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Abstract

Loops are the biggest source of parallelism in parallel programs. The scheduling task, in

which the iterations of a loop are assigned to available processors, plays an important role in

how efficiently the underlying system is used. OpenMP, the de-facto standard for parallelism,

lists three loop scheduling techniques, static, dynamic and guided. Implementations of that

standard must support at least these three to meet the OpenMP specification. Existing

OpenMP runtime libraries, such as GCC’s libgomp or LLVM’s libomp, provide ready-to-

use scheduling techniques for programmers, however, intensive research from the past has

shown multiple and more advanced loop scheduling techniques that are not implemented in

these libraries. As recent works have tested the advanced techniques in existing runtimes,

it has been proven that depending on the system, application and loop characteristics, one

strategy is superior to the others. Libraries must, therefore, implement more techniques in

order to provide the best performance for a broad range of distinctive loops. The LLVM

OpenMP runtime library, which has a big impact on the industry, still misses many of the

techniques to be implemented and tested. This thesis implements numerous dynamic loop

scheduling algorithms into the LLVM OpenMP runtime library. Different benchmarks from

suites including NAS 3.4, CORAL, Rodinia and SPEC OMP 2012 are chosen to evaluate and

compare the new techniques to the available solutions. The results justify that each newly

implemented technique can outperform every other in particular software and hardware

configurations. Performance improvements of up to 6 % are measured in comparison to the

fastest available OpenMP strategy and up to 7 % in unequal threads-per-core bindings. The

experiments indicate that increasing numbers of cores per node and heterogeneous systems

benefit even more from the implementation and require advanced software for the most

efficient usage. In future OpenMP versions, an extension to the techniques of the standard

would be a desirable update allowing the user to better exploit parallelism.
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1
Introduction

Parallelization is more and more coming into the limelight with computer systems that have

an increasing number of Processing Units (PUs) . The software, however, must evolve as

well to efficiently use current computer systems and push them to their limits. Scientific

applications, for instance, which typically have a big demand for execution power, would

benefit greatly of such an efficient system utilization. These applications are often composed

by large loops which usually are a good source of parallelism. Therewith, many research

efforts have been done to enhance and exploit the possible parallelizations for such appli-

cations. How the workload of a loop, i.e., the iterations, are scheduled, has a big impact

on the resulting performance of parallelizing scientific applications. For exactly this task,

there exist multiple so called loop scheduling techniques. The reason for their existence lies

in the characteristics of applications and their loops. Loop iteration execution times can

vary and thus have a negative impact on the system’s load balance. Assigning equal amount

of iterations to each PU could end up in one PU taking much more time for executing its

portion because of these variations, while the rest is waiting. Such loops are also called

irregular loops. The techniques counteract this issue. They differ in assigning iterations

either statically or dynamically. Static in a way, where a loop is split into fixed-size portions

for each PU prior to the execution. Static techniques are well suited for regular loops, where

the iterations’ execution times are similar. In contrast, Dynamic Loop Scheduling (DLS)

techniques balance the load during execution and are the prominent choice when it comes

to irregular loops with varying iteration execution times. Depending on which DLS method

is used, the amount of iterations assigned to a PU at a time varies. Among all the different

techniques, one can characterize them in two dimensions. One being the degree of load

balancing provided and the other how much overhead the scheduling algorithm itself pro-

duces. The ideal case would be maximum load balance with minimum scheduling overhead.

Sadly, this is not possible since scheduling requires chunk size calculations of iterations,

bookkeeping, communication and more. The extremes are formed by the two techniques

static scheduling and Self-Scheduling (SS) as depicted in figure 1.1. Unlike static, SS dy-

namically schedules a single iteration at a time during the execution of a loop, promising

best load balance. Details can be found in Chapter 2, Section 2.2. Nevertheless, depending

on the loop, one technique should be chosen that fits best. Fortunately, there is a standard-
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scheduling overhead
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Figure 1.1: The interaction between load balancing and scheduling overhead. Maximizing
load balance typically induces scheduling overhead. Static scheduling and SS mark the
extremes of all existing techniques.

ized way in how to parallelize code. The Open Multi-Processing (OpenMP) specification [1]

defines the OpenMP Application Programming Interface (OpenMP API) for parallelism in

C, C++ and Fortran programs. Many popular compilers already support this specification

and provide parallelization for developers [2]. OpenMP does not only require a compiler

that supports the specification, but also a runtime library which provides an interface to the

compiler. The scheduling task, for instance, is handled by that library. There exist multiple

runtime implementations, such as the LLVM OpenMP runtime library (libomp) for LLVM’s

Clang compiler [3] or GNU Offloading and Multi Processing Runtime Library (libgomp) [4]

for the GNU Compiler Collection (GCC) [5]. Runtime library routines are used to examine

and modify execution parameters during runtime, e.g., getting the available number of PUs

or the number of threads. The user can benefit from these routine functions in source code

which then later are handled by the runtime library. As an example, the LLVM Clang

compiler has its libomp [3], which handles calls from the running application, as well as the

user-level runtime routines. To better understand how OpenMP works, figure 1.2 shows its

solution stack [6]. The runtime library is hereby linked to the application whenever it is

executed.

U
se

r L
ay

er End User

Application

Pr
og

.
La

ye
r

Directives,
Compiler OpenMP Library Environment

Variables

Sy
st

em
 L

ay
er

OpenMP Runtime Library

OS/system support for shared memory and threading

H
ar

dw
ar

e ...
Shared Address Space

PU 1 PU 2 PU 3 PU 4 PU N

Figure 1.2: The solution stack of OpenMP. Our focus lies on the shaded boxes, namely, the
runtime library and environment variables.

The problem with OpenMP arises, when taking a closer look at its scheduling specification.
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OpenMP specifies three loop scheduling techniques, all of which are implemented in the

above mentioned libraries. These three are static, dynamic, which is very similar to SS,

and guided. The latter tries to find a balance in scheduling overhead and load balancing

between static and dynamic by assigning decreasing size chunks of iterations, which

corresponds to Guided Self-Scheduling (GSS) . However, there are many more methods that

come up with better performance on different machines or types of loops. Being restricted

to only three algorithms could lead to severe inefficiency for specific types of applications.

Despite recent researchers who have implemented other techniques into existing libraries

and found dramatic performance improvements (see Chapter 3), the OpenMP standard still

lists only the three mentioned algorithms. On top of that, recent works employed the new

techniques mostly on libgomp, letting more research to be done with LLVM’s libomp.

In this thesis, we implement more advanced DLS techniques into the LLVM OpenMP run-

time library, libomp [7], that is used with the Clang compiler. These additional methods

can then be used by any programmer to parallelize their programs. In order to gain insights

into the performance with different types of loops, the newly implemented techniques are

evaluated on a shared memory high-performance computing node. For this purpose, bench-

marks from suites like EPCC [8], Rodinia [9], OmpSCR [10], NAS [11] and SPEComp2012

[12] are chosen.

The results show that there is no superior technique for every case. Depending on the ap-

plication, loop characteristics and system, one technique can outperform every other.

The remaining of this thesis is structured as follows. Chapter 2 shortly explains what

parallelism is, gives an overview of many scheduling techniques and summarizes OpenMP

and its LLVM runtime. In Chapter 3, related work is discussed. Chapter 4 explains the

current LLVM implementation and shows what needs to be changed for the extensions.

Implementation details are given in Chapter 5. Chapter 6 discusses a few performance

optimization decisions during the implementation. Chapter 7 contains the validation of the

implemented techniques and Chapter 8 presents the results followed by the conclusion.



2
Background

This chapter gives an overview of many scheduling techniques. Starting by a brief explana-

tion about parallelism in Section 2.1, the techniques itself in Section 2.2 and an introduction

to OpenMP in Section 2.3.

2.1 Parallelism
To better understand the ideas and goals of loop scheduling techniques, it is helpful to

remember what parallelism is and where it is applicable. In computer science, parallelism

is the simultaneous execution of calculations, tasks and processes or threads. There is a

distinction between software and hardware parallelism. Both of them are important and

must work together to fully exploit the true potential of parallelism. Processors of today

mostly come with rich hardware parallelism support, such as multiple cores, which can

execute different tasks simultaneously. Software developers, however, must evolve their

solutions in order to utilize the given potential in current hardware systems.

The process of parallelization includes the decomposition of large computational tasks into

smaller ones, the analysis of dependencies between the decomposed tasks and their schedul-

ing onto the target computing system. In this thesis, we focus on loop scheduling, where

portions of a loop’s iterations are assigned to different PUs (e.g., cores of a CPU1) for parallel

execution.

2.1.1 Shared Memory
This thesis focuses on implementing loop scheduling techniques and running parallel loops

on shared memory systems only. These systems differ from distributed memory machine

models in the way how PUs are connected to the memory. In shared memory systems, all

PUs are connected to the same main memory which they share. In the distributed memory

model, the PUs have their own local memory, that is separated from other PUs. Thus, they

need to communicate with other PUs to share data. The latter model is not discussed in

1 Central Processing Unit
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this thesis.

2.1.2 Multithreading
Multithreading is a way of how an application can use multiple threads, supported by the

operating system, to execute operations on one PU (e.g., core of a CPU) or simultaneously on

multiple PUs. The difference between multiprocessing and multithreading is that threads

of an application use the same address space and can access on the same data, wherein

processes have their own address space, thus, they are considered to be heavier than threads.

OpenMP, discussed in Section 2.3, uses threads, which makes multithreading the prominent

process model of this thesis.

2.2 Loop Scheduling
Loops are the dominant source of parallelism. Large programs, especially those of scientific

areas which compute simulations of, for example, physical interactions of bodies [13], contain

one or more large loops that consume most of the computation time. Parallelizing those

heavy loops can dramatically speedup the program execution time. By parallelizing loops,

we mean the decomposition of a loop in blocks of iterations, i.e., smaller tasks, and the

scheduling of these blocks to available PUs. The process of parallelization, however, has

one constraint that must be analyzed. The dependency analysis. To be able to parallelize a

loop, the iterations must be independent of each other so that the order of execution does

not change the final result. The programmer must take care of the dependencies himself.

In this thesis, we only focus on loop scheduling and assume that the dependency analysis is

made correctly by the programmer.

Scheduling in computer science is defined as the ordering of computation and data in space

and time. In this case, the distribution of loop iterations over PUs and time. The parallel

execution of iterations among the available PUs increase the performance of the program.

However, loop iteration execution times can vary because of conditional statements inside

the loop or input values. These variations can lead to uneven execution finishing times

of PUs, also called load imbalance. If one PU takes much more time to finish its portion

of iterations than the other PUs, the idling PUs and their potential computation power

are wasted. Scheduling techniques try to balance the load among the PUs in order to

produce even finishing times and reduce wasted potential. However, scheduling involves

overhead which can lead to bad performance. In general, there is a fundamental trade-

off in loop scheduling between load balance and scheduling overhead. Depending on the

loop characteristics, one scheduling technique fits better than the others to reduce overall

execution time. There are many different approaches of realizing loop scheduling. The

following sections give an overview of static and dynamic loop scheduling techniques. Table

2.1 declares many of the common variables that are used in the following sections.
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Table 2.1: Declaration of common variables, which are used in the loop scheduling
techniques’ descriptions.

Variable Description

P The number of PUs.
N The number of iterations.
Cs The chunk size.
R The number of remaining iterations.
µ The mean value of iteration execution times.
σ The standard deviation of iteration execution times.
h The scheduling overhead time.

2.2.1 Static Techniques
Static loop scheduling techniques take scheduling decisions before the execution of an ap-

plication. Fixed size chunks are given to PUs before the execution of the loop. Static

techniques produce the least amount of scheduling overhead time. They favor regular loops

with constant-length iterations. Irregular loops can produce serious load imbalance when

parallelized with static techniques because of uneven finishing times.

2.2.1.1 Static Chunking

One example of static loop scheduling techniques would be Static Chunking (SC) , in which,

a loop is decomposed into P equal sized chunks of iterations. The chunk size

Cs =
N

P
(2.1)

is computed prior the execution of the loop. An example of SC is depicted in figure 2.1.

It illustrates the bad case of static techniques, where iteration execution times vary and,

therefore, the PUs finish unevenly.

PU 1

Time

250 Iterations

PU 2 250 Iterations

PU 3 250 Iterations

PU 4 250 Iterations

Figure 2.1: Example illustration of SC with P = 4 and N = 1000. White areas show the
computation time. Shaded areas depict idle times (i.e., inefficiency). The dashed red line
marks the overall finishing time of loop execution.

2.2.2 Dynamic Techniques
Dynamic scheduling techniques have a major difference when compared to static methods.

The scheduling decisions are made during application execution. In other words, idling PUs

dynamically grab iterations during runtime until the loop is computed. This can be realized
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either in a centralized fashion, e.g., a master PU that assigns new tasks to the worker PUs,

or in a decentralized way, in which all of the PUs reassign tasks by themselves using a

common pool of iterations. DLS methods are also differed to the categories Nonadaptive

DLS (NADLS) techniques and Adaptive DLS (ADLS) techniques.

Nonadaptive DLS techniques are dynamic loop scheduling techniques, which use pre-

computed information or data obtained prior execution time to make scheduling decisions

during runtime. Information obtained prior loop execution does not change during runtime.

Adaptive DLS techniques are dynamic loop scheduling methods, which adapt their

scheduling decisions to information obtained during runtime.

2.2.2.1 Self-Scheduling

SS [14] is one of the oldest DLS techniques. It assigns a single new iteration to an idling PU

until all of the iterations are computed. The chunk size is

Cs = 1. (2.2)

SC and SS mark the extremes regarding the fundamental trade-off in loop scheduling tech-

niques. Where SC provides the least amount of scheduling overhead time with the cost of the

worst load balance, SS come with the best load balance possible while producing the biggest

amount of scheduling overhead due to the many scheduling states. Figure 2.2 illustrates an

example of SS. This example does not stem from a simulation or real scenario but it shows

PU 1

Time

PU 2

PU 3

PU 4

Figure 2.2: Example illustration of SS with P = 4 and N = 67. White segments show the
computation time of individual iterations. Black segments illustrate scheduling overhead
time (fixed h for this illustration). Shaded segments mark load prior to the loop execution.
The dashed red line marks the overall finishing time of loop execution. Note: This is not a
real simulation.

a representative case where iteration execution times can vary and PU 1 is slower. The

idea of SS is to even out PUs’ finishing times even with highly irregular loops or systemic

load imbalances. While PU 1 computes only 7 iterations, PUs 2-4 are executing more than

twice of this amount each. The PUs’ finishing times are almost the same but SS comes with

the cost of high scheduling overhead. In [14], they claim that scheduling overhead can be

reduced if SS is implemented in a decentralized model with a common variable to get loop

iterations.
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2.2.2.2 Fixed Size Chunking

In Fixed Size Chunking (FSC) [15], the idea is to reduce the immense scheduling overhead

of SS by scheduling chunks of iterations instead of a single one. The chunk size is

Cs =

( √
2Nh

σP
√

logP

) 2
3

. (2.3)

The formula stems from mathematical analysis and tests to find an optimal size for reducing

scheduling overhead while still providing a good load balance. The chunks are added to a

common pool or queue from which idling PUs can take their chunks of iterations. This is

the first method discussed in this thesis, that involves the standard deviation of iteration

execution times obtained from previous runs of the same loop. In [15], assumptions are

made, that the scheduling overhead h is independent of the amount of iterations scheduled

at once.

2.2.2.3 Guided Self-Scheduling

GSS [16] tries a different approach by scheduling decreasing chunk sizes across the PUs

instead of a fixed size. The goal is to reduce the scheduling overhead time of SS with less

chunks and still provide a good load balance. One assumption made in [16], is that PUs

have unequal starting times caused by, for instance, other work prior to the loop calculation.

To counteract this problem, they have designed decreasing chunk sizes calculated by

Csi =

⌈
Ri
P

⌉
, (2.4)

where Ri denotes the remaining number of iterations for the ith chunk and R1 = N . This

method does not involve the values µ and σ, thus, profiling of previous runs is not necessary

in contrast to FSC. However, a big first chunk size could lead to bad load balance if the first

PU takes too much time for calculating the first and biggest chunk.

2.2.2.4 Trapezoid Self-Scheduling

Trapezoid Self-Scheduling (TSS) [17] wants to extract the advantage of GSS and at the same

time provide a simple linear function for decreasing chunk sizes. Furthermore, it takes two

inputs from the user which specify the size of the first chunk, f , and last chunk l. The chunk

size is then calculated according to equations 2.5.

A =

⌈
2N

f + l

⌉
,

δ =
f − l
A− 1

,

Cs(1) = f,

Cs(t) = Cs(t− 1)− δ.

(2.5)

In the above equations, t denotes the number of the current scheduling operation (also

called chore) and A is the number of chores (i.e., chunks). The authors in [17] give a general

suggestion for the first chunk size with f = N
2P . Furthermore, they claim that the linearity

makes TSS more simple and efficient to implement, which reduces scheduling overhead.
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2.2.2.5 Factoring

Factoring (FAC) , a generalized version of GSS and FSC, was presented in [18]. The idea of

FAC is to be more robust and resistant to iteration execution time variance than GSS. FAC

also makes use of decreasing chunk sizes for better load balancing. In contrast to earlier

methods, this technique schedules iterations in batches of P equal size chunks. For each

batch, one chunk size is calculated according to equations 2.6 and then P chunks of the

calculated size are placed at the head of the scheduling queue.

Csj =

⌈
Rj
xjP

⌉
,

R0 = N,Rj+1 = Rj − PCsj ,

bj =
P

2
√
Rj

σ

µ
,

x0 = 1 + b20 + b0

√
b20 + 2,

xj = 2 + b2j + bj

√
b2j + 4, j > 0.

(2.6)

j denotes the batch index. One batch is calculated and placed after the previous batch is

scheduled. FAC uses a probabilistic analysis to calculate the chunk size. More precisely,

the number of iterations per batch is determined by estimating the maximum portion of the

remaining iterations R, that have a high probability of being calculated before the optimal

time, µNP , of all the remaining iterations, when the iterations in each batch are equally

divided into P chunks. This is also why the method is called Factoring because each

batch gets a fixed ratio of R. The relation to GSS and FSC can be described as follows.

FAC is like GSS, when each batch contains only one chunk, and like FSC, when there is

only one batch.

A simplified version of FAC for practical use, called FAC2, is presented in [18]. FAC2 sets

x = 2, which leads to the chunk size

Csj =

⌈
Rj
2P

⌉
=

⌈(
1− 1

2

)j
N

2P

⌉

=

⌈(
1

2

)j+1
N

P

⌉
.

(2.7)

Determining x for each batch is difficult in practice, because precise knowledge of the mean

and standard deviation is required. FAC2 solves this problem. An illustrative example can

be seen in figure 2.3.

FAC is extremely general and robust to different variances of iterations. It behaves, depend-

ing on whether σ is high or low, like SS or static.

2.2.2.6 Weighted Factoring

Weighted Factoring (WF) [19] is very similar to FAC. However, this strategy takes PU

speeds into consideration for calculating the chunk sizes. The idea is to dynamically assign
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Figure 2.3: Example illustration of FAC2 with P = 4 and N = 1000. In this example, a
common variable or queue is used for scheduling.

decreasing size chunks of iterations, like in FAC, to PUs in proportion to their processing

speeds. In conclusion, each PU is associated with a weight w that represents its relative

speed. These weights are normalized and add up to the number of available PUs. After the

batch and chunk size are calculated like in FAC, the chunks of a batch are multiplied by

the weights and assigned to the corresponding PUs. The following equation 2.8 shows the

chunk size of batch j for PU i.

Csij = wi × Cs factoringj and

P∑
i=1

wi = P. (2.8)

The weights are estimated by benchmarking the system a priori. During runtime, the

weights stay constant. This strategy is meant for heterogeneous work-stations with different

PU speeds and system-induced impact to the performance.

2.2.2.7 Taper

Based on GSS, Taper (TAP) [20] tries to achieve optimal load balance, while scheduling the

largest possible chunk size to decrease the number of chunks scheduled and, with that, the

scheduling overhead. It differs from GSS by taking the mean µ and standard deviation σ

of iteration times into account to get a better load balance. The chunk size formula, given

in equations 2.9, is derived from probabilistic analysis to achieve an optimum for the above

idea.

Csi = max

{
Csmin,

⌈
Ti +

v2α
2
− vα

√
2Ti +

v2α
4

⌉}
,

Ti =
Ri
P
,

vα =
ασ

µ
.

(2.9)

In the above equations, i is the chunk index, Csmin denotes the minimum chunk size and

α is a scaling factor of the coefficient of variation (c.o.v.) , that is found empirically [20].

It is influenced by the overhead time and the ratio of N to P . Furthermore, TAP is GSS,

when σ = 0.
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2.2.2.8 Fractiling

Fractiling (FRAC) [13][21] is a combination of FAC and tiling. Tiling partitions the iteration

space into regions of suitably granularity. FRAC combines FAC’s idea to minimize load

imbalance and scheduling overhead via allocation of work in decreasing-size chunks, and

tiling, to maximize data locality. This method is especially suited, and designed, for very

irregular loops like in N-Body simulations [13].

The process in FRAC can be described as follows. During initialization, the iteration space

is divided into P tiles and each of them is assigned to a PU. After the initial tiling process,

each PU’s tile is divided into two half-sized subtiles via bisection. The subtiles are also called

fractiles. Every PU then starts working on its first subtile and repeatedly bisects its next

subtile into two smaller subtiles and, again, works on the first half. This is done by every PU

until all of the work in its initially assigned tile is done. Due to the shuffle row-major tiling

and allocation order of (sub)tiles, the execution order and shape of fractals are self-similar,

which brings some advantages, like data locality. A PU that finishes its tile early, borrows

decreasing sized subtiles of unallocated work from other, slower PUs to balance loads. The

fractiling process is described in Algorithm 1. Figure 2.4 shows an illustrative example of

FRAC.

Ite
ratio

n Space
PU 3 PU 4

PU 2PU 1

(a) Tiling (b) Order

3

3

1

4

2

4 4
3

2

2
2

2

4

4 4

(c) Factoring + Borrowing

Figure 2.4: Illustration of Fractiling with 4 PUs and 64 iterations. Figure 2.4(a) shows
how the iteration space is divided into P tiles with 16 iterations each. The order of tiling
and allocation is depicted in 2.4(b). In figure 2.4(c), the shaded rectangles represent
calculated chunks by the indicated PUs. The tiles are subsequently divided by 2 after a
batch has completed. You can see that each batch contains exactly P = 4 equal-sized
chunks (subtiles), except for the smallest rectangles which are individual iterations. This is
exactly where you can see the similarity to FAC. Lastly, fast PUs, like PU 2 and 4 in the
example, start to help slower PUs, here PU 1 and 3, after finishing their own tiles.

2.2.2.9 The Bold Strategy

The Bold Strategy (BOLD) [22] is the first adaptive DLS technique described in this thesis.

It is a bolder version of FAC and further development of TAP. As in TAP, it uses the mean

and standard deviation of iteration execution times as well as an estimate of scheduling

overhead time. BOLD takes multiple input variables and then, during runtime, it creates

new variables and adjusts old ones, based on new state information, for an adaptive chunk
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Algorithm 1 Fractiling [21]

1: divide iteration space into P tiles of size N
P

2: assign one for each PU in shuffled row-major numbering
3: for all PU do . in parallel
4: allocate the fractile corresponding to half of the initial PU assignment
5: while there are fractiles not done on the level do
6: do the allocated fractile
7: enter a mutex lock
8: while there is a fractile in the initial assignment to do do
9: successively allocate the next fractile in decreasing chunk size and in shuffle

order
10: end while
11: while there are remaining fractiles to do in other PU assignments do
12: successively allocate a fractile in decreasing chunk size and in shuffle order
13: end while
14: exit the mutex lock
15: end while
16: end for

size calculation. The driving idea behind the final strategy was to increase early chunk sizes

in order to reduce scheduling overhead, while considering the risk of a potential big chunk

that could last until the end and, thus, lengthen the overall executing time. The strategy

derives from probabilistic analysis of that idea. It is designed for loops with algorithmic

(e.g., conditional statements in loop body) and system-induced (cache misses and other

system interferences) variance. BOLD is intended to be implemented in a centralized model

with a master who assigns chunks of iterations to requesting PUs. Assumptions are made

that the scheduling overhead time h is a fixed delay, independent of the number of iterations

scheduled at once or the amount of PUs requesting new work at once. Furthermore, the

authors note that the calculation might produce more overhead because of its complexity.

The algorithms 2 and 3, which show the strategy, need some explanation for the used

variables and how they are adapted during runtime [22]:

boldM The number of iterations that either are unassigned or belong to chunks currently

under execution [22]. It is initialized to N. This variable has to be adjusted during

runtime in the following way. Whenever a PU completes a chunk of size Cs, boldM is

decremented by Cs [22].

totalspeed “Indicates the expected number of iterations completed per time unit, taking

the allocation delay into account, and tends to lie slightly below P
µ .” [22]. This variable

is initialized to 0. It is adjusted whenever a PU starts or finishes working on a chunk.

At the start of a chunk of size Cs, the PU increments totalspeed by Cs
Csµ+h , and after

the execution of the chunk, it decrements totalspeed by the same value. This variable

is used to maintain boldN .

boldN This variable is an estimate of the number of iterations that have not yet been

executed [22]. It is initialized to N. Furthermore, it assumes that while a PU is

executing a chunk, it makes steady progress at exactly one iteration every µ time

units. Maintaining boldN during runtime requires totalspeed and three points in time,



Background 13

t1, t, t2. Figure 2.5 [22] describes the mentioned points in time. To maintain boldN ,

time

Figure 2.5: Description of the time points t1, t, t2 used to update boldN . Computation
time is shown shaded. At t1, the processing of a new chunk of size Cs begins (including
overhead time for scheduling). The processing ends at time t2. t is defined as the last
point in time before t2 at which a chunk is completed or a new one is allocated.

the variable is adjusted at time t2, before totalspeed is updated, by

boldNnew = boldNold −

 (t2 − t) totalspeed︸ ︷︷ ︸
collective progress since t

+Cs− (t2 − t1)Cs

Csµ+ h︸ ︷︷ ︸
correction term

 . (2.10)

Q The number of remaining unassigned iterations per PU.

Algorithm 2 Bold initialization [22]

1: a = 2
(
σ
µ

)2
2: b = 8a ln (8a)
3: if b > 0 then
4: ln b = ln (b)
5: end if
6: p inv = 1.0

P

7: c1 = h
µ ln(2)

8: c2 =
√

2πc1
9: c3 = ln (c2)

10: boldM = N
11: boldN = N
12: totalspeed = 0

2.2.2.10 Adaptive Weighted Factoring

Adaptive Weighted Factoring (AWF) [23] is similar to WF but addresses the limitation of

the weights not being adapted during computation. Furthermore, it does not need prior

knowledge of system load. Therefore, profiling is not necessary. AWF is designed for time-

stepping applications, like N-Body simulations, where each time step involves one heavy

loop. Weights are adjusted only after each time step, thus, not during loop execution. AWF

is still described here since there are variations based on it which allow non-time-stepping

applications. The variations are discussed in the following Section 2.2.2.11. In AWF, the

cumulative performance of each PU from all the previous steps is used for determining the

weights. This technique incorporates both loop characteristics and PU speeds in calculating

the chunk sizes.
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Algorithm 3 Bold routine for subsequently determining chunk sizes [22]

1: function CalculateChunkSize(P,N,R, a, b, p inv, ln b, c1, c2, c3, boldM, boldN)
2: Q = R

P
3: if Q ≤ 1 then
4: return 1
5: end if
6: r = max {R, boldN}
7: t = p inv × r
8: ln Q = ln (Q)
9: v = Q

b+Q

10: d = R
1+ 1

ln Q−v
11: if d ≤ c2 then
12: return t
13: end if
14: s = a (ln (d)− c3)

(
1 + boldM

rP

)
15: if b > 0 then
16: w = ln (v × ln Q) + ln b
17: else
18: w = ln (ln Q)
19: end if

20: return min
{
t+ max {0, c1w}+ s

2 −
√
s
(
t+ s

4

)
, t
}

21: end function

In a master-worker model, after each time step, the PUs send their total execution time to

the master PU, not including the scheduling time. The master then computes the weights

for all PUs. For this, it first determines the weighted average ratio

πi =

(∑s
j=1 j × tij

)
(∑s

j=1 j × nij
) , (2.11)

which gives the average ratio of execution time per iterations,
tij
nij

, of a step j, of all the

executed steps s on PU i. More recent steps are weighted higher to produce a better

adaptation of very recent workloads. The next step is to compute the average weighted

average ratio

π̄ =

∑P
i=1 πi
P

, (2.12)

of all PUs. Now, the raw weight of PU i is defined as

ρi =
π̄

πi
. (2.13)

In order to fulfill the requirement of WF, where weights must add up to the number of P ,

the master needs to normalize the raw weights ρi. Equation (2.14) shows the normalized

weight wi for PU i using the above variables.

wi =
ρi × P
ρ̂

, where ρ̂ =

P∑
i=1

ρi. (2.14)

The weights are initially set to 1 and then adjusted after each step. Finally, like in WF, the

master can use the determined weights, which do not change during a time step, to weight
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the chunk sizes obtained from FAC and calculate the final chunk size

Csij = wi × Cs factoringj and

P∑
i=1

wi = P (2.15)

for a PU i and batch j. The following variants of AWF provide the possibility to adapt

during a loop.

2.2.2.11 Adaptive Weighted Factoring Variants

There exist variants [24] of the above described technique AWF from Section 2.2.2.10. In

this part, four variations of AWF, AWF-B, AWF-C, AWF-D and AWF-E, are shown. All

of them have a common goal. They address the limitation of AWF to rely on time-stepping

applications, where the adaptation happens only after each step. The variants allow adapta-

tion during loop execution. Depending on the chosen variant, the PU weights are adjusted

less or more frequently. The calculation of chunk sizes is very similar to AWF but the

variants use a modified formula for the weighted average ratio

πi =

(∑si
j=1 j × tij

)
(∑si

j=1 j × nij
) . (2.16)

Unlike in AWF, the modified version above determines the weighted average ratio of the

executed chunks j, 1 ≤ j ≤ si, by PU i instead of previous time steps. This is exactly the

modification which allows updates during a loop. Initially, the weights are set to 1 for all

PUs like in AWF and an arbitrarily chosen first batch size of β0×N , 0 < β0 < 1, is selected

like in AF to determine the initial chunk size

Csi1 = ni1 = β0 ×
N

P
(2.17)

for a PU i. From here on, the succeeding chunks are determined differently by one of the

following variants:

AWF-B schedules the remaining iterations by batches. The weights are adjusted after each

batch based on timings from previous chunks.

AWF-C schedules the remaining iterations by chunks, similar to AF, instead of batches. The

idea of this variation is to address a possible issue of AWF-B (as well as FAC, WF

and AWF), where faster PUs which already have computed their portion of the batch

could be assigned remaining chunks of less-than-optimal size from the current batch.

The reason is that in these methods, the chunk sizes are fractions of the current FAC

batch size which, once scheduled, do not change. AWF-C tries to solve this issue by

recomputing a new batch size each time a PU requests for work and before applying

AWF for weight calculation. This modification results in faster PUs being assigned

larger chunks from all the remaining iterations and not just from the ones left in

current batch.

AWF-D is like AWF-B but the execution time of iterations of a chunk j, tij , is redefined as

the total chunk time. This not only includes the execution time but also the time spent

by the PU in doing tasks associated with the execution of a chunk (e.g., bookkeeping).
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AWF-E is like AWF-C but uses to total chunk time as in AWF-D.

2.2.2.12 Adaptive Factoring

The last adaptive DLS technique discussed in this thesis is Adaptive Factoring (AF) [25][26].

As the name indicates, it is based on FAC. The difference is that AF relaxes the require-

ment in FAC, where mean µ and standard deviation σ are known a priori and additionally

that they are the same on all PUs. The statistical values of µ and σ are calculated and

adjusted during runtime. AF is thus a more generalized technique than FAC or WF and it

is advantageous if the mean and variance are unknown and vary during runtime. Besides

the adaptivity and generality, AF uses, like in FAC, a probabilistic model to calculate chunk

sizes and dynamically allocate chunks of iterations to PUs such that the average finishing

time for completion of the chunks occurs before the optimal time, µNP , of the whole re-

maining task [25]. In other words, the expected finishing time of the current batch has a

high probability to occur before the optimal finishing time of the whole remaining task. In

direct comparison with WF, where weights are statically assigned to each PU, AF does not

use fixed weights but dynamically computes the size of a new chunk for a PU based on

its performance information gathered from recently executed chunks. In other words, AF

dynamically weights chunk sizes for individual PUs based on their recent performance.

AF can be implemented with a master-worker model in which the request messages of

workers contain updated performance data (µ and σ) of recently executed chunks [26]. The

master uses this information to compute the chunk sizes with

Cs
(n)
i =

Dn + 2TnRn−1 −
√
D2
n + 4DnTnRn−1

2µ̂i
, n > 1

and Cs(1) ≥ 100, n = 1

(2.18)

for a PU i and step (or batch) n. The variables D and T incorporate the latest estimator

for the means and standard deviations of every PU. They are calculated as shown in (2.19).

Dn =

P∑
i=1

σ̂2
i

µ̂i
, Tn =

(
P∑
i=1

1

µ̂i

)−1

, n > 1. (2.19)

The remaining iterations Rn after step n are calculated as

R0 = N,

R1 = R0 − PCs(1),

Rn = Rn−1 −
P∑
i=1

Cs
(n)
i , n > 1.

(2.20)

Since AF does not need a priori profiling, it first estimates the mean and standard deviation

for each PU i in an arbitrarily sized initial batch (step 1) with P chunks of size Cs(1). For

this, the PUs have to record their finishing times Xij of each iteration j, 1 ≤ j ≤ Cs(1). The

initial estimators for the mean µ̂i and standard deviation σ̂i of a PU i are then calculated

with

µ̂i =

∑n
1 Xij

Cs(1)
and σ̂i =

(∑n
1 X

2
ij − Cs(1)µ̂2

i

Cs(1) − 1

) 1
2

. (2.21)
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Algorithm 4 shows the steps in AF for how chunk sizes are calculated and iterations are

allocated. Step 1 allocates the iterations in batch. Afterwards, there is no need for allocating

Algorithm 4 AF algorithm for chunk size calculation and allocation [25].

1: procedure AdaptiveFactoring
2: n← 1 . step number
3: AFInitialize . step 1, there are R1 iterations left
4: while R > 0 do
5: n← n+ 1
6: AFAllocate(n) . step n, there are Rn iterations left
7: end while
8: end procedure
9:

10: procedure AFInitialize
11: assign to each PU Cs(1) iterations, with Cs(1) ≥ 100
12: record finishing times Xij of each iteration j for each PU i
13: end procedure
14:

15: procedure AFAllocate(n) . can be executed for any individual PU i requesting
16: estimate µ and σ for each PU i using information of previous steps and (2.21)

17: assign Cs
(n)
i iterations to PU i using (2.18)

18: record finishing times Xij for each iteration j in every PU i
19: end procedure

in batches. Whenever a PU finishes its chunk, a new one of size (2.18) is immediately

allocated by the master.

When comparing AF to AWF and its variants, it is important to mention that AF introduces

more overhead because of the intensive time measurements on an iteration level rather than

batch or chunk levels.

2.3 OpenMP
OpenMP is a standard for shared memory parallel programming. It consists of directives

and pragmas, which collectively define the specification of the OpenMP Application Pro-

gramming Interface (OpenMP API). In order to use OpenMP, a compiler is required that

supports the OpenMP specification and implements the API. Many popular compilers, like

GCC [5][4], Intel C++ Compiler [27] and LLVM Clang [28], already support the specifica-

tion [2] and can be used for parallelizing programs. Compilers with OpenMP support can

compile one or many of the languages C, C++ and Fortran [1].

OpenMP uses the shared memory programming model, i.e., execution happens on one node

with same address space. Directives or pragmas can be elegantly used in the source code to

implicitly parallelize parts of a program. The directives tell the compiler how statements are

to be executed and which parts are parallel. The compiler then generates multithreaded code

by reading the directives. There are many constructs in OpenMP, such as parallel regions,

work-sharing, variable scoping, critical regions and synchronization, to parallelize a program

but we focus on the work-sharing part, where a loop and its iterations are split among

threads. Parallelizing loops is one of the most popular features of OpenMP. Doing this only
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requires one single line in C/C++ before a for-loop, namely, #pragma omp parallel

for. The user can also set clauses within a pragma to, for example, select whether or not

threads have their own copy of a variable, or how a loop should be scheduled. The exact

syntax of the work-sharing-loop construct for C/C++, as described in the specification [1],

is

#pragma omp for [clause[[,]clause]...]new-line

for-loops

where the schedule clause corresponds to schedule([modifier[, modifier]:]kind[, chunk size]).

The modifiers can be used to specify whether chunks are executed in increasing logical

iteration order or not. Our focus lies on the kind, which specifies the scheduling algorithm.

Which values currently are available for kind and what they stand for is described in the

following subsection.

2.3.1 Scheduling in OpenMP
OpenMP lists three loop scheduling techniques in the specification [1], however, there are

many more which are not listed. Therefore, available OpenMP implementations, like the

ones mentioned in Subsection 2.3.2, are only required to implement the listed techniques

in the specification. These are static, dynamic and guided. On top of that, the user

must specify a chunk size within the pragma. Based on that size, the chosen technique, for

instance static, statically schedules blocks of iterations of given size to each PU prior to

loop execution. The option dynamic dynamically schedules chunks of iterations of specified

size to idling PUs during runtime. Lastly, guided uses a dynamic scheduling approach

with decreasing chunk sizes down to the specified size. These three techniques are similar to

the explained techniques in Section 2.2, Static, SS and GSS, but the exact implementation

depends on the used OpenMP library. Furthermore, the schedule selection can be postponed

to be chosen during runtime by using the kind runtime. An example of it looks like

#pragma omp for schedule(runtime).

Every loop with the above schedule clause will then be scheduled by the strategy which is

set in the environment variable OMP SCHEDULE. The value of this variable takes the form

[modifier:]kind[, chunk].

2.3.2 LLVM OpenMP Runtime Library
LLVM’s Clang supports OpenMP 3.1 by default since version 3.8.0 [7]. The LLVM runtime,

libomp, stems from Intel’s open source OpenMP runtime [29] and contains almost the exact

same code as Intel has merged its open-source library to the LLVM project where further

development takes place [30]. While this library is compatible with Intel, GCC and LLVM’s

compilers, GCC’s libgomp is not compatible with Clang. The fact that libomp is Intel and

LLVM’s production library for OpenMP while supporting GCC, makes it very significant.

Since this thesis is focusing on the LLVM compiler infrastructure, an overview of the devel-

opment process with LLVM is given in figure 2.6 [29]. The compile-time involves compiling
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C/C++ source code including OpenMP directives using Clang which is a C language fam-

ily compiler front-end for LLVM. Clang uses the LLVM compiler infrastructure, a compiler

tool chain, as its back-end to finally compile the source code into a binary file. During

runtime, the application uses libomp for routine calls. To link the library, the compile flag

-fopenmp must be used. It is also possible to link a runtime explicitly by its name with

-fopenmp=<library-name>.

Compile-time Run-time

.cpp
C/C++ Front-End

(Clang)
Back-End

(LLVM)

LLVM OpenMP
RTL

a.out

Figure 2.6: The process of compiling C/C++ source code with OpenMP and LLVM. The
runtime library handles calls from the binary during runtime.

Once a binary is produced, the environment variables indicate, for example, which runtime

library to use or what kind of scheduling technique should be picked if the programmer has

set schedule(runtime) inside the pragma. The path to the library can be specified in

the environment variable LD LIBRARY PATH. A recompilation is not needed if this path

changes, which makes it easy to switch between different implementations of the runtime

library. The number and type of available scheduling techniques depend on the actual

implementation. For instance, the current checked out code of libomp only implements

static, guided, dynamic and trapezoidal loop scheduling techniques. As for now,

the latter technique is not yet listed in the library’s latest manual [3], since the manual has

not been built for three years from now. The absence of many other DLS techniques in

libomp is the gap that we want to fill in this thesis by implementing additional techniques.
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Related Work

In this chapter, related works from the past are discussed. Since this thesis focuses on the

implementation of additional loop scheduling techniques into an OpenMP runtime library, it

is important to see what others have done in that area for existing OpenMP implementations.

All the above methods from Section 2.2 have already been implemented and tested but none

of them, except for similar versions of SC, SS, GSS and TSS, have been implemented into

the LLVM OpenMP runtime library. Most of them have not even been implemented in

any existing OpenMP runtime library since the OpenMP specification does not list more

than three methods. However, past research projects have implemented new techniques into

existing OpenMP runtime libraries, such as GCC’s libgomp [4] and evaluated the results.

Officially, libgomp provides only static, dynamic and guided scheduling techniques.

The work by Buder P. [31], which is the closest to this thesis, implemented and tested

six additional DLS techniques in libgomp. Additionally, a related paper to Buder’s work

was published by Ciorba et al. [32]. The newly implemented methods which were used by

Buder are FSC, TSS, FAC, WF, TAP and BOLD. All these methods were implemented into

libgomp by extending the existing code and using the environment variable OMP SCHEDULE

for selecting a technique whenever the OpenMP schedule clause schedule(runtime) is

used. To assess the implemented techniques, four benchmark suites, Rodinia [9], OmpSCR

[10], NAS [11] and SPEComp [12] were used and, when necessary, modified to obtain profiling

information of loop iteration times for the mean µ and standard deviation σ input values

which are required in some of the techniques. The results show that no single method fits best

for every application but rather, depending on the chosen benchmark, one is superior to the

others. This is the evidence that OpenMP must include more loop scheduling techniques to

cover much more types of applications with respect to performance. In this thesis, not only

the methods used by Buder but also other, especially adaptive, techniques are implemented

into the LLVM OpenMP runtime library.

Another close work to this thesis is recently done at TU Dresden [33] which presents a generic

methodology for implementing additional scheduling techniques to an OpenMP runtime.

They demonstrated the proposed methodology by implementing FAC to LLVM’s libomp

and presented first results with four scientific applications.

In the context of load balancing strategies, Penna et al. introduced a new design methodol-
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ogy, including a simulator for assessing loop scheduling strategies, which helps to guide the

study of new workload-aware loop scheduling techniques [34]. In contrast to other strate-

gies, workload-aware scheduling methods try to achieve better load balance by taking the

input workload into account and evenly distribute it among the threads. To validate their

methodology, they proposed a new strategy as a proof of concept called Smart Round-Robin

(SRR) [35] and implemented it in libgomp. This new method considers the input workload

(i.e., the length of each iteration) in order to achieve near-optimal load balance. Since this

technique depends on the iteration lengths, it requires some sort of profiling and preprocess-

ing prior to the actual scheduling. A second novel workload-aware strategy was implemented

in libgomp, called BinLPT [36]. One difference between SRR and this new strategy is that

BinLPT schedules chunks of iterations instead of single ones. The results of both techniques

have shown that they outperform OpenMP’s static and dynamic scheduling strategies

in irregular applications. Their approach of evenly distributing workload differs from all the

techniques described in this thesis especially in how profiling is done. SRR and BinLPT both

depend on precise workload information obtained beforehand to be able to evenly assign the

workload across the threads. Techniques used in this thesis either use only mean and stan-

dard deviation inputs or obtain load information during runtime. Another difference is that

SRR and BinLPT preprocess an optimal map for the iteration/thread assignment based on

workload data which is a static scheduling description.

Similar work is done by Mottet L. who ported the same SRR technique from Penna et

al. into Intel’s OpenMP runtime [37]. He found similar results where SRR is 15% better

than OpenMP’s dynamic scheduling in some conditions. Furthermore, this work is of high

relevance to this thesis since Intel’s runtime is the same as LLVM’s.

When dealing with NUMA2 multicore machines, it is crucial to distribute work and its

associated data in a way which exploits data locality to maximize performance. OpenMP’s

dynamic strategy is the first choice when scheduling irregular loops, however, it does not

respect memory locality in NUMA machines. Durand et al. proposed a new scheduling

technique called adaptive with the goal to provide a better dynamic scheduling technique

for NUMA machines and irregular loops, while respecting data locality [38]. This new

technique starts a static initial distribution of the iteration space, scheduling N
P iterations

for each thread. Load balancing is then done via work-stealing where idling threads steal half

of the remaining iterations of another thread. On top of that, they extended adaptive

with new OpenMP APIs to deal with the mentioned data locality. Their new strategy

outperformed OpenMP’s techniques on memory-bound and irregular loops, while providing

similar performance to static on regular loads. In contrast to the work of Durand et al.,

this thesis does not focus on NUMA machines.

A different approach can be found in [39], [40] and [41], which proposed an automatic

technique without having the user to choose a specific strategy. Their methods either auto-

matically select an appropriate known loop scheduling technique for a given loop or derive a

strategy based on online-profiling, loop analysis and system state. For instance, Zhang et al.

[39] presented a hierarchical adaptive OpenMP loop scheduling technique for hyper-threaded

2 Non-Uniform Memory Access
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SMP3 systems. This strategy samples different known techniques on a loop in its first several

runs and then adapts by selecting a more appropriate technique on the remaining runs of the

same loop. This is only applicable on loops which have multiple complete executions. Addi-

tionally, it decides based on the first few runs whether to use hyper-threading or not. Their

approaches payed off especially in loaded systems, where unpredictable behavior is the case.

This thesis does not implement any hierarchical or automatic, selection-based techniques,

instead, it focuses on implementing and testing every particular strategy separately.

The last related work, that is discussed in this chapter is done by Kale V., who recently

proposed a new addition to the OpenMP standard for adding user-defined scheduling tech-

niques to OpenMP [42]. With this, the user can choose his custom strategy in code in a

standardized way with the use of an extended schedule() clause. The user is hereby

required to provide and link a custom library that implements the needed functions for the

scheduling task.

3 symmetric multiprocessing
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Loop Scheduling in LLVM

This chapter explains how loop scheduling works in LLVM’s libomp and mentions the re-

quirements to implement new techniques. It also describes the methodology of how we

have extended libomp. Exploiting parallelism on hardware with an increasing number of

processing units requires complex techniques to schedule the tasks across the cores in an

optimal way. Algorithms that contain parallel loops, which are responsible for most of their

execution time, can use the full potential of the underlying system to improve the overall

performance. Among different possibilities of realizing parallelism for loops on shared mem-

ory systems, OpenMP has proved itself as the de facto standard for parallelism. LLVM,

with its Clang compiler and OpenMP runtime library, also called libomp, implements this

standard to be used for parallelism. A general overview of LLVM is given in 2.3.2 in Chap-

ter 2. The current state of libomp, from LLVM 8.0, provides four different loop scheduling

techniques, static, dynamic, guided and trapezoidal. Many more techniques exist

but they are not implemented in LLVM. However, the structure and design of libomp makes

it possible to add new techniques by editing and extending a few files. To understand the

requirements of such an extension, section 4.1 describes the design and workflow of loop

scheduling in libomp.

4.1 Scheduling Overview in libomp
Libomp uses three functions to schedule iterations of a parallelized loop to processing units.

Figure 4.1 shows the main parts of the scheduling process. Once an application is compiled

with the use of a compiler like Clang, ICC or GCC, and thereafter linked to libomp by us-

ing the compiler flag -fopenmp, every loop that is parallelized with the compiler directive

omp parallel for including the use of the scheduling clause schedule(runtime) is

then scheduled by libomp. The library consists of many source files but since this thesis is

focusing on the loop scheduling implementation only, six files suffice to be further discussed.

These are kmp.h, kmp settings.cpp, kmp runtime.cpp, kmp global.cpp, kmp dispatch.h and

kmp dispatch.cpp. The three main functions responsible for the actual scheduling are in-

side of kmp dispatch.cpp as depicted in Figure 4.1. Before the call of any of those men-

tioned functions, libomp first prepares a few things. The file kmp.h is the runtime header
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PUs:

App (linked to libomp)

Loop

Init()

Loop
(empty)

Next() Finish()

kmp.h

kmp_settings.cpp

kmp_runtime.cpp

kmp_global.cpp

kmp_dispatch.cpp

PU calculating its
next chunk size

libomp

kmp_dispatch.h

Figure 4.1: Loop scheduling in libomp. The source file kmp dispatch.cpp contains the
actual scheduling algorithms. Other files, such as kmp.h and kmp settings.cpp do not
implement the strategies but are required for selecting and recognizing them, including the
initialization of environment variables.

file and declares many functions, data structures as well as variables which are used in

the whole library. The environment variables are initialized in kmp settings.cpp. The file

kmp runtime.cpp implements many functions for the runtime library. It does not play a main

role for the scheduling part but helps to choose the selected scheduling technique out of the

environment variable and this is why it is mentioned as well. Global variables, including

the ones read from the environment variables, are initialized in kmp global.cpp. Once every-

thing is initialized and ready for the scheduling itself, for each thread, the compiler makes

a call to the init() function inside kmp dispatch.cpp whenever a pragma omp parallel

for with the clause schedule(runtime) is encountered inside the application. This

function then initializes the scheduling technique for the encountered parallel loop, such as

pre-computation of constants or other needed preparations. The function next() is called

by each thread thereafter, when the calling thread has finished the initialization part. This

function implements the algorithm for the scheduling techniques. It means that the calling

thread calculates its next chunk size with the selected technique. After it has obtained the

size of that chunk, it processes it and then calls next() once again until the whole loop

has been computed. Every thread does the same process by calling init() first and then

repeatedly next() until there are no more iterations left to process. If this is the case then

the threads call finish() to reset variables or free allocated memory. As every thread in-

dividually calls the functions and self-calculates its next chunk size, there is no need for a

master thread, also known from centralized models. In order to extend the library with new

scheduling techniques only a few files need to be edited, which is part of the next section.

4.2 Methodology on Extending libomp
One possible option to extend libomp is by searching the responsible code parts for the

scheduling algorithms and then implementing new methods the same way as the exist-

ing techniques were implemented. This approach is effective but can produce some trou-

ble if you don’t know everything about the code. Luckily, the amount of source files
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that need modifications is not high. Section 4.1 already described the relevant files for

scheduling and these are exactly the files that require edits. A very recent case study

[33] presented a generic methodology for extending an OpenMP runtime with new schedul-

ing strategies. An example was given by implementing FAC into libomp. In this thesis,

the methodology of implementing new strategies into libomp is based on the same ap-

proach as in the case study. The following description summarizes the methodology. First,

the library must be able to select new strategies. For this, the enumeration kmp sched

listing all available scheduling techniques in header file kmp.h must be extended with a

new item for each new strategy. In kmp runtime.cpp, new case handling must be added

for each new technique inside the function kmp get schedule. Finally, the source file

kmp settings.cpp needs a modification to allow the user selecting new scheduling techniques

by their names. The relevant functions here are kmp parse single omp schedule and

kmp stg print omp schedule which must recognize the new strategies by their names.

The second part of extending libomp takes place in source file kmp dispatch.cpp. This

is the file to which the actual scheduling logic and algorithm belongs. Starting with the

initialization of a scheduling technique, a new case for each new strategy must be added to

function kmp dispatch init algorithm. This function is called once for each thread

before the loop calculation begins. It focuses on initializing and preparing data structures,

constants or even pre-computations of scheduling related information which are then needed

later. Libomp already provides thread-private and shared data structures which can be

extended in header file kmp dispatch.h. Needed information can be stored in these data

structures and read during the whole process of a single loop. The structures are called

dispatch private info template and dispatch shared info template.

The third part also takes place in source file kmp dispatch.cpp but this time inside the func-

tion kmp dispatch next algorithm. Once again, for each new scheduling technique,

you must add a new case handler, that contains the actual scheduling algorithm to calculate

the next chunk size. This function is also called by each thread, as soon as they have finished

the initialization or computed a previous chunk and want to calculate their next chunk size

for computation.

Finally, when there is no iteration left, the threads call kmp dispatch finish or

kmp dispatch finish chunk to cleanup. Scheduling related variables might need to

be reset for the next loop.

Note: If there is need for additional environment variables that must be read and used in

some scheduling strategies, additional modifications must take place. This can be done by

declaring new variables in header file kmp.h and initializing them to a default value in file

kmp global.cpp. Lastly, the file kmp settings.cpp must be modified to give libomp the ability

to recognize, read and initialize the new environment variables. More precisely, the table

kmp stg table[] must be extended with a new entry for each new environment variable

and an appropriate parser function. Chapter 5 gives more details about how each technique

is implemented.
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Implementation

This chapter describes how we have implemented the new DLS strategies which are pre-

sented in detail in Chapter 2. During implementation, the outlined methodology from

Section 4.2 is followed. The newly implemented strategies have a common logic part that

is described first in this chapter. Further deviations for a chosen technique are mentioned

in the corresponding sections below. The main code for the strategies lies in source file

kmp dispatch.cpp, containing the two functions init() and next(), which are called by

each thread separately, when a parallel loop has been encountered in the application. Gen-

erally, the structure of each technique’s initialization and chunk size calculation is based on

a common way. To initialize a scheduling technique, before the loop calculations starts, the

function init() pre-computes variables or constants and stores them into thread-private

or shared data structures to be used later. Algorithm 5 shows the common part of the

Algorithm 5 Initialization

1: procedure kmp dispatch init
2: switch schedule do
3: case factoring
4: preparations
5: private← variables
6: shared← variables
7: case bold
8: ...
9: end procedure

initialization. Depending on the technique’s requirements, different preparations are made.

The same thing applies to the function next(), which calculates the next chunk size for a

calling thread. A general picture of how that code block looks like can be seen in Algorithm

6. A chosen scheduling case is executed to compute the chunk size and, in the end, set the

loop boundaries for that new chunk to be processed. Mostly, a while loop is used in which

the chunk size is calculated and, if the current starting point is not already taken by another

thread, the while loop ends successfully and, if needed, updated variables are stored back to

thread-private or shared data structures. After a thread has obtained its next chunk size,

it processes that chunk with the calculated loop boundaries and calls the function next()
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again until the loop is done.

Algorithm 6 Next chunk

1: procedure kmp dispatch next algorithm
2: switch schedule do
3: case factoring
4: while 1 do
5: init← shared . read current start iteration
6: cs← calculate chunk size
7: limit← init+ cs . next starting point
8: if obtain chunk == successful then
9: shared← limit . update shared start iteration

10: break
11: end if
12: private← variables
13: shared← variables
14: end while
15: set loop boundaries for current chunk to process

16: case bold
17: ...
18: end procedure

Some of the implemented techniques require additional environment variables to give the

user the ability to set input values, which can be used in the appropriate strategy. Section

5.1 lists all implemented environment variables.

5.1 Environment Variables
While most of the newly implemented techniques don’t require user-provided input values,

some of them do. The ones which require them are FSC, TAP, FAC, WF and BOLD. Other

strategies may have optional input values, such as static, dynamic or guided. Section 2.2

from Chapter 2 has detailed descriptions of the input values and their meaning. Table 5.1

summarizes all implemented environment variables and to which technique they belong.

The environment variables were implemented in source file kmp settings.cpp, following the

methodology described in Section 4.2.
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Table 5.1: New environment variables.

Variable Values Description

OMP SCHEDULE fsc, tap, fac, faca, fac2,
fac2a, wf, bold, awf b,
awf c, awf d, awf e, af, af a

Selection of new scheduling tech-
niques.

KMP MU Integer (>= 0) Mean iteration execution time in
microseconds. Required in TAP,
FAC, FACa and BOLD.

KMP SIGMA Double (>= 0) Standard deviation of iteration
execution times in microseconds.
Required in FSC, TAP, FAC,
FACa and BOLD.

KMP OVERHEAD Integer (>= 0) Scheduling overhead in microsec-
onds. Required in FSC and
BOLD.

KMP ALPHA Double (>= 0). Defaults to 1. Scaling factor of the coefficient
of variation (c.o.v.). Required in
TAP.

KMP WEIGHTS Comma separated string with PU
weights as doubles (> 0). De-
faults to 1 for each PU. The sum
of weights must be equal to the
number of PUs. Example with 4
PUs: ”0.9,0.9,1.1,1.1”.

Indicates the weight for each PU.
Required in WF.

KMP DIVIDER Integer (> 0). Defaults to 10. To specify the number of sub-
chunks. Optional in AF and AFa.

KMP CPU SPEED Integer (> 0). Defaults to 2400. To specify the CPU’s reference
clock frequency in megahertz
(MHz). This is needed for the
adaptive techniques BOLD, AWF
and AF.

KMP MIN Integer (> 0). To set a lower limit for the chunk
size. This is optional and can
be used for every strategy imple-
mented in this thesis.

5.2 Fixed Size Chunking
This technique can be implemented simply by using FSC’s chunk size formula from Sec-

tion 2.2.2.2 during initialization and then dynamically scheduling chunks of that previously

calculated size in the next() function. The formula requires profiling information which

are read from environment variables KMP SIGMA and KMP OVERHEAD. The while loop in

Algorithm 6 is not even needed here. One single atomic operation suffices to increase the

shared chunk index whenever a PU acquires a new chunk.
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5.3 Factoring
Factoring can be implemented in different ways. This thesis implements it in four versions,

namely, FAC, FACa, FAC2 and FAC2a. The original version of Factoring, as described in

Chapter 2, Section 2.2.2.5, is represented by FAC. FAC relies on strong synchronization

between the threads. FACa does the exact same thing as FAC and produces the same

chunks but avoids synchronization by involving more computation. In other words, FAC

lets the first thread compute the chunk size for a given batch number, and every following

thread, that wants its next chunk size from the same batch number, can simply read and

re-use the already computed chunk size without computing it again. This means that for

each batch, the chunk size is calculated only once and then shared among all threads. To

implement this, the whole scheduling and chunk size calculation in function next() must

be synchronized with the use of a mutex. No more than one single thread is allowed to

calculate the next chunk size at the same time. Consequently, a while loop is not needed in

FAC. A shared queue counter is used which holds the number of remaining chunks of the

current batch. Whenever a thread wants to acquire a new chunk but the queue is empty, it

calculates the chunk size for the new batch and stores it into the shared data structure.

FACa on the other hand uses a shared counter so that the threads can identify what the

current batch number j = counter
P is. There is no need to synchronize the scheduling part,

instead, the threads atomically increment the shared counter at the beginning of function

next() and calculate their next chunk size themselves by using the batch number and the

factoring formula. This involves more computation since every thread calculates its next

chunk size for a given batch number redundantly. Which one is the better choice depends on

the system. If synchronization costs are higher than the costs caused by more computation,

the user should choose FACa.

The other two implementations, FAC2 and FAC2a, don’t use any profiling information. As

with FACa, a shared counter is used to identify the current batch number. However, the

chunk size formula is much simpler and less computationally intensive since the variable x is

set to 2. FAC2 and FAC2a produce the exact same chunks but they defer in the way how they

calculate the chunk size for a given batch number j. FAC2 uses the formula Cs = d 12
j+1∗NP e.

FAC2a uses a loop as in FACa to calculate the chunk size for the current batch number.

The reasoning to provide this is to reduce redundancy and only apply the factoring formula

to the last known batch’s chunk size. By storing the last known, thread-private chunk size

you can reduce the amount of calculations.

5.4 Weighted Factoring
The strategy WF uses the exact same algorithm as FAC2a from Section 5.3 but with the

addition of weights. These are read from the environment variable KMP WEIGHTS and the

resulting FAC2a chunk sizes are multiplied with the PU’s weight.
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5.5 Taper
Taper is the only technique that requires a scaling factor α, read from the environment

variable KMP ALPHA. This factor is needed, in addition to µ and σ, to pre-compute the

variable vα during initialization. In the function next() the TAP formula 2.9, shown in

Chapter 2, is used to calculate the chunk size. The number of remaining iterations is hereby

calculated by the number of total iterations minus the current start iteration init obtained

from the shared data structure.

5.6 The Bold Strategy
This technique is the first adaptive strategy implemented in this thesis. It makes use of many

variables that are initialized first in function init() and then continuously updated in

next() to adapt to current system and loop iteration states. BOLD also requires profiling

information, i.e., KMP MU, KMP SIGMA and KMP OVERHEAD. These three user inputs are

needed during initialization as shown in Algorithm 2. After initializing all these variables,

they must be stored in either thread-private or shared data structures. The variables boldM,

boldN, totalspeed and bold time are shared, all other remain private.

In function next(), Algorithm 3 is used to calculate the next chunk size of a PU. However,

an updated variable boldN must be used in the mentioned algorithm. To maintain the

shared variable boldN, you need timing information. For this, the implementation stores

three time points t1, t and t2, also depicted in Figure 2.5. The time t2 is initialized to the

current time at the beginning of function next(). Immediately, also at the beginning, the

time point t is read from a shared variable bold time which then itself is updated to the

current time like t2. bold time can then be used by every other thread, to initialize t. The

remaining time point t1 is nothing else than the old t2 of that same PU. This is done by

storing t2 in thread-private data to be used in the next chunk. With all these information,

the next chunk size can be calculated according to BOLD’s algorithm from Chapter 2.

5.7 Adaptive Weighted Factoring Variants
All AWF variants are based on WF’s implementation. The difference is that AWF adapts

the weights before being applied to factoring. AWF-B uses batches as in FAC. The first

batch size is calculated during initialization in init() by taking 1
2 ×N as the initial batch

size and 1
2 ×

N
P as its chunk size. The weights are initially set to 1 for the first chunk.

AWF-B uses a shared vector of size P to hold each PU’s current π, also called the weighted

average ratio. This vector is initialized to all zeros, meaning, no PU has yet finished any

chunk and updated its π.

In function next(), after the very first chunk has been computed with an initial weight

of 1, AWF-B first calculates the weight of a PU and then continues like WF. The weight

calculation happens before the while loop. The procedure and formulae to update the

weight are described in Section 2.2.2.10 of Chapter 2. The implementation includes shared

locks (from C++14) to protect individual elements of the shared vector from corruptness.

To measure the time of individual chunk execution times, a time point is stored at the
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beginning of function next() and at the end of it. The time difference between the end

of a previous scheduling task and the beginning of a succeeding one is taken as the chunk

execution time.

AWF-C is very similar to AWF-B but it is not batched. Instead, each chunk size is calculated

by applying the factoring rule to the remaining iterations. The remaining variants AWF-D

and AWF-E have the exact same implementations as AWF-C and AWF-B but the only

difference here lies in the time measurement, that not only measures the chunk execution

time but also includes the scheduling time itself. For this, a single time point is stored at

the beginning of each scheduling task and the time difference between the last stored point

and the new one is taken for the formula to adapt the weight.

5.8 Adaptive Factoring
This technique is the last adaptive one implemented in this thesis. Algorithm 4 shows the

steps of how the chunk sizes are calculated. However, the implementation defers slightly

from the description in Section 2.2.2.12 because of performance reasons. Instead of mea-

suring every individual iteration’s execution time and adapting to every each of them, the

implementation schedules portions of a calculated chunk size (i.e. sub-chunks) of iterations

and records their average finishing times. In other words, one sub-chunk gives one average

iteration finishing time. This information is then used to calculate the mean and standard

deviation of the whole chunk, once all of its sub-chunks are finished. After a whole chunk

has been computed, a new chunk is calculated using AF’s formulae and the new estimations

from previous chunks. The new chunk is again divided into sub-chunks and the process is

repeated. The size of a sub-chunk relies on the number of sub-chunks you want. Per de-

fault, a chunk is divided by 4 and, thus, resulting in four sub-chunks. To give the user more

flexibility, the divider can be set in environment variable KMP DIVIDER. Furthermore, two

shared vectors of size P are used to store the current mean and standard deviation values

of each PU. As in AWF, the access to the shared vectors are protected by shared locks.

AF a uses the exact same implementation as AF but with the difference that it not only

takes the chunk execution times into account but the total time including scheduling.
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Optimizations

This chapter holds explanations and performance tests of a few optimizations made to the

implementation. More precisely, the choice of time measurement functions, atomic versus

mutex implementations and different factoring variants are discussed.

The first choice was to find the most efficient way to measure execution times or global time

points. There is the chrono library from C++ standard [43] and the hardware instruction

RDTSCP [44], that returns the Time Stamp Counter (TSC) from the CPU. Figure 6.1(a)

compares these two methods to obtain the current time point. The number of CPU cycles

(or ticks) needed is way higher when using the chrono library than calling the function

rdtscp(). Both calls require less than a millisecond but if a scheduling technique makes use

of many time function calls, this can come costly. This was the reason why we used rdtscp()

in every scheduling technique for time measurements. Figure 6.1(b) shows the two time

function in action while using BOLD strategy with the EPCC schedbench benchmark [8].

This test is an average of 20 repetitions and there is a measurable difference between chrono

and rdtscp(). The difference is even higher when comparing an implementation of BOLD

using atomic accesses (i.e. hardware instructions) or doing the same with mutexes. This

is the reason, why the implementation of every scheduling strategy makes use of atomic

instructions instead of mutexes. However, in some techniques, such as FAC, the use of

mutual exclusion is inescapable.

The reasoning of four different factoring implementations (FAC, FACa, FAC2, FAC2a), as

presented in Section 5.3, is to find the fastest and most efficient one. FAC and FAC2 are

the original implementations based on the description of factoring in Chapter 2. FACa tries

to improve performance of FAC by avoiding mutual exclusion and, instead, using atomic

operations. FAC2 uses the factoring formula to compute the chunk sizes while FAC2a uses an

improved loop for the same formula. Figure 6.2 compares all four factoring implementations,

using the EPCC schedbench benchmark. While FAC is the slowest, FAC2 and FAC2a are

around 1.453 % faster than FAC. The mutex-free variant FACa is also faster than FAC.



Optimizations 33

chrono rdtscp
Time measurement function

0

5000

10000

15000

20000

25000

30000

35000

Ti
ck

s

Time Function Call Cost | xeon

(a) One chrono call takes around 14.6 µs compared
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(b) Atomic vs mutex versions of BOLD.

Figure 6.1: Performance results of two different time measurement options on an Intel
Xeon CPU E5-2640 v4 (a) and EPCC schedbench execution times with atomic and mutex
implementations of BOLD on an Intel KNL CPU with 60 threads (b).
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Figure 6.2: EPCC schedbench, tested on an Intel KNL CPU with 64 threads and 20
repetitions. Loop size is 6.4 million iterations.
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Validation

The implemented strategies from Chapter 5 must undergo a validation process to verify the

correctness of chunk size calculation. This can be done in different ways, such as comparing

the chunks with another, already verified implementation or a standalone tool that only

calculates the chunk sizes based on the proposed formulae. However, since the most reliable

source of a strategy is the original paper itself, we compare the produced chunks with

the expected ones that we calculate based on instructions from the according paper. The

following sections give more details on how the validation process works for nonadaptive

and adaptive strategies.

7.1 Nonadaptive Techniques
Nonadaptive techniques are simpler to validate because the chunk sizes are calculated based

on formulae with fixed information and no adaptation to system state or other side effects

which could change the calculation. By printing out the scheduled chunk sizes and com-

paring these with the expected chunks based on the paper, you can verify that the strategy

itself is correct. An example can be given for FAC2 below. It shows the expected and

experimented chunks when using a loop with 128 iterations and 4 threads. The expected

chunks are calculated with the FAC2 formula from 2.2.2.5. The experimented results can

have different orders of chunks due to PUs being slower or faster and the chunks being

scheduled dynamically. However, the chunks should appear with the same size and amount

as in the expected case and the total number of iterations must be the same.

# Iterations in this loop: 128

# Threads: 4

Expected chunk sizes (formula 2.7):

Each batch has P = 4 chunks of the same size calculated by R/(2*P)

↪→ .

The rule is, that there are P chunks of the same size,

and each batch’ size is divided by 2.
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-------------- Expected --------------

Something similar to the following should happen:

[B 1] [B 2] .........[B 6]

Thread 0: My chunks were: [16] [8] [4] [2] [1] [1] . Sum = 32.

Thread 1: My chunks were: [16] [8] [4] [2] [1] [1] . Sum = 32.

Thread 2: My chunks were: [16] [8] [4] [2] [1] [1] . Sum = 32.

Thread 3: My chunks were: [16] [8] [4] [2] [1] [1] . Sum = 32.

------------ Experimented ------------

Thread 3: My chunks were: [16] [8] [4] [2] [1] [1] . Sum = 32.

Thread 2: My chunks were: [16] [8] [4] [2] [2] [1] . Sum = 33.

Thread 0: My chunks were: [16] [8] [4] [1] [1] [1] . Sum = 31.

Thread 1: My chunks were: [16] [8] [4] [2] [1] [1] . Sum = 32.

7.2 Adaptive Techniques
As with nonadaptive techniques, the adaptive ones are validated similarly but the process is

more complex. The chunk sizes are not only calculated with fixed formulae and constants but

a few variables can change during runtime. To overcome this issue, we decided to print out

every state information during runtime, i.e. the adapted variables and time measurements,

and use this data to manually calculate the expected result, again, with the help of the paper

itself. When the experimented chunks coincide with the expected result, the validation

succeeds.
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Experiments

Here, the results of this thesis are presented. Starting with the used system, a short discus-

sion about scheduling overhead and compiler versus runtime performance tests, continuing

with an overview of all the used benchmark applications, the design of experiments and, fi-

nally, concluding with benchmark suites and their results thereafter. The goal of this chapter

is to show how the newly implemented techniques perform compared to the available schedul-

ing strategies. Many different benchmarks are picked to give a broad view of application

and loop characteristics. It is expected that with irregular loops and/or system variances,

strategies with better load balancing outperform techniques like static or FSC. One more

interesting thing is to see if there are strategies that can perform well in every application,

or polarizing ones, that either perform the best in some benchmarks and the worst in others.

8.1 The System
For every test and benchmark run, the miniHPC cluster of the University of Basel was used.

It consists of 22 dual socket Intel Xeon CPUs and 4 Intel Xeon Phi Knights Landing (KNL)

CPUs. The detailed specifications can be seen in Table 8.1.

Table 8.1: System specifications of miniHPC cluster.

Intel R© Xeon R© Processor E5-
2640 v4 [45]

Intel R© Xeon PhiTM Processor
7210 [46]

Node count 22 (44 CPUs) 4
CPU speed (GHz) 2.4 1.3
Cores / CPU 10 64
Threads / CPU 20 256
RAM (GB) 64 128
Cache (MB) L3: 25 L2: 32

All C/C++/Fortran applications and libomp are compiled with Intel Compiler 19.0.
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8.2 Scheduling Overhead and Compiler vs Runtime
Each strategy has its own scheduling overhead depending on the complexity of the used

algorithm. To gain more insight in scheduling overhead of the implemented strategies, one

can use the EPCC schedbench application [8] which measures the overhead of a parallel

run compared to a reference run without parallel execution, thus, no loop scheduling at all.

Figure 8.1(a) depicts the measured execution times of all scheduling techniques where the

orange bar illustrates the overhead compared to a reference serial execution. As expected,

dynamic (or SS) with chunk size 1 produces the most scheduling overhead. AF does produce

the seconds most overhead while all other remain similar.
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Figure 8.1: EPCC schedbench results tested on Xeon node with 20 threads, 50 repetitions,
2000 microseconds test time and 1 microsecond delay time.

Figure 8.1(b) shows the difference of using the OpenMP parallel directive with

schedule(static|dynamic|guided) and schedule(runtime). The call to the run-

time requires the environment variable to be read and could produce more overhead. How-

ever, the results show that no big changes are expected. In all the following experiments,

the scheduling technique is always selected with the environment variable.

8.3 The Benchmarks
To assess all the implemented techniques, 5 different benchmark suites and a total of 24

applications were selected, analyzed, prepared and tested on the miniHPC cluster. The

applications stem from various scientific domains, such as molecular dynamics, physics, n-

body simulations, math and weather prediction. To have a better overview, all applications

and relevant information can be seen in Table 8.3.
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Table 8.3: The tested benchmark suites and applications.

Suite App Language Domain Used Parallelism # of parallel loops with
schedule(runtime)

# of runs

NAS 3.4

BT
Fortran Math

OpenMP

3

30

CG 1
FT 4
IS C Bucket Sort 2
LU

Fortran Math

5
MG 1
SP 3
EP 1

CORAL Lulesh C Hydrodynamics 3
CORAL2 Quicksilver C++ Monte Carlo transport

simulations
OpenMP, MPI +
OpenMP (4 nodes)

1

N/A
Sphynx Fortran Smoothed Particle

Hydrodynamics (SPH)
MPI + OpenMP (4
nodes)

1
- SPH-EXA C++ 2

SPEC OMP 2012

350md
Fortran

Molecular Dynamics

OpenMP

9
351bwaves Computational Fluid

Dynamics
3

352nab C Molecular Modeling 5
360ilbdc

Fortran
Lattic Boltzmann 5

362fma3d Mechanical Response
Simulation

1

363swim Weather Prediction 3

Rodinia
lud

C

Linear Algebra 1
lavaMD Molecular Dynamics 1

OmpSCR
cmandel Math 1
md Molecular Dynamics 1

N/A
MANDELBROT Math 1
AC Adjoint Convolution 1
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8.4 Design of Experiments
All applications were tested on the miniHPC cluster with 30 repetitions. Multithreading

was always deactivated. For every Xeon test, 20 threads were used and 64 threads for KNL

respectively. To prepare the applications to be tested, they were first traced with a tool

called Score-P [47]. With these traces and the help of a visualization tool, Vampir, you

can find the most time consuming parallel loops inside the application. It is crucial to use

the DLS techniques only for the heaviest loops, otherwise, you will produce more overhead

than accelerating the application. After having found the biggest loops, they were modified

in the source files by using the clause schedule(runtime) to make sure our new imple-

mentations are called. Some of the strategies require profiling information which must be

obtained prior to the tests. For this, we have implemented a special technique itself called

profiling that schedules single iterations and measures their mean and standard deviation of

execution times. This must be done for both CPU types (Xeon and KNL) separately. After

all these preparations, the application can be tested. To guarantee that each repetition

is performed on a clean and fresh node, a Slurm [48] job script was used that submitted

each benchmark job separately to an available node. With 26 total apps (including hybrid

versions and different input sizes for certain apps), 3 pinning strategies for Xeon and 1 for

KNL, 19 scheduling techniques and 30 repetitions, a total of 44460 individual jobs were

executed on Xeon nodes and 14820 on KNL.

8.4.1 Pinning Strategy
Most of the applications were tested with 3 different pinning strategies. OpenMP provides

the environment variables OMP PROC BIND and OMP PLACES which can be used to enable

custom pinning strategies. Our first pinning strategy makes sure that the threads are not

allowed to change cores and produces an equal thread-to-core alignment with 1 thread per

core. Pinning 2 uses unequal and non-fixed binding. It binds the first half of threads

(incremental thread id) to a set of the first 1/4 cores (double-loaded). The remaining half of

threads is assigned to a set of the second half of cores (single-loaded). The binding within

a set is not further defined and may change. Pinning 3 uses fixed thread-to-core binding

like pinning 1 but with unequal balance like pinning 2. More precisely, a core can have 1

to 4 threads pinned to it. In this chapter, only results with pinning 1 and 3 are shown, the

second pinning strategy can be seen in Appendix A. The idea of overloaded CPU cores is

to analyze the weighted and adaptive techniques whether they can improve performance or

not. Appropriate weights must be set in the environment variable KMP WEIGHTS to be used

in WF. If a core has two threads on it, the weight is set to 0.5, if there are four threads, the

weight is 0.25, etc. Table 8.5 shows the details of each pinning strategy for Xeon tests and

which weights are used. Table 8.7 does the same for KNL tests. As for Xeon, Figure 8.2

contains an illustration of all three pinning strategies.
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Table 8.5: Pinning strategies for Xeon.

Env. Variable Pin 1 Pin 2 Pin 3

20 threads, 20 PUs 20 threads, 15 PUs 20 threads, 12 PUs
OMP PROC BIND close close close
OMP PLACES cores ”{0:5:1},{10:10:1}” ”{0},{1},{1},{1},{1},

{2},{2},{3},{4},
{5},{5},{5},
{6},{7}, {7},{8},{9},
{10},{10},{11}”

KMP WEIGHTS ”1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1”

”0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,
1,1,1,1,1,1,1,1,1,1”

”1.0,0.25,0.25,0.25,
0.25,0.5,0.5,1.0,1.0,
0.33,0.33,0.33,1.0,
0.5,0.5,1.0,1.0,0.5,
0.5,1.0”

Socket 0 Socket 1

Pin1

Pin2

Pin3

PUs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

PU Weights: 1.0 0.5 0.33 0.25

x x x x x
T0 - T9 (non-�xed)

T10 - T19 (non-�xed)

T0 T1

T2

T3

T4

T5

T6

T7 T8 T9

T10

T11

T12 T13

T14

T15 T16 T17

T18

T19 x x x x x x x x

Figure 8.2: Illustration of the three pinning patterns for Xeon. An ’x’ marks a PU as
non-used. Pinning 2 defines two places of PUs with a set of threads for each place and
there is no fixed thread-to-core binding within a place.
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Table 8.7: Pinning strategies for KNL.

Env. Variable Pin 1 Pin 2 Pin 3

64 threads, 64 PUs 64 threads, 48 PUs 64 threads, 37 PUs
OMP PROC BIND close close close
OMP PLACES cores ”{0:16:1},{32:32:1}” ”{0},{1},{1},{1},{1},

{2},{2},{3},{4},{5},
{5},{5},{6},{7},{7},
{8},{9},{10},
{10},{11},
{12},{13},{13},{13},
{13},{14},{14},{15},
{16},{17},{17},{17},
{18},{19},{19},{20},
{21},{22},{22},{22},
{22},{23},{23},{24},
{25},{26},{26},{26},
{27},{28},{28},{29},
{30},{31},{31},{32},
{33},{34},{34},{34},
{34},{35},{35},{36}”

KMP WEIGHTS ”1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
1,1,1,1”

”0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,
0.5,0.5,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1”

”1.0,0.25,0.25,0.25,
0.25,
0.5,0.5,1.0,1.0,0.33,
0.33,0.33,1.0,0.5,0.5,
1.0,1.0,0.5,0.5,1.0,
1.0,0.25,0.25,0.25,
0.25,
0.5,0.5,1.0,1.0,0.33,
0.33,0.33,1.0,0.5,0.5,
1.0,1.0,0.25,0.25,0.25,
0.25,0.5,0.5,1.0,1.0,
0.33,0.33,0.33,1.0,0.5,
0.5,1.0,1.0,0.5,0.5,
1.0,1.0,0.25,0.25,0.25,
0.25,0.5,0.5,1.0”
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8.5 Profiling
Schedules like FSC, TAP, FAC and BOLD require profiling information prior to execution.

Some of them are fixed across all benchmarks such as the scheduling overhead which is

required for FSC and BOLD. KMP OVERHEAD has been measured and set to 1 microsecond

for FSC on both platforms, Xeon and KNL. For BOLD, it is set to 2 microseconds on Xeon

and 7 on KNL. TAP’s scaling factor α is set to 1 for all benchmarks and platforms. The

variable KMP CPU SPEED is set to 2400 for Xeon and 1300 for KNL, to make sure that the

correct CPU clock frequency is used with the time measurements. For every benchmark and

scheduling technique (except static, dynamic, guided and trapezoidal), the minimum chunk

size is set to 10 via the environment variable KMP MIN.

The profiling information mean and standard deviation are measured precisely for every

application and platform. Table 8.9 gives an overview of them. Since there are countless

possibilities to find the right input value, it is difficult to compare scheduling techniques

such as FSC, FAC or BOLD with others. The input can be crucial for their performance.

Table 8.9: The apps’ profiling results consisting of mean iteration execution time and its
standard deviation per app. These inputs were used in the experiments.

App Xeon KNL

Mean (µs) SD (µs) Mean (µs) SD (µs)
NASOMP-BT 60 10 245 26
NASOMP-CG 1 0.6 3 1.5
NASOMP-FT 460 50 6100 670
NASOMP-IS (C) 270 250 800 630
NASOMP-IS (D) 12800 11800 162798 146080
NASOMP-LU 20 5 50 11
NASOMP-MG 7 6 12 6
NASOMP-SP 20 5 70 10
NASOMP-EP 1546 39 9961 106
CORAL-Lulesh 1 10 23 253
CORAL2-Quicksilver 3 2.6 16 11
CORAL2-Quicksilver (hybrid) 19 15 26 19
Sphynx 1150 265 3600 510
SPECOMP2012-350md 4300 1270 18170 8200
SPECOMP2012-351bwaves 1933 430 4516 245
SPECOMP2012-352nab 400 260 1000 730
SPECOMP2012-360ilbdc 1 3.7 2 1.2
SPECOMP2012-362fma3d 3 3.6 12 4
SPECOMP2012-363swim 320 130 600 60
RODINIAOMP-lud 3 2 5 1.7
RODINIAOMP-lavaMD 5047 451 18122 1572
OMPSCR-cmandel 109 180 424 701
OMPSCR-md 1490 355 5090 2430
MANDELBROT 7 3.6 58 42
Adjoint Convolution 252 146 1931 1183
Random Sleep 360 1063
SPH-EXA 36 10 160 26



Experiments 43

8.6 NAS Parallel Benchmarks
The first set of applications that are tested in this thesis come from the NAS Parallel

Benchmarks 3.4 [11]. We have tested 8 applications out of this suite. The modifications and

details are listed in Table 8.11.

Table 8.11: NAS Parallel Benchmarks details.

App Size Modified loop file/line Description

BT C x solve.f/49, y solve/49, z solve/49 Solve a synthetic system of nonlin-
ear PDEs using block tridiagonal
kernel.

CG C cg.f/517 Estimate the smallest eigenvalue of
a large sparse symmetric positive-
definite matrix using the inverse it-
eration with the conjugate gradient
method as a subroutine for solving
systems of linear equations.

FT C ft.f/170, ft.f/205, ft.f/524, ft.f/570 Solve a three-dimensional partial
differential equation (PDE) using
the fast Fourier transform (FFT).

IS C, D is.c/544, is.c/707 Sort small integers using the bucket
sort.

LU C ssor.f/103, ssor.f/135, rhs.f/63,
rhs.f/189, rhs.f/345

Solve a synthetic system of nonlin-
ear PDEs using symmetric succes-
sive over-relaxation (SSOR) solver
kernel.

MG C mg.f/606 Approximate the solution to a
three-dimensional discrete Poisson
equation using the V-cycle multi-
grid method.

SP C x solve.f/30, y solve.f/30,
z solve.f/35

Solve a synthetic system of nonlin-
ear PDEs using scalar pentadiago-
nal kernel.

EP C ep.f/166 Generate independent Gaus-
sian random variates using the
Marsaglia polar method.

When looking at the results with pin1 strategy, the first clear thing is that depending on the

application and loop characteristics, one technique can be good or bad. There is no superior

strategy for every case. As an example, dynamic can perform worse than all others such as

in Figure 8.3(a) but may also be the best in NAS IS as depicted in Figure 8.4(c). However,

one can say that very load-balanced techniques such as dynamic or FAC2 and AWF variants

perform better with irregular loops. The opposite is with regular loops which have almost

no variance in iteration times, where static outperforms every other strategy. This behavior

can be seen in NAS CG, depicted in 8.3(c), or MG in Figure 8.6(a). The variance of a

loop, however, does not decide alone whether dynamic or static should be chosen. It also

depends on the system, number of iterations, their mean execution time and data locality

demands. Just by running the same applications CG and MG on the KNL platform with 64
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Figure 8.3: NAS BT and CG Class-C results.

PUs instead of 20 (see Figures 8.3(f) and 8.6(e)), the performance of static falls behind and

is no longer the best. In the case of MG on KNL, the techniques FSC and FAC2 improve

the performance by 6.1 % compared to the fastest OpenMP strategy guided. This gives an

idea of how different systems require advanced or better-fitting strategies.
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Figure 8.4: NAS IS Class-C and D results.

The picture is different when comparing pin3 strategy with pin1. Due to the cause of

overloaded PUs with more than one thread, a PU can perform worse if it is assigned chunks

from multiple threads simultaneously. The strategy static can lead to massive performance

loss in this case since it distributes equal-sized chunks to all PUs. Figures 8.7(a) and 8.7(b)
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Figure 8.5: NAS FT and LU Class-C results.

illustrate this phenomena very well, where static performs bad in combination with pin3

strategy. At the same time, WF can show an improvement of almost 20% compared to

FAC2 and FAC2a, which are the same strategy but without the weights. Nearly in every
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Figure 8.6: NAS MG and SP Class-C results.

pin3 case, WF is faster than its FAC2 counterpart. This shows us, that weighted strategies

can improve systemic load imbalance or heterogeneous PUs. Same accounts for the adaptive

techniques AWF and AF which perform often better than static or dynamic, as depicted in

8.3(b) or 8.5(b). Pin3 strategy does not perfectly simulate this case but it gives an idea of
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Figure 8.7: NAS EP Class-C results.

how unequal PU speeds can be improved via weighted scheduling strategies.
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8.7 CORAL Benchmarks
The second set of tests stem from the CORAL and CORAL2 suites [49]. Two applications,

Lulesh and Quicksilver, were chosen and, this time, a combination of MPI + OpenMP tests

are done. Table 8.13 contains the selected applications and how they have been modified.

Table 8.13: CORAL Benchmarks details.

App Size Modified loop file/line Description

Lulesh 60 lulesh.cc/810,
lulesh.cc/1037,
lulesh.cc/1538

Shock hydrodynam-
ics for unstructured
meshes. Fine-grained
loop level threading.

Quicksilver 100000000 particles
(OpenMP only),
10000000 particles
(MPI + OpenMP)

mc omp parallel for
schedule static.hh/4

Monte Carlo transport
benchmark with multi-
group cross section
lookups. Stresses
memory latency, sig-
nificant branching,
and one large kernel
that is 1000’s of lines
big.

Static does a great job in Lulesh, performing the best on both platforms. Dynamic is about

4 times slower than static in Figure 8.8(a). When looking at Lulesh’s profiling info in Table

8.9, the loop iterations definitely show execution time variance but the mean execution time

is only 1 microsecond which could cause rather high overhead when scheduling individual

and very small iterations, thus the bad performance with dynamic. But the other dynamic

techniques, such as TAP, FAC, FAC2 or AWF are similarly fast as static which is a good

mix of balance between load balance and scheduling overhead even when dealing with very

short iterations. Quicksilver, on the other hand, does not really show a favorite scheduling

technique, except for the non-hybrid version, see Figure 8.9(a), where dynamic is again the

worst performer. One interesting thing here is again WF being the fastest with pin3 strategy

that can be seen in Figure 8.9(d).
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Figure 8.8: CORAL Lulesh results.
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Figure 8.9: CORAL2 Quicksilver results. The hybrid version was tested on 4 nodes for
both CPU types.
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8.8 Sphynx and SPH-EXA
Sphynx [50] and SPH-EXA [51] are two applications which are developed and maintained

at the University of Basel. The modifications and short descriptions can be seen in Table

8.15.

Table 8.15: SPH benchmarks details.

App Size Modified loop file/line Description

Sphynx 1000000 particles treewalkmod
grav mefec.f90/104

An accurate density-based
smoothed particle hydro-
dynamics (SPH) method
for astrophysical applica-
tions.

SPH-EXA -n 150 -s 5 -w -1 domain.hpp/40,
MomentumEnergy-
SqPatch.hpp/29

In this work an extensive
study of three SPH im-
plementations SPHYNX,
ChaNGa, and XXX is per-
formed, to gain insights
and to expose any limi-
tations and characteristics
of the codes. These codes
are the starting point of an
interdisciplinary co-design
project, SPH-EXA, for
the development of an
Exascale-ready SPH mini-
app.

In both cases, Sphynx and SPH-EXA, the technique dynamic always is the worst with pin1

strategy. Especially in Sphynx on KNL, as depicted in Figure 8.10(e), it is very interesting

to see that defining the chunk size of dynamic can improve the performance from, by far, the

worst, to the best. This is once again a trial and error game to find the best fitting chunk

size, as much as finding the best input values for strategies like FSC or BOLD. Other than

that, all methods are similarly fast except for FAC being often slightly behind FAC2 and

FAC2a which might be caused by the mutual exclusion overhead or not the best profiling

information. Same accounts for BOLD that can suffer from bad profiling information.
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Figure 8.10: Sphynx and SPH-EXA results. Sphynx was tested in hybrid mode (MPI +
OpenMP) on 4 nodes for both CPU types.
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8.9 SPEC OMP 2012
SPEC OMP 2012 [12] is a very popular benchmark suite used by many companies such as

Intel to benchmark their products. We have tested six applications from this suite with our

DLS implementation. Table 8.17 lists all use applications and their modified loops.

Table 8.17: SPEC OMP 2012 details.

App Size Modified loop file/line Description

350md ref int ion mix direct.f/84/41/132,
int ion pure direct.f/85/42/142,
int nn direct.f/117/55/186

Physics: Molecular Dynamics

351bwaves ref block solver.F/277,
shell lam.F/260, jaco-
bian lam.F/32

Physics: Computational Fluid
Dynamics (CFD)

352nab ref eff.c/1992/2234/2948/2729/1732 Molecular Modeling
360ilbdc ref mod relax.f90/52, ilbdc-

kernel.f90/149/ 169/178,
mod benchgeo.f90/33

Lattic Boltzmann

362fma3d ref platq.f90/269 Mechanical Response Simulation
363swim ref swim.f/421/334/276 Weather Prediction

In application md, performed on KNL nodes, FAC and FACa are the fastest, even faster than

their counterpart FAC2, that can be seen in Figure 8.11(b). Thinking of all the other results,

this is a rather surprising outcome since FAC and FACa often lie slightly behind FAC2. One

possible explanation could be the big number of 64 PUs a KNL processor comes with and

FAC’s batch size sharing nature among the threads which leads to less computation. When

looking at the exact same application on Xeon in Figure 8.11(a), it is no longer the case that

FAC is faster than FAC2. Xeon’s less crowded 20 PUs and higher core processing speeds

might not benefit that much from FAC’s batch size sharing. Nevertheless, the problem with

finding the best profiling information, which is required in FAC and FACa, could also be

just luckily chosen. This issue of schedules requiring input values makes comparisons a lot

harder. One of the highlights in SPEC can be found in nab in Figures 8.11(e) and 8.11(f)

where static and dynamic are overwhelmingly outperformed by schedules like guided, FSC,

FAC2, AWF variants and AF. Where static took almost 1000 seconds, FAC2 could finish in

under 750 seconds. With KNL, the difference is even higher.

Another interesting result is depicted in 8.12(f), in which dynamic is faster than any other

technique, which is rather a rare thing to observe. The same application on Xeon shows

a completely different picture where static is by far the fastest technique. This example

shows that not only the application itself but also the system can change the decision on

which technique should be considered. Finally, in swim, see Figure 8.12(e), it is very well

explainable that static is the fastest because when looking at this application’s iteration

times in Table 8.9, there is not much of variance compared to the mean execution time. In

the case of KNL the difference is even higher, thus static being the leader.
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Figure 8.11: SPEC OMP 2012 350md, 351bwaves and 352nab results. These benchmarks
were performed with pinning strategy 1 only.
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Figure 8.12: SPEC OMP 2012 360ilbdc, 362fma3d and 363swim results. These
benchmarks were performed with pinning strategy 1 only.
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8.10 Rodinia Benchmark Suite
The applications lud and lavaMD are taken from the Rodinia benchmark suite 3.1 [9]. Table

8.19 shows the details and modified loops of the two chosen applications.

Table 8.19: Rodinia benchmark suite details.

App Size Modified loop file/line Description

lud 16000 lud omp.c/123 Linear Algebra
lavaMD 90 kernel cpu.c/112 Molecular Dynamics
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Figure 8.13: Xeon results for Rodinia lud and lavaMD.

The newly implemented strategies perform all well in both Rodinia applications on Xeon.

With lud on KNL, see Figure 8.14(a), AF marks an exception by being similarly slow as

dynamic. Just like dynamic, AF also comes with a lot of overhead, especially when dealing

with short but many iterations. Additionally, the results give an impressions that AF

performs worse on the KNL platform than on Xeon.
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Figure 8.14: KNL results for Rodinia lud and lavaMD.

8.11 OmpSCR
From the suite OmpSCR [10] we have chosen cmandel and md for our experiments. Table

8.21 has more details about their modifications.

Table 8.21: OmpSCR benchmark suite details.

App Size Modified loop file/line Description

cmandel 10000000 points c mandel.c/107 Mandelbrot
md 16384 particles, 1000

simulation steps
c md.c/162 Molecular Dynamics

The newly implemented scheduling techniques FSC, TAP, FAC2 and AWF variants can

shine in the application md on both CPU platforms as the Figures 8.15(c) and 8.15(f) show.

On KNL, around 4% improvement to the fastest available scheduling technique, in this case

guided, and 6% to static can be achieved by FSC and FAC2. The application cmandel,

however, does not show any winner besides of AF having a very high variance. It is very

interesting that from application to application, the results can vary so drastically and in

some, all the techniques perform similarly.
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Figure 8.15: OmpSCR cmandel and md results.
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8.12 Mandelbrot and Adjoint Convolution
The last two applications stem from a freely available source and are called MANDELBROT

[52] and AC [53]. Table 8.23 has more details about the two applications.

Table 8.23: MANDELBROT and AC details.

App Size Modified loop file/-
line

Description

MANDELBROT -x pix 8000 -y pix
8000

mb 1D collapsed.c/
136

Mandelbrot

AC matrix size = 1000 ac.c/49 Adjoint Convolution

25

26

27
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Figure 8.16: Xeon results for MANDELBROT and AC.

The first thing to say about MANDELBROT and AC is that static is always a bad choice

in every case. These two applications really show that DLS techniques can’t be avoided

if performance demands are critical. In every pin1 case, the techniques FAC2 and AWF
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Figure 8.17: KNL results for MANDELBROT and AC.

variants belong to the best performers. The same is true for guided. With pin3 strategy,

the technique WF is again faster than its non-weighted version FAC2.

8.13 Random Sleep
For experiment reasons, a very small and synthetic application was written in this thesis

(see source in Appendix B) to give dynamic a better chance, showing its strength. This

application consists of a single parallel loop that contains 10000 iterations and is repeated

10 times. The loop simply lets a thread wait for a uniformly distributed random time

variable between 1 to 6000 microseconds for the first 10% of iterations. The remaining 90%

of iterations let the thread wait for 1 to 6 microseconds, thus, having a much higher variance

in the beginning of the loop. It is very interesting to see that, besides dynamic and AF, even

FSC can achieve a very good performance with the right input values. Guided, trapezoidal

and factoring techniques perform still twice as fast as static.
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Figure 8.18: Xeon results for Random Sleep with pin1 strategy.



9
Conclusion and Future Work

We have implemented 11 new DLS techniques into libomp and tested them with 24 different

benchmark applications. We have shown that not one specific scheduling technique fits for

all cases. Depending on the chosen application and its loop characteristics, either static

methods or certain dynamic ones achieve the best performance. The available OpenMP

scheduling techniques, static, dynamic and guided do not reach the best performance in

every application and system. New systems with many, more complex and heterogeneous

processing units, could benefit from adaptive or weighted strategies. This thesis gives an

example with its implementation and wants to motivate future OpenMP versions to allow

and include new scheduling techniques.

The results have shown that every strategy has its strengths and weaknesses. In the case of

dynamic (or SS), it is almost never a good choice since it produces too much overhead. It

was one of the worst performers when looking at this thesis’ results. However, in irregular

applications with long iteration execution times, such as SPEC OMP 2012’s swim applica-

tion, and especially when ran on KNL with 64 PUs, dynamic could outperform every other

scheduling strategy. Irregular loop iteration times do not mean that dynamic is the best

choice since it also depends on the system, number of iterations, their mean execution times

and data locality demands. Very small iterations, but large in their amount, can produce

extreme overhead with dynamic as seen with Lulesh. Additionally, since threads pick single

iterations randomly, the effect of data locality is lost. By specifying the chunk size to 64 or

another desired size, you can reduce dynamic’s overhead and improve data locality within

a chunk.

When looking at the factoring methods, almost in all cases, FAC2 performed better than

FAC. This can be justified by the fact that FAC uses mutual exclusion in its scheduling

algorithm and it relies on good profiling info where FAC2 uses a less complex algorithm with

faster atomic function calls instead of mutual exclusion and there is no need for profiling

information. In general, FAC2 produced very good results across all applications and plat-

forms. One could say, if you don’t know what to choose, take FAC2. The adaptive weighted

factoring techniques have shown similar speeds as FAC2.

Two different pinning strategies were presented in this thesis, to test the weighted and

adaptive DLS techniques and how they interact with overloaded PUs. The results have
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shown that WF is almost always faster than its identical counterpart FAC2a but without

the weights. This shows that the weights can help to improve load balance when the system

has certain unequal PU speeds or other constant systemic load imbalance. AF could also

lead to better performance with overloaded PUs in pin3 strategy. With heterogeneous PUs

it could show even more of its adaptive strength. We could not measure a benefit of AWF

with pin3 strategy compared to FAC2 but if different PU speeds were available, this could

have given another picture.

Strategies like FSC, TAP, FAC and BOLD require profiling information which is a critical

part to make them work as intended. The results show that BOLD is often a bad performer

because of its bad input data. At the same time, FSC could outperform every technique,

even static, when using good input data. The process of finding them, however, is extremely

difficult and time consuming since the application must be profiled prior to runtime.

For the future, it would be interesting to see if scheduling techniques could be implemented

by the user itself and used by the compiler. There is ongoing work in this area, also called

User Defined Scheduling or UDS. By allowing the user providing these techniques, one could

take this thesis’ implementation and use it without the need of a compiler or runtime that

must implement it. Talking about compilers, one possible work could be to implement all

the DLS methods, provided by this thesis, into the compiler itself so that the technique can

be chosen as static or guided. Other work could be to make this implementation production

ready and push back into the official libomp repository to make it available for everyone.

For this, however, a few changes might be needed since this thesis did use a few components,

such as std::vector or std::mutex, from the C++ standard library. By resolving these depen-

dencies and using optimized functions provided by libomp itself, the compatibility would be

maintained. A very interesting topic would be to test this implementation on heterogeneous

systems with truly different processing unit speeds, not just an unbalanced pinning strat-

egy, and see what the weighted and adaptive techniques perform. The technique fractiling

was not implemented in this thesis due the expected high overhead in its work-stealing (or

borrowing) feature. Nevertheless, it would be interesting to see if fractiling can improve

performance with its data locality usage on shared memory systems. Finally, to tackle an

issue with multiple and different loops inside an application and the techniques that require

profiling information, it would be interesting to find a way of giving multiple input values,

one for each loop, that then can be used by the runtime for the particular loops. The libomp

version in this thesis does only allow profiling information for one single loop. Strategies

like FSC, FAC, TAP and BOLD could benefit from multiple input values.
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A
Pin2 Results

Here are the results of pin2 strategy. This thesis does not comment on these because of

pin2’s non-fixed thread-to-core binding. For completeness reasons, it is included here.
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Figure A.1: NAS BT, CG, FT and IS-C results with pin2 strategy.
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Figure A.2: NAS IS-D, LU, MG, SP and EP results with pin2 strategy.
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Figure A.3: CORAL, Sphynx and SPH-EXA pin2 results.
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Figure A.4: Results for Rodinia, OmpSCR, MANDELBROT and AC with pin2 strategy.



B
Random Sleep

#include <thread>

#include <random>

#include <chrono>

#include <iostream>

#include <omp.h>

int main()

{

const long size = 10000;

const int reps = 10;

double start, end, time;

std::mt19937_64 eng{std::random_device{}()};

std::uniform_int_distribution<> dist1{1, 6000};

std::uniform_int_distribution<> dist2{1, 6};

start = omp_get_wtime();

#pragma omp parallel shared(eng, dist1, dist2)

{

for (int i = 0; i < reps; i++)

{

#pragma omp for schedule(runtime)

for (long n = 0; n < size; ++n) {

if (n < size * 0.1)

std::this_thread::sleep_for(std::chrono::

↪→ microseconds{dist1(eng)});

else

std::this_thread::sleep_for(std::chrono::

↪→ microseconds{dist2(eng)});

}
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}

}

end = omp_get_wtime();

time = end - start;

std::cout << "Time: " << time << " seconds.\n";

}
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