The tree is build in iterations, each iteration the nearest
Neighbors join into a group.

Summary

The Oxbow toolkit, including PADS, covers almost all aspects of application
performance analysis, by relying on several di↵erent third-party tools, like mpiP,
MIAMI, PAPI, and Pin. The strong point of the toolkit is a well-rounded
methodology, which includes several key metrics and a workflow. Including
static source code analysis, Oxbow measures di↵erent aspects of application
performance and PADS supports management and visualization of this perfor-
mance data.

Interesting aspects are the take on application comparison, using a clustering
approach based on similarity, and the consideration of communication patterns.
There is no public release at the time of this report, therefore Oxbow is not avail-
able for further investigation or comparison beyond the official publications.

30



Figure 2.18: Hierarchical clustering tree with micro-operations as distance met-
ric. Leafs under a common branch are similar. The number of branches and
groups are determined by a user defined threshold. Reprinted from [34]

31



2.2.2 A Large-Scale Study of MPI Usage

Laguna et. al. [25] provide a study regarding the understanding of state-of-the-
practice in MPI usage. The motivation is optimising the communication of HPC
applications and identifying the most important MPI features. More than one
hundred individual MPI applications were included in the study. They focus on
understanding the characteristics of MPI usage with respect to the most used
features, code complexity, and programming languages and paradigms.

Key Characteristics The study focuses on four key characteristics: (a) the
most important MPI routines and features, (b) size and complexity of the ap-
plications, (c) MPI usage characteristics versus code release dates, (d) usage of
multi-threaded programming models (e.g. MPI+X).

Scalable Static Application Analysis Previous work that tried to survey
MPI applications relied on profiling the applications, involving instrumentation,
compilation and execution. According to Laguna et. al., this approach is diffi-
cult to scale due to execution errors and also not portable to all HPC systems.
The study therefore employs a scalable analysis method that analyses the code of
applications. This approach is considered static, as applications do not need to
be compiled and executed. The analysis framework used in the presented study,
traverses all directories in the source code and inspects each file to identify the
use of MPI calls. They also keep track of programming language, line of code,
and whether the application additionally uses a multi-threaded programming
model. The analysis framework is written in Python.

Figure 2.19: Percentages of applications that additionally use a multi-threaded
programming model, of these applications, most are using OpenMP. Reprinted
from [25].

32



MPI Categories The study presents 13 categories for the routines of the
MPI Standard version 3.1. The categories include the main communication
types: point-to-point communication, collective communication, and one-sided
communication. The categories also include communicator and group manage-
ment, MPI I/O, and error handling. For a complete list of categories please
refer to [25].

Figure 2.20: Percentage of applications that use specific MPI categories. The
most used categories are Point-To-Point and Collective. Reprinted from [25].

Important Findings Their most important findings are:

• A large portion of MPI applications do not use advanced features (e.g.
persistent or one-sided routines). 67% of applications use blocking send
and receive operations.

• The majority of applications use only a small set of MPI features (e.g.
a considerable number use only point-to-point and collective communica-
tion, leaving other MPI features unused).

• 42% of applications rely on features in MPI version 1.0 only. For about
80% of applications the minimumMPI version they require is 2.0. Features
provided by subversions (e.g. 1.3, 2.1, etc.) are rarely used.

• About 2/3 of MPI applications are used together with multi-threaded
programming models (OpenMP is the most popular).

• C++ is the dominant language in MPI applications.

33



2.2.3 Benchmark Similarity

Joshi et. al. [22] propose a methodology for measuring the similarity between
applications based on their inherent characteristics. The goal of the presented
work is to identify a representative subset of programs for benchmark suites
and to investigate their evolution over multiple version. The authors work with
the benchmark suites: SPEC CPU2000, MediaBench, and MiBench. In the
following paragraphs we will summarize the methodology and the clustering of
similar applications proposed in the aforementioned work.

Characteristics

The authors rely on microarchitecture-independent characteristics to investigate
inherent properties of programs. The metrics are explained in detail in [22], and
briefly summarized below:

• Instruction Mix: Measuring computation instructions, data memory ac-
cess, and branch instructions.

• Control Flow Behaviour: Measuring basic code block sizes and branch
directions in the instruction stream.

• Instruction Level Parallelism (ILP): Measuring register dependency dis-
tance, the number of instructions in the instruction stream between write
and read of a register instance.

• Data Locality: Measuring average memory reuse distance, the average
number of data memory accesses between two consecutive accesses to the
same address.

• Instruction Locality: Measuring the average number of instructions be-
tween two consecutive accesses to the same static instruction.

The characteristics listed above are measured using the custom-grown analyser
SCOPE a modification of SimpleScalar [7].

Statistical Data Analysis

In order to compare multiple programs with multiple characteristics, the au-
thors use multivariate statistical data analysis. Principal Component Analysis
(PCA) [21] is used to remove correlation between the metrics and to reduce the
dimensionality of the data set [22]. Cluster Analysis, via k-means and hierarchi-
cal clustering [20], is used to find similar groups among the programs. For PCA
and hierarchical clustering the presented work uses STATISTICA [22], and for
k-means SimPoint [16].

34



Similarity Clustering

Joshi et. al. [22] use their aforementioned characteristics and statistical data
analysis methods to compare di↵erent generations of the SPEC benchmark suite.
They look at four SPEC CPU benchmark suites released in: 1989, 1992, 1995,
and 2000.

K-Means Clustering

Figure 2.21 shows the clustering for the four SPEC CPU benchmark suites,
using the k-means method [22]. The programs in bold are closest to the center
of the cluster.

Figure 2.21: Clustering for di↵erent versions of the SPEC CPU benchmark
suite, using the k-means clustering method. Bold written programs are the
ones closest to the center of the cluster. Reprinted from [22].

Hierarchical Clustering

Figure 2.22 shows a dendrogram (tree), which indicates the similarity of pro-
grams based on the instruction locality characteristics [22]. The linkage distance
generated by the hierarchical clustering corresponds to the vertical scale. Pro-
grams are more similar when the linkage distance is shorter.

Summary

Joshi et. al. [22] present an interesting list of characteristics, that are inde-
pendent of features of a particular machine configuration. The hierarchical and
k-means clustering approaches provide a good method to measure the similarity
between di↵erent applications.

35



Figure 2.22: Clustering for di↵erent versions of the SPEC CPU benchmark
suite, using the hierarchical clustering method. Vertical scale depicts the linkage
distance. Reprinted from [22].

36



2.2.4 Empirical Performance Evaluation

Vetter et. al. [38] analyse scalability, architectural requirements, and perfor-
mance characteristics of parallel applications, by following an empirical ap-
proach. The aim is to provide a comparative analysis of several di↵erent applica-
tions focusing on their MPI behaviour The methods encompass a combination of
message tracing and measuring hardware counters. The methodology presented
in this work can be summarized as follows: iterative investigation over increas-
ingly refined empirical performance data regarding computation and communi-
cation.

Measuring Computation Performance

The presented work uses subroutine profiling in order to determine which sub-
routines take large amounts of wall-clock time. Presenting a hierarchical rep-
resentation of execution time. Additionally hardware counters are recorded to
gain information about processor instructions: number of cycles, number of
completed instructions, number of floating-point operations, cache misses, and
number of memory loads and stores [38]. Derived from these counters are the
metrics: instructions per cycle, computational intensity, and cache hit ratios.

Measuring Communication Performance

The profiler mpiP [36] is used to profile MPI communication behaviour in the
presented work. Also recorded is the call site stacktrace, which is used to iden-
tify di↵erent phases of the application [38]. A chronological event stream, for
individual calls to the MPI library, is recorded via MPI tracing. This helps in-
vestigating load imbalance and the relationship between computation and com-
munication.

Communication Pattern

Figure 2.24 shows a communication matrix using Vampir [29], the metric is
average message length. The communication matrix shows typical message-
passing patterns which are identified by the authors as communication pattern
for an iterative linear solver [38]. Communication happens with a predetermined
set of processes, additionally the size of the messages increases as the distance
between processes decreases.

37



Scalability

Figure 2.23 shows the scaling behaviour of two applications, regarding average
computation and communication time. One of the shown applications has weak
scaling and does not easily scale with the number of processors, while the re-
maining application shows strong scaling [38].

Figure 2.23: Scaling behaviour of several application, regarding average compu-
tation and communication time. Reprinted from [38].

Trade-o↵s

Many of the application, which are analysed in the presented work, also make
use of OpenMP, which is not included in the analysis of the presented work.
Other problems encountered by the authors were introduced by tracing. First
tracing tends to generate large amounts of data, second tracing can introduce
significant perturbation into the target application. The authors limit the prob-
lems introduced by tracing through their iterative approach. They first identify
potentially interesting code areas without tracing, and in a second step use
tracing restricted to these code areas. They were also limited by the amount of
information they could gather (through hardware counters) about the applica-
tions‘s memory access pattern.

38



Figure 2.24: Communication matrix generated with Vampir [29], showing mes-
sage statistics about the average message length between processes, and the
communication pattern of the application. Reprinted from [38].

Summary

The presented work o↵ers an empirical analyses approach to computation and
communication analysis of parallel applications. Although the work is focusing
on MPI, omitting other programming models, it provides a well-rounded anal-
ysis. Including scalability with regards to the relationship of computation and
communication, and the identification of typical communication patterns.

2.2.5 Communication Patterns

Riesen et. al. [32] investigated metrics that are interesting for the analysis of
communication patterns. In the presented work the NAS parallel benchmarks
are used as an example. The tool the authors are using is a prototype of a
network simulator, which provides recording of message traffic. The network
simulator enables the recording message size, message length, as well as source
and destination. It can also distinguish between point-to-point and collective
communication.

39



The Network Simulator

Figure 2.25 shows the experimental setup used in the presented work. When
the application uses the MPI library, it also sends an event to the network simu-
lator, the authors achieve this with the MPI profiling interface. The application
then waits for an answer of the network simulator before it finishes the MPI call.

The network simulator keeps track of a virtual time which excludes the time
spent by the application waiting on an answer of the network simulator. Using
this approach with virtual time means, the benchmarks report the same execu-
tion time, with or without the network simulator [32].

Figure 2.25: Overview of the network simulator. L is latency, B is bandwidth,
and s is message size. Node 3 will wait for an event by the network simulator
before finishing the MPI send. Reprinted from [32].

Communication Measurements

Riesen et. al. [32] provide five measurement that help analyse the communi-
cation behaviour of a target application. The measurements are presented and
briefly summarized in the following paragraphs.

40



Message Density

Figure 2.26 and 2.27 shows the message density distribution (communication
matrix) for NAS MG. Riesen et.al. [32] concluded that most messages are sent
between nodes that are close, regarding MPI’s logical node numbering. The
result is that nodes build clusters that communicate internal, as nearest Neigh-
bors In the case of 64 nodes there are smaller clusters grouped themselves within
bigger clusters. From the diagonal alignment of the clusters, the authors con-
clude that clusters don’t exclusively communicate with nearest Neighbors, but
also communicate with the next lower cluster.

Figure 2.26: Showing message density of NAS MG for 16 nodes. The darker a
rectangle, the more messages were sent. Reprinted from [32].

Figure 2.27: Showing message density of NAS MG for 64 nodes. The darker a
rectangle, the more messages were sent. Reprinted from [32].

41



Data Density

Figure 2.28 and 2.29 shows the message density and data density distribution
(communication matrix) for NAS BT. The authors note that some nodes sent
more data than they receive, the number of messages can still be the same but
the data flow is di↵erent [32].

Figure 2.28: Message density of NAS BT. The darker a rectangle, the more
messages were sent. Reprinted from [32].

Figure 2.29: Data density of NAS BT. The darker a rectangle, the bigger mes-
sages were sent. Reprinted from [32].

Collectives and Point-to-point

Figure 2.30 shows the ratio of point-to-point to collective communication for
several application of NAS [32]. The graphic helps to distinguish between ap-
plication that rely heavily on one form of communication and application that
use both models.

42



Figure 2.30: Ratio of point-to-point to collective communication for several
applications of NAS. The letters A, B, and C indicate the problem size for the
individual application. Reprinted from [32].

Number and Type of Collectives

Figure 2.31 shows which type of collective communication is used by the FT
application of NAS. When increasing the number of nodes, the number of
MPI Bcast (broadcast) also increases, while the other types remain constant.
The authors conclude that the other types are only used at the beginning (dis-
tribute data) and at the end of the application (collect results), while the broad-
cast operation scales with the problem size.

Message Size Distribution

Figure 2.32 shows the message sizes of SP from NAS for an increasing number
of nodes. The authors conclude that for SP, the message sizes get smaller when
more nodes are used with the same problem size. This is the behaviour of most
application of NAS, with some exceptions which are reported by Riesen et. al.
in the presented work [32].

Summary

Riesen et. al. [32] presented a well rounded set of metrics to analyse com-
munication patterns among di↵erent applications. The authors also provided
insight on how to interpret the metrics and introduced a novel approach to col-
lect communication characteristics. Combining a network simulator with the
MPI profiling interface introduces minimal perturbation in the execution of the
target application.

43



Figure 2.31: Number and type of collective communication used by FT from
the benchmark suite NAS, for increasing node counts. Reprinted from [32].

Figure 2.32: Message size distribution for SP from NAS for an increasing number
of nodes (using the same problem size for each run). Reprinted from [32].

44



Chapter 3

Proposed Methodology

This chapter introduces the approaches and technologies we used to meet the
requirements of our goals and build the Performance Analysis Portal for HPC
Applications (PAP).

In the following subsection we will introduce client and server and lay out the
plan we made to develop the portal. We will briefly introduce each technology,
its usage, and the reasoning for choosing the respective technology.

3.1 Server Side - Data Access Layer

The server side, or data access layer, is responsible for page requests and
database access. We use a combination of the JavaScript runtime environment
Node.js and the database program MongoDB.

3.1.1 Node.js - JavaScript Runtime Environment

Node.js is an open-source runtime environment that organises web development
around the programming language JavaScript. It provides a collection of mod-
ules that handle di↵erent functionality (file system I/O, networking with HTTP
and HTTPS, etc.) in order to simplify the creation of web servers.

Node.js is used to build the server side of the portal, serving page requests
and handling the database access. This runtime environment was chosen to
keep the portal around the programming language JavaScript, and profit from
the collection of modules that take care of various core functionalities. We are
working with the v10.16.3-linux distribution.

45



3.1.2 MongoDB - Document Oriented NoSQL Database

The original idea was to design an application catalogue around the JSON for-
mat without the use of a database program. JSON gives us several advantages:

• Fields can vary from document to document.

• The data structure can be changed over time.

• JSON maps to the JavaScript object which makes it easier to work with.

• JSON is human-readable and can be used as export format

MongoDB is a document-oriented database program. It is in the category of
NoSQL databases and uses JSON-like documents as storage method. We de-
cided to use MongoDB as our database program in order to profit from already
implemented functionality instead of reinventing the wheel, and to keep in the
spirit of using JSON as our format for data storage. We are working with the
linux-x86 64-4.0.12 distribution of MongoDB.

3.1.3 PHP - Server Management

PHP was designed for web development and is a general-purpose programming
language. PHP can be embedded into HTML code and serve as a pseudo com-
mand line access.

We made use of this characteristic of PHP in order to overcome our missing
command line access on the production server. We used this setup to install
Node.js and MongoDB on the server, run git commands for the repository, and
start / stop the Node.js and MongoDB services.

3.2 Client Side - Presentation Layer

The presentation layer, or client side, is what the user actually sees from the
portal. It presents the functionality of PAP through a graphical user interface
which was developed with HTML, CSS, and JavaScript.

3.2.1 HTML - Hypertext Markup Language

The standard markup language for web browser content is the Hypertext Markup
Language (HTML). It is most often used together with Cascading Style Sheets
(CSS) and scripting language JavaScript.

HTML documents are sent from the web server to the web browser in order
to be rendered as multimedia pages, they include and semantically describe the
structure and appearance of the respective content.

46



3.2.2 CSS - Cascading Style Sheets

Cascading Style Sheets (CSS) is a style sheet language that is used to assist the
presentation of HTML documents. The function of CSS is the separation of the
content itself, and the descriptions of its intended appearance.

The layout, colours, and fonts can be described outside the HTML document
in a separate file, this can reduce complexity and improve readability of the
original HTML file. We use a central .css file, that gives a uniform appearance
to all web pages provided by PAP.

3.2.3 JavaScript - Scripting Language

Usually, JavaScript is written into an HTML page, and used as a client side
scripting language. The script is sent to browser together with the HTML page
that was requested by the user.

As scripting language it can make web pages interactive. It supports object-
oriented and prototype-based programming styles with APIs for text, arrays,
dates, regular expressions, and the DOM (Document Object Model) that defines
the structure of a document.

3.2.4 Google HTML/CSS Style Guide

In order to organize the client side, we decided to follow the Google Style Guide
for HTML and CSS 1. The style guide defines simple formatting rules for HTML
and CSS, in order to improve code quality. Some of the basic guidelines are
stated below:

• Use UTF-8 as character encoding. Specify the encoding in HTML docu-
ments with: <meta charset=”utf-8”>

• HTML5 syntax is preferred for all HTML documents, and specified with:
<!DOCTYPE html>.

• Use spaces instead of tabs to indent text, because some editors interpret
tabs di↵erently.

• Indent by 2 spaces per indentation level.

• Use lowercase for elements and attributes.

• Don’t leave trailing spaces at the end of a line.

1the Google HTML/CSS Style Guide can be found under https://google.github.io/

styleguide/htmlcssguide.html

47



3.3 Additional Third-Party Libraries

We use multiple third-party JavaScript libraries in order to profit from exist-
ing functionality. In the following subsections we will briefly introduce these
libraries.

All libraries are downloaded and part of the project, we do not rely on CDN
(Content Delivery Network) to dynamically provide the code to the portal. This
makes the portal more flexible, because it is not dependent on an internet con-
nection.

3.3.1 jQuery - JavaScript Library

jQuery is a open-source JavaScript library that was developed to support HTML
DOM (Document Object Model) manipulation and event handling by making it
easier to navigate a document, and select DOM elements. We are using jQuery
3.4.1 2.

3.3.2 Plotly.js - Graphing Library

Plotly.js an open-source graphing library that was built on top of d3.js and
stack.gl. Plotly.js comes with more than 40 di↵erent charts and inbuilt func-
tionality to download charts as .png files. We make use of Plotly.js v1.50.1 3.

3.3.3 Mask.js - Input Masking

Mask.js is a jQuery plugin that allows the creation of regular expression masks
for input form fields of HTML documents. It helps to keep user input clean and
data formats valid. We are using the version v1.14.16 of Mask.js 4.

3.3.4 Simple Statistics - Statistical Methods

Simple Statistics is a JavaScript library for statistical methods. It supports
developers by o↵ering documented and tested statistical functions, ready to be
used in JavaScript code. We are using version 7.0.8 5.

2jQuery has been acquired from https://jquery.com
3Plotly.js has been downloaded from https://plot.ly/javascript/
4The source for this library is https://igorescobar.github.io/jQuery-Mask-Plugin/
5has been acquired from https://simplestatistics.org

48



Chapter 4

Design and Development

This chapter focuses on design decisions and how we used the technologies pre-
sented in the previous chapter to develop the functionality provided by PAP.
For descriptions and examples on how the individual functionality is to be used,
please refer to Chapter 5 Analysis Methodology.

The portal can be divided into the high level components client and server,
the client can further be divided into individual analysis workflow steps. To-
gether this gives us our 4 core ”development” parts: (a) server, (b) preparation
and measurement, (c) database access, and (d) analysis and visualisation.

Our approach is based on iterative prototyping of di↵erent core parts of the
portal. After finishing one core part, all the other parts get revisited in order
to keep the functionality coherent and avoid introducing bugs.

4.1 Server Side - Decisions and Development

Our server was developed to provide the basic functionality of handling page
requests and database interaction.

4.1.1 Database Interaction

The interaction with the database is split into three major functions: (a) adding
or updating database entries, (b) sending database entries to the client, and (c)
deleting database entries.

4.1.2 Computation on the Client

The code and functionality of the server side is intentionally kept small. In order
to avoid unnecessary communication between client and server, we developed
a lot of the functionality on the client side. This also o↵ers more experienced
users a look at the internal logic of the portal by inspecting the JavaScript code,
and therefore a better understanding of certain portal behaviour and analysis
results.

49



4.1.3 PHP - Command Line Access

To gain command line access to the server, we used PHP embedded into HTML.
Using this approach we could open the file shown in Figure 4.1 with a browser
and send command through this interface to the command line of the server.

Figure 4.1: Command line access through PHP embedded in HTML code.

4.1.4 Dealing with JavaScript Code Injection

In order to handle JavaScript code injection, the server is parsing the uploaded
data with JSON.parse() instead of eval(). JSON.parse() is using a text parser
that is not capable of executing code. In contrast the command eval() is using
a script parser which can execute arbitrary JavaScript code, which is a security
concern.

We are not actually preventing code from entering the server, we prevent the
code to be run as code. The downside of using JSON.parse() is that the user
can submit a very large object to the database (blocking a lot of memory), with
eval() an attacker could potentially hijack the system. There is still some con-
cern regarding NoSQL injections, but only if password restricted user accounts
are added to the portal. See Section ?? for more information.

4.2 Client Side - Preparation and Measurement

Our preparation & measurement relies on the profiling capabilities of Score-P.
The target application can be instrumented with Score-P to produce a pro-
file.cubex file, which contains aggregated performance data. You can read more
about Score-P in Section 2.1.1, and more about how Score-P is used as part of
our analysis methodology in Chapter 5.

50



4.2.1 Performance Data Parsing

The Score-P command line tool scorep-score is used to access the profiling data
stored in the profile.cubex file, sample output that illustrates the data stored in
the profile.cubex file is shown in Figure 4.2 and Figure 4.3. The times collected
by Score-P in profiling mode are aggregated.

The output can be uploaded to our portal, where it will be parsed and used
to further derive performance metrics and to automatically fill the fields of
the corresponding application database entry. We also considered using CUBE
(which is part of Score-P see Section 2.1.1) to investigate the profiles, but this
approach does not give us the function group assignment of Score-P.

Figure 4.2: The normal output of the command line tool scorep-score when used
on a profile.cubex file, reprinted from the Score-P Manual [3].

Figure 4.3: The extended output of the command line tool scorep-score when
used on a profile.cubex file, reprinted from the Score-P Manual [3].

51



4.2.2 Score-P Function Groups

Score-P groups functions (regions) into function groups. The function groups
that Score-P distinguishes are:

• OMP: OpenMP constructs.

• MPI: MPI functions.

• SHMEM: SHMEM functions.

• PTHREAD: Pthreads functions.

• CUDA: CUDA API functions and kernels.

• OPENCL: OpenCL API functions and kernels.

• OPENACC: OpenACC API functions and kernels.

• MEMORY: libc and C++ memory allocation and deallocations functions.

• COM: functions implemented by the user, that appear on a call-path to
functions from the groups above (they are therefore considered to be part
of ”computation”).

• USR: functions implemented by the user, except those in the COM group.

• LIB: user wrapped library functions.

As our portal is focused on the analysis of programming paradigms and parallel
applications, we make some adjustments to the preset groups of Score-P. MEM-
ORY, COM, and LIB are combined into our new USR group. On the other
hand, MPI and OpenMP are extended by sub groups (e.g. OpenMP Synchroni-
sation, OpenMP Tasking, etc.). Fore more information on the sub groups and
their assignment please refer to Section 4.3.5.

4.2.3 SLURM Job Script Generator

We also developed an accompanying job script generator that completes the
instrumentation, compilation, execution, and data extraction steps of the higher
level Preparation & Measurement. Fore more information on the SLURM Job
Script Generator, please refer to Chapter 5.

4.3 Client Side - The Application Database

The following section describes our database structure, and which performance
metrics are stored. It also contains information on deriving more detailed data
from a Score-P profile, and the metrics that can be stored in addition to the
data provided by Score-P.

52



4.3.1 Application Database Structure

Figure 4.4: The database object and all
fields that are stored inside the applica-
tion database.

MongoDB lets you work with
multiple databases, multiple collec-
tions per database, and multiple
documents (application entries in
our case) per collection. We follow
a simple setup with one database
and one collection containing all
application entries.

This approach satisfies our needs
for simplified database querying (we
do not need to distinguish between
di↵erent databases and collections).
Figure 4.4 shows the structure of
our database object, with all fields
that get stored for each individual
database entry. Name, Version,
Problem and Configuration are
used as database identifiers and
therefore unique.

The names of the di↵erent fields
are intentionally elaborate, in order
to make exporting data from the
database more simple and trans-
parent without additional parsing
of the content.

4.3.2 Metadata - Identifying Database Entries

In order to organise applications inside the database, entries are distinguished
by the four identifiers Name, Version, Problem and (node) Configuration, which
are unique in their combination inside the database. You can see an example of
these identifiers in Section 4.4.1.

With these four identifiers, we want to give the user the possibility to keep
track of di↵erent forms of the application: di↵erent application versions, prob-
lem sizes, and node configuration.

53



4.3.3 Additional Characteristics and Input Fields

In addition to the metrics collected with Score-P, the portal can also store the
performance metrics listed in Figure 4.4. Some of these metrics are included in
the profile generated by Score-P while fields like Data Distribution need to be
entered manually. In the following list we will describe the fields that have to
be manually entered by the user:

• Total Parallel Execution Time: The parallel execution time (wall
clock time) is the time that elapses from the moment the first processor
starts to the moment the last processor finishes.

• FLOPS: Floating-Point Operations Per Second are a measure of perfor-
mance, most scientific computations require floating-point calculations.

• Programming Language: C, C++, Fortran, etc., or a combination of
these.

• Input / Output Technique: There are di↵erent strategies and I/O
techniques like: (a) every process writes to a local file, (b) processes write
to the same file via fortran direct access, (c) the applications uses advanced
MPI I/O features.

• Data Distribution: Data can be distributed equally or unequally among
processes.

• Data Replication: Processes can hold a portion of the data or data can
be replicated.

• Workload Scheduling: Processes can know their workload a priori
(static), or the workload can be allocated during runtime (dynamic).

• Communication Matrix: The communication matrix can be submitted
as a CSV to the database in order to store it together with the performance
data. This matrix gives insight into communication between processes,
number of messages, message sizes, etc., it can be generated by tracing
the applications and using trace visualisers like Vampir.

• OpenMP Schedule Clauses: This field receives a CSV file with all
OpenMP schedule clauses in the format: file, line, clause. It can be inter-
esting to know which schedule clauses are used by the applications.

• Job Script: The job script that was used to execute the target application
can give more insight into the configuration and environment variables
that were used.

• Comments: Additional comments where the user can store information
that is not part of the fields above.

54



4.3.4 Data Upload and Input Form Masking

Performance data can be either be uploaded through a Score-P profile, or added
manually through a graphical user interface, for more information please refer
to Chapter 5. Data like the database identifiers Name, Version, Problem, and
Configuration, have to be entered manually. In order to keep the uploads clean
and avoid logical errors when entering data, we employed a regular expression
mask for input fields, shown in Figure 4.5.

Figure 4.5: The regular expression input mask we use for most of the input
fields when manually inserting data into the application database.

Figure 4.6 shows an input form of the portal. The fields are marked with a
black star if the corresponding data is included in a Score-P profile, and would
be automatically filled if the profile is uploaded.

The fields for the aggregated times are limited by the input mask defined in
Section 4.3.4, other fields, like the MPI communication matrix, are not limited
by input masking. This does open potential problems for code injection, how
our portal deals with this security issue is elaborated in Section 4.1.4.

Figure 4.6: The input form for the Multi-process fields of the database entry.

55



4.3.5 Programming Paradigm Assignment

We grouped MPI and OpenMP functions into sub groups by looking at their
function names. By doing so, we extended the function groups provided by
Score-P (introduced in Section 4.2.2) with additional sub groups for MPI and
OpenMP. In the following list we describe the OpenMP sub groups that we use
for our portal:

• Work-Sharing: These constructs divide execution of the enclosed region
among threads (DO / FOR, PARALLEL, SECTION, SINGLE). They do
not start new threads and have an implied barrier at the end.

• Synchronisation: Synchronisation constructs synchronise threads to en-
sure correct results, when e.g. two threads try to update the same vari-
able at the same time (MASTER, CRITICAL, BARRIER, TASKWAIT,
ATOMIC, FLUSH, ORDERED).

• Tasking: These constructs define an explicit task, which may be executed
by the encountering thread, or deferred for execution by any other thread
(TASK).

• OpenMP Other: This sub group contains all constructs not included in
the sub groups defined above.

The sub groups of e.g. MPI are already mentioned in ”A Large-Scale Study
of MPI Usage” presented in Section 2.2.2 and are part of the MPI 3.1 standard.
In the following list we describe the MPI sub groups that we use for our portal,
the descriptions are reprinted from [25]:

• Point-to-Point: This feature specifies how to transmit messages between
a pair of processes where both sender and receiver cooperate with each
other (MPI Send, MPI Recv, MPI Wait, etc.).

• Collective: This feature describes synchronization, data movement, or
collective computation that involve all processes within the scope of a
communicator (MPI Barrier, MPI Bcast, MPI Reduce, etc.).

• One-Sided: This feature defines a communication where a process can
write data to or read data from another process without involving that
other process directly. Various synchronization models are defined, some
involving all the processes in the underlying group that formed the one-
sided “window” (MPI Accumulate, MPI Get, MPI Put, MPI Win, etc.).

• MPI Other: Contains all other MPI functions that are not included in
the sub groups above (MPI Get address, MPI Get processor name, etc.).

56



4.3.6 Filtering and Scope Selection

Most of the visualisation provided by the portal accepts a scope (list) of database
entries as input. There are two methods of filtering or selecting this scope. Ei-
ther by querying the database, as shown in Figure 4.7 and Figure 4.8, or by
using the Application Similarity Clustering presented in Section 4.4.5.

Given the scope selection functionality, the user can generate complex anal-
ysis by combining multiple analysis steps. Fore more information on how to use
the scope selection, please refer to Chapter 5.

Figure 4.7: General filters for selecting a specific list of applications.

Figure 4.8: Filters for aggregated times of programming paradigms groups, for
selecting a specific list of database entries.

4.4 Client Side - Analysis and Visualisation

The following section contains explanations on the reasoning behind comparison
views provided in the analysis and visualisation component of PAP. We focus
on why we chose certain visualisation, for a more detailed explanation on how
to use and customize the individual charts, please refer to Chapter 5.

57



4.4.1 Application Group Summary

Given the performance metrics that are stored in the application database, the
individual summary and the application comparison focus on the aggregated
time spent in high level programming paradigms, specific function groups, and
in the case of MPI and OpenMP also sub groups, as shown in Figure 4.9.

We decided to use the sunburst chart of our graphing library Plotly.js, because
it combines the good overview of a pie chart with multiple levels of depth for
each area. The proportions of the individual areas are intentionally kept static.
This was done in order to improve readability of the chart and avoid misleading
representation, e.g. 0% areas would have to be omitted completely.

Figure 4.9: The Group Summary view for an individual applications, it pro-
vides aggregated time in % for di↵erent levels of abstraction: (a) high level
groups (Multi-process), (b) individual programming paradigms (MPI), and (c)
sub groups of paradigms (MPI P2P).

58



4.4.2 Application Region List

We decided to profit from the depth of a Score-P profile, by also showing the
individual function (region) data of an application. Figure 4.10 shows the Appli-
cation Region List, that contains group, sub group, and aggregated time about
each function, construct, and region of the application.

We also implemented di↵erent forms of customization of this chart, e.g. sorting
and hiding columns, for more information on the usage of this chart please refer
to Chapter 5.

Figure 4.10: The Application Region List provided by PAP, shows every func-
tion of the target application with the corresponding group, sub group, and
aggregated time.

59



4.4.3 Application Group Comparison

The Application Group Comparison displays the information contained in the
Application Group Summary for multiple database entries. It can be used to
compare programming paradigm usage of applications.

There are multiple ways of customizing this chart, like hiding programming
paradigms or summarising sub groups into higher level paradigm groups. The
di↵erent entries can be sorted, and the chart can be manipulated be zooming
or dragging axes. For more information on the usage of this chart, please refer
to Chapter 5.

Figure 4.11: The Application Group Comparison provided by PAP, it allows the
comparison of programming paradigm usage of multiple applications. In this
example other programming paradigms are hidden in order to only compare the
MPI sub groups.

60



4.4.4 Programming Paradigm Statistics

Inspired by ”A Large-Scale Study of MPI Usage” (see more Section 2.2.2),
the portal also o↵ers statistics about programming paradigm usage. The user
can generate plots about specific function usage for all tracked programming
paradigms.

This functionality is also compatible with the filtering and scope selection, en-
abling the user to generate usage statistics about all, or only a specific group of
database entries. The actual data that is visualised are counts of e.g. MPI Send
function usage across a scope of database entries.

Figure 4.12: Programming Paradigm Statistics o↵er information about function
usage across the database.

61



4.4.5 K-Means Similarity Clustering

We rely on the one dimensional k-means clustering algorithm Ckmeans 3.4.6,
by Wang et. al. [39]. The implementation that we used is provided by the
JavaScript library Simple Statistics (see more Section 3.3.4).

Ckmeans was developed to solve the problem of clustering numeric data into
groups with the least within group sum of squared deviations. The algorithm
uses two matrices that contain values for squared deviations, which are incre-
mentally computed, and backtracking indexes. The implementation by Simple
Statistics does not automatically decide on the best number of clusters.

When the di↵erences within groups (sum of squares) are minimized, the groups
become more homogenous and the data is divided into representative groups.
These representative groups emphasize di↵erences and similarity between data.

The elements we are working with are our application database entries, and
the data we are feeding to the above mentioned algorithm, is the performance
data collected by Score-P. By building the groups with the least within group
sum of squared deviations, we find clusters of similar applications along the
chosen metric dimension.

Figure 4.13: The Application Similarity Clustering provided by PAP. Database
entries are grouped based on di↵erent performance metrics. The number of

clusters can be chosen manually or by rule of thumb:
q

numberofentries
2

.

62



Chapter 5

Analysis Methodology and
Workflow

This chapter shows the functionality of our work and can be seen as a manual
for the Performance Analysis Portal for HPC Applications (PAP), it contains
instructional images and example results.

5.1 Introducing the Analysis Methodology of PAP

Our Analysis Methodology presents a full picture of an approach to parallel
performance analysis. It guides the user from preparation to analysis and in-
corporates the following components:

(a) Representative performance metrics (general information like FLOPS and
programming language combined with aggregated profiling data from Score-
P), introduced in Section 4.3.1 and following sections.

(b) An approach to instrumentation, compilation, execution, performance
data collection, and data extraction, all within the measurement infras-
tructure of Score-P.

(c) A system of organising performance data as application database entries
with the identifiers Name, Version, Problem, and Configuration.

(d) Analysis and visualisation charts that support the investigation of parallel
applications, introduced in Section 4.4 and following sections.

(e) A semi-automatic workflow with accompanying instructions that tie all of
the above mentioned steps together.

We rely on the profiling capabilities of Score-P to collect most of the perfor-
mance metrics for our application database. The individual summary charts,
comparison charts, and clustering functionality focus on the comparison of mul-
tiple applications.

63



5.1.1 Workflow Steps - Overview

Figure 5.1 shows an overview of all pages (portal functionalities) that are part
of the analysis workflow. The individual steps can be used independently. This
page is also representative for all other pages, containing the top navigation bar
and an area with additional information for the current page.

Figure 5.1: Overview page that contains links to the individual functionality
provided by PAP.

64



5.2 Step 1: Preparation and Measurement

5.2.1 Performance Data Collection with Score-P

Figure 5.2 shows the ”Introduction to Score-P” page. We rely on the measure-
ment infrastructure of Score-P, step 1 of the analysis workflow mainly contains
instructions and explanations for the instrumentation and compilation.

Figure 5.2: Introduction to Score-P. The Preparation & Measurement step of
the portal supports instrumentation, compilation, execution, and performance
data collection of the target application.

65



5.2.2 SLURM Job Script Generator

Our SLURM Job Script Generator is shown in Figure 5.3. It allows the user
to generate job scripts for the his target application, in order to run them on a
system working with the SLURM workload manager.

Figure 5.3: SLURM Job Script Generator of PAP, showing the possible input
fields.

66



5.2.3 Extracting Data from a Score-P Profile

Figure 5.4 shows our instruction for the extraction of data from a profile gen-
erated by Score-P. Our portal can parse the output of the scorep-score -r
command from Score-P.

Figure 5.4: Extracting Data from a Score-P Profile. Generate a data format
that can be uploaded to the portal, and that contains the profiling data collected
by Score-P.

67



5.3 Step 2: Application Database Interaction

5.3.1 Add and Update Database Entries

Figure 5.5 shows how databases entries can be added or updated, starting with
the identification process. The following subsections will contain the remaining
input fields of the Add & Update step.

Figure 5.5: Add and Update Database Entries (1/5). The first step of adding or
updating a database entry, is to identify the entry via Name, Version, Problem,
and Configuration, which in their combination are unique inside the database.

68



The ”General” Information and ”Profiling Data” areas shown in Figure 5.6,
are part of updating a database entry. As already mentioned in Figure 5.5, black
stars mark input fields that will be automatically filled when Score-P profiling
data is uploaded.

Figure 5.6: Add and Update Database Entries (2/5). Di↵erent input fields for a
database entry, white stars mark fields that need to be entered manually, black
stars mark fields that will be filled automatically when Score-P profiling data is
uploaded.

69



Figure 5.7 shows the Multi-process paradigm area, where data about SHMEM,
MPI and MPI sub groups is collected. The MPI sub groups include: (a) Point-
To-Point Communication, (b) Collective Communication, (c) One-Sided Com-
munication, and (d) the MPI Other sub group. Fore more information on sub
groups please refer to Section 4.3.5.

Figure 5.7: Add and Update Database Entries (3/5). The Multi-process
paradigm area for adding or updating database entries. It contains fields for
SHMEM, MPI, and MPI sub groups.

70



Figure 5.8 shows the Thread-parallel paradigm area, where data about Pthreads,
OpenMP and OpenMP sub groups is collected. The OpenMP sub groups in-
clude: (a) Work-Sharing, (b) Synchronisation, (c) Tasking, and (d) the OpenMP
Other sub group. Section 4.3.5 contains more information on the sub groups.

Figure 5.8: Add and Update Database Entries (4/5). The Thread-parallel
paradigm area for adding or updating database entries. It contains fields for
Pthreads, OpenMP, and OpenMP sub groups.

71



Fields for the Job Script and additional comments, shown in Figure 5.9, are
also part of the input form for database entries. The Region Data field contains
the parsed information of profiling data collected with Score-P, in the JSON
format. The Submit button, confirms all fields of the input form and sends data
to the server.

Figure 5.9: Add and Update Database Entries (5/5). The input form for adding
or updating database entries also contains fields for the Job Script, Comments,
and the parsed Region Data.

72



5.3.2 Export Database Entries

Figure 5.10 shows how the user can export database entries, and also a list of
all di↵erent formats. Either specific fields of the database entry or the whole
database object can be exported.

Figure 5.10: Export Database Entries. Export di↵erent fields of database entries
in di↵erent formats, or export the whole database object.

73



5.3.3 Listing and Querying Database Entries

Most of the visualisation provided by the portal, shown in Section 5.4, accepts
a list of database entries as input. In order to generate such a list the user can
query the database with the fields shown in Figure 5.11. Empty fields allow any
value, otherwise the list will only contain database entries that match the fields.

Figure 5.11: Listing and Querying Database Entries (1/2). General Filters for
querying the database and generating a filtered list of entries.

74



Figure 5.12 shows the fields used to query based on aggregated time per
programming paradigm. These range fields will only work on database entries
that have been updated with profiling data from Score-P, or for entries where
the respective fields have been entered manually.

Figure 5.12: Listing and Querying Database Entries (2/2). Filters for ag-
gregated times per programming paradigm, with the purpose of querying the
database and generating a filtered list of entries.

75



5.3.4 Removing Database Entries

Figure 5.13 shows the form for removing a database entry. After identifying the
database entry via Name, Version, Problem, and Configuration, the user needs
to confirm his intent of removing the entry, after which all corresponding data
will be deleted.

Figure 5.13: Removing Database Entries. How to remove an application entry
from the database, and delete all corresponding data.

76



5.4 Step 3: Performance Analysis

5.4.1 Analysis Scope Selection

All pages that o↵er visualisation start with the input form shown in Figure 5.14,
except for the Individual Application Summary introduced in Section 5.4.2, .
A list of entries can be generated by manually adding entries to the list, or by
copy pasting a list directly into the Scope area.

Figure 5.14: Analysis Scope Selection. Scope selection for comparison views,
most views accept a list of database entries as input.

77



5.4.2 Individual Application Summary

Figure 5.15 shows the Individual Application Summary, which is the only view
that investigates just one application. Presented is a table containing general
information about the application and a ”sunburst” chart that gives an overview
of the paradigm usage of the application.

Figure 5.15: Individual Application Summary (1/2). The Application Summary
and Group Summary are charts generated as part of the Individual Application
Summary, and give insight into the programming paradigm usage of an appli-
cation.

78



Figure 5.16 is also part of the Individual Application Summary and shows the
Region Data for the application. Each function, construct or user implemented
region is listed with the corresponding group, sub group, aggregated time and
time in percent. This data is only available when the user uploaded Score-P
profiling data.

Figure 5.16: Individual Application Summary (2/2). The Region Data listing
contains every function used by the application, the view can be manipulated
via sorting and showing or hiding specific information.

79



5.4.3 Application Comparison and Scaling

Figure 5.17 shows the view provided by the portal for comparison of multiple ap-
plications. It focuses on time spent in programming paradigms and sub groups.
The chart can be manipulated by the user, through sorting, hiding groups or
sub groups, dragging axes and zooming.

Figure 5.17: Application Comparison and Scaling. The Application Group
Comparison view of PAP, provides the user with an overview of programming
paradigms and sub groups for a list of database entries.

80



5.4.4 Programming Paradigm Statistics

Statistics about programming paradigm usage are shown in Figure 5.18. The
chart can be generated for each of the groups the portal can distinguish: SHMEM,
MPI, Pthreads, OpenMP, CUDA, OpenCL, and OpenACC. What the chart
shows is the number of applications that use a specific function or construct.

Figure 5.18: Programming Paradigm Statistics show the usage of specific func-
tions and constructs across database entries.

81



5.4.5 Application Similarity Clustering

Figure 5.19 shows the similarity clustering based on k-means. The algorithm
is explained in Section 4.4.5. The number of clusters can be adjusted, and the
resulting list of clusters can be manipulated and copy pasted to other analysis
views.

Figure 5.19: Application Similarity Clustering based on k-means, generates
groups of applications based on di↵erent metrics.

82



Chapter 6

Discussion

This master thesis introduces PAP: Performance Analysis Portal for HPC Ap-
plications. PAP provides: analysis methodology, application database and per-
formance analysis, all embedded in a web-based portal with graphical user in-
terface.

The functionality of PAP includes: semi-automatic analysis workflow, job script
generator, application database that supports querying, customizable visualisa-
tion of performance data, programming paradigm usage statistics, and applica-
tion similarity clustering based on k-means. The aforementioned functionality
can be used independently, but is also embedded in the analysis workflow.

Instructions and a semi-automatic workflow with a graphical user interface help
the user to follow the analysis methodology. The high-level comparison of ag-
gregated performance data is suitable to compare multiple applications. The
filtering and querying capabilities of the application database support selection
of candidates for performance analysis.

Additional insight beyond application performance behaviour, is gained through
providing programming paradigm statistics. The statistic include region, func-
tion, or construct usage of di↵erent programming paradigms: MPI, SHMEM,
OpenMP, Pthreads, CUDA, OpenCL, and OpenACC.

The application similarity clustering based on k-means, provides a dynamic
way of grouping a high number of applications based on their aggregated time
spent in the above mentioned programming paradigms. It can also help to filter
groups of specific applications, e.g. with high MPI time.

The following chapter contains the Discussion section and will summarise the
achieved goals, limitations, and the future work possibilities regarding PAP. We
will also measure functionality provided by PAP against approaches of other
studies that we presented in our related work in Section 2

83



6.1 Measuring Success

We achieved our goals formulated in Section 1.4 and successfully tackled the
problems introduced in Section 1.3. PAP, the Performance Analysis Portal for
HPC Applications provides:

(a) Representative performance metrics based on data collected by Score-P
and a semi-automatic analysis workflow with graphical user interface, em-
bedded in a complete and transparent analysis methodology.

(b) An accompanying application database that stores the collected perfor-
mance data about applications, and enables filtering and querying of ex-
isting entries.

(c) Performance analysis of individual and multiple applications, investiga-
tion of programming paradigm usage (MPI, SHMEM, OpenMP, Pthreads,
CUDA, OpenCL, OpenACC), and application similarity grouping based
on k-means clustering.

6.1.1 Comparison of Performance Metrics

In addition to the aggregated performance data provided by Score-P, PAP also
defines a list of metrics and characteristics that represent the application, as de-
scribed in Section 4.3.3. The list of metrics used by PAP include: (a) FLOPS,
(b) Programming Language, (c) Data Distribution, (d) Workload Scheduling,
and (e) aggregated times per Programming Paradigm and sub group (e.g. MPI
Point-To-Point Communication).

We compare the performance metrics of PAP with metrics defined by the related
work introduced in Section 2.2.3. Joshi et. al. [22] engage in the investigation of
benchmark similarity. The authors define a set of characteristics including: (a)
Instruction Mix, (b) Control Flow Behaviour, (c) Instruction Level Parallelism,
(d) Data Locality, and (e) Instruction Locality. These metrics are further ex-
plained in Section 2.2.3.

In contrast to PAP, the metrics defined by Joshi et. al. [22] are more sophisti-
cated but also more complicated to collect. The authors rely on a custom-grown
analyser called SCOPE, a modification of SimpleScalar [7]. An approach with
metrics that only give very specific insight and that can only be collected with
a custom tool, is not within the parameters of our goals. Such an approach
does not satisfy our needs for a transparent methodology and an easy-to-follow
analysis workflow.

84



6.1.2 Di↵erences in Sub Groups of MPI

Our function sub group categorization explained in Section 4.3.5, was inspired
by ”A Large-Scale Study of MPI Usage” introduced in Section 2.2.2. Laguna
et. al. [25] present an approach based on source code analysis, without actually
executing the target application. PAP defines four sub groups for MPI: (a)
Point-To-Point Communication, (b) Collective Communication, (c) One-Sided
Communication, and (d) the MPI Other sub group that contains all remaining
functions.

Compared to the four MPI sub groups of PAP, Laguna et. al. [25] use 13
MPI categories. The authors additionally distinguish: (a) Communicators, (b)
Group Management, (c) MPI I/O, and (d) Error Handling to only name some
of the categories. The approach of this related work is therefore more complete
in contrast to PAP. On the other hand working with such a high number of sub
groups makes comparison clunky, especially regarding the fact that PAP also
considers many more programming paradigms than just MPI.

Di↵erentiating between Point-To-Point, Collective, One-Sided, and the MPI
Other sub group (containing the remaining functions of MPI), satisfies our goal
of giving a high level overview of the application behaviour and does not distract
from other programming paradigms that are also considered by PAP (SHMEM,
OpenMP, Pthreads, CUDA, OpenCL, OpenACC).

6.1.3 K-Means vs. Hierarchical Clustering

PAP employs an application similarity grouping based on the k-means cluster-
ing approach introduced in Section 4.4.5. The approach was inspired by the
k-means clustering used by Joshi et. al. [22], see more in Section ”Benchmark
Similarity” 2.2.3. The authors present the results of their clustering in a table,
as shown in Figure 2.21. PAP chooses a more visual approach in order to show
the results of the k-means clustering, as shown in Figure 4.13. In contrast to
PAP, the clustering of Joshi et. al. [22] includes one representative per group,
that is closest to the center of the cluster.

A similar approach is the hierarchical clustering used by Sreepathi et. al. [34],
introduced in Section ”Oxbow and PADS” 2.2.1. The authors present the result
of their clustering in a chart called dendrogram. In our estimation the approach
we used for displaying k-means clustering results in a ”sunburst” chart, Fig-
ure 4.13, is more intuitive to read compared to the dendrogram produced by
hierarchical clustering, Figure 2.18. The advantage of hierarchical clustering is
that every possible sub group of similar applications is included in the result.

85



6.1.4 Comparison of Programming Paradigm Statistics

The programming paradigm usage statistics provided by PAP and introduced in
Section 4.4.4, focus on the number of applications that use a specific function or
construct of the target programming paradigm. Providing these statistics was
inspired by ”A Large-Scale Study of MPI Usage” shown in Section 2.2.2. In
this work, Laguna et. al. [25] present an extensive investigation of MPI Usage.
Compared to PAP the authors consider more characteristics of MPI: di↵erent
MPI Standard Versions, the release date of the application source code, and
they also define more MPI categories.

Laguna et. al. [25] o↵er more depth to their MPI usage analysis, as their work is
focused on MPI. On the other hand they only o↵er data gather through source
code analysis and omit performance metrics like aggregated execution time for
MPI sub groups. The goals of PAP were defined broader with an aim on high-
level characteristics about applications instead of paradigms, and not limited to
only one programming paradigm.

6.1.5 Other Web-Based Application Databases

PADS (Performance Analytics Data Store) [34] is a web-based infrastructure
that supports collecting, storing, querying, and visualization of data. PADS is
introduced in Section 2.2.1 as part of Oxbow [37] [34], which is a toolkit that
o↵ers performance metrics and an analysis workflow.

The combination of Oxbow (analysis methodology) and PADS (application
database) is very similar to PAP. The performance metrics collected by Oxbow
focus more on hardware counters like: scalar and vector floating-point arith-
metic, scalar and vector integer arithmetic, load and store operations, etc. As
already mentioned and explored in Section 6.1.3, Oxbow also employs hierar-
chical clustering for measuring application similarity.

Oxbow goes a step further than PAP and performs source code analysis to de-
tect language, lines of code, number of functions, etc. Oxbow also keeps track
of MPI communication, it records point-to-point and collective communication
between ranks. PADS is able to visualise this communication data as part of
the Oxbow and PADS workflow presented in Section 2.2.1.

The paper introducing Oxbow was published in 2013 [37] the last update was in
2014 [34], there is no public release or further mention at the time of this report
in 2020, therefore Oxbow is unfortunately not available for further investigation
or comparison.

86



6.2 Extensibility and Future Work

The following paragraphs contain ideas to drive forth the development of PAP,
addressing some of its current limitations and opening up new approaches.

6.2.1 Addressing Limitations

The points mentioned in this subsection are some of the limitations of PAP.

Automating the Compilation Process. Compilation of the target appli-
cation is currently not part of the semi-automatic workflow of PAP, and has to
be done by the user. Future work could investigate approaches to automate or
at least simplify the compilation process with software like EasyBuild [18].

Collecting System Tree Information. The current approach to parse Score-
P profiles with scorep-score, loses information about the system tree (distin-
guishing processes and threads). Additionally parsing the profile with a tool
like CUBE [24], could enrich the analysis provided by PAP.

Storing System Statistics. The application database can be extended to
include fields for system information. The new database fields could include
information about: processor type, peak performance, memory bandwidth, etc.
Similar information is also collected by Oxbow, see Section 2.2.1.

Database Backup System. Beyond the backup provided by the produc-
tion server, the application database is missing a sophisticated backup system
that keeps track of entry versions and prevents unintentional deletion or manip-
ulation.

6.2.2 Further Development

There is room for further development of PAP, in order to enrich the analysis
and user experience.

Extending the Subgroup Assignment. Sub groups can be defined for the
other programming paradigms (SHMEM, Pthreads, CUDA, OpenCL, and Ope-
nACC), and the existing sub groups of MPI and OpenMP can be extended.

User and Group Accounts. User accounts can help organize data, e.g. by
only showing the entries of specific users. Accounts can also help to restrict
certain functionality (like removing database entries) and eventually open the
portal to a broader audience.

Communication Pattern Recognition. Automated pattern recognition in
MPI communication matrices would help to better understand parallel commu-
nication behaviour.

Automated Source Code Analysis. Our approach can be extended to in-
clude automated source code analysis to detect language, lines of code, number
of functions, OpenMP schedule clauses, etc.

87



References

[1] BSC Homepage, Paraver Overview. https://tools.bsc.es/paraver.

[2] HPCToolkit Homepage. http://hpctoolkit.org.

[3] Scalable Performance Measurement Infrastructure for Parallel Codes
- Manual v6.0. http://scorepci.pages.jsc.fz-juelich.de/

scorep-pipelines/docs/scorep-6.0/html/.

[4] TU Dresden Compendium for Vampir. https://doc.zih.tu-dresden.

de/hpc-wiki/bin/view/Compendium/Vampir.

[5] Vampir 9.6 Tutorial. https://vampir.eu/tutorial/manual.

[6] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel
Marin, John Mellor-Crummey, and Nathan R Tallent. HPCToolkit: Tools
for performance analysis of optimized parallel programs. Concurrency and
Computation: Practice and Experience, 22(6):685–701, 2010.

[7] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastructure
for computer system modeling. Computer, (2):59–67, 2002.

[8] David H Bailey. NAS parallel benchmarks. Encyclopedia of Parallel Com-
puting, pages 1254–1259, 2011.

[9] Robert Bell, Allen D Malony, and Sameer Shende. Paraprof: A portable,
extensible, and scalable tool for parallel performance profile analysis. In
European Conference on Parallel Processing, pages 17–26. Springer, 2003.

[10] Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt. Periscope: An
online-based distributed performance analysis tool. In Tools for High Per-
formance Computing 2009, pages 1–16. Springer, 2010.

[11] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard
API for shared-memory programming. Computing in Science & Engineer-
ing, (1):46–55, 1998.

[12] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer,
Wolfgang E Nagel, and Felix Wolf. Open Trace Format 2: The Next Gen-
eration of Scalable Trace Formats and Support Libraries. In PARCO, vol-
ume 22, pages 481–490, 2011.

88



[13] Markus Geimer, Pavel Saviankou, Alexandre Strube, Zoltán Szebenyi, Felix
Wolf, and Brian JNWylie. Further improving the scalability of the Scalasca
toolset. In International Workshop on Applied Parallel Computing, pages
463–473. Springer, 2010.

[14] Markus Geimer, Felix Wolf, Brian JN Wylie, Erika Ábrahám, Daniel
Becker, and Bernd Mohr. The Scalasca performance toolset architecture.
Concurrency and Computation: Practice and Experience, 22(6):702–719,
2010.

[15] William Gropp, William D Gropp, Argonne Distinguished Fellow Emeri-
tus Ewing Lusk, Ewing Lusk, and Anthony Skjellum. Using MPI: portable
parallel programming with the message-passing interface, volume 1. MIT
press, 1999.

[16] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0:
Faster and more flexible program phase analysis. Journal of Instruction
Level Parallelism, 7(4):1–28, 2005.

[17] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willen-
bring, H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter,
Heidi K Thornquist, and Robert W Numrich. Improving performance via
mini-applications. Sandia National Laboratories, Tech. Rep. SAND2009-
5574, 3, 2009.

[18] Kenneth Hoste, Jens Timmerman, Andy Georges, and Stijn De Weirdt.
Easybuild: Building software with ease. In 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis, pages 572–582.
IEEE, 2012.

[19] Kevin A Huck and Allen D Malony. Perfexplorer: A performance data
mining framework for large-scale parallel computing. In Proceedings of the
2005 ACM/IEEE conference on Supercomputing, page 41. IEEE Computer
Society, 2005.

[20] Anil K Jain, Richard C Dubes, et al. Algorithms for clustering data, vol-
ume 6. Prentice hall Englewood Cli↵s, 1988.

[21] Ian Jolli↵e. Principal Component Analysis. Springer, 2011.

[22] Ajay Joshi, Aashish Phansalkar, Lieven Eeckhout, and Lizy Kurian John.
Measuring benchmark similarity using inherent program characteristics.
IEEE Transactions on Computers, 55(6):769–782, 2006.

[23] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz,
Matthias Lieber, Holger Mickler, Matthias S Müller, andWolfgang E Nagel.
The Vampir performance analysis tool-set. In Tools for High Performance
Computing, pages 139–155. Springer, 2008.

[24] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdor↵, Kai
Diethelm, Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel
Lorenz, Allen Malony, et al. Score-p: A joint performance measurement
run-time infrastructure for Periscope, Scalasca, TAU, and Vampir. In Tools
for High Performance Computing 2011, pages 79–91. Springer, 2012.

89



[25] Ignacio Laguna, Ryan Marshall, Kathryn Mohror, Martin Ruefenacht, An-
thony Skjellum, and Nawrin Sultana. A large-scale study of MPI usage in
open-source HPC applications. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
pages 1–14, 2019.

[26] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geo↵ Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
Pin: building customized program analysis tools with dynamic instrumen-
tation. In Acm sigplan notices, volume 40, pages 190–200. ACM, 2005.

[27] Gabriel Marin, Jack Dongarra, and Dan Terpstra. MIAMI: A framework for
application performance diagnosis. In 2014 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 158–
168. IEEE, 2014.

[28] Bernd Mohr, Allen D Malony, Sameer Shende, and Felix Wolf. Design and
prototype of a performance tool interface for OpenMP. The Journal of
Supercomputing, 23(1):105–128, 2002.

[29] Wolfgang E Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe,
and Karl Solchenbach. VAMPIR: Visualization and analysis of MPI re-
sources. 1996.

[30] Leonid Oliker, Andrew Canning, Jonathan Carter, Costin Iancu, Michael
Lijewski, Shoaib Kamil, John Shalf, Hongzhang Shan, Erich Strohmaier,
Stephane Ethier, et al. Scientific application performance on candidate
petascale platforms. In 2007 IEEE International Parallel and Distributed
Processing Symposium, pages 1–12. IEEE, 2007.

[31] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. Paraver: A
tool to visualize and analyze parallel code. In Proceedings of WoTUG-18:
transputer and occam developments, volume 44, pages 17–31. IOS Press,
1995.

[32] Rolf Riesen. Communication Patterns [message-passing patterns]. In Pro-
ceedings 20th IEEE International Parallel & Distributed Processing Sym-
posium, pages 8–pp. IEEE, 2006.

[33] Sameer S Shende and Allen D Malony. The TAU parallel performance
system. The International Journal of High Performance Computing Appli-
cations, 20(2):287–311, 2006.

[34] Sarat Sreepathi, Megan L Grodowitz, Robert Lim, Philip Ta↵et, Philip C
Roth, Jeremy Meredith, Seyong Lee, Dong Li, and Je↵rey Vetter. Appli-
cation characterization using Oxbow toolkit and PADS infrastructure. In
Proceedings of the 1st International Workshop on Hardware-Software Co-
Design for High Performance Computing, pages 55–63. IEEE Press, 2014.

[35] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting
performance data with PAPI-C. In Tools for High Performance Computing
2009, pages 157–173. Springer, 2010.

90



[36] Je↵rey Vetter and Chris Chambreau. mpiP: Lightweight, scalable MPI
profiling. 2005. http://mpip.sourceforge.net.

[37] Je↵rey S Vetter, Seyong Lee, Dong Li, Gabriel Marin, Collin McCurdy,
Jeremy Meredith, Philip C Roth, and Kyle Spa↵ord. Quantifying architec-
tural requirements of contemporary extreme-scale scientific applications.
In International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, pages 3–24. Springer,
2013.

[38] Je↵rey S Vetter and Andy Yoo. An empirical performance evaluation
of scalable scientific applications. In SC’02: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, pages 16–16. IEEE, 2002.

[39] Haizhou Wang and Mingzhou Song. Ckmeans.1d.dp: Optimal k-means
clustering in one dimension by dynamic programming. The R Journal,
3(2):29–33, 2011.

91




