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Abstract

The constant increasing number of processors in high performance com-

puting (HPC) systems and processes (parallel tasks that each application

consists of) in parallel scientific applications leads to a challenge of efficient

mapping between processes and processors. The way the parallel tasks are

placed onto the computation units (processors) interconnected by a given

network topology is of a paramount importance for the overall performance

of the application. Approaching the Exascale computing era in HPC, the

communication overheads and latencies play a significant role and require a

thorough and accurate assessment, considering their impact on the applica-

tion’s execution time. An efficient mapping strategy should be able to reduce

not only computation time for the given application, but even its energy con-

sumption, and allow the application’s tasks to make an efficient usage of the

assigned resources of the computing system [8]. The present work is focused

on an implementation of the different mapping strategies proposed in the

literature and an experimental evaluation of the results on the highly adap-

tive energy-efficient computing platform (HAEC) - a research project of the

Technical University of Dresden, Germany [14].
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Introduction

Nowadays, steadily increasing interest in high performance applications

can be observed in different fields of science: from study of molecular dy-

namics, calculation of physical equations, to simulations of behavior of black

holes and providing experiments to obtain new chemical elements [1]. The

constant demand in such applications and exponential growth in data they

need lead to the development of massively parallel machines with hundreds

of thousands and even millions cores on board — the top supercomputer in

the list of TOP500 [2] China’s “Sunway TaihuLight” has more than 10 mil-

lion cores. The development and science are fast approaching the Exascale

computing era, and one can claim that new Exascale supercomputers should

have on board hundreds of millions of processing units to achieve the goal

of Exascale — a peak performance above 1 Exaflop (1018 floating operations

per second). The next-generation Exascale computer should not only lead to

an improving in calculation speed, but also in data transmission efficiency.

The challenging issue for high performance computing (HPC) is still the

energy consumption for computation and cooling [8]. It is becoming a sig-

nificant concern, because a politico-economic pain threshold is suggested to

be 25 megawatts (MW) as a working boundary, according to [9]. However,

the HPC community anticipates that Exascale systems could consume over

100 MW, and just few of the existing computer centers can provide an ad-

equate infrastructure. As a consequence, the challenge is turning into the

question: How to exploit efficiently the available computing resources of the

9
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given network topology and make the energy consumption economically and

environmentally acceptable [8]? One practical method to solve the problem

is to improve data locality, in other words, the way the data are placed onto

available processors units (the CPUs). In fact, by doing so, the communica-

tion cost has a potential to be reduced. Therefore, the overall execution time

of the application and its energy consumption would be decreased: \Data

movement across the system, through the memory hierarchy, and even for

register-to-register operations will likely be the single principal contributor to

power consumption. ... Since much of the power in an exascale system will

be expended moving data, both locally between processors and memory as well

as globality, the X-stack must provide mechanisms and APIs for expressing

and managing data locality. These will also help minimize the latency of data

accesses" [9].

Placing the highly communicative pairs of application’s tasks as close as

possible reduces the communication time significantly (the number of hops

each message must traverse between two ends is decreasing), and as a re-

sult, the total performance of the application is increasing. As most of the

HPC applications and network topologies can be represented as (un)directed

graphs, the problem of placing the parallel tasks becomes a mapping of appli-

cation’s communication graph onto the underlying network topology graph.

Mapping of two graphs is an NP-hard [10]. The researchers propose various

methods for topology mapping: greedy methods of placing most-heavily com-

municative vertices as close as possible [10], recursive graph bipartition [11],

heuristically minimizing the total number of hop-bytes communicated and

exploiting application’s geometric information [12], [13].

To the best of our knowledge, there is not a sufficient number of works

considering numerous algorithms for static mapping and assessing their pre-

simulation, during simulation, and post-simulation performance. The cre-

ation of a list with the most efficient mapping algorithms is necessary in
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order to arrive at an insight into the problem of using certain approaches

in each special case — whether one is interested in the performance of the

parallel application or in the energy efficiency of the application. The aims

of this thesis are to provide an overview of different mapping techniques

existing in the literature, to implement these algorithms, to experimentally

evaluate their results (pre-simulation) and to validate them using a simula-

tion framework for highly adaptive energy-efficient computing platforms —

HAEC-SIM [14].

This work is divided into the following parts: in Chapter 1, the insights

into the problem of mapping tasks or processes to the nodes (CPUs or pro-

cessing element (PE)) of the target computing system are given. The defi-

nition and the background of tasks-to-nodes mapping found in the literature

are also discussed in Chapter 1. The target architectures are detailed in this

section as well. An overview of the selected mapping algorithms and their

characteristics are represented in Chapter 2. The review of the commonly

used performance metrics, as well as other proposed metrics in the literature,

the test instances, and the experimental setup are provided in Chapter 3.

The algorithmic performance with respect to the mapping quality assessed

by the metrics and the execution time for the algorithms are provided in

Chapter 4. The validation of the results with via the simulation using the

HAEC-SIM framework of the best mapping strategies, obtained from Chap-

ter 4, and their analysis are described in Chapter 5. The thesis is completed

in Chapter 6 with conclusions and an outline of the future work.



Chapter 1

Background

The chapter gives an introduction into the topic of a tasks-to-nodes map-

ping problem, current limitations in the field, tasks and network topologies

representation, as well as some details about HAEC Box.

1.1 Mapping Problem

Parallel applications consist of a number of tasks that exchange informa-

tion and synchronize among them by using different communication patterns.

Usually, such applications are designed in the way that they have to be run

on parallel architectures. Hence, their interchange actions are arranged with

certain communication schema, that tries to use efficiently the architecture

of machine (cluster, high performance supercomputer, etc.), where the appli-

cation is executed. The communication pattern of the given application can

be represented as a virtual topology. Knowing that there is a variety of the

network topologies (mesh, torus, fat-tree, hypercube, etc.), it is hard to find

an ideal or even good match between the virtual and physical network topolo-

gies. The mapping problem can be seen as a minimization problem of some

cost metric associated with the assignment processes (application’s tasks)

to nodes. In this thesis, the focus is on minimizing the following metrics:

Inter-node physical communications (IeNPC) and Weighted Task Average

12
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Distance (WTAD) (see Chapter 3). It turns out, that the mapping problem,

i.e. the problem of deciding whether there exists such mapping M, that has a

number of IeNPC or WTAD lesser than or equal to given x, is NP-hard [10].

Moreover, an exact polynomial time algorithm for the mapping problem is

hardly to be created [19].

The poor mapping may lead to an inefficient usage of the resources of the

underlying physical topologies, that causes large delays and latency (two com-

munication tasks are placed far away to each other, so number of traversable

hops is increasing), bandwidth bottlenecks (most communicative pairs of

tasks use the same links), and as well big number of messages congestion

and dilation [22]. As a result, the applications are losing their performance

just due to the fact, that communication pairs are placed in a poor way.

Hence, the mapping problem is a vital problem in HPC world, and the man-

ner the tasks are mapped onto allocated processors has a remarkable impact.

The careful mapping allows the tasks more efficiently to use the assigned

resources.

1.2 Definitions

Both, the tasks of the application and HPC platform architecture can be

represented as undirected weighted graphs.

Application Tasks Graph The parallel application can be represented

as an undirected graph Gt =< Vt; Et >. The tasks of the application are

considered as separate processes. The vertices in Vt are tasks (processes) of

the high performance application and edges in Et represent communications

between the tasks. Each vertex vt 2 Vt may have a weight wt, that is an

execution cost associated with the vertex on a given processor [23]. However,

in this thesis only homogeneous applications and topologies are considered,

in other words, the amount of computation for each task on each node (CPU
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or PE) is the same. Similarly, each edge eij = (vi; vj) 2 Et has a weight cij,

that represents either the amount of communication in bytes between vertices

vi and vj, or a number of communication messages [19], [20]. The present

work considers the latter as the weights of the edges.

Processing Elements Topology Graph The network topology can be

modeled as an undirected graph Gp = < Vp; Ep >, on p = jVpj vertices.

Each of the Vp vertices represents a processor. The edges Ep � Vp�Vp repre-

sent the links in the network architecture. If the capacities of the connecting

links between the processors are not equal, i.e. one considers a topology with

heterogeneous links, the graph can be defined as Gp = < Vp; !p >, where

!p(i; j) defines the link capacity between any two processors i; j 2 Vp and

!p(i; j) = 0 in case of absent such link [8],[10].

Task Mapping In the present work, the emphasis lies on the static point-

to-point mapping. It means that only one task can be processed by one of the

allocated nodes (CPU or PE), and the mapping is calculated before any exe-

cution of the application. In this case, two graphs must have the same number

of vertices. Two graphs are said to be isomorphic to each other if there is

a one-to-one correspondence between their vertices and between their edges

such that the incidence relationships are preserved [18]. Hence, the mapping

problem according to [19] is equivalent to the graph isomorphism problem.

Therefore, using the definition of the graph isomorphism and its notions, the

tasks mapping can be specified as a mapping function M : Vt ! Vp, which

maps the tasks (processes) of Vt onto the nodes (processors) of Vp. If the

task vt 2 Vt is mapped onto the node vp 2 Vp, one could say that the relation

M(vt) = vp is defined. The objective of the mapping function is to reduce

the IeNPC and WTAD values between two communication tasks.
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1.3 3-D Interconnection Topologies

Once the mapping problem and the mapping function are defined, one

can consider the hardware topologies, that must run our high performance

applications. For the different mapping algorithms (see in Chapter 2) three

physical topologies were chosen: a three dimensional mesh (k-ary 3-mesh), a

three dimensional torus (k-ary 3-cube) and the HAEC topology. The mesh

and torus are mostly common in HPC systems (in June 2017 seven of the top

ten supercomputers in the Top500 list have torus network or its variation),

whereby the HAEC topology is unique to the HAEC Box [14]. Below in

Figure 1.1 one can observe a graphical representation of each of the topologies.

One must note, that 3 � 3 � 3 version instead of regular 4 � 4 � 4 version

of the HAEC Box is illustrated for better visibility. In this thesis, the three

topologies of size of power of two in each dimension are considered, namely,

4� 4� 4, 8� 8� 4, 16� 8� 8, and 16� 16� 16 .

xy
z

(a) 3-D Mesh

xy
z

(b) 3-D Torus

xy
z

(c) HAEC Box

Figure 1.1: Graphical representation of the 3 � 3 � 3 topologies: (a) 3-ary 3-mesh (mesh);
(b) 3-ary 3-cube (torus); (c) HAEC Box.
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1.3.1 HAEC Box

The HAEC (Highly Adaptive Energy-efficient Computing) Box (Figure 1.1(c))

is a novel architectural concept of the Technical University of Dresden, Ger-

many1, that utilizes innovative ideas of optical and wireless chip-to-chip com-

munication [14]. The HAEC Box belongs to high performance-low energy

parallel computing platforms. The topology is designed to be 3-D with 64

processing elements organized as 4 � 4 � 4. A group of 16 nodes (4 � 4)

is placed onto a single 2-D board and connected using optical links into

a 2-D torus (solid lines in Figure 1.1(c)) with a transmision bandwidth of

250 Gbit/s. Processing elements of neighboring boards can all communi-

cate with each others via wireless links (dotted lines in Figure 1.1(c)) with

transmission bandwidth of 100 Gbit/s. The wireless links represent a fully

connected topology, i.e. each of the processing elements communicate with

all of his 16 neighbors placed on the adjacent board [14], [17]. Due to the

fact that the actual hardware development is still being ongoing, the authors

present the event trace-based simulator HAEC-SIM [14]. Running energy-

aware applications, the simulator allows the deep exploration of the conjec-

tural performance and energy costs of the HAEC Box.

1https://tu-dresden.de/sfb912



Chapter 2

Tasks-to-Nodes Mapping Strategies

The task mapping problem is known as an NP-hard [10], but still consid-

ered as an interesting and important problem. Several approaches to solve

the problem have been proposed in the literature [8]. They can be classi-

fied according to [20] into three categories: graph-theoretic, mathematical

programming, and heuristic methods. Graph-theoretic category represents

application’s tasks as an undirected weighted graph and uses minimal-cut

algorithm to retrieve a task assignment with minimum interprocessor com-

munication. In the second category, mathematical programming, the main

problem is how to assign a certain number of facilities to a certain number of

locations with the minimum cost [22]. This optimization problem is solved

using mathematical programming techniques. And the last, not the least

group is heuristic methods that frequently provide fast but suboptimal solu-

tions because of the fact, that usually it is hard to find an optimal solution

in rational time due to a space complexity of the problem [23]. The general

classification of the strategies by Kafil et al. [23] is given in Fig. 2.1.

17
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Static Task
Assignment

Optimal Sub-optimal

Restricted Non-restricted

Graph
Theory

Mathematical
Programming

State-space
Search

Approximate Heuristics

Greedy
Task

Clustering
Randomized
Optimization

Bin-Packing

Genetic
Algorithms

Simulated
Annealing

Mean Field
Annealing

Figure 2.1: Classification of mapping strategies. Algorithms from the classes

highlighted using color gradient are considered in the chapter.

All static tasks-to-nodes algorithms can be classified into two large groups:

optimal and sub-optimal strategies according [23]. As one can observe, opti-

mal mapping strategies are further divided to restricted and non-restricted,

where the first ones yield optimal solutions in polynomial time, and the sec-

ond ones return optimal solutions, but very often, not in polynomial time.

The sub-optimal strategies in turn consist of two classes: approximate and

heuristics. The approximate algorithms may guarantee a solution that is

within a certain range from the optimal solution [23]. Heuristics are designed

for finding any solution (it may not be necessary optimal) more quickly, when

classic methods are too slow or fail in solving of the problem. Most of the

research efforts are put on the development of heuristic algorithms, as one

is visually demonstrated on Fig. 2.1 (three groups out of four, considered in

this thesis, are heuristic algorithms). This fact can be explained due to the

intractable and NP-hard nature of the problem, where everyone tries to find

any solution for the particular mapping problem.

In this thesis, the additional mapping algorithms are studied as a com-

plement to already described in the work [24]. The full list of the algo-

rithms can be found on page 6. They are all considered in terms of the



19

four mapping strategies, represented in Fig. 2.1: Graph theory (Recursive

Bipartition Mapping algorithm [11]), Task clustering (PaCMap: Topology

Mapping [26]), Bin-Packing (Topology-aware Task Mapping [12]), Greedy al-

gorithms (Generic Topology Mapping [10], GreedyAllC Mapping [27], Fast

and High Quality Greedy Mapping [13], Utilization-based depth-first Map-

ping [28]).

Task clustering algorithms try to put the groups of most communicative

tasks together. In turn of Bin-Packing, the algorithms use a policy of tasks

ordering and a policy of a placement for the tasks. All greedy algorithms

assign one task to one node (CPU or PE) at each step, trying to greedily

map task’s heaviest neighboring to the neighboring of allocated node, until

a complete assignment is reached.

In the following sections all algorithms will be considered in details. At

first, two already described algorithms in [24] will be explained: Bokhari’s

Pairwise Interchange and Minimum Manhattan Distance. Then, additional

to them algorithms come to the turn.

2.1 A Pairwise Interchange Algorithm: Mapper

Shahid Bokhari in [19] proposed a heuristic algorithm called Mapper. The

algorithm receives as input a communication (adjacency) matrix of the ap-

plication graph and returns a permutation matrix that matches as close as

possible an adjacency matrix of the topology (the considered topology in [19]

is a finite element machine). The algorithm uses a pairwise interchanges of

the elements of the input matrices with probabilistic jumps to improve the

initial provided mapping and a cardinality of the given problem matrix. The

good explanation of the algorithm in short can be found in [24], and the algo-

rithm in [19]. The following listing (Algorithm 1) represents the algorithm.
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Algorithm 1 A Pairwise Interchange: Mapper

Data: Gp; Gt;M : Vt ! Vp (initial mapping)
Result: B : Vt ! Vp (improved mapping)
B  M ;
done false;
while not done do

repeat
improved false;
foreach u 2 Vt do

1: examine pairwise exchange of u with every v 2 Vt n fug;
2: select pair hu; vi with largest gain in jM j;
3: if largest gain > 0 then exchange pair hu; vi;
4: if largest gain > 0 then improved true;

end

until improved = false;
if jM j < jBj then

done true;
else

B  M ;
randomly interchange n pairs in M ;

end

end

2.2 Minimum Manhattan Distance Algorithm

This algorithm, proposed in [24], exploits the idea of minimizing a Man-

hattan distance [3] to map applications tasks. The goal of the strategy is

to place the most communicative pairs as close as possible with respect to

the hops between allocated nodes. As a first step a list of all communicative

pairs is created, that follows a priority policy — the most communicative

ones (total amount in bytes of exchanged messages or total amount of sent

messages) are in the top of the list. Then, the first communicative pair is

placed onto the center of the network topology with a node distance of 1 hop.

The next pairs are either mapped to a free node, that is nearest to an already

assigned processors (with respect to the minimizing of Manhattan distance),

if one of the processes in the pair has been already mapped, or as close as

possible to the center of the topology. The listing of the algorithm is repre-



21

sented in Algorithm 2. The function NEARESTNEIGHBOR is implemented

as a breadth-first search algorithm. It finds a next free node to the given

node-parameter.

Algorithm 2 Minimum Manhattan Distance

Data: Et (decreasing ordered by weight), Gp

Result: M : Vt ! Vp

M  fg;
start  (bdx=2c; bdy=2c; bdz=2c);
foreach (u; v) 2 Et do

switch (u; v) do
case u 2M; v =2M do

M(v)  NEARESTNEIGHBOR(u);
case u =2M; v 2M do

M(u)  NEARESTNEIGHBOR(v);
case u =2M; v =2M do

M(u)  NEARESTNEIGHBOR(start);
M(v)  NEARESTNEIGHBOR(u);

end

end

2.3 Recursive Bipartitioning Algorithm

In computer science graph partitioning is a common technique. Graph

partitioning is mostly used to partition the underlying graph model of com-

putation and communication. In case of tasks-to-nodes mapping an appli-

cation and topology can be represented as graphs. In the application graph

the nodes denote objects to be computed, and the edges — a communication

between these nodes. This graph needs to be partitioned such that there are

few edges between the blocks (pieces). In particular, if one wants to use k

processors the graph will be partitioned into k blocks of about equal size [29].

Then, it is possible to map the blocks of nodes (or groups of nodes) onto al-

located processors of the network topology. The algorithm proposed in [11]

by Jingjin Wu bipartitions both the communication graph and the physical

topology graph recursively until the mapping M : Vt ! Vp is found. For the
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graph partition a set of serial programs for partitioning graphs “METIS” [5]

is used in the experiments section of the present work. The cardinality of the

application graph Gt is equal to the cardinality of the topology graph Gp.

Algorithm 3 Recursive Bipartitioning Mapping

bipartitioning mapping(Gt, Gp)

if jGpj == 1 then
{
M(Gt) = Gp

return;
}

/* bipartition both graphs Gp and Gt into subgraphs */

/* Gi=1;2, such that jG1j = jG2j for tasks and processors graphs */

(G1p; G2p) graph bipartition(Gp);
(G1t; G2t) graph bipartition(Gt);
bipartitioning mapping(G1t,G1p);
bipartitioning mapping(G2t,G2p);

2.4 Topology Mapping of Unstructured Communica-

tion Patterns: PaCMap

The idea behind the PaCMap algorithm (partitioning and center mapping)

is to simultaneously make a job allocation and task mapping in order to

reduce overall communication overhead and time needed to execute HPC

application [26]. The algorithm could be divided into two main parts: Center

Machine Node selection and Center Task Group selection. As a preparation

step, if it is needed, the communication (task) graph can be partitioned into

k task groups, where k is equal to the number of available allocated nodes in

the underlying network topology. After the preparation step each task group

fits into a single node in the cluster. The authors of the algorithm propose

to use the “METIS” library [5] for graph partitioning. Next, the PaCMap

algorithm finds a center of each task group and maps it to the selected center

node of the network topology. After, the expansion of the allocation takes

place until all tasks are mapped. An interested reader can find the details of
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the algorithm, namely how the center node and the center of each task group

are selected, in [25], or deeper analysis and evaluation of the algorithm with

mapping background in [26].

2.5 Topology-aware Task Mapping

The algorithm, proposed in [12], is an iterative algorithm, the main goal

of which is a selection of a next process from the set of the application tasks

to be placed on a next node from the set of available topology’s nodes (CPU

or PE). The way the next process and next node are chosen is guided by

an Estimation function. The function makes an assessment of the placing of

certain process on certain processor in the current cycle of the algorithmic

loop. Hence, one can find the best processor, where the placing cost of the

current chosen task is the least. However, for some tasks it is not necessary to

be placed on the best processor. What matters is a criticality of the placing

of the task in the current cycle of the loop. With help of the Estimation

function one can find the measure of the criticality, and, therefore, one can

select the most critical task and place it onto the best processor in the current

cycle. The listing of the algorithm is given below in Algorithm 4. Here, Vt

and Vp are the sets of the processes (tasks) in the application and allocated

for the application physical processors (CPU or PE) of the network topology,

respectively.

There are three estimation functions proposed by authors in [12]. For all

of them it is needed to define the following parameters: Tk — the set of the

tasks that remain to be placed, Pk — the set of available processors on kth

iteration. Respectively, Tk — the set of already placed tasks and Pk — the

set of processors that have been already used for mapping tasks from Tk.

The distance dp(� ; �) between any two processors p1 and p2, needed to

compute the value of the Estimation function, could be considered, for ex-
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ample, as a Manhattan distance [3]. The number of messages sent between

two processes is represented by a value of cij [19], [20].

Algorithm 4 Topology-aware Task Mapping

Data: Vt,Vp, jVtj = jVpj = n
Result: M : Vt 7! Vp

T1  Vt; P1  Vp

for k  1 to n do
max criticality  �1;
for task 2 Tk do

criticality(t) =∑
p∈Pk

fest(t;p)

n�k
�minp2Pk

fest(t; p);

if criticality(t) > max criticality then
tk  t;
max criticality  criticality(t);

end

end
min cost 1;
for processor p 2 Pk do

if fest(tk; p) < min cost then
pk  p;
min cost fest(tk; p)

end

end
M(tk) = pk;
Tk+1  Tk � ftkg;
Pk+1  Pk � fpkg;

end

2.5.1 First order approximation

The estimation function considers the situation, when the placement of

some of the tasks is not yet known. Therefore, only the contribution of the

communication with already assigned tasks could be taken into account:

fest(ti; p;M) =
X
tj2Tk

cij � dp(p;M(tj)) (2:1)

This estimation function was used for conducting the experiments, de-

scribed in Chapter 4.
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2.5.2 Second order approximation

This type of estimation function calculates the contribution to communi-

cation with not yet assigned tasks. The function assumes that certain task

tj 2 Tk would be placed on a random processor. Hence, it approximates

the distance between p and M(tj) by the expected distance of p to other

processors:

dp(p;M(tj)) �
P

pj2Vp
dp(p; pj)

jVpj
(2:2)

Thus, the estimation function takes the form:

fest(ti; p;M) =
X
tj2Tk

cij � dp(p;M(tj)) +
X
tj2Tk

cij �
P

pj2Vp
dp(p; pj)

jVpj
(2:3)

2.5.3 Third order approximation

The last approximation of the estimation function considers as well as in

Section 2.5.2 the contribution to communication of not yet assigned tasks,

but takes into account the fact, that they could be mapped only onto the

processors that are available, i.e. that are still in the set Pk. The second

order approximation does not take into consideration this constraint. In other

words, the distance between any processor p and M(tj) can be represented as:

dp(p;M(tj)) �
P

pj2Pk
dp(p; pj)

jPkj
(2:4)

2.6 Generic Topology Mapping Strategy

The algorithm proposed in [10] is similar to all other greedy algorithms.

However, this version considers edge weights, and, as authors claim, could

be applied to heterogeneous network topology. The greedy mapping starts
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at some vertex vp 2 Gp, chooses the heaviest (the most communicative)

vertex vt 2 Gt and greedily maps its heaviest neighboring vertices in Vt to

the neighboring vertices in Gp with heaviest connections. The process does

it recursively until the moment where all tasks are mapped onto allocated

processors. The listing of the presented algorithm is given in Algorithm 5.

Algorithm 5 Greedy Graph Embedding

Data: Gp, Gt, ~C(v) = ~1 v 2 Vt

Result: M : Vt 7! Vp

S  Vt; Q priority queue; s 2 Vp - start;
while S 6= ; do

find vertex m 2 S with heaviest out� edges;
if C(s) = 0 then

pick new s 2 Vp : C(s) � 1;
end
M(m) = s; S = S nm; C(s) = 0;
foreach uj(m;u) 2 Et and u 2 S do /* add neighbors of m 2 S to Q */

Q (m;u)ju 2 S;
end
while Q 6= ; do

(u;m) Q;
if C(s) = 0 then

find closest to s vertex t 2 Vp : C(t) = 1; using Dijkstra‘s algorithm
s = t

end
M(m) = s; S = S nm; C(s) = 0;
foreach uj(m;u) 2 Et and u 2 S do /* add neighbors of m 2 S to Q */

Q (m;u)ju 2 S;
end

end

end

2.7 GreedyALLC Mapping Strategy

The algorithms of the group GreedyALL proposed in the [27], are the

descendants of the usual greedy algorithms, in particular, from Section 2.6.

The authors require, that the network topology to be homogeneous, i.e. one

processor of it can process only one task of the application and jGpj = jGtj.
As a prerequisite for the algorithm one needs to calculate t(� ; �) — a value
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of time that a sending of one unit of information takes through the edges

e1; : : : ; el of the topology along some routing path P in Gp:

t(P ) =
lX

i=1

1

!p(ei)
(2:5)

t(up; vp) = min( t(P ) j P connects processes up and vp) (2:6)

Due to the case that one should consider a homogeneous topology, as

the authors require, all connections have the same weights, for instance

!p(ei) = 1. The listing of the algorithm is given in Algorithm 6.

Algorithm 6 The GreedyALLC Mapping

Data: Gt, Gp, with jVtj = jVpj
Result: Pairs (vi

t, v
i
p), such that M : Vt 7! Vp defined by M(vi

t) = vi
p

Find v0
t 2 Vt with maximal

P
e=fv0

t ;vtg2Et
!(e); v0

p 2 Vp with minimal
P

up2Vp
t(up; vp)

Create vectors sumt = ~0 and sump = ~1 of length jVtj
for i 0 to jVcj � 1 do

sumt(v
i
t) �1 // Mark as assigned

sump(vi
p) INT MAX // Mark as assigned

forall et = fvi
t; !g 2 Et do

if sumt[!] � 0 then // ! is not yet assigned
sumt[!] sumt[!] + !t(et)

end

end

Pick vi+1
t such that sumt(v

i+1
t ) is maximal

for j  0 to jVpj � 1 do
if sump[j] < INT MAX then // j is not yet assigned

sump[j] 0
forall et = fvi+1

t ; !g 2 Et do
if sumt[!] < 0 then // ! has already been assigned

sump[j] sump[j] + !t(et) � t(j;Γ(!))
end

end

end

end
Pick vi+1

p such that sump(vi+1
p ) is maximal

end
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\The Greedy algorithm does not link the choices of vertex vit and vertex vip.

The algorithm aims at a high communication volume of vit with all or one of

the already mapped vertices of Gt and a high centrality of vip w.r.t. all or one

of the already mapped vertices of Gp. The actual increase of communication

times caused by the new pair (vit; v
i
p) is not considered" [27]. Especially, the

choice of vip strongly depends on the choice of vit. GreedyALLC takes this

increase of communication into account.

2.8 Fast and High Quality Greedy Mapping

The algorithm proposed by Mehmet Deveci et al. in [13] tries to minimize

the number of hops taken by each packet (the weighted hop). An interested

reader can find an explanation of the metric in the paper mentioned before.

As a prerequisite to the algorithm one must stress that it considers a task

graph Gt as symmetric, in other words, a distance (number of hops) between

some task vi and vj is the same regardless of direction. The algorithm starts

with mapping the most-communicative (with the maximum send-receive com-

munication volume) task to a randomly chosen node of the topology. The

algorithm stores the total connectivity of each task, that is a neighbor to the

already mapped ones, in the heap and updates this heap every time when a

new task is mapped. Until all tasks are mapped, the algorithm pops a head

of the heap (the most communicative task) — tbest, and looks for a best node

from the list of the available ones for the task, using GetBestNode function.

It returns either one of the farthest allocated nodes, in case of an absent

connections between tbest and the mapped tasks, or the nearest one from the

nodes to whom one of the neighbors of tbest is mapped, that can be found

with a breadth-first search (BFS) on the graph Gp. In the algorithm a value

NBFS represents the number of initially mapped vertices. As authors claim,

the large NBFS considers the loosely connected components of the application
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graph Gt to the nodes that are located far away from each other. But, these

proposal could not work for the task graphs with a very low diameter. The

listing of the algorithm is presented in Algorithm 7.

Algorithm 7 Fast and High Quality Greedy Mapping

Data: Gt = (Vt; Et), Gp = (Vp; Ep), with jVtj = jVpj,
NBF S: # vertices to be initially mapped

Result: M : Gt ! Gp

Initialize the max-heap: connt  0 8 t 2 Vt

I Find the most communicative task (MCT):
t0  tMCT

I Map t0 to an arbitrary node:
M(t0) m0

I Update connectivity for the tasks in nghbor(t0):
forall tn 2 nghbor(t0) do

conn:update(tn; c(t0; tn))
end
while 9 an unmapped t do

if number of mapped tasks < NBF S then
tbest  the farthest unmapped task found by BFS

else
tbest  conn:pop() I the one with maximum connectivity

end
mbest  GetBestNode(tbest; Gp; Gt;M; conn)
M(tbest) mbest

forall tn 2 nghbor(tbest) do
conn:update(tn; c(tbest; tn))

end

end

2.9 Utilization-based Depth-first Algorithm

The efficient mapping should place adjacent tasks from the application

graph Gt as close as possible to each other on the processors of the topology.

In this way, when tasks communicate, the messages can traverse a lower

number of hops to reach their destination. The key aspect of the algorithm

proposed in [28] is the order in which the task graph Gt is traversed. Most

utilized edges are traversed firstly to reduce interconnection between tasks.
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The algorithm is recursive and greedy. First, it maps the most communica-

tive task to the central node in the topology. Then, the map next function

searches among all outgoing edges of the task, mapped in the previous step,

one with the biggest weight (most utilizable edge) and places its another

task-end onto the next free processor. This process is repeated until there

are no outgoing edges between already mapped and remaining tasks. The

variable p shows which processor is currently chosen to being allocated for

the next task.

The algorithm has been slightly modified to satisfy the prerequisite of

1 : 1 mapping this thesis considers. Initial algorithm in [28] was set up to

many to one mapping, i.e. one physical processor could host more than one

application task. The new version not only takes into account 1 : 1 mapping,

but as well chooses as a start node the most central one, and as a next

free — the closest node to whom where one of the neighbors of the chosen

task has been mapped. The modified algorithm is presented in the listing

below (Algorithm 8).

Algorithm 8 Utilization-based Depth-first Mapping Modification

Data: Vt, Vp, jVtj = jVpj = n
Result: M : Vt 7! Vp

function map next(i; p)
while 9 ei;j with tj unmapped do

k  argmaxj(!(ei;j)) // find the task connected by the \heaviest" edge

node the closest node to M(i)
M(k) = node
Vt = Vt n k
Vp = Vp n node
p map next(k; node)

end
return p

function map()
M(start task) = start node
map next(start task; start node)

return M
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2.10 A* Algorithm

The well-known A� algorithm from the area of artificial intelligence could

be considered in additional to already described algorithms. The informed-

search algorithm guarantees an optimal solution, but could not work with

the problems of big sizes due to its high time and space complexity. The

algorithm is used as a tree search algorithm. It means, that the root of

tree (start node) is an initial (null) solution of the problem, intermediate

nodes are the partial solutions, and the leafs represent the goal. With each

node the cost function f is associated. The nodes are ordered for search

according to the costs in the way the node with the lowest cost is considered

first. The value f(n) of the node n is computed as a sum of two other

functions g(n) and h(n), where first one is the cost of the path from the

start node to n, and second one estimates the cost of the cheapest path

from n to the goal. In the case of tasks-to-nodes mapping, g(n) would be the

number of the inter-node physical communications and should be represented

as an accumulative sum; h(n) has a value, which can be obtained if all the

remaining unmapped communications would be mapped to the nodes using

single hop distance between them. Thus, h(n) is the number of the remaining

unmapped communications multiplied by 1 hop.

Choosing the next node to consider, the algorithm minimizes the cost of

communications and maximizes the number of mapped communications. It

means that in each step the algorithm tries to map the maximum number of

communications for the lowest cost.
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Proposed Evaluation Approach

In this section the test instances, the experimental setup and the way the

mapping algorithms are evaluated will be specified.

3.1 Performance Metrics

In literature, to assess a quality of a mapping algorithm, two different cost

metrics are used: dilation and congestion. Dilation represents the average

length of the path taken by a message sent from some process u to process v:

dilation(uv) =
X

p2P (M(u)M(v))

Υ(M(u)M(v))(p) � jpj; (3:1)

where the function Υ(�) represents the routing algorithm, and P (uv) is the

set of simple paths (each edge occurs only once). For each pair processes

u and v, Υ(uv) is a probability distribution on P (uv). In other words, if

p 2 P (uv), then Υ(uv)(p) is the fraction of traffic from u to v that is routed

through path p [10].

The congestion of a link e connecting u and v is the ration between the

amount of traffic on that link and the capacity of the link:

32
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Traffic(e) =
X
u;v2Vt

!(uv)

0@ X
p2P (M(u)M(v));e2p

Υ(M(u)M(v))(p)

1A ; (3:2)

congestion(e) =
Traffic(e)

c(e)
; (3:3)

where !(uv) is the amount of communication between u and v, and c(e) is

the capacity (bandwidth) of the link e [10].

In the thesis the mapping algorithms are evaluated by using two groups

of the metrics:

1. Logical metrics:

(a) Inter-process logical communication (IePLC) defines the total num-

ber of exchanged messages between any two processes, is indepen-

dent of the mapping strategy and a property of the task graph.

(b) Intra-node logical communication (IaNLC) shows the total number

of processes that are mapped onto the same physical node.

(c) Inter-node logical communication (IeNLC) is the sum of all ex-

changed messages between nodes resulting from the mapping of

the communication pairs but neglecting the network topology.

2. Physical metrics:

(a) Inter-node physical communication (IeNPC) is the total number of

messages two nodes exchange regarding the network topology and

the applied routing protocol [17].

(b) Weighted Task Average distance (WTAD) defines the weighted av-

erage distance between communicating application tasks [21].

These metrics are considered in the thesis, because they represent not only

physical nature of the performance, when the application tasks are already
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mapped onto the allocated processors, but as well the logical behavior of the

tasks in the given parallel application.

Because of the fact, that one considers 1 : 1 mapping of processes and

nodes in the present work, the values of the inter-node logical communications

(IeNLC) are equal to the values of the inter-process logical communications

(IePLC). The intra-node logical communications (IaNLC) are equal to zero

for the same reason — there is no messages exchange inside the node. Thus,

both values of IeNLC and IaNLC are not listed in this thesis.

The value of IeNPC (pre-simulation) can be calculated as:

IeNPCpre�sim =
NX
i

#hopsi �#messagesi; (3:4)

where N is the number of communication pairs in the application, hopsi

is the number of hops between the processors where the tasks of the ith

communication pair are mapped, and messagesi — the overall number of

exchanged messages between the tasks of the ith communication pair.

It should be noted that the authors of [21] propose two methods to calcu-

late the task average distance: normal one (TAD) and weighted one (WTAD).

They claim that frequent communication can increase an utilization of the

allocated resources, and the most talkative pairs of application tasks must be

mapped as close as possible. However, the normal average distance (TAD)

considers all pairs of communicating tasks. It could be excessive due to het-

erogeneity of the traffic between task pairs. For this reason, they suggest

to use WTAD version of the metric, in which the communication matrix is

used as an indicator of weights [21].

WTAD =
1

jVtj � jVtj � 1

X
a2Vp

X
b2Vp

d(a; b) �W�� 1(a);�� 1(b); (3:5)

where ��1(a) returns the identifier of the task t running on processor a, and
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matrix W = [wi;j]i;j2Vt
represents the number of exchanged messages between

tasks i and j, respectively;

TAD =
1

jVtj � jVtj � 1

X
a2Vp

X
b2Vp

d(a; b) �B�� 1(a);�� 1(b); (3:6)

where matrix B is a boolean (0-1) version of communication matrix W and

captures whether there is a communication between tasks (1) or not (0).

3.2 Experimental Setup

To be able to compare different mapping strategies, one need to run the

pre-simulation experiments on real-world applications. The OTF2 [16] traces

of the NAS Parallel Benchmark (NPB 3.3) [4] applications were chosen for

this purpose, namely the traces of the pseudo applications BT — Block Tri-

diagonal solver and LU — Lower-Upper Gauss-Seidel solver of classes C and

D, and compiled with different number of MPI processes (64, 256, 1024, 4096).

\Discrete event traces capture the run time behavior of parallel applications

on existing systems and form the basis of the simulation"[14]. The traces of

LU.C.64 and BT.C.64 were collected as performance relevant events using

Score-P [15] measurement infrastructure during the execution of the desired

applications on 4 KNL (Knights Landing) nodes of the cluster “miniHPC”

of High Performance Computing department of Mathematics and Computer

Science faculty at University of Basel. The details of the KNL CPU archi-

tecture are presented in Table 3.1. The commands used to create the traces

can be found in Appendix A.

Initially, the traces of all problem sizes were recorded on the HPC system

“Taurus” at Technical University of Dresden, Germany. However, the reason

of the re-collection the applications traces with 64 processes on “miniHPC”

cluster is the necessity to validate the experimental results in terms of message-
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related statistics (see Section 5.3).

Model name 7210
Number of CPUs 64
CPU rate 1300 MHz
Threads per core 1
L1d cache 32K
L1i cache 32K
L2 cache 1024K
Main memory 96 GB
MCDRAM (mode) 16 GB (flat)
The cluster mode of the chip all to all
Linux version Centos7.XX
Hyper threading not enabled

Table 3.1: The detailed information of a KNL node of the miniHPC cluster

3.3 Proposed Experiments

The experiments could be considered as a sequence of three main steps:

pre-simulation, simulation and post-simulation. During the first step, all de-

scribed algorithms are implemented in Python, the resulting mappings are

evaluated with the physical performance metrics, considered earlier in Sec-

tion 3.1, and the list of the “best” mappings is created. Then the simula-

tion step comes in turn. The benchmark traces are mapped to mesh, torus,

HAEC Box topologies with the “best” mappings, obtained on the previous

step, with HAEC-SIM framework. Finally, the post-simulation step com-

pares the impact of these “best” mappings for benchmark traces of the LU

and BT applications (the values of IeNPC before the simulation and after

are compared).

3.3.1 Implementation of the mapping algorithms and their setup

for pre-simulation evaluation

All algorithms were implemented with Python 3. The graph represen-

tation of both application and network topologies is possible with help of
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(a) Communication pattern of the point-to-point messages exchanged in LU.C.64

(b) Communication pattern of the point-to-point messages exchanged in BT.C.64

Figure 3.1: Graphical representation of the NAS benchmark applications LU and BT

of class C compiled with 64 processes on 64 cores of 4 KNL nodes (16 cores on each).

The heat map shows the amount of sent/received messages between processes.

The sender/receiver of the y and x axes denote ranks of the sender processes

and of the receiver processes, respectively
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NetworkX. It is a Python language software package for the creation, manip-

ulation, and study of the structure, and function of complex networks [6].

The extracted from the traces point-to-point communication matrices (see

on Fig. 3.1) are taken as input for each of the mapping algorithms. Then

the algorithms create graphs with data from the matrices (the intersection

of a row and a column in the matrix represents the communicative pair of

tasks (vertices in a graph) and an amount of sent messages, respectively (the

weight of an edge between vertices)), and map them onto the selected and

de�ned previously network topologies | 3-D Mesh, 3-D Torus, HAEC Box.

The topologies as well could be easily represented as graphs: the vertices have

an edge between them only if the respective nodes in the network topology

have a connection link between them. The number of nodes in the topologies

is equal to the number of MPI processes, used for the compilation of the

benchmark applications.

Each of the implemented mapping function returns a dictionary (Python's

data format of the following form: \element : value"), that consists of the

list of the IDs of the application tasks and IDs of the processors, where the

tasks were mapped. An example of such output can be proposed:f 1:0, 2:1,

3:4, 2:3g. It means that a task with ID = 1 has been placed on a processor

with ID = 0, a task with ID = 2 | on a processor with ID = 1, and so on.

Then the output, created byPython's script, are the mapping �le, needed for

the HAEC-SIM simulations, the statistic of the mapping | the calculated

values of the performance metrics, described in Section 3.1, and the execution

time of the mapping algorithm.

The mapping �le, as it has been mentioned earlier, contains a map of the

tasks IDs (they are could be considered as MPI ranks or OpenMP threads)

to the processors of the network topology. It should be noticed, that the dic-

tionary, returned by each of the mapping functions, must be slightly modi�ed

to be written in the mapping �le. The dictionary is �rst reversed, namely
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the elements and values are becoming now values and elements, respectively

(they are just swapped). Then, the IDs of the processors are changing in the

form of xyz representation, i.e. for the 4� 4 � 4 topology the processor with

ID = 0 becomes the processor with 0; 0; 0 coordinates, the processor with

ID = 1 gets 1; 0; 0 coordinates, the processor withID = 63 becomes the

processor with 3; 3; 3 xyz coordinates. The format of such mapping �le for a

4 � 4 � 4 topology is represented in the listing below.

<mapping name>

x coord y coord z coord number of processes process id(s)

0 0 0 1 3

1 0 0 1 11

[...]

3 3 3 1 45

The �rst row shows the name of the used mapping strategy to generate

the mapping �le. Starting from the third row, each line de�nes the fact, that

the computing nodes with coordinates (�rst three number inxyz notion) are

allocated for one application task (its ID is in the last column). In other

words, the task with ID = 3 is mapped to the node with 0; 0; 0 coordinates.

The results of the pre-simulation step for all mapping algorithms are discussed

in more details in Chapter 4.

3.3.2 Simulation setup using the HAEC-SIM framework

During this step the properties of the application's events, captured by the

OTF2 [16] traces, are modi�ed. Thus, the output of the simulations are the

event traces that describe the predicted application behavior. For providing

the simulations on the HAEC-SIM platform, one needs to have three input

�les: an input trace �le, a con�guration �le and a mapping (positions) �le.
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The input trace �les have been created (see Section 3.2) and can be used for

the simulation. The mapping �les are results of the runningPython's script

during the pre-simulation step, described in the previous subsection.

One thing left for the successful simulation is the con�guration �le. The

�le contains all parameters related to the simulated system, such as type of

links of the topology, their bandwidth and latency, rate of the errors, the

shape of the topology (mesh, torus, . . . ), type of routing and parameters of

sent messages, etc. For the experimentsDimension Order Routing (DOR)

communication model is chosen. Using DOR in a 3-D topologies, the packets

are �rst routed in the x dimension, then in they dimension, and lastly in

the z dimension. All the results, presented in Chapter 5 are valid just for

this communication model. It must be noted as well, that theshortest �

path routing protocol is used in the present work for routing the messages

in 3-D Mesh and Torus. For HAEC Box | its own haecbox protocol. For

more details, see [7], [14], and [17]. The examples of such con�guration �les

for 3 topologies considered in this thesis and the commands for running the

simulations are given in Appendix A.

3.3.3 Assessment of the impact of mapping via post-simulation

analysis

As a result of each simulation, one will get the simulation trace, the statis-

tic of which is calculated, using HAEC-SIM moduletrace stats to make an

insight in the impact of the certain mapping, whether the results, that were

obtained in the pre-simulation step, are still valid on the real network topolo-

gies. In other words, whether the assumptions about the good performance

of several mappings before simulation hold after the simulation as well.

The module trace stats gets as input the simulation trace and returns

the statistics of this trace, such as total duration of the trace in picoseconds,
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average number of hops traversed by each message size group, total number

of exchanged messages in each of the message size group, etc. The illustration

of the returned statistics �le will be given in Section 5.2. The command used

for the retrieving the statistics with this module are given in Appendix A.

The overall representation of the experiments discussed above is given in

Figure 3.2.

Figure 3.2: The work
ow of the experiments

The following Tables 3.2|3.4 represent the design of experiments. The

mark x in the cell means that the experiment (the action in the table) was

conducted, the empty cell | the experiment was not conducted for the

present thesis and is left for future work. The details of the experiments

are given in Chapters 4|5.

The total amount of CPUs in the \miniHPC" cluster is 696 (22 Xeon

nodes with 20 CPUs and 4 Xeon Phi nodes with 64 CPUs), and it is not

su�cient to run the parallel applications with 1024 (and more) processes, it

seemed wiser to not create traces for them on \miniHPC" and use for the

experiments recorded on Taurus traces (to create communication matrices).
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Action

Application
LU.C.64 BT.C.64 LU.C.256 BT.C.256 LU.C.1024 BT.C.1024 LU.D.4096 BT.D.4096

Traces for the
application
on miniHPC

x x x x

Traces for the
application
on Taurus

x x x x x x x x

Communication
matrices for
the application

x x x x x x x x

Comparison on
mapping-related
statistics

x x

XYZ-trace for
the application
(with xyz mapping
for an initial trace)

x x

Simulation traces
with the best
mappings using
xyz-trace as an input

x x

Comparison on
message-related
statistics

x x

Table 3.2: Design of experiments: applications

First two rows of Table 3.2 are connected with Step 1 of the work
ow of

the experiments (see Figure 3.2), and representwhat traces ofwhat paral-

lel applications where were recorded. Third row demonstrates fromwhat

traces of the applications the communication matrices were created (Step 2

of the work
ow). The last four rows | the traces of what applications were

used to perform HAEC-SIM simulations (Steps 5 and 6 of the work
ow).

Table 3.3 showswhat algorithms were implemented for the considered

parallel applications (Step 3 of the work
ow), and which of the created

mappings were chosen for the experiments (Steps 4|6). Table 3.4 informs

what models of the network topologies were used for the experiments.
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Action
Algorithm

Mapper MinMD Bipartition PaCMap TopoAware Greedy GreedyALLC FHGreedy UDFS A �

Mappings for
LU.C.64 and BT.C.64

x x x x x x x x x

Mappings for
LU.C.256 and BT.C.256

x x x x x x x x x

Mappings for
LU.C.1024 and BT.C.1024

x x x x x x x x x

Mappings for
LU.D.4096 and BT.D.4096

x x x x x x x

Comparison on
mapping-related statistics
for LU.C.64 and BT.C.64
(HAEC-SIM simulations)

x x x x x

Comparison on
message-related statistics
for LU.C.64 and BT.C.64
(HAEC-SIM simulations)

x x x x x

Table 3.3: Design of experiments: algorithms

Action
Topology

3-D MESH 3-D TORUS HAEC BOX

Number of nodes 64 256 1024 4096 64 256 1024 4096 64 256 1024 4096

Topology model
for execution algorithms
in pre-simulation

x x x x x x x x x x x x

Topology model
for validation algorithms
in HAEC-SIM simulator

x x x

Table 3.4: Design of experiments: 3-D interconnection topologies



Chapter 4

Pre-simulation Experiments

4.1 Results

The results of the execution time of all above mentioned mapping algo-

rithms for three main network topologies are given below. The execution

time was measured by Python's librarycProfile . Table 4.1 lists the execu-

tion time of generating the mapping for the LU (class C, 64 MPI processes)

application of the NAS parallel benchmarks.

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

LU.C.64 3-D Mesh 3-D Torus HAEC Box
Mapper 1.964 4.418 6.214
MinMD 0.002 0.002 0.002
Bipartition 0.054 0.067 0.069
PaCMap 0.100 0.105 0.252
TopoAware 0.876 0.905 1.027
Greedy 0.038 0.059 0.187
GreedyALLC 0.064 0.067 0.098
FHGreedy 0.017 0.013 0.046
UDFS 0.013 0.022 0.022

Table 4.1: Time to generate the mapping (in sec) for LU.C.64 on 4� 4 � 4 topologies

Table 4.2 shows the execution time of generating the mapping for the BT

(class C, 64 MPI processes) application of the NAS parallel benchmarks.

The statistics of the inter-node physical communications and weighted

task average distances (IeNPC and WTAD, see Section 3.1) for the consid-

44
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Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

BT.C.64 3-D Mesh 3-D Torus HAEC Box
Mapper 18.098 6.347 20.500
MinMD 0.001 0.002 0.002
Bipartition 0.058 0.067 0.078
PaCMap 0.127 0.105 0.251
TopoAware 1.234 0.905 1.721
Greedy 0.049 0.059 0.211
GreedyALLC 0.070 0.067 0.130
FHGreedy 0.021 0.013 0.078
UDFS 0.012 0.022 0.023

Table 4.2: Time to generate the mapping (in sec) for BT.C.64 on 4� 4 � 4 topologies

ered algorithms with communication matrices of the applications LU.C.64

and BT.C.64 are shown in Figures 4.1 | 4.6. Each pair of graphical plots

demonstrates the values of two metrics, used in this thesis to compare the

quality of the proposed mapping algorithms. The horizontal black line on

the left graphics represents the value of the inter-node logical communication

(IeNLC), that is the sum of exchanged messages between nodes, neglecting

the network topology. The distance between bars and this line should be min-

imized. The best mapping algorithms have the smallest di�erence between

the value of IeNLC and values of IeNPC their bar graphs represent.

On the right plots the values of the weighted task average distance (WTAD)

are visualized. Additionally, the values of the default consecutive mapping

\xyz" are added, like the authors of [21] propose to compare the algorithmic

performance. It means, that the tasks are mapped onto the nodes in the or-

der of identi�ers, starting an assignment of the task withId = 1 to the node

with Id = 1, and ending the assignment of the last task to the node with

highest identi�er. The lesser the value of WTAD is, the better performance

the algorithm, showed this value, demonstrates.

The corresponding numerical values can be found in Appendix B. All

measurements were conducted on Intel Corei5� 2410M CPU at 2:30GHz� 4,

with 12 GB of RAM, running Ubuntu 14.04.
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(a) Number of IeNPC (b) WTAD

Figure 4.1: Statistics for LU.C.64 on 4� 4 � 4 3-D Mesh

(a) Number of IeNPC (b) WTAD

Figure 4.2: Statistics for LU.C.64 on 4� 4 � 4 3-D Torus

(a) Number of IeNPC (b) WTAD

Figure 4.3: Statistics for LU.C.64 on 4� 4 � 4 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC
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(a) Number of IeNPC (b) WTAD

Figure 4.4: BT.C.64 on 4� 4 � 4 3-D Mesh

(a) Number of IeNPC (b) WTAD

Figure 4.5: BT.C.64 on 4� 4 � 4 3-D Torus

(a) Number of IeNPC (b) WTAD

Figure 4.6: Statistics for BT.C.64 on 4� 4 � 4 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC
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Like the graphical plots show, a list of \leaders" from the algorithms could

be created. There are 5 of the strategies, that demonstrate their quality, in

average in the best way w.r.t. the both metrics, for all tests made for the

parallel applications LU.C.64 and BT.C.64, namely:

ˆ Bokhari's Mapper,

ˆ Partitioning and Center Mapping (PaCMap),

ˆ Topology-aware Task Mapping,

ˆ GreedyALLC Strategy,

ˆ Fast and High Quality Greedy Mapping.

One need to compare the pre-simulation statistics, what were obtained

during the experiments on the local machine, with the post-simulation statis-

tics, in order to see whether the assumptions\before" hold \after" the

simulation as well. In other words, whether the tendency of a reducing the

number of IeNPC is keeping, or not, on the real physical computing machines.

Therefore, the results of these �ve \best-quality" algorithms are chosen to

check their performance after the simulations on the HAEC-SIM framework

(see Chapter 5), that will return the statistics for each message's group (the

groups are di�ered by message size): average number of hops (meaning phys-

ical links) traveled, average duration of transfer time in seconds, and average

delivered transferred rate for the links in bytes per seconds. It is the most

important aspect of using the HAEC-SIM simulations, testing whether the

hypothesis before simulation are still valid after the simulation. This is a

form of veri�cation of the presumption that the mapping A is better/not

than the mapping B for the application C on the architecture D.

One could now assume that theGreedyALLC mapping shows the best

performance for LU parallel application of NAS benchmark on 3-D Torus

network topology. The same observation for BT application can be done

from the graphical plots: Bokhari'sMapper algorithm produces the best per-
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formance values on HAEC Box topology. The assumptions will be validated

in Chapter 5.

However, one thing should be stressed out. If one is interested only in

time, the algorithms produce the mappings, one must distinguish time from

the quality. Looking at the results, presented above, one can de�nitely �gure

out, that the best-quality algorithms are usually not among thequickest

ones, even for the small problem size. Hence, it is necessary to keep in mind,

whether one is ready to sacri�ce the quality to time, needed to get some

(sometimes, even the worst) results.

Tables 4.3 and 4.4 list the execution time of generating the mappings for

the LU and BT (class C, 256 MPI processes) applications of the NAS parallel

benchmarks.

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

LU.C.256 3-D Mesh 3-D Torus HAEC Box
Mapper 18.069 129.993 570.569
MinMD 0.014 0.006 0.012
Bipartition 0.258 0.274 0.640
PaCMap 2.056 2.482 11.408
TopoAware 172.542 170.339 189.863
Greedy 0.632 0.718 10.341
GreedyALLC 0.973 0.964 2.537
FHGreedy 0.072 0.076 1.890
UDFS 0.130 0.142 0.402

Table 4.3: Time to generate the mapping (in sec) for LU.C.256 on 8� 8 � 4 topologies

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

BT.C.256 3-D Mesh 3-D Torus HAEC Box
Mapper 100.995 169.521 1449.485
MinMD 0.015 0.009 0.014
Bipartition 0.142 0.153 0.344
PaCMap 2.321 2.872 12.935
TopoAware 171.838 176.841 217.270
Greedy 0.647 0.762 10.813
GreedyALLC 1.033 1.112 2.938
FHGreedy 0.155 0.121 3.066
UDFS 0.128 0.197 0.607

Table 4.4: Time to generate the mapping (in sec) for BT.C.256 on 8� 8 � 4 topologies
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The statistics of the inter-node physical communications and weighted

task average distances for the applications are shown in Figures 4.7 | 4.12.

(a) Number of IeNPC (b) WTAD

Figure 4.7: LU.C.256 on 8� 8 � 4 3-D Mesh

(a) Number of IeNPC (b) WTAD

Figure 4.8: LU.C.256 on 8� 8 � 4 3-D Torus

(a) Number of IeNPC (b) WTAD

Figure 4.9: Statistics for LU.C.256 on 8� 8 � 4 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC
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(a) Number of IeNPC (b) WTAD

Figure 4.10: BT.C.256 on 8� 8 � 4 3-D Mesh

(a) Number of IeNPC (b) WTAD

Figure 4.11: BT.C.256 on 8� 8 � 4 3-D Torus

(a) Number of IeNPC (b) WTAD

Figure 4.12: Statistics for BT.C.256 on 8� 8 � 4 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC
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Table 4.5 lists the execution time of generating the mapping for the LU

(class C, 1024 MPI processes) application of the NAS parallel benchmarks.

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

LU.C.1024 3-D Mesh 3-D Torus HAEC Box
Mapper 1245.601 1857.210 27915.100
MinMD 0.124 0.042 0.104
Bipartition 0.880 0.869 2.170
PaCMap 86.940 85.216 440.974
TopoAware 38996.723 38346.131 39997.982
Greedy 10.479 12.647 356.345
GreedyALLC 14.887 15.597 74.454
FHGreedy 0.477 0.449 40.165
UDFS 1.950 2.128 17.225

Table 4.5: Time to generate the mapping (in sec) for LU.C.1024 on 16� 8 � 8 topologies

Table 4.6 shows the execution time of generating the mapping for the BT

(class C, 1024 MPI processes) application of the NAS parallel benchmarks.

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

BT.C.1024 3-D Mesh 3-D Torus HAEC Box
Mapper 3734.294 2448.568 32271.433
MinMD 0.303 0.059 0.138
Bipartition 0.917 0.933 2.236
PaCMap 85.160 91.245 422.109
TopoAware 37997.220 36066.030 40945.284
Greedy 10.629 12.504 343.360
GreedyALLC 17.502 17.298 76.144
FHGreedy 0.938 0.725 66.717
UDFS 1.982 2.062 17.273

Table 4.6: Time to generate the mapping (in sec) for BT.C.1024 on 16� 8 � 8 topologies

The statistics of the inter-node physical communications and task average

distances are illustrated in Figures 4.13 | 4.18 below.
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(a) Number of IeNPC (b) WTAD

Figure 4.13: LU.C.1024 on 16� 8 � 8 3-D Mesh

(a) Number of IeNPC (b) WTAD

Figure 4.14: LU.C.1024 on 16� 8 � 8 3-D Torus

(a) Number of IeNPC (b) WTAD

Figure 4.15: Statistics for LU.C.1024 on 16� 8 � 8 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC
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(a) Number of IeNPC (b) WTAD

Figure 4.16: BT.C.1024 on 16� 8 � 8 3-D Mesh

(a) Number of IeNPC (b) WTAD

Figure 4.17: BT.C.1024 on 16� 8 � 8 3-D Torus

(a) Number of IeNPC (b) WTAD

Figure 4.18: Statistics for BT.C.1024 on 16� 8 � 8 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC
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Tables 4.7 and 4.8 demonstrate the execution time of generating the map-

pings for the LU and BT (class D, 4096 MPI processes) applications of the

NAS parallel benchmarks. One thing to be noted: seeing the tendency of the

execution time increasing for Bokhari'sMapper and Topology-awarealgo-

rithms (even for 1024 processes execution time is about 10 hours), it seemed

wiser to not test these mapping strategy for 4096 processes. Therefore, their

algorithmic run time results and statistics are not included in the present

work. The statistics of the inter-node physical communications and task

average distances for other algorithms are given below on pages 56| 57.

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

LU.D.4096 3-D Mesh 3-D Torus HAEC Box
Mapper * * *
MinMD 1.062 0.238 0.959
Bipartition 8.026 8.230 19.162
PaCMap 4302.019 4402.985 15824.939
TopoAware * * *
Greedy 181.425 188.204 11503.082
GreedyALLC 248.142 238.176 2229.684
FHGreedy 4.377 3.919 738.127
UDFS 38.592 40.302 520.989

Table 4.7: Time to generate the mapping (in sec) for LU.D.4096 on 16� 16� 16 topologies

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

BT.D.4096 3-D Mesh 3-D Torus HAEC Box
Mapper * * *
MinMD 2.075 0.382 1.180
Bipartition 8.235 9.460 22.389
PaCMap 4586.804 4902.733 17198.404
TopoAware * * *
Greedy 182.596 219.868 12222.683
GreedyALLC 274.469 282.343 2231.909
FHGreedy 6.639 5.554 1424.939
UDFS 36.930 38.425 508.314

Table 4.8: Time to generate the mapping (in sec) for BT.D.4096 on 16� 16� 16 topologies
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(a) Number of IeNPC (b) WTAD

Figure 4.19: LU.D.4096 on 16� 16� 16 3-D Mesh

(a) Number of IeNPC (b) WTAD

Figure 4.20: LU.D.4096 on 16� 16� 16 3-D Torus

(a) Number of IeNPC (b) WTAD

Figure 4.21: Statistics for LU.D.4096 on 16� 16� 16 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC
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(a) Number of IeNPC (b) WTAD

Figure 4.22: BT.D.4096 on 16� 16� 16 3-D Mesh

(a) Number of IeNPC (b) WTAD

Figure 4.23: BT.D.4096 on 16� 16� 16 3-D Torus

(a) Number of IeNPC (b) WTAD

Figure 4.24: Statistics for BT.D.4096 on 16� 16� 16 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC


