
Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

High Performance Computing Group

hpc.dmi.unibas.ch

Viacheslav Sharunov

viacheslav.sharunov@stud.unibas.ch

15-059-322

Optimized parallel tasks to nodes mapping in
3-D high performance interconnection

topologies

Master Thesis

Examiners:

Prof. Florina M. Ciorba

Prof. em. Helmar Burkhart

Supervisors:

Prof. Florina M. Ciorba

MSc. Ahmed Hamdy Mohamed Eleliemy

MSc. Ali Omar Abdelazim Mohammed

Basel, Switzerland

2017

Contents

Abstract 5

Introduction 9

1 Background 12

1.1 Mapping Problem . 12

1.2 Definitions . 13

1.3 3-D Interconnection Topologies 15

1.3.1 HAEC Box . 16

2 Tasks-to-Nodes Mapping Strategies 17

2.1 A Pairwise Interchange Algorithm: Mapper 19

2.2 Minimum Manhattan Distance Algorithm 20

2.3 Recursive Bipartitioning Algorithm 21

2.4 Topology Mapping of Unstructured Communication Pat-

terns: PaCMap . 22

2.5 Topology-aware Task Mapping 23

2.5.1 First order approximation 24

2.5.2 Second order approximation 25

2.5.3 Third order approximation 25

2.6 Generic Topology Mapping Strategy 25

2.7 GreedyALLC Mapping Strategy 26

2.8 Fast and High Quality Greedy Mapping 28

2

3

2.9 Utilization-based Depth-first Algorithm 29

2.10 A* Algorithm . 31

3 Proposed Evaluation Approach 32

3.1 Performance Metrics . 32

3.2 Experimental Setup . 35

3.3 Proposed Experiments . 36

3.3.1 Implementation of the mapping algorithms and their

setup for pre-simulation evaluation 36

3.3.2 Simulation setup using the HAEC-SIM framework . . . 39

3.3.3 Assessment of the impact of mapping via post-simulation

analysis . 40

4 Pre-simulation Experiments 44

4.1 Results . 44

4.2 Discussion of the Results . 58

5 Simulations with HAEC-SIM 61

5.1 Proposed Approach . 61

5.2 Comparison of Mapping-related Statistics 62

5.3 Comparison of Message-related Statistics 66

5.4 Discussion of the Results . 71

6 Conclusions and Future Work 72

6.1 Conclusions . 72

6.2 Future Work . 73

Bibliography 77

Appendix A Simulations with HAEC-SIM. Workflow 82

4

Appendix B Numerical Values 88

Declaration on Scientific Integrity

Abstract

The constant increasing number of processors in high performance com-

puting (HPC) systems and processes (parallel tasks that each application

consists of) in parallel scientific applications leads to a challenge of efficient

mapping between processes and processors. The way the parallel tasks are

placed onto the computation units (processors) interconnected by a given

network topology is of a paramount importance for the overall performance

of the application. Approaching the Exascale computing era in HPC, the

communication overheads and latencies play a significant role and require a

thorough and accurate assessment, considering their impact on the applica-

tion’s execution time. An efficient mapping strategy should be able to reduce

not only computation time for the given application, but even its energy con-

sumption, and allow the application’s tasks to make an efficient usage of the

assigned resources of the computing system [8]. The present work is focused

on an implementation of the different mapping strategies proposed in the

literature and an experimental evaluation of the results on the highly adap-

tive energy-efficient computing platform (HAEC) - a research project of the

Technical University of Dresden, Germany [14].

5

List of Algorithms

1 A Pairwise Interchange: Mapper 20

2 Minimum Manhattan Distance 21

3 Recursive Bipartitioning Mapping 22

4 Topology-aware Task Mapping 24

5 Greedy Graph Embedding . 26

6 The GreedyALLC Mapping 27

7 Fast and High Quality Greedy Mapping 29

8 Utilization-based Depth-first Mapping Modification 30

List of Tables

3.1 The detailed information of a KNL node of the miniHPC cluster 36

3.2 Design of experiments: applications 42

3.3 Design of experiments: algorithms 43

3.4 Design of experiments: 3-D interconnection topologies 43

4.1 Time to generate the mapping (in sec) for LU.C.64 on 4×4×4

topologies . 44

4.2 Time to generate the mapping (in sec) for BT.C.64 on 4×4×4

topologies . 45

4.3 Time to generate the mapping (in sec) for LU.C.256 on

8× 8× 4 topologies . 49

4.4 Time to generate the mapping (in sec) for BT.C.256 on

8× 8× 4 topologies . 49

4.5 Time to generate the mapping (in sec) for LU.C.1024 on

16× 8× 8 topologies . 52

4.6 Time to generate the mapping (in sec) for BT.C.1024 on

16× 8× 8 topologies . 52

4.7 Time to generate the mapping (in sec) for LU.D.4096 on

16× 16× 16 topologies . 55

4.8 Time to generate the mapping (in sec) for BT.D.4096 on

16× 16× 16 topologies . 55

5.1 Statistics file for LU.C.64 on 3-D Mesh with Mapper algorithm 63

7

8

B.1 Statistics for LU.C.64 on 3-D Mesh, 3-D Torus, and HAEC Box 89

B.2 Statistics for BT.C.64 on 3-D Mesh, 3-D Torus, and HAEC Box 90

B.3 Statistics for LU.C.256 on 3-D Mesh, 3-D Torus, and HAEC Box 91

B.4 Statistics for BT.C.256 on 3-D Mesh, 3-D Torus, and HAEC Box 92

B.5 Statistics for LU.C.1024 on 3-D Mesh, 3-D Torus, and HAEC Box 93

B.6 Statistics for BT.C.1024 on 3-D Mesh, 3-D Torus, and HAEC Box 94

B.7 Statistics for LU.D.4096 on 3-D Mesh, 3-D Torus, and HAEC Box 95

B.8 Statistics for BT.D.4096 on 3-D Mesh, 3-D Torus, and HAEC Box 96

B.9 Number of hops for LU.C.64 on 3-D Mesh, 3-D Torus, and

HAEC Box . 97

B.10 Bandwidth (in B/s) for LU.C.64 on 3-D Mesh, 3-D Torus,

and HAEC Box . 98

B.11 Number of hops for BT.C.64 on 3-D Mesh, 3-D Torus, and

HAEC Box .

B.12 Bandwidth in (B/s) for BT.C.64 on 3-D Mesh, 3-D Torus,

and HAEC Box .

Introduction

Nowadays, steadily increasing interest in high performance applications

can be observed in different fields of science: from study of molecular dy-

namics, calculation of physical equations, to simulations of behavior of black

holes and providing experiments to obtain new chemical elements [1]. The

constant demand in such applications and exponential growth in data they

need lead to the development of massively parallel machines with hundreds

of thousands and even millions cores on board — the top supercomputer in

the list of TOP500 [2] China’s “Sunway TaihuLight” has more than 10 mil-

lion cores. The development and science are fast approaching the Exascale

computing era, and one can claim that new Exascale supercomputers should

have on board hundreds of millions of processing units to achieve the goal

of Exascale — a peak performance above 1 Exaflop (1018 floating operations

per second). The next-generation Exascale computer should not only lead to

an improving in calculation speed, but also in data transmission efficiency.

The challenging issue for high performance computing (HPC) is still the

energy consumption for computation and cooling [8]. It is becoming a sig-

nificant concern, because a politico-economic pain threshold is suggested to

be 25 megawatts (MW) as a working boundary, according to [9]. However,

the HPC community anticipates that Exascale systems could consume over

100 MW, and just few of the existing computer centers can provide an ad-

equate infrastructure. As a consequence, the challenge is turning into the

question: How to exploit efficiently the available computing resources of the

9

10

given network topology and make the energy consumption economically and

environmentally acceptable [8]? One practical method to solve the problem

is to improve data locality, in other words, the way the data are placed onto

available processors units (the CPUs). In fact, by doing so, the communica-

tion cost has a potential to be reduced. Therefore, the overall execution time

of the application and its energy consumption would be decreased: “Data

movement across the system, through the memory hierarchy, and even for

register-to-register operations will likely be the single principal contributor to

power consumption. ... Since much of the power in an exascale system will

be expended moving data, both locally between processors and memory as well

as globality, the X-stack must provide mechanisms and APIs for expressing

and managing data locality. These will also help minimize the latency of data

accesses” [9].

Placing the highly communicative pairs of application’s tasks as close as

possible reduces the communication time significantly (the number of hops

each message must traverse between two ends is decreasing), and as a re-

sult, the total performance of the application is increasing. As most of the

HPC applications and network topologies can be represented as (un)directed

graphs, the problem of placing the parallel tasks becomes a mapping of appli-

cation’s communication graph onto the underlying network topology graph.

Mapping of two graphs is an NP-hard [10]. The researchers propose various

methods for topology mapping: greedy methods of placing most-heavily com-

municative vertices as close as possible [10], recursive graph bipartition [11],

heuristically minimizing the total number of hop-bytes communicated and

exploiting application’s geometric information [12], [13].

To the best of our knowledge, there is not a sufficient number of works

considering numerous algorithms for static mapping and assessing their pre-

simulation, during simulation, and post-simulation performance. The cre-

ation of a list with the most efficient mapping algorithms is necessary in

11

order to arrive at an insight into the problem of using certain approaches

in each special case — whether one is interested in the performance of the

parallel application or in the energy efficiency of the application. The aims

of this thesis are to provide an overview of different mapping techniques

existing in the literature, to implement these algorithms, to experimentally

evaluate their results (pre-simulation) and to validate them using a simula-

tion framework for highly adaptive energy-efficient computing platforms —

HAEC-SIM [14].

This work is divided into the following parts: in Chapter 1, the insights

into the problem of mapping tasks or processes to the nodes (CPUs or pro-

cessing element (PE)) of the target computing system are given. The defi-

nition and the background of tasks-to-nodes mapping found in the literature

are also discussed in Chapter 1. The target architectures are detailed in this

section as well. An overview of the selected mapping algorithms and their

characteristics are represented in Chapter 2. The review of the commonly

used performance metrics, as well as other proposed metrics in the literature,

the test instances, and the experimental setup are provided in Chapter 3.

The algorithmic performance with respect to the mapping quality assessed

by the metrics and the execution time for the algorithms are provided in

Chapter 4. The validation of the results with via the simulation using the

HAEC-SIM framework of the best mapping strategies, obtained from Chap-

ter 4, and their analysis are described in Chapter 5. The thesis is completed

in Chapter 6 with conclusions and an outline of the future work.

Chapter 1

Background

The chapter gives an introduction into the topic of a tasks-to-nodes map-

ping problem, current limitations in the field, tasks and network topologies

representation, as well as some details about HAEC Box.

1.1 Mapping Problem

Parallel applications consist of a number of tasks that exchange informa-

tion and synchronize among them by using different communication patterns.

Usually, such applications are designed in the way that they have to be run

on parallel architectures. Hence, their interchange actions are arranged with

certain communication schema, that tries to use efficiently the architecture

of machine (cluster, high performance supercomputer, etc.), where the appli-

cation is executed. The communication pattern of the given application can

be represented as a virtual topology. Knowing that there is a variety of the

network topologies (mesh, torus, fat-tree, hypercube, etc.), it is hard to find

an ideal or even good match between the virtual and physical network topolo-

gies. The mapping problem can be seen as a minimization problem of some

cost metric associated with the assignment processes (application’s tasks)

to nodes. In this thesis, the focus is on minimizing the following metrics:

Inter-node physical communications (IeNPC) and Weighted Task Average

12

13

Distance (WTAD) (see Chapter 3). It turns out, that the mapping problem,

i.e. the problem of deciding whether there exists such mapping M, that has a

number of IeNPC or WTAD lesser than or equal to given x, is NP-hard [10].

Moreover, an exact polynomial time algorithm for the mapping problem is

hardly to be created [19].

The poor mapping may lead to an inefficient usage of the resources of the

underlying physical topologies, that causes large delays and latency (two com-

munication tasks are placed far away to each other, so number of traversable

hops is increasing), bandwidth bottlenecks (most communicative pairs of

tasks use the same links), and as well big number of messages congestion

and dilation [22]. As a result, the applications are losing their performance

just due to the fact, that communication pairs are placed in a poor way.

Hence, the mapping problem is a vital problem in HPC world, and the man-

ner the tasks are mapped onto allocated processors has a remarkable impact.

The careful mapping allows the tasks more efficiently to use the assigned

resources.

1.2 Definitions

Both, the tasks of the application and HPC platform architecture can be

represented as undirected weighted graphs.

Application Tasks Graph The parallel application can be represented

as an undirected graph Gt =< Vt, Et >. The tasks of the application are

considered as separate processes. The vertices in Vt are tasks (processes) of

the high performance application and edges in Et represent communications

between the tasks. Each vertex vt ∈ Vt may have a weight wt, that is an

execution cost associated with the vertex on a given processor [23]. However,

in this thesis only homogeneous applications and topologies are considered,

in other words, the amount of computation for each task on each node (CPU

14

or PE) is the same. Similarly, each edge eij = (vi, vj) ∈ Et has a weight cij,

that represents either the amount of communication in bytes between vertices

vi and vj, or a number of communication messages [19], [20]. The present

work considers the latter as the weights of the edges.

Processing Elements Topology Graph The network topology can be

modeled as an undirected graph Gp = < Vp, Ep >, on p = |Vp| vertices.

Each of the Vp vertices represents a processor. The edges Ep ⊆ Vp×Vp repre-

sent the links in the network architecture. If the capacities of the connecting

links between the processors are not equal, i.e. one considers a topology with

heterogeneous links, the graph can be defined as Gp = < Vp, ωp >, where

ωp(i, j) defines the link capacity between any two processors i, j ∈ Vp and

ωp(i, j) = 0 in case of absent such link [8],[10].

Task Mapping In the present work, the emphasis lies on the static point-

to-point mapping. It means that only one task can be processed by one of the

allocated nodes (CPU or PE), and the mapping is calculated before any exe-

cution of the application. In this case, two graphs must have the same number

of vertices. Two graphs are said to be isomorphic to each other if there is

a one-to-one correspondence between their vertices and between their edges

such that the incidence relationships are preserved [18]. Hence, the mapping

problem according to [19] is equivalent to the graph isomorphism problem.

Therefore, using the definition of the graph isomorphism and its notions, the

tasks mapping can be specified as a mapping function M : Vt → Vp, which

maps the tasks (processes) of Vt onto the nodes (processors) of Vp. If the

task vt ∈ Vt is mapped onto the node vp ∈ Vp, one could say that the relation

M(vt) = vp is defined. The objective of the mapping function is to reduce

the IeNPC and WTAD values between two communication tasks.

15

1.3 3-D Interconnection Topologies

Once the mapping problem and the mapping function are defined, one

can consider the hardware topologies, that must run our high performance

applications. For the different mapping algorithms (see in Chapter 2) three

physical topologies were chosen: a three dimensional mesh (k-ary 3-mesh), a

three dimensional torus (k-ary 3-cube) and the HAEC topology. The mesh

and torus are mostly common in HPC systems (in June 2017 seven of the top

ten supercomputers in the Top500 list have torus network or its variation),

whereby the HAEC topology is unique to the HAEC Box [14]. Below in

Figure 1.1 one can observe a graphical representation of each of the topologies.

One must note, that 3 × 3 × 3 version instead of regular 4 × 4 × 4 version

of the HAEC Box is illustrated for better visibility. In this thesis, the three

topologies of size of power of two in each dimension are considered, namely,

4× 4× 4, 8× 8× 4, 16× 8× 8, and 16× 16× 16 .

xy
z

(a) 3-D Mesh

xy
z

(b) 3-D Torus

xy
z

(c) HAEC Box

Figure 1.1: Graphical representation of the 3 × 3 × 3 topologies: (a) 3-ary 3-mesh (mesh);
(b) 3-ary 3-cube (torus); (c) HAEC Box.

16

1.3.1 HAEC Box

The HAEC (Highly Adaptive Energy-efficient Computing) Box (Figure 1.1(c))

is a novel architectural concept of the Technical University of Dresden, Ger-

many1, that utilizes innovative ideas of optical and wireless chip-to-chip com-

munication [14]. The HAEC Box belongs to high performance-low energy

parallel computing platforms. The topology is designed to be 3-D with 64

processing elements organized as 4 × 4 × 4. A group of 16 nodes (4 × 4)

is placed onto a single 2-D board and connected using optical links into

a 2-D torus (solid lines in Figure 1.1(c)) with a transmision bandwidth of

250 Gbit/s. Processing elements of neighboring boards can all communi-

cate with each others via wireless links (dotted lines in Figure 1.1(c)) with

transmission bandwidth of 100 Gbit/s. The wireless links represent a fully

connected topology, i.e. each of the processing elements communicate with

all of his 16 neighbors placed on the adjacent board [14], [17]. Due to the

fact that the actual hardware development is still being ongoing, the authors

present the event trace-based simulator HAEC-SIM [14]. Running energy-

aware applications, the simulator allows the deep exploration of the conjec-

tural performance and energy costs of the HAEC Box.

1https://tu-dresden.de/sfb912

Chapter 2

Tasks-to-Nodes Mapping Strategies

The task mapping problem is known as an NP-hard [10], but still consid-

ered as an interesting and important problem. Several approaches to solve

the problem have been proposed in the literature [8]. They can be classi-

fied according to [20] into three categories: graph-theoretic, mathematical

programming, and heuristic methods. Graph-theoretic category represents

application’s tasks as an undirected weighted graph and uses minimal-cut

algorithm to retrieve a task assignment with minimum interprocessor com-

munication. In the second category, mathematical programming, the main

problem is how to assign a certain number of facilities to a certain number of

locations with the minimum cost [22]. This optimization problem is solved

using mathematical programming techniques. And the last, not the least

group is heuristic methods that frequently provide fast but suboptimal solu-

tions because of the fact, that usually it is hard to find an optimal solution

in rational time due to a space complexity of the problem [23]. The general

classification of the strategies by Kafil et al. [23] is given in Fig. 2.1.

17

18

Static Task
Assignment

Optimal Sub-optimal

Restricted Non-restricted

Graph
Theory

Mathematical
Programming

State-space
Search

Approximate Heuristics

Greedy
Task

Clustering
Randomized
Optimization

Bin-Packing

Genetic
Algorithms

Simulated
Annealing

Mean Field
Annealing

Figure 2.1: Classification of mapping strategies. Algorithms from the classes

highlighted using color gradient are considered in the chapter.

All static tasks-to-nodes algorithms can be classified into two large groups:

optimal and sub-optimal strategies according [23]. As one can observe, opti-

mal mapping strategies are further divided to restricted and non-restricted,

where the first ones yield optimal solutions in polynomial time, and the sec-

ond ones return optimal solutions, but very often, not in polynomial time.

The sub-optimal strategies in turn consist of two classes: approximate and

heuristics. The approximate algorithms may guarantee a solution that is

within a certain range from the optimal solution [23]. Heuristics are designed

for finding any solution (it may not be necessary optimal) more quickly, when

classic methods are too slow or fail in solving of the problem. Most of the

research efforts are put on the development of heuristic algorithms, as one

is visually demonstrated on Fig. 2.1 (three groups out of four, considered in

this thesis, are heuristic algorithms). This fact can be explained due to the

intractable and NP-hard nature of the problem, where everyone tries to find

any solution for the particular mapping problem.

In this thesis, the additional mapping algorithms are studied as a com-

plement to already described in the work [24]. The full list of the algo-

rithms can be found on page 6. They are all considered in terms of the

19

four mapping strategies, represented in Fig. 2.1: Graph theory (Recursive

Bipartition Mapping algorithm [11]), Task clustering (PaCMap: Topology

Mapping [26]), Bin-Packing (Topology-aware Task Mapping [12]), Greedy al-

gorithms (Generic Topology Mapping [10], GreedyAllC Mapping [27], Fast

and High Quality Greedy Mapping [13], Utilization-based depth-first Map-

ping [28]).

Task clustering algorithms try to put the groups of most communicative

tasks together. In turn of Bin-Packing, the algorithms use a policy of tasks

ordering and a policy of a placement for the tasks. All greedy algorithms

assign one task to one node (CPU or PE) at each step, trying to greedily

map task’s heaviest neighboring to the neighboring of allocated node, until

a complete assignment is reached.

In the following sections all algorithms will be considered in details. At

first, two already described algorithms in [24] will be explained: Bokhari’s

Pairwise Interchange and Minimum Manhattan Distance. Then, additional

to them algorithms come to the turn.

2.1 A Pairwise Interchange Algorithm: Mapper

Shahid Bokhari in [19] proposed a heuristic algorithm called Mapper. The

algorithm receives as input a communication (adjacency) matrix of the ap-

plication graph and returns a permutation matrix that matches as close as

possible an adjacency matrix of the topology (the considered topology in [19]

is a finite element machine). The algorithm uses a pairwise interchanges of

the elements of the input matrices with probabilistic jumps to improve the

initial provided mapping and a cardinality of the given problem matrix. The

good explanation of the algorithm in short can be found in [24], and the algo-

rithm in [19]. The following listing (Algorithm 1) represents the algorithm.

20

Algorithm 1 A Pairwise Interchange: Mapper

Data: Gp, Gt,M : Vt → Vp (initial mapping)
Result: B : Vt → Vp (improved mapping)
B ←M ;
done← false;
while not done do

repeat
improved← false;
foreach u ∈ Vt do

1: examine pairwise exchange of u with every v ∈ Vt \ {u};
2: select pair 〈u, v〉 with largest gain in |M |;
3: if largest gain > 0 then exchange pair 〈u, v〉;
4: if largest gain > 0 then improved← true;

end

until improved = false;
if |M | < |B| then

done← true;
else

B ←M ;
randomly interchange n pairs in M ;

end

end

2.2 Minimum Manhattan Distance Algorithm

This algorithm, proposed in [24], exploits the idea of minimizing a Man-

hattan distance [3] to map applications tasks. The goal of the strategy is

to place the most communicative pairs as close as possible with respect to

the hops between allocated nodes. As a first step a list of all communicative

pairs is created, that follows a priority policy — the most communicative

ones (total amount in bytes of exchanged messages or total amount of sent

messages) are in the top of the list. Then, the first communicative pair is

placed onto the center of the network topology with a node distance of 1 hop.

The next pairs are either mapped to a free node, that is nearest to an already

assigned processors (with respect to the minimizing of Manhattan distance),

if one of the processes in the pair has been already mapped, or as close as

possible to the center of the topology. The listing of the algorithm is repre-

21

sented in Algorithm 2. The function NEARESTNEIGHBOR is implemented

as a breadth-first search algorithm. It finds a next free node to the given

node-parameter.

Algorithm 2 Minimum Manhattan Distance

Data: Et (decreasing ordered by weight), Gp

Result: M : Vt → Vp
M ← {};
start ← (bdx/2c, bdy/2c, bdz/2c);
foreach (u, v) ∈ Et do

switch (u, v) do
case u ∈M, v /∈M do

M(v) ← NEARESTNEIGHBOR(u);
case u /∈M, v ∈M do

M(u) ← NEARESTNEIGHBOR(v);
case u /∈M, v /∈M do

M(u) ← NEARESTNEIGHBOR(start);
M(v) ← NEARESTNEIGHBOR(u);

end

end

2.3 Recursive Bipartitioning Algorithm

In computer science graph partitioning is a common technique. Graph

partitioning is mostly used to partition the underlying graph model of com-

putation and communication. In case of tasks-to-nodes mapping an appli-

cation and topology can be represented as graphs. In the application graph

the nodes denote objects to be computed, and the edges — a communication

between these nodes. This graph needs to be partitioned such that there are

few edges between the blocks (pieces). In particular, if one wants to use k

processors the graph will be partitioned into k blocks of about equal size [29].

Then, it is possible to map the blocks of nodes (or groups of nodes) onto al-

located processors of the network topology. The algorithm proposed in [11]

by Jingjin Wu bipartitions both the communication graph and the physical

topology graph recursively until the mapping M : Vt → Vp is found. For the

22

graph partition a set of serial programs for partitioning graphs “METIS” [5]

is used in the experiments section of the present work. The cardinality of the

application graph Gt is equal to the cardinality of the topology graph Gp.

Algorithm 3 Recursive Bipartitioning Mapping

bipartitioning mapping(Gt, Gp)

if |Gp| == 1 then
{
M(Gt) = Gp

return;
}
/* bipartition both graphs Gp and Gt into subgraphs */

/* Gi=1,2, such that |G1| = |G2| for tasks and processors graphs */

(G1p, G2p)← graph bipartition(Gp);
(G1t, G2t)← graph bipartition(Gt);
bipartitioning mapping(G1t,G1p);
bipartitioning mapping(G2t,G2p);

2.4 Topology Mapping of Unstructured Communica-

tion Patterns: PaCMap

The idea behind the PaCMap algorithm (partitioning and center mapping)

is to simultaneously make a job allocation and task mapping in order to

reduce overall communication overhead and time needed to execute HPC

application [26]. The algorithm could be divided into two main parts: Center

Machine Node selection and Center Task Group selection. As a preparation

step, if it is needed, the communication (task) graph can be partitioned into

k task groups, where k is equal to the number of available allocated nodes in

the underlying network topology. After the preparation step each task group

fits into a single node in the cluster. The authors of the algorithm propose

to use the “METIS” library [5] for graph partitioning. Next, the PaCMap

algorithm finds a center of each task group and maps it to the selected center

node of the network topology. After, the expansion of the allocation takes

place until all tasks are mapped. An interested reader can find the details of

23

the algorithm, namely how the center node and the center of each task group

are selected, in [25], or deeper analysis and evaluation of the algorithm with

mapping background in [26].

2.5 Topology-aware Task Mapping

The algorithm, proposed in [12], is an iterative algorithm, the main goal

of which is a selection of a next process from the set of the application tasks

to be placed on a next node from the set of available topology’s nodes (CPU

or PE). The way the next process and next node are chosen is guided by

an Estimation function. The function makes an assessment of the placing of

certain process on certain processor in the current cycle of the algorithmic

loop. Hence, one can find the best processor, where the placing cost of the

current chosen task is the least. However, for some tasks it is not necessary to

be placed on the best processor. What matters is a criticality of the placing

of the task in the current cycle of the loop. With help of the Estimation

function one can find the measure of the criticality, and, therefore, one can

select the most critical task and place it onto the best processor in the current

cycle. The listing of the algorithm is given below in Algorithm 4. Here, Vt

and Vp are the sets of the processes (tasks) in the application and allocated

for the application physical processors (CPU or PE) of the network topology,

respectively.

There are three estimation functions proposed by authors in [12]. For all

of them it is needed to define the following parameters: Tk — the set of the

tasks that remain to be placed, Pk — the set of available processors on kth

iteration. Respectively, Tk — the set of already placed tasks and Pk — the

set of processors that have been already used for mapping tasks from Tk.

The distance dp(· , ·) between any two processors p1 and p2, needed to

compute the value of the Estimation function, could be considered, for ex-

24

ample, as a Manhattan distance [3]. The number of messages sent between

two processes is represented by a value of cij [19], [20].

Algorithm 4 Topology-aware Task Mapping

Data: Vt,Vp, |Vt| = |Vp| = n
Result: M : Vt 7→ Vp
T1 ← Vt; P1 ← Vp
for k ← 1 to n do

max criticality ← −∞;
for task ∈ Tk do

criticality(t) =∑
p∈Pk

fest(t,p)

n−k −minp∈Pk
fest(t, p);

if criticality(t) > max criticality then
tk ← t;
max criticality ← criticality(t);

end

end
min cost←∞;
for processor p ∈ Pk do

if fest(tk, p) < min cost then
pk ← p;
min cost← fest(tk, p)

end

end
M(tk) = pk;
Tk+1 ← Tk − {tk};
Pk+1 ← Pk − {pk};

end

2.5.1 First order approximation

The estimation function considers the situation, when the placement of

some of the tasks is not yet known. Therefore, only the contribution of the

communication with already assigned tasks could be taken into account:

fest(ti, p,M) =
∑
tj∈Tk

cij × dp(p,M(tj)) (2.1)

This estimation function was used for conducting the experiments, de-

scribed in Chapter 4.

25

2.5.2 Second order approximation

This type of estimation function calculates the contribution to communi-

cation with not yet assigned tasks. The function assumes that certain task

tj ∈ Tk would be placed on a random processor. Hence, it approximates

the distance between p and M(tj) by the expected distance of p to other

processors:

dp(p,M(tj)) ≈
∑

pj∈Vp dp(p, pj)

|Vp|
(2.2)

Thus, the estimation function takes the form:

fest(ti, p,M) =
∑
tj∈Tk

cij × dp(p,M(tj)) +
∑
tj∈Tk

cij ×
∑

pj∈Vp dp(p, pj)

|Vp|
(2.3)

2.5.3 Third order approximation

The last approximation of the estimation function considers as well as in

Section 2.5.2 the contribution to communication of not yet assigned tasks,

but takes into account the fact, that they could be mapped only onto the

processors that are available, i.e. that are still in the set Pk. The second

order approximation does not take into consideration this constraint. In other

words, the distance between any processor p and M(tj) can be represented as:

dp(p,M(tj)) ≈
∑

pj∈Pk
dp(p, pj)

|Pk|
(2.4)

2.6 Generic Topology Mapping Strategy

The algorithm proposed in [10] is similar to all other greedy algorithms.

However, this version considers edge weights, and, as authors claim, could

be applied to heterogeneous network topology. The greedy mapping starts

26

at some vertex vp ∈ Gp, chooses the heaviest (the most communicative)

vertex vt ∈ Gt and greedily maps its heaviest neighboring vertices in Vt to

the neighboring vertices in Gp with heaviest connections. The process does

it recursively until the moment where all tasks are mapped onto allocated

processors. The listing of the presented algorithm is given in Algorithm 5.

Algorithm 5 Greedy Graph Embedding

Data: Gp, Gt, ~C(v) = ~1 v ∈ Vt
Result: M : Vt 7→ Vp
S ← Vt; Q← priority queue; s ∈ Vp - start;
while S 6= ∅ do

find vertex m ∈ S with heaviest out− edges;
if C(s) = 0 then

pick new s ∈ Vp : C(s) ≥ 1;
end
M(m) = s; S = S \m; C(s) = 0;
foreach u|(m,u) ∈ Et and u ∈ S do /* add neighbors of m ∈ S to Q */

Q← (m,u)|u ∈ S;
end
while Q 6= ∅ do

(u,m)← Q;
if C(s) = 0 then

find closest to s vertex t ∈ Vp : C(t) = 1, using Dijkstra‘s algorithm
s = t

end
M(m) = s; S = S \m; C(s) = 0;
foreach u|(m,u) ∈ Et and u ∈ S do /* add neighbors of m ∈ S to Q */

Q← (m,u)|u ∈ S;
end

end

end

2.7 GreedyALLC Mapping Strategy

The algorithms of the group GreedyALL proposed in the [27], are the

descendants of the usual greedy algorithms, in particular, from Section 2.6.

The authors require, that the network topology to be homogeneous, i.e. one

processor of it can process only one task of the application and |Gp| = |Gt|.
As a prerequisite for the algorithm one needs to calculate t(· , ·) — a value

27

of time that a sending of one unit of information takes through the edges

e1, . . . , el of the topology along some routing path P in Gp:

t(P) =
l∑

i=1

1

ωp(ei)
(2.5)

t(up, vp) = min(t(P) | P connects processes up and vp) (2.6)

Due to the case that one should consider a homogeneous topology, as

the authors require, all connections have the same weights, for instance

ωp(ei) = 1. The listing of the algorithm is given in Algorithm 6.

Algorithm 6 The GreedyALLC Mapping

Data: Gt, Gp, with |Vt| = |Vp|
Result: Pairs (vit, v

i
p), such that M : Vt 7→ Vp defined by M(vit) = vip

Find v0t ∈ Vt with maximal
∑

e={v0t ,vt}∈Et
ω(e); v0p ∈ Vp with minimal

∑
up∈Vp

t(up, vp)

Create vectors sumt = ~0 and sump = ~1 of length |Vt|
for i← 0 to |Vc| − 1 do

sumt(v
i
t)← −1 // Mark as assigned

sump(v
i
p)← INT MAX // Mark as assigned

forall et = {vit, ω} ∈ Et do
if sumt[ω] ≥ 0 then // ω is not yet assigned

sumt[ω]← sumt[ω] + ωt(et)
end

end

Pick vi+1
t such that sumt(v

i+1
t) is maximal

for j ← 0 to |Vp| − 1 do
if sump[j] < INT MAX then // j is not yet assigned

sump[j]← 0
forall et = {vi+1

t , ω} ∈ Et do
if sumt[ω] < 0 then // ω has already been assigned

sump[j]← sump[j] + ωt(et) ∗ t(j,Γ(ω))
end

end

end

end
Pick vi+1

p such that sump(v
i+1
p) is maximal

end

28

“The Greedy algorithm does not link the choices of vertex vit and vertex vip.

The algorithm aims at a high communication volume of vit with all or one of

the already mapped vertices of Gt and a high centrality of vip w.r.t. all or one

of the already mapped vertices of Gp. The actual increase of communication

times caused by the new pair (vit, v
i
p) is not considered” [27]. Especially, the

choice of vip strongly depends on the choice of vit. GreedyALLC takes this

increase of communication into account.

2.8 Fast and High Quality Greedy Mapping

The algorithm proposed by Mehmet Deveci et al. in [13] tries to minimize

the number of hops taken by each packet (the weighted hop). An interested

reader can find an explanation of the metric in the paper mentioned before.

As a prerequisite to the algorithm one must stress that it considers a task

graph Gt as symmetric, in other words, a distance (number of hops) between

some task vi and vj is the same regardless of direction. The algorithm starts

with mapping the most-communicative (with the maximum send-receive com-

munication volume) task to a randomly chosen node of the topology. The

algorithm stores the total connectivity of each task, that is a neighbor to the

already mapped ones, in the heap and updates this heap every time when a

new task is mapped. Until all tasks are mapped, the algorithm pops a head

of the heap (the most communicative task) — tbest, and looks for a best node

from the list of the available ones for the task, using GetBestNode function.

It returns either one of the farthest allocated nodes, in case of an absent

connections between tbest and the mapped tasks, or the nearest one from the

nodes to whom one of the neighbors of tbest is mapped, that can be found

with a breadth-first search (BFS) on the graph Gp. In the algorithm a value

NBFS represents the number of initially mapped vertices. As authors claim,

the large NBFS considers the loosely connected components of the application

29

graph Gt to the nodes that are located far away from each other. But, these

proposal could not work for the task graphs with a very low diameter. The

listing of the algorithm is presented in Algorithm 7.

Algorithm 7 Fast and High Quality Greedy Mapping

Data: Gt = (Vt, Et), Gp = (Vp, Ep), with |Vt| = |Vp|,
NBFS: # vertices to be initially mapped

Result: M : Gt → Gp

Initialize the max-heap: connt ← 0 ∀ t ∈ Vt
I Find the most communicative task (MCT):
t0 ← tMCT

I Map t0 to an arbitrary node:
M(t0)← m0

I Update connectivity for the tasks in nghbor(t0):
forall tn ∈ nghbor(t0) do

conn.update(tn, c(t0, tn))
end
while ∃ an unmapped t do

if number of mapped tasks < NBFS then
tbest ← the farthest unmapped task found by BFS

else
tbest ← conn.pop() I the one with maximum connectivity

end
mbest ← GetBestNode(tbest, Gp, Gt,M, conn)
M(tbest)← mbest

forall tn ∈ nghbor(tbest) do
conn.update(tn, c(tbest, tn))

end

end

2.9 Utilization-based Depth-first Algorithm

The efficient mapping should place adjacent tasks from the application

graph Gt as close as possible to each other on the processors of the topology.

In this way, when tasks communicate, the messages can traverse a lower

number of hops to reach their destination. The key aspect of the algorithm

proposed in [28] is the order in which the task graph Gt is traversed. Most

utilized edges are traversed firstly to reduce interconnection between tasks.

30

The algorithm is recursive and greedy. First, it maps the most communica-

tive task to the central node in the topology. Then, the map next function

searches among all outgoing edges of the task, mapped in the previous step,

one with the biggest weight (most utilizable edge) and places its another

task-end onto the next free processor. This process is repeated until there

are no outgoing edges between already mapped and remaining tasks. The

variable p shows which processor is currently chosen to being allocated for

the next task.

The algorithm has been slightly modified to satisfy the prerequisite of

1 : 1 mapping this thesis considers. Initial algorithm in [28] was set up to

many to one mapping, i.e. one physical processor could host more than one

application task. The new version not only takes into account 1 : 1 mapping,

but as well chooses as a start node the most central one, and as a next

free — the closest node to whom where one of the neighbors of the chosen

task has been mapped. The modified algorithm is presented in the listing

below (Algorithm 8).

Algorithm 8 Utilization-based Depth-first Mapping Modification

Data: Vt, Vp, |Vt| = |Vp| = n
Result: M : Vt 7→ Vp
function map next(i, p)
while ∃ ei,j with tj unmapped do

k ← argmaxj(ω(ei,j)) // find the task connected by the \heaviest" edge

node← the closest node to M(i)
M(k) = node
Vt = Vt \ k
Vp = Vp \ node
p← map next(k, node)

end
return p

function map()
M(start task) = start node
map next(start task, start node)

return M

31

2.10 A* Algorithm

The well-known A∗ algorithm from the area of artificial intelligence could

be considered in additional to already described algorithms. The informed-

search algorithm guarantees an optimal solution, but could not work with

the problems of big sizes due to its high time and space complexity. The

algorithm is used as a tree search algorithm. It means, that the root of

tree (start node) is an initial (null) solution of the problem, intermediate

nodes are the partial solutions, and the leafs represent the goal. With each

node the cost function f is associated. The nodes are ordered for search

according to the costs in the way the node with the lowest cost is considered

first. The value f(n) of the node n is computed as a sum of two other

functions g(n) and h(n), where first one is the cost of the path from the

start node to n, and second one estimates the cost of the cheapest path

from n to the goal. In the case of tasks-to-nodes mapping, g(n) would be the

number of the inter-node physical communications and should be represented

as an accumulative sum; h(n) has a value, which can be obtained if all the

remaining unmapped communications would be mapped to the nodes using

single hop distance between them. Thus, h(n) is the number of the remaining

unmapped communications multiplied by 1 hop.

Choosing the next node to consider, the algorithm minimizes the cost of

communications and maximizes the number of mapped communications. It

means that in each step the algorithm tries to map the maximum number of

communications for the lowest cost.

Chapter 3

Proposed Evaluation Approach

In this section the test instances, the experimental setup and the way the

mapping algorithms are evaluated will be specified.

3.1 Performance Metrics

In literature, to assess a quality of a mapping algorithm, two different cost

metrics are used: dilation and congestion. Dilation represents the average

length of the path taken by a message sent from some process u to process v:

dilation(uv) =
∑

p∈P (M(u)M(v))

Υ(M(u)M(v))(p) · |p|, (3.1)

where the function Υ(·) represents the routing algorithm, and P (uv) is the

set of simple paths (each edge occurs only once). For each pair processes

u and v, Υ(uv) is a probability distribution on P (uv). In other words, if

p ∈ P (uv), then Υ(uv)(p) is the fraction of traffic from u to v that is routed

through path p [10].

The congestion of a link e connecting u and v is the ration between the

amount of traffic on that link and the capacity of the link:

32

33

Traffic(e) =
∑
u,v∈Vt

ω(uv)

 ∑
p∈P (M(u)M(v)),e∈p

Υ(M(u)M(v))(p)

 ; (3.2)

congestion(e) =
Traffic(e)

c(e)
, (3.3)

where ω(uv) is the amount of communication between u and v, and c(e) is

the capacity (bandwidth) of the link e [10].

In the thesis the mapping algorithms are evaluated by using two groups

of the metrics:

1. Logical metrics:

(a) Inter-process logical communication (IePLC) defines the total num-

ber of exchanged messages between any two processes, is indepen-

dent of the mapping strategy and a property of the task graph.

(b) Intra-node logical communication (IaNLC) shows the total number

of processes that are mapped onto the same physical node.

(c) Inter-node logical communication (IeNLC) is the sum of all ex-

changed messages between nodes resulting from the mapping of

the communication pairs but neglecting the network topology.

2. Physical metrics:

(a) Inter-node physical communication (IeNPC) is the total number of

messages two nodes exchange regarding the network topology and

the applied routing protocol [17].

(b) Weighted Task Average distance (WTAD) defines the weighted av-

erage distance between communicating application tasks [21].

These metrics are considered in the thesis, because they represent not only

physical nature of the performance, when the application tasks are already

34

mapped onto the allocated processors, but as well the logical behavior of the

tasks in the given parallel application.

Because of the fact, that one considers 1 : 1 mapping of processes and

nodes in the present work, the values of the inter-node logical communications

(IeNLC) are equal to the values of the inter-process logical communications

(IePLC). The intra-node logical communications (IaNLC) are equal to zero

for the same reason — there is no messages exchange inside the node. Thus,

both values of IeNLC and IaNLC are not listed in this thesis.

The value of IeNPC (pre-simulation) can be calculated as:

IeNPCpre−sim =
N∑
i

#hopsi ×#messagesi, (3.4)

where N is the number of communication pairs in the application, hopsi

is the number of hops between the processors where the tasks of the ith

communication pair are mapped, and messagesi — the overall number of

exchanged messages between the tasks of the ith communication pair.

It should be noted that the authors of [21] propose two methods to calcu-

late the task average distance: normal one (TAD) and weighted one (WTAD).

They claim that frequent communication can increase an utilization of the

allocated resources, and the most talkative pairs of application tasks must be

mapped as close as possible. However, the normal average distance (TAD)

considers all pairs of communicating tasks. It could be excessive due to het-

erogeneity of the traffic between task pairs. For this reason, they suggest

to use WTAD version of the metric, in which the communication matrix is

used as an indicator of weights [21].

WTAD =
1

|Vt| · |Vt| − 1

∑
a∈Vp

∑
b∈Vp

d(a, b) ·Wπ−1(a),π−1(b), (3.5)

where π−1(a) returns the identifier of the task t running on processor a, and

35

matrix W = [wi,j]i,j∈Vt represents the number of exchanged messages between

tasks i and j, respectively;

TAD =
1

|Vt| · |Vt| − 1

∑
a∈Vp

∑
b∈Vp

d(a, b) ·Bπ−1(a),π−1(b), (3.6)

where matrix B is a boolean (0-1) version of communication matrix W and

captures whether there is a communication between tasks (1) or not (0).

3.2 Experimental Setup

To be able to compare different mapping strategies, one need to run the

pre-simulation experiments on real-world applications. The OTF2 [16] traces

of the NAS Parallel Benchmark (NPB 3.3) [4] applications were chosen for

this purpose, namely the traces of the pseudo applications BT — Block Tri-

diagonal solver and LU — Lower-Upper Gauss-Seidel solver of classes C and

D, and compiled with different number of MPI processes (64, 256, 1024, 4096).

“Discrete event traces capture the run time behavior of parallel applications

on existing systems and form the basis of the simulation”[14]. The traces of

LU.C.64 and BT.C.64 were collected as performance relevant events using

Score-P [15] measurement infrastructure during the execution of the desired

applications on 4 KNL (Knights Landing) nodes of the cluster “miniHPC”

of High Performance Computing department of Mathematics and Computer

Science faculty at University of Basel. The details of the KNL CPU archi-

tecture are presented in Table 3.1. The commands used to create the traces

can be found in Appendix A.

Initially, the traces of all problem sizes were recorded on the HPC system

“Taurus” at Technical University of Dresden, Germany. However, the reason

of the re-collection the applications traces with 64 processes on “miniHPC”

cluster is the necessity to validate the experimental results in terms of message-

36

related statistics (see Section 5.3).

Model name 7210
Number of CPUs 64
CPU rate 1300 MHz
Threads per core 1
L1d cache 32K
L1i cache 32K
L2 cache 1024K
Main memory 96 GB
MCDRAM (mode) 16 GB (flat)
The cluster mode of the chip all to all
Linux version Centos7.XX
Hyper threading not enabled

Table 3.1: The detailed information of a KNL node of the miniHPC cluster

3.3 Proposed Experiments

The experiments could be considered as a sequence of three main steps:

pre-simulation, simulation and post-simulation. During the first step, all de-

scribed algorithms are implemented in Python, the resulting mappings are

evaluated with the physical performance metrics, considered earlier in Sec-

tion 3.1, and the list of the “best” mappings is created. Then the simula-

tion step comes in turn. The benchmark traces are mapped to mesh, torus,

HAEC Box topologies with the “best” mappings, obtained on the previous

step, with HAEC-SIM framework. Finally, the post-simulation step com-

pares the impact of these “best” mappings for benchmark traces of the LU

and BT applications (the values of IeNPC before the simulation and after

are compared).

3.3.1 Implementation of the mapping algorithms and their setup

for pre-simulation evaluation

All algorithms were implemented with Python 3. The graph represen-

tation of both application and network topologies is possible with help of

37

(a) Communication pattern of the point-to-point messages exchanged in LU.C.64

(b) Communication pattern of the point-to-point messages exchanged in BT.C.64

Figure 3.1: Graphical representation of the NAS benchmark applications LU and BT

of class C compiled with 64 processes on 64 cores of 4 KNL nodes (16 cores on each).

The heat map shows the amount of sent/received messages between processes.

The sender/receiver of the y and x axes denote ranks of the sender processes

and of the receiver processes, respectively

38

NetworkX. It is a Python language software package for the creation, manip-

ulation, and study of the structure, and function of complex networks [6].

The extracted from the traces point-to-point communication matrices (see

on Fig. 3.1) are taken as input for each of the mapping algorithms. Then

the algorithms create graphs with data from the matrices (the intersection

of a row and a column in the matrix represents the communicative pair of

tasks (vertices in a graph) and an amount of sent messages, respectively (the

weight of an edge between vertices)), and map them onto the selected and

defined previously network topologies — 3-D Mesh, 3-D Torus, HAEC Box.

The topologies as well could be easily represented as graphs: the vertices have

an edge between them only if the respective nodes in the network topology

have a connection link between them. The number of nodes in the topologies

is equal to the number of MPI processes, used for the compilation of the

benchmark applications.

Each of the implemented mapping function returns a dictionary (Python’s

data format of the following form: “element : value”), that consists of the

list of the IDs of the application tasks and IDs of the processors, where the

tasks were mapped. An example of such output can be proposed: {1:0, 2:1,

3:4, 2:3}. It means that a task with ID = 1 has been placed on a processor

with ID = 0, a task with ID = 2 — on a processor with ID = 1, and so on.

Then the output, created by Python’s script, are the mapping file, needed for

the HAEC-SIM simulations, the statistic of the mapping — the calculated

values of the performance metrics, described in Section 3.1, and the execution

time of the mapping algorithm.

The mapping file, as it has been mentioned earlier, contains a map of the

tasks IDs (they are could be considered as MPI ranks or OpenMP threads)

to the processors of the network topology. It should be noticed, that the dic-

tionary, returned by each of the mapping functions, must be slightly modified

to be written in the mapping file. The dictionary is first reversed, namely

39

the elements and values are becoming now values and elements, respectively

(they are just swapped). Then, the IDs of the processors are changing in the

form of xyz representation, i.e. for the 4× 4× 4 topology the processor with

ID = 0 becomes the processor with 0, 0, 0 coordinates, the processor with

ID = 1 gets 1, 0, 0 coordinates, the processor with ID = 63 becomes the

processor with 3, 3, 3 xyz coordinates. The format of such mapping file for a

4× 4× 4 topology is represented in the listing below.

<mapping name>

x coord y coord z coord number of processes process id(s)

0 0 0 1 3

1 0 0 1 11

[...]

3 3 3 1 45

The first row shows the name of the used mapping strategy to generate

the mapping file. Starting from the third row, each line defines the fact, that

the computing nodes with coordinates (first three number in xyz notion) are

allocated for one application task (its ID is in the last column). In other

words, the task with ID = 3 is mapped to the node with 0, 0, 0 coordinates.

The results of the pre-simulation step for all mapping algorithms are discussed

in more details in Chapter 4.

3.3.2 Simulation setup using the HAEC-SIM framework

During this step the properties of the application’s events, captured by the

OTF2 [16] traces, are modified. Thus, the output of the simulations are the

event traces that describe the predicted application behavior. For providing

the simulations on the HAEC-SIM platform, one needs to have three input

files: an input trace file, a configuration file and a mapping (positions) file.

40

The input trace files have been created (see Section 3.2) and can be used for

the simulation. The mapping files are results of the running Python’s script

during the pre-simulation step, described in the previous subsection.

One thing left for the successful simulation is the configuration file. The

file contains all parameters related to the simulated system, such as type of

links of the topology, their bandwidth and latency, rate of the errors, the

shape of the topology (mesh, torus, . . .), type of routing and parameters of

sent messages, etc. For the experiments Dimension Order Routing (DOR)

communication model is chosen. Using DOR in a 3-D topologies, the packets

are first routed in the x dimension, then in the y dimension, and lastly in

the z dimension. All the results, presented in Chapter 5 are valid just for

this communication model. It must be noted as well, that the shortest −
path routing protocol is used in the present work for routing the messages

in 3-D Mesh and Torus. For HAEC Box — its own haec box protocol. For

more details, see [7], [14], and [17]. The examples of such configuration files

for 3 topologies considered in this thesis and the commands for running the

simulations are given in Appendix A.

3.3.3 Assessment of the impact of mapping via post-simulation

analysis

As a result of each simulation, one will get the simulation trace, the statis-

tic of which is calculated, using HAEC-SIM module trace stats to make an

insight in the impact of the certain mapping, whether the results, that were

obtained in the pre-simulation step, are still valid on the real network topolo-

gies. In other words, whether the assumptions about the good performance

of several mappings before simulation hold after the simulation as well.

The module trace stats gets as input the simulation trace and returns

the statistics of this trace, such as total duration of the trace in picoseconds,

41

average number of hops traversed by each message size group, total number

of exchanged messages in each of the message size group, etc. The illustration

of the returned statistics file will be given in Section 5.2. The command used

for the retrieving the statistics with this module are given in Appendix A.

The overall representation of the experiments discussed above is given in

Figure 3.2.

Step 1:
Create traces
of LU and BT

Step 2:
Create communication

matrices from the
traces

Step 3:
Create mappings,

running implemented
algorithms with the

communication matrices
as input

Step 4:
Create a list of the
best performing

mappings basing on
IeNPC values

Step 5:
Create simulation
traces with the best

mappings on HAEC-SIM

Step 6:
Compare IeNPC
values before and
after simulation

Figure 3.2: The workflow of the experiments

The following Tables 3.2—3.4 represent the design of experiments. The

mark x in the cell means that the experiment (the action in the table) was

conducted, the empty cell — the experiment was not conducted for the

present thesis and is left for future work. The details of the experiments

are given in Chapters 4—5.

The total amount of CPUs in the “miniHPC” cluster is 696 (22 Xeon

nodes with 20 CPUs and 4 Xeon Phi nodes with 64 CPUs), and it is not

sufficient to run the parallel applications with 1024 (and more) processes, it

seemed wiser to not create traces for them on “miniHPC” and use for the

experiments recorded on Taurus traces (to create communication matrices).

42

Action

Application
LU.C.64 BT.C.64 LU.C.256 BT.C.256 LU.C.1024 BT.C.1024 LU.D.4096 BT.D.4096

Traces for the
application
on miniHPC

x x x x

Traces for the
application
on Taurus

x x x x x x x x

Communication
matrices for
the application

x x x x x x x x

Comparison on
mapping-related
statistics

x x

XYZ-trace for
the application
(with xyz mapping
for an initial trace)

x x

Simulation traces
with the best
mappings using
xyz-trace as an input

x x

Comparison on
message-related
statistics

x x

Table 3.2: Design of experiments: applications

First two rows of Table 3.2 are connected with Step 1 of the workflow of

the experiments (see Figure 3.2), and represent what traces of what paral-

lel applications where were recorded. Third row demonstrates from what

traces of the applications the communication matrices were created (Step 2

of the workflow). The last four rows — the traces of what applications were

used to perform HAEC-SIM simulations (Steps 5 and 6 of the workflow).

Table 3.3 shows what algorithms were implemented for the considered

parallel applications (Step 3 of the workflow), and which of the created

mappings were chosen for the experiments (Steps 4—6). Table 3.4 informs

what models of the network topologies were used for the experiments.

43

Action
Algorithm

Mapper MinMD Bipartition PaCMap TopoAware Greedy GreedyALLC FHGreedy UDFS A∗

Mappings for
LU.C.64 and BT.C.64

x x x x x x x x x

Mappings for
LU.C.256 and BT.C.256

x x x x x x x x x

Mappings for
LU.C.1024 and BT.C.1024

x x x x x x x x x

Mappings for
LU.D.4096 and BT.D.4096

x x x x x x x

Comparison on
mapping-related statistics
for LU.C.64 and BT.C.64
(HAEC-SIM simulations)

x x x x x

Comparison on
message-related statistics
for LU.C.64 and BT.C.64
(HAEC-SIM simulations)

x x x x x

Table 3.3: Design of experiments: algorithms

Action
Topology

3-D MESH 3-D TORUS HAEC BOX

Number of nodes 64 256 1024 4096 64 256 1024 4096 64 256 1024 4096

Topology model
for execution algorithms
in pre-simulation

x x x x x x x x x x x x

Topology model
for validation algorithms
in HAEC-SIM simulator

x x x

Table 3.4: Design of experiments: 3-D interconnection topologies

Chapter 4

Pre-simulation Experiments

4.1 Results

The results of the execution time of all above mentioned mapping algo-

rithms for three main network topologies are given below. The execution

time was measured by Python’s library cProfile. Table 4.1 lists the execu-

tion time of generating the mapping for the LU (class C, 64 MPI processes)

application of the NAS parallel benchmarks.

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

LU.C.64 3-D Mesh 3-D Torus HAEC Box

Mapper 1.964 4.418 6.214
MinMD 0.002 0.002 0.002
Bipartition 0.054 0.067 0.069
PaCMap 0.100 0.105 0.252
TopoAware 0.876 0.905 1.027
Greedy 0.038 0.059 0.187
GreedyALLC 0.064 0.067 0.098
FHGreedy 0.017 0.013 0.046
UDFS 0.013 0.022 0.022

Table 4.1: Time to generate the mapping (in sec) for LU.C.64 on 4× 4× 4 topologies

Table 4.2 shows the execution time of generating the mapping for the BT

(class C, 64 MPI processes) application of the NAS parallel benchmarks.

The statistics of the inter-node physical communications and weighted

task average distances (IeNPC and WTAD, see Section 3.1) for the consid-

44

45

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

BT.C.64 3-D Mesh 3-D Torus HAEC Box

Mapper 18.098 6.347 20.500
MinMD 0.001 0.002 0.002
Bipartition 0.058 0.067 0.078
PaCMap 0.127 0.105 0.251
TopoAware 1.234 0.905 1.721
Greedy 0.049 0.059 0.211
GreedyALLC 0.070 0.067 0.130
FHGreedy 0.021 0.013 0.078
UDFS 0.012 0.022 0.023

Table 4.2: Time to generate the mapping (in sec) for BT.C.64 on 4× 4× 4 topologies

ered algorithms with communication matrices of the applications LU.C.64

and BT.C.64 are shown in Figures 4.1 — 4.6. Each pair of graphical plots

demonstrates the values of two metrics, used in this thesis to compare the

quality of the proposed mapping algorithms. The horizontal black line on

the left graphics represents the value of the inter-node logical communication

(IeNLC), that is the sum of exchanged messages between nodes, neglecting

the network topology. The distance between bars and this line should be min-

imized. The best mapping algorithms have the smallest difference between

the value of IeNLC and values of IeNPC their bar graphs represent.

On the right plots the values of the weighted task average distance (WTAD)

are visualized. Additionally, the values of the default consecutive mapping

“xyz” are added, like the authors of [21] propose to compare the algorithmic

performance. It means, that the tasks are mapped onto the nodes in the or-

der of identifiers, starting an assignment of the task with Id = 1 to the node

with Id = 1, and ending the assignment of the last task to the node with

highest identifier. The lesser the value of WTAD is, the better performance

the algorithm, showed this value, demonstrates.

The corresponding numerical values can be found in Appendix B. All

measurements were conducted on Intel Core i5−2410M CPU at 2.30GHz×4,

with 12 GB of RAM, running Ubuntu 14.04.

46

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

30.0 M

35.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

2.0 k

4.0 k

6.0 k

8.0 k

10.0 k

12.0 k

14.0 k

16.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.1: Statistics for LU.C.64 on 4× 4× 4 3-D Mesh

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

30.0 M

35.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

2.0 k

4.0 k

6.0 k

8.0 k

10.0 k

12.0 k

14.0 k

16.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.2: Statistics for LU.C.64 on 4× 4× 4 3-D Torus

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

30.0 M

35.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

2.0 k

4.0 k

6.0 k

8.0 k

10.0 k

12.0 k

14.0 k

16.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.3: Statistics for LU.C.64 on 4× 4× 4 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC

47

0.0

500.0 k

1.0 M

1.5 M

2.0 M

2.5 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

200.0

400.0

600.0

800.0

1.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.4: BT.C.64 on 4× 4× 4 3-D Mesh

0.0

500.0 k

1.0 M

1.5 M

2.0 M

2.5 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

200.0

400.0

600.0

800.0

1.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.5: BT.C.64 on 4× 4× 4 3-D Torus

0.0

500.0 k

1.0 M

1.5 M

2.0 M

2.5 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

200.0

400.0

600.0

800.0

1.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.6: Statistics for BT.C.64 on 4× 4× 4 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC

48

Like the graphical plots show, a list of “leaders” from the algorithms could

be created. There are 5 of the strategies, that demonstrate their quality, in

average in the best way w.r.t. the both metrics, for all tests made for the

parallel applications LU.C.64 and BT.C.64, namely:

• Bokhari’s Mapper,

• Partitioning and Center Mapping (PaCMap),

• Topology-aware Task Mapping,

• GreedyALLC Strategy,

• Fast and High Quality Greedy Mapping.

One need to compare the pre-simulation statistics, what were obtained

during the experiments on the local machine, with the post-simulation statis-

tics, in order to see whether the assumptions “before” hold “after” the

simulation as well. In other words, whether the tendency of a reducing the

number of IeNPC is keeping, or not, on the real physical computing machines.

Therefore, the results of these five “best-quality” algorithms are chosen to

check their performance after the simulations on the HAEC-SIM framework

(see Chapter 5), that will return the statistics for each message’s group (the

groups are differed by message size): average number of hops (meaning phys-

ical links) traveled, average duration of transfer time in seconds, and average

delivered transferred rate for the links in bytes per seconds. It is the most

important aspect of using the HAEC-SIM simulations, testing whether the

hypothesis before simulation are still valid after the simulation. This is a

form of verification of the presumption that the mapping A is better/not

than the mapping B for the application C on the architecture D.

One could now assume that the GreedyALLC mapping shows the best

performance for LU parallel application of NAS benchmark on 3-D Torus

network topology. The same observation for BT application can be done

from the graphical plots: Bokhari’s Mapper algorithm produces the best per-

49

formance values on HAEC Box topology. The assumptions will be validated

in Chapter 5.

However, one thing should be stressed out. If one is interested only in

time, the algorithms produce the mappings, one must distinguish time from

the quality. Looking at the results, presented above, one can definitely figure

out, that the best-quality algorithms are usually not among the quickest

ones, even for the small problem size. Hence, it is necessary to keep in mind,

whether one is ready to sacrifice the quality to time, needed to get some

(sometimes, even the worst) results.

Tables 4.3 and 4.4 list the execution time of generating the mappings for

the LU and BT (class C, 256 MPI processes) applications of the NAS parallel

benchmarks.

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

LU.C.256 3-D Mesh 3-D Torus HAEC Box

Mapper 18.069 129.993 570.569
MinMD 0.014 0.006 0.012
Bipartition 0.258 0.274 0.640
PaCMap 2.056 2.482 11.408
TopoAware 172.542 170.339 189.863
Greedy 0.632 0.718 10.341
GreedyALLC 0.973 0.964 2.537
FHGreedy 0.072 0.076 1.890
UDFS 0.130 0.142 0.402

Table 4.3: Time to generate the mapping (in sec) for LU.C.256 on 8× 8× 4 topologies

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

BT.C.256 3-D Mesh 3-D Torus HAEC Box

Mapper 100.995 169.521 1449.485
MinMD 0.015 0.009 0.014
Bipartition 0.142 0.153 0.344
PaCMap 2.321 2.872 12.935
TopoAware 171.838 176.841 217.270
Greedy 0.647 0.762 10.813
GreedyALLC 1.033 1.112 2.938
FHGreedy 0.155 0.121 3.066
UDFS 0.128 0.197 0.607

Table 4.4: Time to generate the mapping (in sec) for BT.C.256 on 8× 8× 4 topologies

50

The statistics of the inter-node physical communications and weighted

task average distances for the applications are shown in Figures 4.7 — 4.12.

0.0

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

1.0 k

2.0 k

3.0 k

4.0 k

5.0 k

6.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.7: LU.C.256 on 8× 8× 4 3-D Mesh

0.0

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

1.0 k

2.0 k

3.0 k

4.0 k

5.0 k

6.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.8: LU.C.256 on 8× 8× 4 3-D Torus

0.0

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

1.0 k

2.0 k

3.0 k

4.0 k

5.0 k

6.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.9: Statistics for LU.C.256 on 8× 8× 4 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC

51

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

30.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.10: BT.C.256 on 8× 8× 4 3-D Mesh

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

30.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.11: BT.C.256 on 8× 8× 4 3-D Torus

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

30.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.12: Statistics for BT.C.256 on 8× 8× 4 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC

52

Table 4.5 lists the execution time of generating the mapping for the LU

(class C, 1024 MPI processes) application of the NAS parallel benchmarks.

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

LU.C.1024 3-D Mesh 3-D Torus HAEC Box

Mapper 1245.601 1857.210 27915.100
MinMD 0.124 0.042 0.104
Bipartition 0.880 0.869 2.170
PaCMap 86.940 85.216 440.974
TopoAware 38996.723 38346.131 39997.982
Greedy 10.479 12.647 356.345
GreedyALLC 14.887 15.597 74.454
FHGreedy 0.477 0.449 40.165
UDFS 1.950 2.128 17.225

Table 4.5: Time to generate the mapping (in sec) for LU.C.1024 on 16× 8× 8 topologies

Table 4.6 shows the execution time of generating the mapping for the BT

(class C, 1024 MPI processes) application of the NAS parallel benchmarks.

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

BT.C.1024 3-D Mesh 3-D Torus HAEC Box

Mapper 3734.294 2448.568 32271.433
MinMD 0.303 0.059 0.138
Bipartition 0.917 0.933 2.236
PaCMap 85.160 91.245 422.109
TopoAware 37997.220 36066.030 40945.284
Greedy 10.629 12.504 343.360
GreedyALLC 17.502 17.298 76.144
FHGreedy 0.938 0.725 66.717
UDFS 1.982 2.062 17.273

Table 4.6: Time to generate the mapping (in sec) for BT.C.1024 on 16× 8× 8 topologies

The statistics of the inter-node physical communications and task average

distances are illustrated in Figures 4.13 — 4.18 below.

53

0.0

200.0 M

400.0 M

600.0 M

800.0 M

1.0 G

1.2 G

1.4 G

1.6 G

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

500.0

1.0 k

1.5 k

2.0 k

2.5 k

3.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.13: LU.C.1024 on 16× 8× 8 3-D Mesh

0.0

200.0 M

400.0 M

600.0 M

800.0 M

1.0 G

1.2 G

1.4 G

1.6 G

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

500.0

1.0 k

1.5 k

2.0 k

2.5 k

3.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.14: LU.C.1024 on 16× 8× 8 3-D Torus

0.0

200.0 M

400.0 M

600.0 M

800.0 M

1.0 G

1.2 G

1.4 G

1.6 G

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

500.0

1.0 k

1.5 k

2.0 k

2.5 k

3.0 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.15: Statistics for LU.C.1024 on 16× 8× 8 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC

54

0.0

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

300.0 M

350.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

100.0

200.0

300.0

400.0

500.0

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.16: BT.C.1024 on 16× 8× 8 3-D Mesh

0.0

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

300.0 M

350.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

100.0

200.0

300.0

400.0

500.0

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.17: BT.C.1024 on 16× 8× 8 3-D Torus

0.0

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

300.0 M

350.0 M

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

100.0

200.0

300.0

400.0

500.0

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.18: Statistics for BT.C.1024 on 16× 8× 8 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC

55

Tables 4.7 and 4.8 demonstrate the execution time of generating the map-

pings for the LU and BT (class D, 4096 MPI processes) applications of the

NAS parallel benchmarks. One thing to be noted: seeing the tendency of the

execution time increasing for Bokhari’s Mapper and Topology-aware algo-

rithms (even for 1024 processes execution time is about 10 hours), it seemed

wiser to not test these mapping strategy for 4096 processes. Therefore, their

algorithmic run time results and statistics are not included in the present

work. The statistics of the inter-node physical communications and task

average distances for other algorithms are given below on pages 56— 57.

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

LU.D.4096 3-D Mesh 3-D Torus HAEC Box

Mapper * * *
MinMD 1.062 0.238 0.959
Bipartition 8.026 8.230 19.162
PaCMap 4302.019 4402.985 15824.939
TopoAware * * *
Greedy 181.425 188.204 11503.082
GreedyALLC 248.142 238.176 2229.684
FHGreedy 4.377 3.919 738.127
UDFS 38.592 40.302 520.989

Table 4.7: Time to generate the mapping (in sec) for LU.D.4096 on 16× 16× 16 topologies

Algorithm Execution Time [s] Execution Time [s] Execution Time [s]

BT.D.4096 3-D Mesh 3-D Torus HAEC Box

Mapper * * *
MinMD 2.075 0.382 1.180
Bipartition 8.235 9.460 22.389
PaCMap 4586.804 4902.733 17198.404
TopoAware * * *
Greedy 182.596 219.868 12222.683
GreedyALLC 274.469 282.343 2231.909
FHGreedy 6.639 5.554 1424.939
UDFS 36.930 38.425 508.314

Table 4.8: Time to generate the mapping (in sec) for BT.D.4096 on 16× 16× 16 topologies

56

0.0

5.0 G

10.0 G

15.0 G

20.0 G

25.0 G

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

200.0

400.0

600.0

800.0

1.0 k

1.2 k

1.4 k

1.6 k

1.8 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.19: LU.D.4096 on 16× 16× 16 3-D Mesh

0.0

5.0 G

10.0 G

15.0 G

20.0 G

25.0 G

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

200.0

400.0

600.0

800.0

1.0 k

1.2 k

1.4 k

1.6 k

1.8 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.20: LU.D.4096 on 16× 16× 16 3-D Torus

0.0

5.0 G

10.0 G

15.0 G

20.0 G

25.0 G

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

200.0

400.0

600.0

800.0

1.0 k

1.2 k

1.4 k

1.6 k

1.8 k

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.21: Statistics for LU.D.4096 on 16× 16× 16 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC

57

0.0

500.0 M

1.0 G

1.5 G

2.0 G

2.5 G

3.0 G

3.5 G

4.0 G

4.5 G

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.22: BT.D.4096 on 16× 16× 16 3-D Mesh

0.0

500.0 M

1.0 G

1.5 G

2.0 G

2.5 G

3.0 G

3.5 G

4.0 G

4.5 G

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.23: BT.D.4096 on 16× 16× 16 3-D Torus

0.0

500.0 M

1.0 G

1.5 G

2.0 G

2.5 G

3.0 G

3.5 G

4.0 G

4.5 G

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(a) Number of IeNPC

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

M
apper

M
inM

D

Bipartition

PaCM
ap

TopoAware

Greedy

GreedyALLC

FHGreedy

UDFS

XYZ

W
e
ig

h
te

d
 t

a
sk

 a
v
e
ra

g
e
 d

is
ta

n
ce

The mapping algorithms

(b) WTAD

Figure 4.24: Statistics for BT.D.4096 on 16× 16× 16 HAEC Box. The horizontal

black line in the left plots represents the total value of IeNLC

58

4.2 Discussion of the Results

As it can be seen from the graphical plots, Bokhari’s Mapper, Partitioning

and Center Mapping, Topology-aware Task Mapping, GreedyALLC Mapping,

and Fast and High Quality Mapping algorithms are keep demonstrating their

good performance for other applications with different sizes. However, the

pre-simulation step has shown, that the winner of the mappings competi-

tion could be already chosen. The algorithm GreedyALLC, proposed in [27],

produces almost in all cases superb results — the algorithm creates the map-

pings with good values of the both metrics in reasonable amount of time (in

comparison with Mapper and Topology-aware algorithms) for all topologies

sizes.

The general tendency for all applications of different sizes and mapping al-

gorithms is that the number of inter-node physical communications (IeNPC)

has a decreasing nature from the 3-D Mesh, over the 3-D Torus to the HAEC

Box topology. This fact is associated with the increasing number of links in

the topologies and with the decreasing diameter of the topologies (longest

path length between two processors). If 4× 4× 4 3-D Mesh has the diameter

equal to 9, 3-D torus — 6, HAEC Box has already the diameter equal to 4.

xy
z

(a) 3-D Mesh

xy
z

(b) 3-D Torus

xy
z

(c) HAEC Box

Figure 4.25: Graphical representation of the 3× 3× 3 topologies

59

As a consequence, the average distance (number of hops) between any two

nodes is decreasing, as the new path, the sent messages follow to reach their

destination, appear.

Considering the example, presented in Figure 4.25, one can see that the

number of hops between nodes (0,0,0) and (2,0,1) (the nodes are highlighted

in black) is decreasing over the topologies. If in case of 3-D Mesh the mini-

mum distance between them is 3 hops, in case of 3-D Torus the distance is

already 2 hops (due to the topological property of such networks), and in

case of HAEC Box just 1 hop thanks to the construction, where two adjacent

plates are connected through wireless links.

The execution time could be the most important constraint in choosing

specific mapping algorithm. In case of Topology-aware and Bokhari’s Map-

per strategies it plays a significant role. Despite the fact that these two

approaches demonstrate the results, comparable with the performance of

GreedyALLC algorithm and sometimes even better, their execution time for

the topologies with small sizes (64 and 256 MPI processes) exceed the exe-

cution time of GreedyALLC by several times; in case of 1024 MPI processes

the difference in time is already hundreds and thousands times, respectively.

Presented in Figures 4.26—4.28 graphical plots of the algorithmic run

time illustrate the overall tendency of the increasing in time with increasing

the problem sizes. One can definitely see, that almost all graphics have

an exponential nature of growth, except Minimum Manhattan Distance and

Recursive Bipartitioning algorithms, that have a linear growth.

The execution time of Mapper and Topology-aware Task Mapping algo-

rithms show the exponential explosion for the experiments on all network

topologies — once the problem size becomes more than 64 processes, the

algorithms rapidly slow down their performance. The same observation is

valid as well for PaCMap mapping algorithm — the difference in time for

1024 and 4096 processes is about 50 times for all topologies.

60

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
 i
n
 s

e
c

Number of tasks

Mapper
MinMD

Bipartition
PaCMap

TopoAware
Greedy

GreedyALLC
FHGreedy

UDFS

(a) LU parallel application

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
 i
n
 s

e
c

Number of tasks

Mapper
MinMD

Bipartition
PaCMap

TopoAware
Greedy

GreedyALLC
FHGreedy

UDFS

(b) BT parallel application

Figure 4.26: Time to generate the mappings (in sec) for parallel applications

for 3-D Mesh on the local machine

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
 i
n
 s

e
c

Number of tasks

Mapper
MinMD

Bipartition
PaCMap

TopoAware
Greedy

GreedyALLC
FHGreedy

UDFS

(a) LU parallel application

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
 i
n
 s

e
c

Number of tasks

Mapper
MinMD

Bipartition
PaCMap

TopoAware
Greedy

GreedyALLC
FHGreedy

UDFS

(b) BT parallel application

Figure 4.27: Time to generate the mappings (in sec) for parallel applications

for 3-D Torus on the local machine

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
 i
n
 s

e
c

Number of tasks

Mapper
MinMD

Bipartition
PaCMap

TopoAware
Greedy

GreedyALLC
FHGreedy

UDFS

(a) LU parallel application

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
 i
n
 s

e
c

Number of tasks

Mapper
MinMD

Bipartition
PaCMap

TopoAware
Greedy

GreedyALLC
FHGreedy

UDFS

(b) BT parallel application

Figure 4.28: Time to generate the mappings (in sec) for parallel applications

for HAEC Box on the local machine

Chapter 5

Simulations with HAEC-SIM

In this chapter the comparison of the mapping algorithms is given in terms

of the mapping-related statistics (the number of IeNPC) obtained in pre-

simulation step and after simulation on the HAEC-SIM framework, as well

as in terms of the message-related statistics, using the HAEC-SIM module

trace stats, discussed in Section 3.3.3.

5.1 Proposed Approach

As mentioned before in Section 4.1, the validation of the mappings results

can be carried out as the valuation of the mappings impact for benchmark

traces mapped to mesh, torus, or HAEC Box topologies. This was the initial

plan for the comparison of different mapping strategies. However, one more

possibility to check the results arose from the work process. It turned out,

that one could as well compare the impact of the mappings for benchmark

traces obtained from a simulating the execution with the default mapping

“xyz” of the benchmarks on mesh, torus, HAEC Box topologies, which were

subsequently mapped to mesh, torus, and HAEC Box with the best map-

pings, chosen in Chapter 4. It means, that before any simulation one need

to perform one additional step to already considered. First, the traces of

the NAS benchmark applications are mapped to the topologies with default

61

62

mapping “xyz”, i.e. for 4×4×4 topology the task with ID = 0 is mapped to

the node with (0, 0, 0) xyz coordinates, the task with ID = 1 is mapped on

the node (1, 0, 0), the task with ID = 63 — on the node (3, 3, 3), respectively.

Then, the resulting simulation traces are taken as input for the further sim-

ulations, using the mapping files obtained after pre-simulation step. Finally,

a generating the statistics with module trace stats for these new simulated

traces allows to compare them with the input traces (generated with “xyz”

mapping strategy) in terms of a message-level comparison of transfer rates,

hops travelled per message, etc., and could show the effectiveness of the map-

ping strategy.

The main purpose of doing the simulation is to answer the question: Which

mapping and which topology result in the best performance for the given ap-

plication? The simulation results must provide an answer on that question.

The applications LU and BT of class C, compiled with 64 MPI processes,

were chosen as test instances for the following reasons. All simulations were

conducted on KNL Intel Xeon Phi processors, that have 64 CPU with 1 thread

per core on board. Therefore, 64 processes in total suit perfectly for running

the simulation, where for each process one thread is dedicated. Second, the

total simulation time and the input trace size are still reasonable.

5.2 Comparison of Mapping-related Statistics

Only the most successful (based on the showed results) mappings from

Chapter 4 for each of specified topology (3-D Mesh, 3-D Torus and HAEC

Box) and for two applications LU.C.64 and BT.C.64 should be tested with

HAEC-SIM: Bokhari‘s Pairwise Interchange Algorithm: Mapper, Partition-

ing and Center Mapping (PaCMap), Topology-aware Task Mapping, GreedyALLC

Strategy, and Fast and High Quality Mapping. The comparison of the impact

of the mappings for benchmark traces obtained on “miniHPC” machine, but

63

mapped during the HAEC-SIM simulation to the mesh, torus, and HAEC

Box topologies is considered here.

The number of IeNPC (post-simulation) can be approximated as follows:

IeNPCpost−sim ≈
G∑
i

#hopsi ×#messagesi, (5.1)

whereG is a number of message size groups in the statistics file, obtained after

the simulation with HAEC-SIM module trace stats, hopsi is the average

number of hops in the ith message size group, and messagesi is the number

of messages in ith message size group. The Table 5.1 represents the look of

such statistics file:

68533654909634ps
TOT 4383153578089373ps
APP 3527659318077742ps 80.4822%
MPI 855494260011631ps 19.5178%

Message size
Number of
messages

Avg. number
of hops

Avg. duration
Avg. delivered
transferred rate

320 B # 42 1.57143 hops 8.74411e-06 s 3.65961e+07 B/s
336 B # 14 1.57143 hops 7.4511e-06 s 4.5094e+07 B/s
352 B # 42 1.57143 hops 1.08433e-05 s 3.24625e+07 B/s
368 B # 14 1.57143 hops 1.11889e-05 s 3.28897e+07 B/s
760 B # 1124480 1.5 hops 4.21283e-05 s 1.80401e+07 B/s
800 B # 6746880 1.57143 hops 2.94626e-05 s 2.71531e+07 B/s
840 B # 1124480 1.64286 hops 2.77611e-05 s 3.02581e+07 B/s

1296 B # 28 1.5 hops 9.70617e-06 s 1.33523e+08 B/s
259200 B # 42672 1.57143 hops 0.000869493 s 2.98105e+08 B/s
272160 B # 14224 1.57143 hops 0.000893913 s 3.04459e+08 B/s

OVERALL B # 9052876 1.57143 hops 3.6142e-05 s

Table 5.1: Statistics file for LU.C.64 on 3-D Mesh with Mapper algorithm

The first line of the Table 5.1 shows the total duration of the trace in

picoseconds (1e-12 sec). Then, total accumulative time in picoseconds spent

in APP (application computation functions) and MPI (communication) func-

tions, respectively: TOT = APP + MPI. Two next lines have as values total

accumulative time and percentage from the total amount of time spent in

64

APP functions (or MPI communication functions, respectively). The columns

demonstrate the followings: the first one — a message size; the second one —

a number of messages of that size; third one — an average number of hops

for each message to travel; the fourth one — an average duration in seconds;

and fifth one — an average delivered transferred rate for the links.

The graphics below in Figure 5.1—5.3 represent the comparison of the re-

sults obtained before (pre-simulation) and after (post-simulation) the simula-

tions in terms of the number of inter-node physical communications (IeNPC).

The purple bars beside each of the colored bar, representing the number of

IeNPC of each algorithm, are the values of IeNPC approximated from the

statistics files after the simulations and calculated with the equation (5.1).

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

Number of IeNLC

(a) LU.C.64

0.0

500.0 k

1.0 M

1.5 M

2.0 M

M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

Number of IeNLC

(b) BT.C.64

Figure 5.1: Comparison of pre-simulation and post-simulation statistics for NAS parallel

applications in terms of total IeNPCpre−sim and total IeNPCpost−sim

on 4× 4× 4 3-D Mesh. The horizontal black line in the plots represents

the total value of IeNLC.

65

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

Number of IeNLC

(a) LU.C.64

0.0

500.0 k

1.0 M

1.5 M

2.0 M

M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

Number of IeNLC

(b) BT.C.64

Figure 5.2: Comparison of pre-simulation and post-simulation statistics for NAS parallel

applications in terms of total IeNPCpre−sim and total IeNPCpost−sim

on 4× 4× 4 3-D Torus. The horizontal black line in the plots represents

the total value of IeNLC.

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

Number of IeNLC

(a) LU.C.64

0.0

500.0 k

1.0 M

1.5 M

2.0 M

M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

pr
e

po
st

Number of IeNLC

(b) BT.C.64

Figure 5.3: Comparison of pre-simulation and post-simulation statistics for NAS parallel

applications in terms of total IeNPCpre−sim and total IeNPCpost−sim

on 4× 4× 4 HAEC Box. The horizontal black line in the plots represents

the total value of IeNLC.

It can be observed from the presented graphics, that in all cases the results

showed by the algorithms during the pre-simulation step are still valid in case

of the mapping the initial benchmark traces on the mesh, torus, and HAEC

Box topologies. For all of three topologies results are the same with the

66

predicted ones in the pre-simulation step. It means, that if only evaluate

mappings based on the metrics known before any HAEC-SIM simulations,

one can have a high confidence that a certain mapping will result in the

expected performance, if a HAEC-SIM simulation is performed, or if the

benchmark is mapped on a real system with this mapping.

Now it is time to answer on the question, that has been asked before in

Section 5.1. Analyzing the graphics, one can definitely response: for the

parallel NAS benchmark LU of class C the 3-D Torus topology and the map-

ping, produced by GreedyALLC algorithm, result the best performance; in

case of BT parallel application — HAEC Box topology with applied to the

communication matrix of the application Bokhari’s Mapper.

5.3 Comparison of Message-related Statistics

In order to compare the mappings in terms of message-related statistics,

one needs to perform the following steps. First, to obtain the statistics file

from the initial trace, namely from the benchmark trace mapped either on

mesh, either on torus, or on HAEC Box with default “xyz” mapping. Second,

the simulated trace from the first step has to be mapped once again on the

topologies, however, with mapping files, that were chosen as the best after

pre-simulation step of the experiment part. Finally, the statistics files are

created from the new traces and could be used for the purposes of the com-

parison. Based on the information retrieved with the module trace stats,

one is able now to compare the delivered transferred rate for each message

(in B/s) and the number of hops travelled for each message.

67

 0

 0.5

 1

 1.5

 2

 2.5

 3

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

N
u
m

b
e
r

o
f

h
o
p

s

The mapping algorithms

(a) 3-D Mesh. Average number of hops

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(b) 3-D Mesh. IeNPC

 0

 0.5

 1

 1.5

 2

 2.5

 3

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

N
u
m

b
e
r

o
f

h
o
p

s

The mapping algorithms

(c) 3-D Torus. Average number of hops

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(d) 3-D Torus. IeNPC

 0

 0.5

 1

 1.5

 2

 2.5

 3

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

N
u
m

b
e
r

o
f

h
o
p

s

The mapping algorithms

(e) HAEC-Box. Average number of hops

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(f) HAEC-Box. IeNPC

Figure 5.4: Message statistics for LU.C.64 mapped on 4× 4× 4 topologies.

The horizontal black line in the right plots represents the total value of IeNLC

In Figure 5.4 the average number of hops, each message should traverse,

and calculated (with formula (5.1) from the section 5.2) number of inter-

68

node physical communications (IeNPC) for parallel application LU are de-

picted. It can be seen that the algorithms GreedyALLC and Topo-aware

mapping strategy demonstrate the best performance in case of mapping LU

parallel benchmark on topologies with positions (mapping) files, produced

by the algorithms. GreedyALLC even shows the least number of hops for

all topologies, that means, that the most communicative pairs are placed as

close as possible, which is reflected in number of IeNPC: in all cases it is

equal or slightly more than the number of inter-node logical communications

(IeNLC). Exactly this value has been chosen as a measure of the algorithms

performance — all of them are striving to reach it. The chosen 5 best algo-

rithms have better values of IeNPC for 3-D Torus and HAEC Box topologies

than the default “xyz” mapping demonstrates, what could be considered as

an indicator of the improving the overall performance of the application in

case of using positions files the algorithms produce.

In case of BT parallel benchmark (see Figure 5.5), all 5 chosen algorithms

have better values than a default “xyz” mapping: number of hops is less than

produced by the initial mapping, that leads to the lesser number of IeNPC

respectively.

 0

 0.5

 1

 1.5

 2

 2.5

 3

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

N
u
m

b
e
r

o
f

h
o
p

s

The mapping algorithms

(a) 3-D Mesh. Average number of hops

0.0

200.0 k

400.0 k

600.0 k

800.0 k

1.0 M

1.2 M

1.4 M

1.6 M

1.8 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(b) 3-D Mesh. IeNPC

69

 0

 0.5

 1

 1.5

 2

 2.5

 3

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

N
u
m

b
e
r

o
f

h
o
p

s

The mapping algorithms

(c) 3-D Torus. Average number of hops

0.0

200.0 k

400.0 k

600.0 k

800.0 k

1.0 M

1.2 M

1.4 M

1.6 M

1.8 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(d) 3-D Torus. IeNPC

 0

 0.5

 1

 1.5

 2

 2.5

 3

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

N
u
m

b
e
r

o
f

h
o
p

s

The mapping algorithms

(e) HAEC-Box. Average number of hops

0.0

200.0 k

400.0 k

600.0 k

800.0 k

1.0 M

1.2 M

1.4 M

1.6 M

1.8 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

T
o
ta

l
n
u
m

b
e
r

o
f

Ie
N

P
C

The mapping algorithms

Number of IeNLC

(f) HAEC-Box. IeNPC

Figure 5.5: Message statistics for BT.C.64 mapped on 4× 4× 4 topologies.

The horizontal black line in the right plots represents the total value of IeNLC

One should state, that in case of message-related statistics, the answer

on the question, put in Section 5.1, is: for LU application the ideal topol-

ogy is 3-D Torus with GreedyALLC mapping, and for BT — HAEC Box

with Bokhari’s algorithm Mapper. The winner algorithms and topologies are

the same, as in case of the mapping-related statistics, considered in the sec-

tion 5.2. Exactly these observation has been declared to be validated with

the simulations in section 4.1.

One thing left to be considered is the average delivered transferred rate for

70

each message sent through the links of the topologies. The graphical plots in

Figure 5.6 show these statistics.

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

300.0 M

350.0 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

A
v
g

.
d

e
liv

e
re

d
 t

ra
n
sf

e
rr

e
d

 r
a
te

 (
B

/s
)

The mapping algorithms

(a) 3-D Mesh. LU.C.64

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

300.0 M

350.0 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

A
v
g

.
d

e
liv

e
re

d
 t

ra
n
sf

e
rr

e
d

 r
a
te

 (
B

/s
)

The mapping algorithms

(b) 3-D Mesh. BT.C.64

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

300.0 M

350.0 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

A
v
g

.
d

e
liv

e
re

d
 t

ra
n
sf

e
rr

e
d

 r
a
te

 (
B

/s
)

The mapping algorithms

(c) 3-D Torus. LU.C.64

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

300.0 M

350.0 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

A
v
g

.
d

e
liv

e
re

d
 t

ra
n
sf

e
rr

e
d

 r
a
te

 (
B

/s
)

The mapping algorithms

(d) 3-D Torus. BT.C.64

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

300.0 M

350.0 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

A
v
g

.
d

e
liv

e
re

d
 t

ra
n
sf

e
rr

e
d

 r
a
te

 (
B

/s
)

The mapping algorithms

(e) HAEC-Box. LU.C.64

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

300.0 M

350.0 M

XYZ
M
apper

PaCM
ap

TopoAware

GreedyALLC

FHGreedy

A
v
g

.
d

e
liv

e
re

d
 t

ra
n
sf

e
rr

e
d

 r
a
te

 (
B

/s
)

The mapping algorithms

(f) HAEC-Box. BT.C.64

Figure 5.6: Average delivered transferred rate in B/s for applications on 4×4×4 topologies

71

For 3-D Mesh and Torus the average gain in bandwidth is about 10% to

showed one by the “xyz” mapping. For HAEC Box topology there is almost

no difference in the links bandwidth. It could be explained by the fact that

the HAEC-SIM framework yields optimistic simulations with contention-free

resources. In other words, the multiple messages are simultaneously sent over

the same link at the nominal bandwidth. All implemented network models

by default in the simulator assume that there are no link contention, no link

errors, and no link attackers [7], [17].

5.4 Discussion of the Results

Considering two types of the validation, one could make the following

conclusion. The answers to the question: Which mapping and which topology

result in the best performance for the given application? are the same in terms

of as mapping-related statistics, as well as message-related statistics. For LU

application the ideal topology is 3-D Torus with GreedyALLC mapping, and

for BT — HAEC Box with Mapper strategy.

The results of the HAEC-SIM simulations demonstrated, that, first, one

can have a high confidence, that a certain mapping will result in the ex-

pected performance, even without mapping the benchmark applications on

a real HPC system. Second, using “winner” mappings, one can significantly

decrease the number of traversed by each message hops (in comparison with

default “xyz” mapping), that leads to the increasing of the overall applica-

tions performance.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The challenging issue for HPC is still being an energy consumption for

computation and cooling [8]. One practical method to solve the problem is

to improve data locality, in other words, the way the data are placed onto

available processors units (CPU or cores of the network topology). In this

thesis different strategies of mapping applications tasks onto the nodes of the

underlying network topologies were considered and analyzed for their exe-

cution time as well as the performance of the produced mappings according

to the defined performance metrics. As the results of the thesis show, the

careful mapping of the parallel tasks on the nodes plays a significant role in

decreasing the number of hops, each message should traverse, and the values

of the inter-node physical communications, that leads to an improving the

overall performance of the desired application. The simulations conducted on

HAEC-SIM and their results evidence the assumptions, that if only evaluate

a mapping based on the metrics known before any HAEC-SIM simulations,

one can have a high confidence that the certain mapping will result in the

expected performance, if a HAEC-SIM simulation is performed, or if the

benchmark is mapped on a real system with this mapping.

However, the execution time of the mapping algorithms is still being the

72

73

most important constraint in selecting a specific mapping algorithm. Despite

the fact that certain approaches demonstrate the comparable good results,

their algorithmic run time could exceed the execution time of others in several

times. The examples of Bokhari’s Pairwise Interchange Algorithm: Mapper

and Topology-aware mapping strategies prove this statement.

As asserted in [10], dilation is a measure of the total communication work

performed by the network topology. It is an indicator of the total energy con-

sumption. Congestion is a lower bound on time needed for communication.

The choice of the underlying topology, the HPC parallel applications are be-

ing mapped onto, has a significant impact on the execution time, the overall

performance and energy consumption of the applications. The results of the

simulations, conducted with HAEC-SIM framework, demonstrated, that the

HAEC Box topology helps to reach the best values of the performance met-

rics for all considered in the thesis algorithms and parallel applications. This

fact is associated with the increasing number of links in the topologies (from

3-D Mesh over 3-D Torus to HAEC Box) and, as a consequence, the number

of hops between any two nodes is decreasing. It means, that each of the

applications tasks has to traverse lesser number of links, what decreases the

dilation and congestion of the network topology, respectively.

6.2 Future Work

The mapping algorithms presented and considered in the thesis have as

well some room for improvement. For example, implementing Recursive Bi-

partitioning algorithm, the set of serial programs for partitioning graphs

“METIS” [5] was used. However, one more graph partitioner could be given

a try, namely “KAHIP” [30]. The authors of [27] claim, that the results of

this partitioner are comparable with the results, produced by “METIS”.

As mentioned in Section 2.5, there are 3 types of Estimation functions

74

the authors proposed in [12]. All of them were implemented and tested in

Python. The running time of the algorithm with the first type of approxi-

mation is an order of O(n|Et|), where n is the size of both application and

topology graphs, and |Et| is the cardinality of set of edges in the application

graph. For comparison, overall execution time for second type and third type

of approximation is in order of O(n|Et|) and O(n3), respectively [12]. Ex-

actly, because of that fact, the results of the algorithm’s execution with the

first order approximation function were chosen and presented in this work.

The first order approximation 2.5.1 demonstrated as well better performance

results than others two during the implementation of the algorithms and test

phase — the values of the metrics, discussed in Section 3.1, are lesser than

showed by other two approximations. However, the authors of [12] claim, that

their experimental results demonstrated that the second and third types of

approximation outperform the first one by about 10-25%, for instance, in

terms of the execution time and average number of hops travelled by each

byte. Thus, the Topology-aware Task Mapping algorithm should be thor-

oughly assessed with the second and third types of approximation on other

parallel applications and the lack in the performance should be detected.

The authors of Fast and High Quality Greedy mapping [13] have as well

proposed two refinements of their algorithm. First one improves a dila-

tion, implementing Kernighan-Lin algorithm which uses task swaps approach.

However, the authors claim that this refinement could negatively affect on

the maximum congestion, that leads to degradation of the overall perfor-

mance. Thus, the second proposed refinement tries to improve the maximum

congestion with minimal damage of the dilation.

The interesting ideas of the mappings were proposed by Bhatelé in [31].

All heuristics from the article have the same idea: they “attempt to find the

largest possible area of the application grid (in case of 2-D mapping) which

overlaps with the processor mesh and maps it one-to-one” [31], however using

75

different approaches to reach this goal. It will be valuable to implement these

mapping algorithms and validate in HAEC-SIM their performance.

The discussed in Section 2.10 A∗ algorithm has been applied in this work,

but could not work with the problems of particular sizes due to its high

time and space complexity. It may be caused by high tasks connectivity in

the graph representation. Even for the problems of small sizes (2-D mesh

2×2×2 and 8-tasks application were considered) the algorithm has returned

not optimal solutions. It should be as well noted, that the selecting of the

heuristic function that is not admissible would make algorithm’s performance

comparable to greedy algorithms, and, similarly, it would return not optimal

solution, what could be observed in this case. Nevertheless, the definition of

an appropriate heuristic function could solve the problem of an exhaustive

search in the state-space.

The static one− to− one mapping function were considered in this thesis.

However, it will be interested to evaluate the performance of the mapping

algorithms from the present work in case of the “oversubscription” the parallel

tasks on the physical nodes. In other words, one can consider the many −
to− one mapping function, where several application tasks are processed by

one processor.

As stated in [8], an efficient mapping strategy is able to reduce an energy

consumption of the parallel HPC application. However, this assumption has

not been proved in the present work and should be validated with HAEC-

SIM framework and its simulation module power estimator. The detailed

explanation could be found in [7],[14].

As mentioned in Section 3.3.2, the Dimension Order Routing communi-

cation model were used for the experiments on HAEC-SIM. However, two

more additional models, supported by HAEC-SIM, can be tested in future:

Practical Network Coding model and Macro F low Data model. The re-

sults of the simulations will differ from the presented ones in this thesis. It

76

would be valuable to compare as well the impact of the communication model

on the parallel application.

Bibliography

[1] http://insidehpc.com/ Inside HPC site (June 27, 2017).

[2] https://www.top500.org/ Top500 supercomputers site (June 27, 2017).

[3] http://www.improvedoutcomes.com/docs/WebSiteDocs/Clustering/

Clustering Parameters/Manhattan Distance Metric.htm Manhattan dis-

tance definition (June 27, 2017).

[4] https://www.nas.nasa.gov/publications/npb.html NAS Parallel Bench-

marks (June 27, 2017).

[5] http://glaros.dtc.umn.edu/gkhome/metis/metis/overview METIS - Serial

Graph Partitioning and Fill-reducing Matrix Ordering site (June 27,

2017).

[6] http://networkx.readthedocs.io/en/stable/overview.html NetworkX docu-

mentation (June 27, 2017).

[7] https://tu-dresden.de/zih/forschung/projekte/haec/simulator Manual for

HAEC Simulator Framework (June 27, 2017).

[8] Hoefler, T., Jeannot, E., Mercier, G. An Overview of Process Mapping

Techniques and Algorithms in High-Performance Computing. Edited by

Jeannot, E., Žilinskas, J., High-Performance Computing on Complex En-

vironments, pages 75-94. Wiley & Sons (2013).

[9] Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre,

J. C., et al. The International Exascale Software Project Roadmap. In-

77

78

ternational Journal of High Performance Computing Applications, 25(1),

pages 3-60 (2011).

[10] Hoefler, T., Snir, M. Generic Topology Mapping Strategies for Large-

scale Parallel Architectures. In Proceedings of the international conference

on Supercomputing, ICS ’11, pages 75-84. ACM New York, NY, USA

(2011).

[11] Wu, J., Xiong, X., Lan, Z. Hierarchical Task Mapping for Parallel Ap-

plications on Supercomputers. The Journal of Supercomputing archive,

Volume 71, Issue 5, pages 1776-1802 (2015).

[12] Agarwal, T., Sharma, A., Kalé, L.,V. Topology-aware Task Mapping

for Reducing Communication Contention on Large Parallel Machines. In

Proceedings 20th IEEE International Parallel & Distributed Processing

Symposium, page 10 (2006).

[13] Deveci, M., Kaya, K., Uçar, B., Çatalyürek, Ü.,V. Fast and Hign Qual-

ity Topoplogy-Aware Task Mapping. 2015 IEEE International Parallel

and Distributed Processing Symposium, Hyderabad, pages 197-206 (2015).

[14] Bielert, M., Ciorba, F.,M., Feldhoff, K., Ilsche, T., and Nagel, W.,E.

HAEC-SIM: A Simulation Framework for Highly Adaptive Energy-

Efficient Computing Platforms. In Proceedings of the 8th International

Conference on Simulation Tools and Techniques, SIMUTools ’15, pages

129-138 (2015).

[15] Knüpfer, A., Rössel, C., Mey, D., Biersdorff, S., Diethelm, K., Es-

chweiler, D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A., et

al. Score-P: A joint performance measurement run-time infrastructure

for Periscope, Scalasca, TAU, and Vampir. Edited by Brunst, H.,

Müller, M., S., Nagel, W., E., and Resch, M., M., Tools for High Perfor-

mance Computing 2011: Proceedings of the 5th International Workshop

79

on Parallel Tools for High Performance Computing, September 2011, ZIH,

Dresden, pages 79-91. Springer Berlin Heidelberg (2012).

[16] Knüpfer, A., Dietrich, R., Doleschal, J., Geimer, M., Hermanns, M.,A.,

Rössel, C., et al. Generic support for remote memory access operations

in Score-P and OTF2. In Cheptsov, A., Brinkmann, S., Gracia, J., Resch,

M., M., and Nagel, W., E., editors, Tools for High Performance Comput-

ing 2012, pages 57–74. Springer Berlin Heidelberg (2013).

[17] Ciorba, F. M., Ilsche, T., Franz, E., Pfennig, S., Scheunert, C., Mark-

wardt, U., Schuchart, J., Hackenberg, D., Schöne, R., Knüpfer, A., Nagel,

W.,E., Jorswieck, E.,A., and Müller, M.,S. Analysis of Parallel Applica-

tions on a High Performance–Low Energy Computer. In Euro-Par 2014:

Parallel Processing Workshops: Euro-Par 2014 International Workshops,

Porto, Portugal, August 25-26, 2014, Revised Selected Papers, Part II,

pages 474-485. Springer International Publishing (2014).

[18] Deo, N. Graph Theory with Applications to Engineering and Computer

Science. Prentice-Hall, Inc. Upper Saddle River, NJ, USA (1974).

[19] Bokhari, S.,H. On the Mapping Problem. IEEE Transactions on Com-

puters, Volume C-30, Issue 3, pages 207-214 (1981).

[20] Shen C.,C., Tsai W.,H. A Graph Matching Approach to Optimal Task

Assignment in Distributed Computing Systems Using a Minimax Cri-

terion. IEEE Transactions on Computers, Volume C-34, Issue 3, pages

197-203 (1985).

[21] Pascual, J.,A., Miguel-Alonso, J., Lozano, J.,A. Application-aware met-

rics for partition selection in cube-shaped topologies. In Parallel Comput-

ing, Volume 40, Issues 5–6, pages 129-139 (2014).

80

[22] Pascual, J.,A., Miguel-Alonso, J., Lozano, J.,A. Optimization-based

mapping framework for parallel applications. In Journal of Parallel and

Distributed Computing, Volume 71, Issue 10, pages 1377-1387 (2011).

[23] Kafil, M., Ahmad, I. Optimal Task Assignment in Heterogeneous Com-

puting Systems. In Proceedings of Heterogeneous Computing Workshop,

HCW ’97, Geneva, pages 135-146 (1997).

[24] Besmer, D. Process-to-Node Mapping Strategies for the HAEC Box.

Bachelor thesis. University of Basel (2016).

[25] Tuncer, O., Leung, V.,J., Coskun, A.,K. PaCMap: Topology Mapping of

Unstructured Communication Patterns. Proposed for presentation at the

20th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming held February 7-11, 2015 in San Francisco, CA (2014).

[26] Tuncer, O., Leung, V.,J., Coskun, A.,K. PaCMap: Topology Mapping

of Unstructured Communication Patterns onto Non-contiguous Alloca-

tions. In Proceedings of the 29th ACM on International Conference on

Supercomputing, ICS ’15, pages 37-46. ACM New York, NY, USA (2015).

[27] Glantz, R., Meyerhenke, H., Noe, A. Algorithms for Mapping Paral-

lel Processes onto Grid and Torus Architectures. In Proceedings of the

2015 23rd Euromicro International Conference on Parallel, Distributed,

and Network-Based Processing, PDP ’15, pages 236-243. IEEE Computer

Society Washington, DC, USA (2015).

[28] Wei, C. Task Partitioning and Mapping Algorithms for Multi-core

Packet Processing Systems. Master thesis (2009).

[29] Schulz, C. High Quality Graph Partitioning. Dissertation. Karlsruhe In-

stitute of Technology (2013).

81

[30] Sanders, P., Schulz, C. High Quality Graph Partitioning. In Proc. of the

10th DIMACS Impl. Challenge Workshop: Graph Partitioning and Graph

Clustering, pages 1-17. AMS (2013).

[31] Bhatelé, A., Gupta, G.,R., Kalé, L.,V., Chung, I.,H. Automated Map-

ping of Regular Communication Graphs on Mesh Interconnects. Interna-

tional Conference on High Performance Computing, Dona Paula, pages

1-10 (2010).

Appendix A

Simulations with HAEC-SIM.

Workflow

SCORE-P and HAEC-SIM commands

Here the list of the commands for SCORE-P and HAEC-SIM frameworks

is given. All commands are related to the LU application of the NAS parallel

benchmark class C compiled with 64 MPI processes.

1. To create a trace of the parallel application on the “miniHPC” cluster,

the application must be compiled and run with Score-P [15] flags:

(a) Specify all needed flags to compile the application in make.def file

in /config subfolder of the NPB benchmark main folder:

i. MPIF77 = scorep-mpif77

ii. FMPI LIB = -L/opt/apps/easybuild/software/OpenMPI/

2.0.2-GCC-6.3.0-2.27/lib -lmpi, or the path where the sub-

folder /lib of MPICH2 is located on your machine

iii. FMPI INC = -I/opt/apps/easybuild/software/OpenMPI/

2.0.2-GCC-6.3.0-2.27/include, or the path where the sub-

folder /include of MPICH2 is located on your machine

82

83

(b) Compile your application with command make lu CLASS=C NPROCS=64.

The compiled application now could be found in /bin subfolder.

(c) Export all needed global Score-P variables to create a profile of the

application:

i. export SCOREP ENABLE TRACING=false

ii. export SCOREP ENABLE PROFILING=true

iii. export SCOREP EXPERIMENT DIRECTORY=lu c 64 profile

(d) Run your application with command: mpirun -n 64 lu.c.64 from

the /bin subfolder.

(e) The created profile file could be used to specify which functions and

regions of the application will be included in the final trace, how

many memory is required to create the trace, and others. To open

the profile, one uses the scorep-score -r <name of profile.cubex>

command.

(f) Export additional global Score-P variables:

i. export SCOREP ENABLE TRACING=true

ii. export SCOREP ENABLE PROFILING=false

iii. export SCOREP TOTAL MEMORY=52MB

iv. export SCOREP FILTERING FILE=lu scorep.filt, if you have

specified it

v. export SCOREP EXPERIMENT DIRECTORY=lu c 64 trace

(g) Run the application once again with the command mpirun -n 64

lu.c.64, and get as a result a trace file of the application.

2. Now one is able to run the HAEC-SIM simulation with the mapping

files created on the pre-simulation step. To do so, please, specify a

configuration file. The file consists of the target system parameters and

is stored as a JSON file [7], [14].

84

3. To run the simulation, use the command : mpirun -n 64 haec sim -o

<outputtracefolder>/ -p <positionsmapfile> -c <configurationfile>

--module static network model -V <level> <inputtracefile.otf2>

(a) -o <outputtracefolder>/: path to output trace file.

(b) -p <positionsmapfile>: path to mapping file.

(c) -c <configurationfile>: path to configuration file.

(d) -V <level>: verbosity of the messages during the simulation, where

level is one of the followings: trace, debug, info [default], warn,

error, or fatal [7].

4. The specified above command could be run on a KNL Xeon Phi node,

that is able to run 64 threads simultaneously. If one wants to run the

command with Xeon nodes, one need to specify a machinefile and submit

the script file to the scheduler.

5. To get a statistics file for the chosen trace file, one has to run the fol-

lowing command: mpirun -n 64 haec sim -c <configurationfile>

--module trace stats <inputtracefile.otf2>

85

HAEC-SIM configuration files

• connections-MESH.conf
{"platform": {

"link_types":
[{ "name" : "infiniband",

"bandwidth" : 9375000000,
"latency" : 1270,
"bit_error_rate": 1e-12,
"packet_attack_rate": 0.01,
"idle_power": 1,
"active_power": 0 }],

"topology": {
"shape": [4, 4, 4],
"link_types": ["infiniband", "infiniband", "infiniband"],
"connectivity": ["mesh", "mesh", "mesh"] },

"nodes": {
"computing": {

"power": "MIPS",
"cores": 16,
"usage": ["exclusive", "shared"] }

}
},

"modules":
{ "cpu_resource_model": {},

"static_network_model": {
"routing": "shortest_path",
"parameter_search_folders": ["share/modules/

static_network_model/parameters"],
"communication_model": "DOR",
"size_packet": 1500,
"size_finitefield": 8,
"size_window": 5,
"delay_processing": 100,
"delay_mpi": 500,
"size_windowid": 4,
"size_packetid": 2,
"size_signature": 256,
"size_generationid": 4 },

"metric_reader": {
"output": "channel.csv",
"channel": "PAPI_FP_OPS" },

"power_estimator": {
"model": "foobar42" },

"phase_profile": {
"output": "output.txt",
"channels":
["localhost/watts",

"apollo/s0/core/watts",
"apollo/s1/core/watts",
"apollo/s3/core/watts",
"apollo/s0/ram/watts",
"apollo/s1/ram/watts",
"apollo/s3/ram/watts",
"apollo/s0/nb/watts",
"apollo/s1/nb/watts",
"apollo/s3/nb/watts"] },

"comm_matrix": {
"output": "comm_matrix" }

}
}

86

• connections-TORUS.conf
{"platform": {

"link_types":
[{ "name" : "infiniband",

"bandwidth" : 9375000000,
"latency" : 1270,
"bit_error_rate": 1e-12,
"packet_attack_rate": 0.01,
"idle_power": 1,
"active_power": 0 }],

"topology": {
"shape": [4, 4, 4],
"link_types": ["infiniband", "infiniband", "infiniband"],
"connectivity": ["torus", "torus", "torus"] },

"nodes": {
"computing": {

"power": "MIPS",
"cores": 16,
"usage": ["exclusive", "shared"] }

}
},

"modules":
{ "cpu_resource_model": {},

"static_network_model": {
"routing": "shortest_path",
"parameter_search_folders": ["share/modules/

static_network_model/parameters"],
"communication_model": "DOR",
"size_packet": 1500,
"size_finitefield": 8,
"size_window": 5,
"delay_processing": 100,
"delay_mpi": 500,
"size_windowid": 4,
"size_packetid": 2,
"size_signature": 256,
"size_generationid": 4 },

"metric_reader": {
"output": "channel.csv",
"channel": "PAPI_FP_OPS" },

"power_estimator": {
"model": "foobar42" },

"phase_profile": {
"output": "output.txt",
"channels":
["localhost/watts",

"apollo/s0/core/watts",
"apollo/s1/core/watts",
"apollo/s3/core/watts",
"apollo/s0/ram/watts",
"apollo/s1/ram/watts",
"apollo/s3/ram/watts",
"apollo/s0/nb/watts",
"apollo/s1/nb/watts",
"apollo/s3/nb/watts"] },

"comm_matrix": {
"output": "comm_matrix" }

}
}

87

• connections-HAEC-BOX.conf
{"platform": {

"link_types":
[{ "name" : "optical",

"bandwidth" : 1875000000000,
"latency" : 10,
"bit_error_rate": 1.0e-12,
"packet_attack_rate": 0.01,
"idle_power": 1,
"active_power": 0 },

{ "name" : "wireless",
"bandwidth" : 125000000000,
"latency" : 100,
"bit_error_rate": 1.0e-8,
"packet_attack_rate": 0.01,
"idle_power": 1,
"active_power": 0 }],

"topology": {
"shape": [4, 4, 4],
"link_types": ["optical", "optical", "wireless"],
"connectivity": ["torus", "torus", "crossbar"] },

"nodes": {
"computing": {

"power": "MIPS",
"cores": 16,
"usage": ["exclusive", "shared"] }

}
},

"modules":
{ "cpu_resource_model": {},

"static_network_model": {
"routing": "haec_box",
"parameter_search_folders": ["share/modules/

static_network_model/parameters"],
"communication_model": "DOR",
"size_packet": 1500,
"size_finitefield": 8,
"size_window": 5,
"delay_processing": 100,
"delay_mpi": 5,
"size_windowid": 4,
"size_packetid": 2,
"size_signature": 256,
"size_generationid": 4 },

"metric_reader": {
"output": "channel.csv",
"channel": "PAPI_FP_OPS" },

"power_estimator": {
"model": "foobar42" },

"phase_profile": {
"output": "output.txt",
"channels":
["localhost/watts",

"apollo/s0/core/watts",
"apollo/s1/core/watts",
"apollo/s3/core/watts",
"apollo/s0/ram/watts",
"apollo/s1/ram/watts",
"apollo/s3/ram/watts",
"apollo/s0/nb/watts",
"apollo/s1/nb/watts",
"apollo/s3/nb/watts"] },

"comm_matrix": {
"output": "comm_matrix" }

}
}

Appendix B

Numerical Values

Mapping Statistics

The following tables represent the numerical values of the mapping algo-

rithms, discussed in the present thesis. In each table one can find the name

of NAS benchmark parallel application, the underlying 3-D topology, the

name of the algorithm, the total, average, minimum and maximum values of

the “Inter-node logical communications” metric (IeNLC), the total, average,

minimum and maximum values of the “Inter-node physical communications”

metric (IeNPC), the default (from a consecutive 1 : 1 mapping, as proposed

in [21] and discussed in Section 4.1) and total values of the “Weighted task

average distance” metric (WTAD).

88

89
LU.C.64 IePLC IeNPC WTAD
4× 4× 4 3-D Mesh total avg min max total avg min max default total
Mapper 14225946 88913 80829 242488 6947
MinMD 18994893 141101 80829 969951 9277
Bipartition 18024923 130766 80829 727465 8803
PaCMap 14630085 125613 80829 484975 7145
TopoAware 9052876 80830 80829 80830 12609362 108130 80829 404145 8527 6158
Greedy 25057044 216232 80829 808292 12237
GreedyALLC 10992778 88178 80829 161659 5368
FHGreedy 20692274 143289 80829 808291 10106
UDFS 19075674 140684 80829 646632 9316

LU.C.64 IePLC IeNPC WTAD
4× 4× 4 3-D Torus total avg min max total avg min max default total
Mapper 12609356 94100 80829 242487 7816
MinMD 18509915 117152 80829 242490 11566
Bipartition 17054971 120106 80829 323319 11961
PaCMap 13983449 113687 80829 323317 7145
TopoAware 9052876 80830 80829 80830 12124382 102750 80829 242488 8527 7974
Greedy 22632174 141452 80829 484974 12790
GreedyALLC 9052876 80830 80829 80830 6316
FHGreedy 16812480 115154 80829 323318 10737
UDFS 16650804 120659 80829 404145 10658

LU.C.64 IePLC IeNPC WTAD
4× 4× 4 HAEC total avg min max total avg min max default total
Mapper 9214534 80830 80829 80830 14685
MinMD 13660147 96881 80829 323316 12001
Bipartition 10750291 87401 80829 323316 10777
PaCMap 11235261 91344 80829 161659 7026
TopoAware 9052876 80830 80829 80830 9133705 80830 80829 80830 8527 11329
Greedy 13983468 98476 80829 404145 13264
GreedyALLC 9295364 82995 80829 161660 10856
FHGreedy 10588631 88981 80829 242487 10303
UDFS 13255986 93353 80829 242487 11606

Table B.1: Statistics for LU.C.64 on 3-D Mesh, 3-D Torus, and HAEC Box

90

BT.C.64 IePLC IeNPC WTAD
4× 4× 4 3-D Mesh total avg min max total avg min max default total

Mapper 1293646 7682 3218 51488 631
MinMD 1570384 9308 3218 51488 766
Bipartition 1576820 9738 3218 77232 770
PaCMap 1255020 8201 3218 38616 612
TopoAware 617856 3218 3218 3218 1171352 7519 3218 38616 880 572
Greedy 1872876 12385 3218 86886 914
GreedyALLC 1209968 7548 3218 41834 590
FHGreedy 1589692 8829 3218 64360 776
UDFS 1879312 9595 3218 70796 917

BT.C.64 IePLC IeNPC WTAD
4× 4× 4 3-D Torus total avg min max total avg min max default total

Mapper 1029760 5987 3218 19308 722
MinMD 1390176 6917 3218 19308 892
Bipartition 1357996 7073 3218 22526 917
PaCMap 1113428 6327 3218 19308 612
TopoAware 617856 3218 3218 3218 1055504 6032 3218 19308 880 568
Greedy 1576820 7301 3218 22526 905
GreedyALLC 1094120 6592 3218 25744 628
FHGreedy 1370868 6889 3218 22526 889
UDFS 1551076 8037 3218 38616 943

BT.C.64 IePLC IeNPC WTAD
4× 4× 4 HAEC total avg min max total avg min max default total

Mapper 685434 3445 3218 9654 876
MinMD 920348 4383 3218 16090 870
Bipartition 878514 3958 3218 12872 880
PaCMap 881732 4819 3218 16090 612
TopoAware 617856 3218 3218 3218 740140 3559 3218 6436 880 854
Greedy 933220 4321 3218 16090 946
GreedyALLC 762666 3776 3218 12872 864
FHGreedy 936438 4524 3218 12872 873
UDFS 1020106 4701 3218 16090 980

Table B.2: Statistics for BT.C.64 on 3-D Mesh, 3-D Torus, and HAEC Box

91
LU.C.256 IePLC IeNPC WTAD
8× 8× 4 3-D Mesh total avg min max total avg min max default total
Mapper 112837457 166427 80829 1859070 2881
MinMD 185987964 275538 80829 3475648 3820
Bipartition 177177419 227151 80829 3475652 2915
PaCMap 113564840 171549 80829 1293264 2168
TopoAware 38797980 80830 80829 80830 107826005 158103 80829 1293265 2644 1822
Greedy 257764006 567763 80829 6951295 4637
GreedyALLC 126820803 187883 80829 1697410 2276
FHGreedy 162870715 242368 80829 4849745 3095
UDFS 163517132 268061 80829 5900517 4366

LU.C.256 IePLC IeNPC WTAD
8× 8× 4 3-D Torus total avg min max total avg min max default total
Mapper 85517198 120788 80829 404145 3628
MinMD 100389820 144446 80829 484976 4635
Bipartition 85921361 124344 80829 404145 4050
PaCMap 68623896 125685 80829 646632 2168
TopoAware 38797980 80830 80829 80830 68543081 122181 80829 484974 2644 2540
Greedy 125770042 169502 80829 565803 5111
GreedyALLC 63046690 111588 80829 323318 2299
FHGreedy 94085104 135180 80829 484974 3742
UDFS 112109885 157017 80829 565803 4504

LU.C.256 IePLC IeNPC WTAD
8× 8× 4 HAEC total avg min max total avg min max default total
Mapper 40252904 81156 80829 161658 6416
MinMD 67573189 110958 80829 484974 4598
Bipartition 53670536 93179 80829 323316 5293
PaCMap 52134782 99494 80829 323318 2074
TopoAware 38797980 80830 80829 80830 40414561 82987 80829 242487 2644 5296
Greedy 79778340 136374 80829 404145 5303
GreedyALLC 43405240 87335 80829 242487 5764
FHGreedy 75009404 126920 80829 484975 4400
UDFS 65067405 114556 80829 404145 4894

Table B.3: Statistics for LU.C.256 on 3-D Mesh, 3-D Torus, and HAEC Box

92

BT.C.256 IePLC IeNPC WTAD
8× 8× 4 3-D Mesh total avg min max total avg min max default total

Mapper 20131986 22672 6434 411776 463
MinMD 27801314 36106 6434 591928 482
Bipartition 23143098 37268 6434 341002 567
PaCMap 21470258 25469 6434 302398 337
TopoAware 4941312 6434 6434 6434 23078758 26108 6434 295964 521 307
Greedy 29319738 46912 6434 772080 709
GreedyALLC 21277238 24373 6434 295964 342
FHGreedy 26617458 33066 6434 701306 492
UDFS 27724106 38721 6434 643400 567

BT.C.256 IePLC IeNPC WTAD
8× 8× 4 3-D Torus total avg min max total avg min max default total

Mapper 10628968 13558 6434 51472 464
MinMD 13704420 15717 6434 70774 602
Bipartition 14302782 19513 6434 83642 567
PaCMap 10275098 15359 6434 57906 337
TopoAware 4941312 6434 6434 6434 9599528 13483 6434 45038 521 327
Greedy 19192622 21663 6434 77208 748
GreedyALLC 10371608 14506 6434 57906 376
FHGreedy 13800930 16161 6434 77208 550
UDFS 15203542 18165 6434 96510 644

BT.C.256 IePLC IeNPC WTAD
8× 8× 4 HAEC total avg min max total avg min max default total

Mapper 5784166 6789 6434 19302 775
MinMD 8923958 11240 6434 51472 665
Bipartition 11439652 16437 6434 77208 567
PaCMap 7759404 10444 6434 51472 350
TopoAware 4941312 6434 6434 6434 5983620 7132 6434 32170 521 653
Greedy 12359714 14339 6434 70774 757
GreedyALLC 5951450 7188 6434 38604 666
FHGreedy 10390910 13054 6434 64340 666
UDFS 9052638 10973 6434 57906 691

Table B.4: Statistics for BT.C.256 on 3-D Mesh, 3-D Torus, and HAEC Box

93
LU.C.1024 IePLC IeNPC WTAD
16× 8× 8 3-D Mesh total avg min max total avg min max default total
Mapper 595548529 225076 80829 4122286 774
MinMD 1072117023 400492 80829 27239392 1248
Bipartition 1022891623 551127 80829 5658035 1455
PaCMap 900758650 304311 80829 6627978 673
TopoAware 160364860 80830 80829 80830 236020849 97369 80829 323318 705 335
Greedy 1639859871 920236 80829 45021756 1772
GreedyALLC 842804232 292641 80829 6627978 763
FHGreedy 1093213077 399567 80829 30149241 1009
UDFS 989832065 418357 80829 28209321 1452

LU.C.1024 IePLC IeNPC WTAD
16× 8× 8 3-D Torus total avg min max total avg min max default total
Mapper 336329731 129259 80829 323317 871
MinMD 492491514 161314 80829 727461 1484
Bipartition 559822037 257153 80829 889119 1455
PaCMap 342310983 141393 80829 646632 673
TopoAware 160364860 80830 80829 80830 333904816 134694 80829 565803 705 858
Greedy 679448820 224019 80829 1050777 1744
GreedyALLC 332611496 143244 80829 646632 696
FHGreedy 444317336 148552 80829 1050777 1139
UDFS 591345098 189292 80829 969948 1595

LU.C.1024 IePLC IeNPC WTAD
16× 8× 8 HAEC total avg min max total avg min max default total
Mapper 211206351 85302 80829 242488 2643
MinMD 250650977 102432 80829 565803 1704
Bipartition 503403339 236229 80829 808291 1455
PaCMap 248306842 108007 80829 404145 627
TopoAware 160364860 80830 80829 80830 165376267 82689 80829 323316 705 2259
Greedy 389919341 167492 80829 808290 1881
GreedyALLC 172650878 85092 80829 404147 2180
FHGreedy 391050904 149542 80829 889119 1580
UDFS 382482954 131483 80829 808290 1781

Table B.5: Statistics for LU.C.1024 on 3-D Mesh, 3-D Torus, and HAEC Box

94
BT.C.1024 IePLC IeNPC WTAD
16× 8× 8 3-D Mesh total avg min max total avg min max default total
Mapper 245817796 75497 12866 5197864 268
MinMD 336857612 109334 12866 7295022 305
Bipartition 275370998 132518 12866 2676128 388
PaCMap 259790272 78274 12866 2303014 183
TopoAware 39524352 12866 12866 12866 260742356 75842 12866 2830520 268 160
Greedy 366423680 167700 12866 9675232 503
GreedyALLC 260201984 78045 12866 2303014 189
FHGreedy 322885136 99411 12866 8929004 279
UDFS 319076800 118484 12866 8440096 413

BT.C.1024 IePLC IeNPC WTAD
16× 8× 8 3-D Torus total avg min max total avg min max default total
Mapper 92712396 27943 12866 154392 273
MinMD 133626276 36751 12866 205856 398
Bipartition 156682148 58333 12866 244454 388
PaCMap 89856144 32640 12866 154392 183
TopoAware 39524352 12866 12866 12866 83899186 28832 12866 205856 268 165
Greedy 191832060 56772 12866 347382 499
GreedyALLC 88479482 31828 12866 154392 189
FHGreedy 127244740 35093 12866 231588 373
UDFS 166846288 47293 12866 257320 466

BT.C.1024 IePLC IeNPC WTAD
16× 8× 8 HAEC total avg min max total avg min max default total
Mapper 67649428 16622 12866 64330 341
MinMD 72860158 19940 12866 154392 470
Bipartition 130293982 49712 12866 205856 388
PaCMap 66813138 21707 12866 141526 194
TopoAware 39524352 12866 12866 12866 48131706 14291 12866 102928 268 473
Greedy 119100562 36681 12866 257320 534
GreedyALLC 51078020 14437 12866 90062 482
FHGreedy 113465254 34259 12866 308784 482
UDFS 118264272 31929 12866 218722 505

Table B.6: Statistics for BT.C.1024 on 3-D Mesh, 3-D Torus, and HAEC Box

95
LU.D.4096 IePLC IeNPC WTAD
16× 16× 16 3-D Mesh total avg min max total avg min max default total
Mapper * * * * *
MinMD 19380429440 1681016 245021 440057738 1214
Bipartition 14855869613 1889099 245021 73506311 1128
PaCMap 14778687429 1146969 245021 99233507 556
TopoAware 1975849596 245022 245021 245022 * * * * 925 *
Greedy 26942756560 3763481 245021 481466272 1499
GreedyALLC 14092873326 1105411 245021 97028318 577
FHGreedy 18338598678 1515712 245021 417760838 892
UDFS 18216086508 1853301 245021 518219415 1550

LU.D.4096 IePLC IeNPC WTAD
16× 16× 16 3-D Torus total avg min max total avg min max default total
Mapper * * * * *
MinMD 8404956438 586284 245021 4900420 1565
Bipartition 7350385784 737251 245021 3185273 1128
PaCMap 4462567878 453421 245021 3185273 556
TopoAware 1975849596 245022 245021 245022 * * * * 925 *
Greedy 10216886160 815460 245021 7595653 1749
GreedyALLC 4374360289 444008 245021 2205189 574
FHGreedy 6908367878 521190 245021 3430294 1226
UDFS 9575175921 691449 245021 5390462 1650

LU.D.4096 IePLC IeNPC WTAD
16× 16× 16 HAEC total avg min max total avg min max default total
Mapper * * * * *
MinMD 3558685601 319796 245021 2205191 1677
Bipartition 6574159166 706519 245021 2940252 1128
PaCMap 3443035424 366671 245021 1960168 556
TopoAware 1975849596 245022 245021 245022 * * * * 925 *
Greedy 5418639916 549057 245021 8575735 1774
GreedyALLC 2104240619 257180 245021 1470127 2523
FHGreedy 5588684537 485129 245021 2940253 1439
UDFS 6046138454 422689 245021 2940252 1756

Table B.7: Statistics for LU.D.4096 on 3-D Mesh, 3-D Torus, and HAEC Box

96
BT.D.4096 IePLC IeNPC WTAD
16× 16× 16 3-D Mesh total avg min max total avg min max default total
Mapper * * * * *
MinMD 4715463060 358700 32130 96936210 242
Bipartition 3238157790 357098 32130 21655620 255
PaCMap 3776399550 253365 32130 33126030 122
TopoAware 394813440 32130 32130 32130 * * * * 263 *
Greedy 4705085070 548123 32130 111973050 446
GreedyALLC 3734116470 254594 32130 31455270 121
FHGreedy 4802310450 358783 32130 101562930 223
UDFS 4633467300 399231 32130 113386770 332

BT.D.4096 IePLC IeNPC WTAD
16× 16× 16 3-D Torus total avg min max total avg min max default total
Mapper * * * * *
MinMD 1623593160 101178 32130 642600 305
Bipartition 1661185260 140517 32130 642600 255
PaCMap 944686260 80571 32130 546210 122
TopoAware 394813440 32130 32130 32130 * * * * 263 *
Greedy 2518413660 174624 32130 1574370 420
GreedyALLC 924155190 79655 32130 449820 121
FHGreedy 1538769960 103978 32130 867510 282
UDFS 2070296550 138993 32130 1156680 363

BT.D.4096 IePLC IeNPC WTAD
16× 16× 16 HAEC total avg min max total avg min max default total
Mapper * * * * *
MinMD 770316750 47989 32130 385560 400
Bipartition 1436339520 126073 32130 642600 255
PaCMap 661717350 53035 32130 514080 122
TopoAware 394813440 32130 32130 32130 * * * * 263 *
Greedy 1498928760 109379 32130 1285200 443
GreedyALLC 527446080 37215 32130 289170 366
FHGreedy 1366103340 92888 32130 867510 396
UDFS 1388979900 86703 32130 674730 391

Table B.8: Statistics for BT.D.4096 on 3-D Mesh, 3-D Torus, and HAEC Box

HAEC-SIM statistics

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

320 B 2.42857 1.57143 1.7619 1.78571 1.28571 4.14286
336 B 2.42857 1.57143 1.14286 1.14286 1.28571 1.71429
352 B 1.42857 1.57143 1.69048 1.21429 1.14286 1.04762
368 B 1.42857 1.57143 1.42857 1 1.14286 1
760 B 1.92857 1.5 1.57143 1.64286 1.21429 2.42857
800 B 1.92857 1.57143 1.63095 1.40476 1.21429 2.38095
840 B 1.92857 1.64286 1.57143 1.07143 1.21429 1.57143

1296 B 1.92857 1.5 1.28571 1.35714 1.21429 1.78571
259200 B 1.92857 1.57143 1.72619 1.5 1.21429 2.59524
272160 B 1.92857 1.57143 1.28571 1.07143 1.21429 1.35714

Average # of hops 1.92857 1.57143 1.61607 1.39286 1.21429 2.28571

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

320 B 2.42857 1.61905 1.71429 1.42857 1 2.85714
336 B 2.42857 1 1.14286 1.14286 1 2
352 B 1.14286 1.42857 1.54762 1.30952 1 1.09524
368 B 1.14286 1 1.42857 1.35714 1 1
760 B 1.78571 1.28571 1.28571 1.21429 1 2.21429
800 B 1.78571 1.47619 1.58333 1.34524 1 1.80952
840 B 1.78571 1 1.57143 1.42857 1 1.78571

1296 B 1.78571 1.14286 1.14286 1.14286 1 1.71429
259200 B 1.78571 1.52381 1.63095 1.36905 1 1.97619
272160 B 1.78571 1 1.28571 1.25 1 1.5

Average # of hops 1.78571 1.39286 1.54464 1.33929 1 1.85714

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

320 B 1.57143 1.04762 1.19048 1.02381 1.04762 1.42857
336 B 1.57143 1 1.14286 1 1 1.07143
352 B 1.14286 1 1.35714 1 1.02381 1
368 B 1.14286 1 1.14286 1 1 1
760 B 1.35714 1 1.07143 1 1.07143 1.28571
800 B 1.35714 1.02381 1.27381 1.0119 1.02381 1.16667
840 B 1.35714 1 1.21429 1 1 1.07143

1296 B 1.35714 1 1.07143 1 1.03571 1.14286
259200 B 1.35714 1.02381 1.27381 1.0119 1.03571 1.21429
272160 B 1.35714 1 1.14286 1 1 1.03571

Average # of hops 1.35714 1.01786 1.24107 1.00893 1.02679 1.16964

Table B.9: Number of hops for LU.C.64 on 3-D Mesh, 3-D Torus, and HAEC Box

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

320 B 2.8416e+07 3.54255e+07 3.43011e+07 3.43834e+07 3.92693e+07 1.96162e+07
336 B 2.33307e+07 2.91098e+07 3.32248e+07 3.32248e+07 3.17297e+07 2.79557e+07
352 B 5.66855e+07 5.26456e+07 4.83485e+07 6.40592e+07 6.69627e+07 6.23203e+07
368 B 5.92621e+07 5.50386e+07 5.66969e+07 7.69852e+07 7.00064e+07 5.3931e+07
760 B 1.55783e+07 1.64738e+07 1.6588e+07 1.58285e+07 1.62078e+07 1.72861e+07
800 B 2.64135e+07 2.56196e+07 2.81024e+07 2.74979e+07 2.82803e+07 2.71471e+07
840 B 3.49994e+07 3.32635e+07 3.84633e+07 3.87937e+07 3.68237e+07 3.63288e+07

1296 B 1.06156e+08 1.19074e+08 1.28412e+08 1.26914e+08 1.30502e+08 1.10201e+08
259200 B 2.82271e+08 2.92844e+08 2.91513e+08 3.10829e+08 3.22158e+08 2.72656e+08
272160 B 2.79698e+08 2.92286e+08 3.09571e+08 3.24981e+08 3.18208e+08 3.0329e+08

Average bandwidth 9.13e+07 9.52e+07 9.85e+07 1.05e+08 1.06e+08 9.31e+07

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

320 B 2.8416e+07 3.6273e+07 3.43011e+07 3.6289e+07 4.29136e+07 2.59565e+07
336 B 2.33307e+07 3.48678e+07 3.32248e+07 3.32248e+07 3.48678e+07 2.59018e+07
352 B 6.69627e+07 5.22433e+07 5.17346e+07 5.93347e+07 7.3638e+07 6.90491e+07
368 B 7.00064e+07 5.41949e+07 5.66969e+07 5.74397e+07 7.69852e+07 7.69852e+07
760 B 1.54166e+07 1.72425e+07 1.67387e+07 1.75571e+07 1.69012e+07 1.51023e+07
800 B 2.65957e+07 2.76633e+07 2.82543e+07 2.93551e+07 2.93461e+07 2.62058e+07
840 B 3.55623e+07 4.20901e+07 3.82133e+07 3.6025e+07 3.78734e+07 3.204e+07

1296 B 1.10468e+08 1.34776e+08 1.34776e+08 1.36466e+08 1.40623e+08 1.1248e+08
259200 B 2.91327e+08 3.09082e+08 2.97196e+08 3.13904e+08 3.30504e+08 2.82458e+08
272160 B 2.87733e+08 3.29948e+08 3.102e+08 3.1729e+08 3.26419e+08 2.99388e+08

Average bandwidth 9.56e+07 1.04e+08 1.00e+08 1.04e+08 1.11e+08 9.66e+07

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

320 B 6.56163e+07 6.47108e+07 6.5108e+07 6.58101e+07 6.54668e+07 6.54781e+07
336 B 6.35446e+07 6.27894e+07 6.39094e+07 6.37e+07 6.30146e+07 6.25705e+07
352 B 2.31183e+08 2.21979e+08 2.27651e+08 2.22121e+08 2.22121e+08 2.27564e+08
368 B 1.85337e+08 1.68432e+08 1.78462e+08 1.85337e+08 1.86091e+08 1.77136e+08
760 B 2.02305e+07 2.01382e+07 2.03035e+07 1.99984e+07 2.01123e+07 2.0286e+07
800 B 3.58649e+07 3.56318e+07 3.59215e+07 3.54428e+07 3.55831e+07 3.59843e+07
840 B 4.79491e+07 4.73682e+07 4.79743e+07 4.74855e+07 4.75586e+07 4.76215e+07

1296 B 2.15783e+08 2.13936e+08 2.15296e+08 2.15638e+08 2.15982e+08 2.14922e+08
259200 B 6.7419e+08 6.4639e+08 6.68838e+08 6.63643e+08 6.63158e+08 6.67602e+08
272160 B 6.56742e+08 6.28817e+08 6.44329e+08 6.61583e+08 6.39131e+08 6.289e+08

Average bandwidth 2.20e+08 2.11e+08 2.17e+08 2.18e+08 2.16e+08 2.15e+08

Table B.10: Bandwidth (in B/s) for LU.C.64 on 3-D Mesh, 3-D Torus, and HAEC Box

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

17640 B 2.91667 2.09375 2.03125 1.89583 1.95833 2.57292
105840 B 2.91667 2.09375 2.03125 1.89583 1.95833 2.57292
227200 B 3.5 3 1.83333 1.66667 1.83333 3.33333
227280 B 3.5 2.16667 2 1.83333 2.16667 4
228800 B 3.1 2.13333 2 1.61667 2.15 2.6
228880 B 3.16667 2.41667 2.16667 1.5 2.08333 2
230400 B 2.73333 1.93333 2.26667 2.05 1.88333 2.9
230480 B 2.7 1.9 1.76667 2.33333 1.73333 2.2
230560 B 2.72222 2.27778 1.77778 1.94444 1.83333 1.66667

Average # of hops 2.91667 2.09375 2.03125 1.89583 1.95833 2.57292

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

17640 B 2.33333 1.66667 1.80208 1.70833 1.77083 2.21875
105840 B 2.33333 1.66667 1.80208 1.70833 1.77083 2.21875
227200 B 2.5 1.66667 1.83333 2 1.66667 1.66667
227280 B 2.5 2 2 1.5 2.16667 1.66667
228800 B 2.4 1.7 1.76667 1.68333 1.75 2.31667
228880 B 2.33333 1.41667 1.83333 1.58333 1.91667 1.91667
230400 B 2.26667 1.73333 1.86667 1.68333 1.71667 2.45
230480 B 2.3 1.7 1.7 1.76667 1.76667 2.1
230560 B 2.27778 1.33333 1.77778 1.83333 1.83333 1.88889

Average # of hops 2.33333 1.66667 1.80208 1.70833 1.77083 2.21875

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

17640 B 1.70833 1.10938 1.42708 1.19792 1.23438 1.51562
105840 B 1.70833 1.10938 1.42708 1.19792 1.23438 1.51562
227200 B 2.33333 1 1.16667 1 1.16667 1.33333
227280 B 2.33333 1 1.16667 1 1.5 1.33333
228800 B 1.93333 1.16667 1.4 1.13333 1.35 1.73333
228880 B 1.83333 1 1.33333 1.08333 1.33333 1.66667
230400 B 1.5 1.03333 1.55 1.28333 1.16667 1.48333
230480 B 1.46667 1.16667 1.36667 1.23333 1.16667 1.46667
230560 B 1.55556 1.22222 1.27778 1.27778 1.05556 1

Average # of hops 1.70833 1.10938 1.42708 1.19792 1.23438 1.51562

Table B.11: Number of hops for BT.C.64 on 3-D Mesh, 3-D Torus, and HAEC Box

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

17640 B 5.0235e+07 4.98413e+07 5.15332e+07 5.30337e+07 5.12809e+07 5.22724e+07
105840 B 8.89292e+07 9.51563e+07 9.44781e+07 9.32147e+07 9.54262e+07 9.35432e+07
227200 B 2.26529e+08 2.45026e+08 2.72062e+08 2.30204e+08 2.79915e+08 1.93251e+08
227280 B 2.20593e+08 3.08023e+08 2.54399e+08 2.17308e+08 2.59378e+08 1.78016e+08
228800 B 2.2308e+08 2.43863e+08 2.45586e+08 2.2229e+08 2.22691e+08 2.0735e+08
228880 B 2.08495e+08 2.33625e+08 2.04029e+08 2.20493e+08 1.91244e+08 2.09129e+08
230400 B 2.16794e+08 2.06706e+08 2.11569e+08 2.06523e+08 1.87051e+08 2.04386e+08
230480 B 2.21167e+08 2.02709e+08 2.33939e+08 2.00336e+08 1.98162e+08 2.20752e+08
230560 B 2.18256e+08 1.99691e+08 2.24637e+08 2.07998e+08 1.90345e+08 2.29611e+08

Average bandwidth 1.86e+08 1.98e+08 1.99e+08 1.83e+08 1.86e+08 1.76e+08

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

17640 B 5.23643e+07 5.30749e+07 5.2122e+07 5.41215e+07 5.20939e+07 5.29419e+07
105840 B 9.16702e+07 9.56017e+07 9.3999e+07 9.32396e+07 9.41448e+07 9.49204e+07
227200 B 2.48936e+08 2.34047e+08 2.67843e+08 2.3626e+08 2.31675e+08 2.67474e+08
227280 B 2.39105e+08 2.17395e+08 2.50976e+08 2.39568e+08 2.13215e+08 2.59237e+08
228800 B 2.3363e+08 2.29103e+08 2.4656e+08 2.32632e+08 2.36924e+08 2.24927e+08
228880 B 2.17799e+08 2.29774e+08 2.22611e+08 2.17558e+08 2.12498e+08 2.28194e+08
230400 B 2.15894e+08 2.22359e+08 2.20859e+08 2.18944e+08 2.41959e+08 2.04206e+08
230480 B 2.18364e+08 2.22934e+08 2.2937e+08 2.19639e+08 2.47266e+08 2.09759e+08
230560 B 2.16729e+08 2.30281e+08 2.24154e+08 2.15657e+08 2.42271e+08 2.14226e+08

Average bandwidth 1.93e+08 1.93e+08 2.01e+08 1.92e+08 1.97e+08 1.95e+08

Message
Size Groups

Mapping
Algorithm XYZ-default Mapper PaCMap TopoAware GreedyALLC FHGreedy

17640 B 5.97684e+07 5.9687e+07 5.9839e+07 5.97273e+07 5.97439e+07 5.97104e+07
105840 B 1.13871e+08 1.13416e+08 1.13886e+08 1.13434e+08 1.1345e+08 1.13521e+08
227200 B 4.58234e+08 4.5049e+08 4.65238e+08 4.49946e+08 4.50552e+08 4.65913e+08
227280 B 4.25073e+08 4.21126e+08 4.2909e+08 4.21837e+08 4.18149e+08 4.29616e+08
228800 B 4.13177e+08 4.0639e+08 4.13452e+08 4.08383e+08 4.08965e+08 4.14914e+08
228880 B 3.77214e+08 3.73587e+08 3.75778e+08 3.78443e+08 3.73493e+08 3.75135e+08
230400 B 3.7113e+08 3.65116e+08 3.69848e+08 3.68964e+08 3.69607e+08 3.70215e+08
230480 B 3.73477e+08 3.66417e+08 3.72631e+08 3.70137e+08 3.71195e+08 3.73479e+08
230560 B 3.71859e+08 3.64445e+08 3.70761e+08 3.69204e+08 3.69587e+08 3.70499e+08

Average bandwidth 3.29e+08 3.25e+08 3.30e+08 3.27e+08 3.26e+08 3.30e+08

Table B.12: Bandwidth in (B/s) for BT.C.64 on 3-D Mesh, 3-D Torus, and HAEC Box

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen

Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author—Autor

Viacheslav Sharunov

Matriculation number—Matrikelnummer

15-059-322

Title of work—Titel der Arbeit

Optimized parallel tasks to nodes mapping in 3-D high performance interconnection topologies

Type of work—Typ der Arbeit

Master Thesis

Declaration—Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged the assis-

tance received in completing this work and that it contains no material that has not been formally

acknowledged. I have mentioned all source materials used and have cited these in accordance with

recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene Hilfe zuteil

wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln verfasst habe. Ich habe

sämtliche verwendeten Quellen erwähnt und gemäss anerkannten wissenschaftlichen Regeln zitiert.

Basel, June 30, 2017

Signature—Unterschrift

