
SPH-EXA performance assessment report

Document Information
Reference Number POP2 AR 023
Author Fabian Orland (RWTH)
Contributor(s) Radita Liem, Joachim Protze, Bo Wang
Date November 6, 2019
Application SPH-EXA
Service Level Performance Audit
Keywords MPI

Notices: The research leading to these results has received funding from the European UnionâĂŹs Horizon
2020 research and innovation programme under grant agreement No no676553.

c©2015 POP Consortium Partners. All rights reserved.



POP Ref.No. POP2 AR 023 CONTENTS

Contents

1 Background 3

2 Application structure 3

3 Focus of Analysis (FOA) 5

4 Scalability 5

5 Efficiency 6

6 Load Balance 8

7 Serial performance 10

8 Communications 11

9 Summary of observations 12

2



POP Ref.No. POP2 AR 023

1 Background
Applicants Name: Florina Ciorba
Application Name: SPH-EXA
Programming Language: C++
Programming Model: MPI, (OpenMP), (OpenACC)
Source Code Available: No
Performance study: Performance audit
Application description: SPH-EXA performs hydrodynamical and computational fluid dynamics
simulations using the smoothed particle hydrodynamics (SPH) method. In this method the fluid
domain is discretized using a set of particles (1,000,000 in this case). Properties stored at these
particles are interpolated over the fluid domain using smoothing kernel functions. Such a kernel
function has an associated smoothing-length so that only a finite number of neighboring particles
(here max. 500) needs to be considered in the interpolation.
Input data: Automatic generation of input conditions using parameters: -n 210 -s 80 -w -1
(ref-small) and -n 475 -s 130 -w -1 (ref-medium) . The generated scenario is a rotating square
fluid patch of dimension n × n × n. The number of simulation steps is given by s + 1. If w is
chosen larger than zero the simulation will dump particle information into a file ater every wth
simulation step.
Machine Description: CLAIX-2016 cluster at RWTH Aachen University. A single node is a
two-socket system each equipped with a 12-core Intel Xeon Broadwell running at 2.20 GHz.
Environment used: Intel compiler 19.0.1.144, Intel MPI Library 2018 Update 4

2 Application structure
The application consists of three phases:

• Initialization
• SPH simulation loop
• Finalization

The SPH simulation loop can be further split into different computational subparts:

1. distribution of particle data
2. synchronization of halo data
3. octree construction
4. determination of particle’s neighborhood information
5. computation of density
6. computation of pressure using equation of state (EOS)
7. synchronization of halo data
8. computation of momenta and internal/kinetic energy
9. determination of stable timestep size

10. time integration of particle’s positions
11. computation of total energy

3



POP Ref.No. POP2 AR 023

Figure 1: Call tree profile of the simulation loop showing the accumulated exclusive time spent
inside different sub-functions over all processes. Data was obtained during a full run of SPH-
EXA-small on one node of CLAIX2016 using 24 MPI processes.

This structure can be recognized in profiling results obtained with Score-P + Scalasca shown in
figure 1. The call tree shows the accumulated time spent in the three phases init, simulation loop
and finalization over all processes. Execution time is mainly dominated by the SPH simulation
loop. 99.86 % of the execution time is spent inside the simulation loop. The initialization and
finalization phases are negligibly short. They only account for 0.14 % and, respectively, 0.0032 %
of the whole execution time. Figure 2 shows a trace of a full SPH-EXA-small execution run

Figure 2: Visualization of tracing results obtained with Score-P + Scalasca for a full execution
run of SPH-EXA-small on a single node of CLAIX-2016 using 24 MPI processes.

collected with Score-P + Scalasca on a single node of CLAIX-2016 using 24 MPI processes.
Since the initialization and finalization phases are extremely short one can only recognize a
regular pattern of iterations. Each vertical blue bar indicates the start of such an iteration.

4

Florina Ciorba


Florina Ciorba




POP Ref.No. POP2 AR 023

3 Focus of Analysis (FOA)
Almost all time is spent in the simulation loop. Hence we focus our analysis on this part of the
code. More specifically we focus on an individual iteration exemplarily. Figure 1 shows a call
tree profile for the simulation loop. The applied metric is exclusive time, which is accumulated
over all MPI processes in the profile. Most of the time is spent inside the momentumAndEnergy
calculation. 63.86 % of the overall execution time is spent in this part of the code. Moreover,
finding the neighbors and computing the density for each particle are also parts of the code where
a significant amount of time is spent. Computing the neighborhood information accounts for
18.03 % of the whole runtime. Similarly, the density computation also takes 13.94 % of the
overall execution time. With this knowledge in mind we will look specifically into these regions
of the code.

4 Scalability
We measured scalability of SPH-EXA-small for different numbers of MPI processes on a single
node and two nodes of CLAIX-2016. We run SPH-EXA-small using 6, 12, 24 and 48 MPI

Nodes Ranks Runtime [sec] % MPI of runtime speedup efficiency
1 6 5788 1.02 % 1 1
1 12 3048 0.82 % 1.90 0.95
1 24 1584 1.98 % 3.65 0.91
2 48 860 8.59 % 6.73 0.84

Table 1: Strong-scaling measurements for SPH-EXA-small on one node of CLAIX-2016 with 6,
12 and 24 MPI processes and on two nodes with 48 processes.

processes. For speedup calculations we use the run with 6 ranks as a reference. Table 1 shows
runtime, MPI runtime share, speedup and efficiency results. The efficiency value is calculated
as the ratio between the runtime of the reference run and the runtime of the run with a larger
number of ranks. So an efficiency value of 1 indicates perfect scalability. These results are
visualized in Figure 3. Doubling the number of ranks from 6 to 12 results in a speedup of 1.90
and an efficiency value of 0.95 which shows that this is nearly optimal. Going from 6 to 24 ranks
gives a speedup of 3.65 and an efficiency of 0.91. This is slighty lower than before, however,
still near the optimum. Increasing the number of ranks from 6 to 48 by a factor of 8 yields
a speedup of 6.73 with an efficiency of 0.84. Again the efficiency drops a little bit but is still
considered to be acceptable. On a single node at most 2 % of the runtime are spent inside MPI.
This significantly increases to 8.59 % on two nodes because now data needs to be transmitted
over the network.

Similarly, we measured scalability of SPH-EXA-medium on multiple nodes of CLAIX-2016.
The medium version of SPH-EXA was run on 10, 20 and 40 nodes with a total of 240, 480 and
960 MPI processes, respectively. Scalability results are shown in table 2 and visualized in Figure
4. We use the run on 10 nodes with 240 MPI ranks as a reference to calculate the speedup.
With 480 ranks we get a speedup of 1.84 with an efficiency value of 0.92. This is a nearly
optimal speedup. When using 960 ranks a speedup of 3.53 can be observed. The corresponding
efficiency value is 0.88. Again this results in a speedup near the optimum. For all three runs,
between 8.52 % and 16 % of the runtime is spent inside MPI communication which is mainly
caused by the collective operation MPI Allreduce.

5

Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba




POP Ref.No. POP2 AR 023

1

10

100

1000

10000

6 12 24 48

ru
nt

im
e 

[s
ec

]

#ranks

strong scaling for SPH-EXA-small

SPH-EXA-small

1,00

2,00

4,00

8,00

6 12 24 48

sp
ee

du
p

#ranks

speedup for SPH-EXA-small

SPH-EXA-small ideal

Figure 3: Visualization of strong-scaling and speedup results for SPH-EXA-small on one node
of CLAIX-2016 with 6, 12 and 24 MPI processes and on two nodes with 48 processes.

Nodes Ranks Runtime [sec] % MPI of runtime speedup efficiency
10 240 3342 8.52 % 1 1
20 480 1815 14.79 % 1.84 0.92
40 960 946 16.00 % 3.53 0.88

Table 2: Strong-scaling measurements for SPH-EXA-medium on 10, 20 and 40 nodes of CLAIX-
2016 with 240, 480 and 960 MPI processes.

1

10

100

1000

10000

240 480 960

ru
n

ti
m

e 
[s

ec
]

#ranks

strong scaling for SPH-EXA-medium

1

2

4

240 480 960

sp
ee

d
u

p

#ranks

speedup for SPH-EXA-medium

SPH-EXA-medium ideal

Figure 4: Visualization of strong-scaling and speedup results for SPH-EXA-mediuml on 10,20
and 40 nodes of CLAIX-2016 with 240, 480 and 960 MPI processes.

5 Efficiency
Several metrics1 are defined in the POP methodology. These metrics cover different aspects
commonly causing inefficiencies in parallel programs. Their values range from 0 to 1, where
higher values are better. They are organized in a hierarchical way as follows: At the top of
the hierarchy is the Global Efficiency. It is the product of the Parallel Efficiency and the
Computational Efficiency.
The Parallel Efficiency measures how well the application is parallelized in terms of data
distribution among processes and communication between them. It is the product of two sub-
metrics, namely Load Balance Efficiency and Communication Efficiency. Load Balance

1https://pop-coe.eu/node/69

6

Florina Ciorba




POP Ref.No. POP2 AR 023

is the ratio between average computation time (across all processes) and maximum computation
time (across all processes). It measures how evenly computational work is distributed among
processes. Communication Efficiency is another composite efficiency which combines the
Serialization Efficiency and the Transfer Efficiency. Serialization Efficiency is the ratio
between the maximum computation time on an ideal network and the total runtime on an ideal
network. It is a measure for waiting times within communications. The Transfer Efficiency
covers inefficiencies caused by data transfers. It is defined as the ratio between the total runtime
on an ideal network and the total runtime on the real network.
For the Computational Efficiency metric values are compared to a reference case in terms
of scalability. In this case always the lowest processes count is used as a referenced. The
Computational Efficiency is also a composite efficiency. It is composed of the Instruction
Efficiency and the IPC Efficiency. The Instruction Efficiency is given as the ratio be-
tween total number of useful instructions in the reference case and the total number of useful
instructions with more processes than in the reference case. Similarly, the IPC Efficiency is
the ratio of IPC in the reference case to the IPC in a case with more processes.
Table 3 illustrates the resulting metrics for an SPH-EXA-small run on a single node of CLAIX-

6 ranks 12 ranks 24 ranks 48 ranks
Global Efficiency 0.97 0.99 0.98 0.98

Parallel Efficiency 0.97 0.99 0.98 0.97
Load Balance Efficiency 0.98 0.99 0.98 0.98
Communication Efficiency 0.99 0.99 0.99 0.98

Serialization Efficiency 0.99 0.99 0.99 0.99
Transfer Efficiency 0.99 0.99 0.99 0.99

Computation Efficiency 1 0.99 0.97 0.96
IPC Efficiency 1 1 0.98 0.97
Instruction Efficiency 1 0.99 0.99 0.986

Table 3: POP metrics reported by the Cube tool based on profiling data obtained with Score-P
+ Scalasca for an execution run of SPH-EXA-small on a single node of CLAIX-2016 using 6-24
MPI processes and on two nodes with 48 processes.

2016 with 6, 12 and 24 MPI processes and on two nodes with 48 processes. Metrics are computed
for the whole simulation loop. Overall the application achieves very high values near the opti-
mum of 1.00 for each of the defined metrics.

We also computed the metrics for a run of SPH-EXA-medium on 10, 20 and 40 nodes of
CLAIX-2016 using 240, 480 and 960 MPI processes. The results are shown in table 4. When
running SPH-EXA-medium with larger numbers of MPI processes we notice lower Global Effi-
ciency values compared to the SPH-EXA-small runs. Using 240 MPI processes the application
achieves a Global Efficiency of 0.92. With 480 ranks this efficiency value drops to 0.85. In
the POP methodology we consider efficiencies above 0.8 as acceptable. Nevertheless, we should
identify the cause of inefficiency in this case by further looking into the hierarchy of metrics. The
Computational Efficiency is nearly optimal with 0.99. IPC Efficiency is perfect and there
is only a very small inefficiency in the instruction scaling. However, the Parallel Efficiency is
only at 0.86. Looking at the different submetrics the Parallel Efficiency is composed of we
recognize that the Load Balance Efficiency is the lowest with 0.92. With 960 ranks a Global
Efficiency of 0.83 can be measured. Compared to the run with 480 ranks the Load Balance
Efficiency and the Transfer Efficiency are slighty lower by 1 %. However, the Communi-
cation Efficiency and the Serialization Efficiency are slightly higher. The Computation

7

Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba




POP Ref.No. POP2 AR 023

240 ranks 480 ranks 960 ranks
Global Efficiency 0.92 0.85 0.83

Parallel Efficiency 0.92 0.86 0.86
Load Balance Efficiency 0.95 0.92 0.91
Communication Efficiency 0.97 0.93 0.94

Serialization Efficiency 0.98 0.94 0.97
Transfer Efficiency 0.99 0.99 0.98

Computation Efficiency 1 0.99 0.96
IPC Efficiency 1 1 0.99
Instruction Efficiency 1 0.99 0.97

Table 4: POP metrics reported by the Cube tool based on profiling data obtained with Score-P
+ Scalasca for an execution run of SPH-EXA-medium on 10, 20 and 40 nodes of CLAIX-2016
using 240, 480 and 960 MPI processes.

Efficiency loses 3 % due to an increased number of useful instructions and a slightly lower IPC
Efficiency.

6 Load Balance
As already shown by table 4 the Load Balance Efficiency is at 0.92 when running SPH-EXA-
medium on 20 nodes of CLAIX-2016 with 480 MPI processes and at 0.91 when running on 40
CLAIX-2016 nodes with 960 MPI processes. In both cases the inefficiency in load balancing
has the largest impact on the Global Efficiency of 0.85 and 0.83 respectively compared to the
other SPH-EXA runs. Figure 5 shows a trace of a single iteration of an SPH-EXA-medium run
on twenty node of CLAIX-2016 with 24 MPI processes each. The iteration was chosen randomly
in the middle of the execution. The start of the iteration is indicated by the cyan blue intervals
on the left. These correspond to the time spent inside the distribute function call of the
distributedDomain object, where particle data is distributed across MPI ranks. There does
not seem to be a huge load imbalance for this function based on the results shown in Figure
5. Computing the Load Balance Efficiency for the distribute function (for all iterations)
yields a value of 0.95 which supports the first visual impression.
The next part of the execution is the synchronization of halo data (light brown) followed by MPI -
Recv (red) and MPI Waitall (dark red). Based on the trace data visualized in Figure 5 it looks
like there are also some load balance issues. Again computing the Load Balance Efficiency
for the synchronizeHalos part results in 0.74. However, since synchronizing halo data only
accounts for 0.57 % of the whole runtime of the simulation loop, this notable inefficiency should
not have a huge impact on the overall load balance.
After halo data is exchanged a tree structure is build as a support structure for finding the
neighbors in the next step. In Figure 5 the buildTree function is colored in magenta. There
is a significant load imbalance in building the tree. There are lots of processes which spent
approximately up to three times more time with building the tree than others. A fair efficiency
value of 0.50 for the load balance for this part of the code confirms the visual finding.
As a consequence the processes that spent more time with building the tree can also start later
with finding the neighbors (dark blue) and computing the density (light green). The individual
values for the Load Balance Efficiency are 0.87 for the findNeighbors function and 0.95 for

8

Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba




POP Ref.No. POP2 AR 023

Figure 5: Trace of a single simulation loop iteration for an SPH-EXA-medium run on 20 nodes
of CLAIX-2016 using 480 MPI processes. Functions are color coded. MPI calls are colored red
while application code is colored in different colors other than red.

the computeDensity function. Both are good values, especially the second, but have room for
some optimization. However, this might be difficult since particles dot not have all the exact
same number of neighbors. So some load imbalance might be inherent to the problem itself and
can probably not be avoided.
After the density computation pressure values are determined by an equation of state. Since the
EOS part has very short execution times it cannot be recognized in the trace. After that another
synchronization step is required and halo data is exchanged again (light brown) which is then
followed by some MPI Recv (red) and MPI Waitall (dark red). Comparing both synchronization
passes in Figure 5 the second one looks quite imbalanced compared to the first. Due to the
imbalance caused by the buildTree function processes that finished earlier are spending more
time waiting in their MPI Recv calls because other processes are still computing the density and
may not have posted the corresponding MPI Isend. Scalasca’s automatic trace analysis provides
a metric for late MPI senders. It reports that 2.12 % of the overall runtime can be attributed to
MPI Isend calls that happen after the corresponding MPI Recv was posted in the second halo
synchronization pass. Furthermore, it indicates that the MPI Isend calls do not happen in the
same order as they are expected by the corresponding MPI Recv calls. An efficiency value of
0.78 for the second call of synchronizeHalos indicates that there is some optimization still
possible.
Next, momentum and energy are computed (orange). On the right of Figure 5 one can recognize
some smaller load imbalances. Some processes finish earlier than others and call MPI Allreduce
as part of the timestep function following the momentum and energy computation. The Load
Balance Efficiency for computing momentum and energy is 0.85, which is still acceptable but
shows that there are small load imbalances.
Updating the positions and computing the total energy takes nearly no time and is hence, not
visible in the trace in Figure 5. So they can safely be neglected in terms of load balancing.
Table 5 summarizes the computed load balance metric for the different stages of the simulation
loop.

9

Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba




POP Ref.No. POP2 AR 023

function Load balance efficiency runtime contribution
distribute 0.95 5.89 %

synchronizeHalos1 0.74 0.57 %
buildTree 0.50 2.63 %

findNeighbors 0.87 14.47 %
computeDensity 0.95 11.54 %

computeEquationOfState 0.81 0.01 %
synchronizeHalos2 0.78 0.49 %

computeMomentumAndEnergy 0.85 52.73 %
computeTimestep 0.94 0.01 %
computePositions 0.88 0.07 %

computeTotalEnergy 0.91 0.01 %

Table 5: Load balance efficiency values computed for the different stages of the simulation loop.
Data was obtained during a run of SPH-EXA-medium on 20 nodes of CLAIX-2016 with 480
MPI processes.

7 Serial performance
Based on the Computational Efficiency reported in table 3 we can measure the serial per-
formance of SPH-EXA-small. As a reference case we use the run with 6 MPI ranks. Optimally,
the Computational Efficiency stays 1 when increasing the number of ranks. However, the
efficiency slightly decreases down to 0.96. This indicates that the number of instructions in-
creases as the number of processes is increased.
Moreover, we can look at the instructions per cycle (IPC) values hidden behind the IPC
Efficiency. The theoretical optimum for the processors of Claix-2016 is 4 instructions per
cycle. Typically, this value cannot be achieved for real applications. Based on POP experience
any value above 1 is good. IPC values for the simulation loop as well as for the most time-

nodes ranks avg. IPC findNeighbors computeDensity computeMomentumAndEnergy
1 6 1.63 1.66 1.27 1.70
1 12 1.63 1.65 1.27 1.70
1 24 1.60 1.61 1.26 1.68
2 48 1.58 1.58 1.26 1.67

Table 6: Instructions per cycle for different runs of SPH-EXA-small on one node of CLAIX-2016
with 6, 12 and 24 MPI processes and on two nodes with 48 processes.

consuming parts of the code are shown in table 6. For all runs the average IPC is between 1.58
and 1.63 which is very good. For the most time-consuming part of the code, the computation
of momentumAndEnergy, IPC values between 1.67 and 1.70 can be observed. Similarly, for the
findNeighbors function the IPC is between 1.58 and 1.66. Only for the computation of the
density the IPC is slightly lower with 1.26 and 1.27. However, computing the density is com-
putationally much simpler than computing momentum and energy. It is basically a weighted
sum of the scalar masses of neighboring particles. In contrast to that computing momentum
works on 3D data and requires generally more operations on the same data than computing the
density. Still the IPC is above 1 for the density computation. So this is still a good result.
For SPH-EXA-medium we get similar results. The run with 240 ranks is taken as a reference

for the other runs. As table 4 shows the Computational Efficiency slightly drops to 0.99
10

Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba




POP Ref.No. POP2 AR 023

nodes ranks avg. IPC findNeighbors computeDensity computeMomentumAndEnergy
10 240 1.56 1.56 1.25 1.67
20 480 1.56 1.57 1.26 1.69
40 960 1.55 1.57 1.27 1.70

Table 7: Instructions per cycle for different runs of SPH-EXA-medium on 10,20 and 40 nodes
of CLAIX-2016 with 240, 480 and 960 MPI processes.

when using 480 MPI ranks. This is because the Instruction Efficiency is also slightly lower
than 1 with 0.99 indicating that slightly more instructions were needed for this run than for
the reference run. For 960 ranks we get a Computational Efficiency of 0.96. The reasons
for this is again the Instruction Efficiency which shows that slightly more instructions were
performed compared to the reference run. Furthermore, table 7 shows IPC values for important
parts of the code similar to table 6. For all three runs the average IPC is 1.55 or 1.56 which is
only slighty lower than for the runs with SPH-EXA-small. For finding the neighbors the IPC
is around 1.56. For the density computation the IPC is roughly 1.25 which is again a little bit
lower than for other parts of the computation but still greater than 1. Finally, for the compu-
tation of momentum and energy the IPC is highest with values between 1.67 and 1.70. Again
these values are slighty lower than the ones of SPH-EXA-small but they are significantly larger
than 1 in the computationally most demanding part of the code which is very good.

8 Communications
At the start of each simulation loop iteration the application uses two collective MPI Allreduce
operations inside the distribute function. One determines the maximum smoothing length
globally and the other one how many particles are in each spatial bucket.
Moreover, a lot of MPI communication happens inside the synchronizeHalos function. This
synchronization is necessary directly after distributing the particle data and after computing
the density because the density values are required to compute momentum and energy. For ex-
change of halo data at the end of the distribute function each process computes a list of ranks
which it needs to send data to and a list of ranks from which data will be received. After that
in the synchronizeHalos call each process will asynchronously send data to its corresponding
neighbor processes and then recieves the required data from neighboring processes.
For the runs of SPH-EXA-small we measured a Communication Efficiency between 0.98 and
0.99 (see table 3) which is already nearly optimal. The Communication Efficiency drops
slightly for the runs of SPH-EXA with a medium sized workload. We measured values between
0.94 and 0.97. This is also almost optimal. The application already uses asynchronous commu-
nication. Every send operation is a MPI Isend. Moreover, a distributed graph communicator is
created so that the MPI implementation can optimize for this special topology. MPI ranks that
are neighbors of each other in the distributed graph are also physically placed closed together
onto compute nodes. Therefore, the communication matrix in Figure 6 shows that each proc-
cess communicates only with a small number of neighboring processes. The coloring is mostly
symmetric. Looking at the data row by row shows that all the rows look quite similar. This
indicates that each process sends an equal number of messages to other processes. Computing
a balance metric for the bytes sent in MPI Point-to-Point communication based on profiling
data obtained with Score-P/Scalasca yields a value of 0.86. This shows that the processes do
not send the exact same amount of bytes but this imbalance is acceptable.

11

Florina Ciorba


Florina Ciorba


Florina Ciorba


Florina Ciorba




POP Ref.No. POP2 AR 023

Figure 6: Visualization of communication between individual processes for a run of SPH-EXA-
medium on 10 nodes of CLAIX-2016 with 240 MPI processes.

9 Summary of observations
In this report we analysed different execution runs of the SPH-EXA application on the CLAIX-
2016 cluster. For SPH-EXA-small the scalability up to 48 MPI ranks is mostly nearly optimal
with efficiency values of 0.84 and higher. A similar scalability behavior is measured for SPH-
EXA-medium. Up to 480 MPI ranks on 20 nodes speedup is nearly optimal with an efficiency
of 0.92. For 960 ranks on 40 nodes we observed a speedup of 3.53.
All the calculated POP metrics achieve nearly optimal values of 0.97 and higher for SPH-EXA-
small. However, for SPH-EXA-medium we observed a small load imbalance which decreases
the Global Efficiency to 0.85 and 0.83 respectively. This inefficiency is mostly caused by the
buildTree function which only achieves a Load Balance Efficiency of 0.50. One should have
a look into that because this severe load imbalance happens quite early in each iteration and
thus negatively impacts the performance of the whole iteration. The synchronization of halo
data also achieves load balance efficiency values below 0.80 with 0.74 for the first synchroniza-
tion pass of each iteration and 0.78 for the second. Here the tools indicate that the MPI Isend
do not happen in the same order as they are expected by the sequence of MPI Recv on the
receiving processes.
In terms of communication over all execution runs SPH-EXA achieves very good values between
0.93 and 0.99 for the Communication Efficiency.
Regarding serial performance we observed IPC values significantly higher than 1 over the whole
simulation. Especially in the most time-consuming parts like momentumAndEnergy, findNeighbors
and the density computation comparable IPC values are observed. Only for the density com-
putation these values are a little bit lower but still above 1.

12

Florina Ciorba


Florina Ciorba



	Background
	Application structure
	Focus of Analysis (FOA)
	Scalability
	Efficiency
	Load Balance
	Serial performance
	Communications
	Summary of observations

