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Abstract

Loops are the main source of parallelism in most scientific applications. Many of these loops

are used to execute the same operations on multiple data elements. To reduce execution

time, this can be done in parallel on different processing units. Distributing the iterations of

a parallel loop evenly across available processing units is the job of loop schedulers. These

schedulers employ scheduling methods to calculate and assign chunks of work to processing

units in such a way as to achieve a balanced load execution among them. Their goal hereby

is to minimize the loop execution times. If the execution time of single loop iterations varies

greatly, dynamic loop scheduling methods should be deployed to ensure a good workload

balance.

The OpenMP specifications currently offer three different scheduling methods. These three

methods do not always sufficiently express the parallelism in an application, which can lead

to a suboptimal exploitation of the hardware and result in a loss of performance. In this

thesis, the GNU OpenMP runtime library libgomp was extended by six additional dynamic

loop scheduling methods. The resulting eight different dynamic loop scheduling methods

and one static loop scheduling method are evaluated on their performance on multiple

benchmarks from five different benchmark suites. The results of the evaluation show no

clear superiority of one loop scheduling method above the others but rather confirm that

different loop scheduling methods are needed for different applications.
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1
Introduction

was soll das denn heissen?!

Modern computers feature a growing amount of Processing Unit (PU)s, ever increasing the

demand for more parallelism. In scientific applications, this parallelism can often be exposed

on loops. Inside these applications, the parallelism can then be expressed further. This ex-

pression can be supported by the Open Multi-Processing (OpenMP) specifications, which

contain compiler directives, library routines and environment variables for parallelization of

C, C++ and Fortran code [1]. When using the implementation of OpenMP in one of many

compilers, only a few lines of additional code have to be added to create a parallel loop. The

OpenMP implementation GNU Offloading and Multi Processing Runtime Library (libgomp)

will be used throughout this thesis.

There are multiple ways to distribute the workload of one parallel loop across available

PUs. These different ways are called loop scheduling methods. OpenMP currently contains

three different methods to schedule loops. The use of these three methods does not always

lead to a perfect exploitation of the underlying hardware, resulting in less than optimal

performance. Inefficient exploitation of hardware can be the result of heavy variance in loop

iteration execution time. Applications which exhibit such variance inside their loops are

also called irregular applications. Dynamic Loop Scheduling (DLS) methods try to work

around the variance in irregular applications by assigning iterations to PUs during runtime

of an application. This usually results in a better balanced load across all PUs than if static

scheduling is used. Static loop scheduling assigns equal amounts of loop iterations to each

core disregarding differences between iteration execution times or core speeds. It generally

leads to best performance on regular applications, which do not exhibit heavy variance be-

tween loop iterations. In DLS, the amount of iterations each core gets assigned at a time

varies between the different DLS algorithm. The most basic DLS method, Self Scheduling

(SS), assigns one iteration at the time and guarantees the best possible load balance this

way.

Both static scheduling and SS are already available in all official OpenMP implementations.

The third method in OpenMP, Guided Self Scheduling (GSS), tries to strike a balance be-

tween the other two methods. It assigns chunks in descending chunk sizes to PUs.

A wide range of other DLS exist, yet OpenMP still only specifies these three. Some imple-
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mentations of OpenMP were already extended by additional scheduling methods, including

libgomp. More about these methods can be found in chapter 3. In this thesis we expand the

supported scheduling methods of libgomp by implementing six additional DLS and evaluate

their performance against the existing methods.

The following chapters are organized as: In chapter 2 a quick overview of parallelism, loop

scheduling and OpenMP is given. Then each loop scheduling algorithm used in this thesis

is explained with appropriate formulas. In chapter 3 we list previous work on extending

the OpenMP loop scheduler by two different groups. chapter 4 contains an explanation as

to the whys and hows of this thesis. Why and how we implemented the DLS algorithms.

chapter 5 gives a detailed explanation how to extend libgomp and the benchmarks. It is

meant to give proof, that the methods were implemented correctly and will make further

efforts to modify libgomp easier. chapter 6 is about the benchmarks and experiments that

were run to test and measure the implementation. In chapter 7 a quick summary over the

whole thesis is given and possible future work in this topics is covered.



2
Background

In this chapter the background knowledge needed to understand this thesis is provided.

It starts with a general explanation of parallelism and scheduling, then it transitions into

detailed descriptions of the different loop scheduling methods. At the end, a quick overview

over OpenMP is given.

2.1 Parallelism
Parallelism in computer science is the execution of two or more operations at the same time.

An operation in this context would be an arithmetic or logical operation on some data, for

example a simple addition of two numbers. On modern central processing units (CPUs)

there are several cores or PUs. Each PU usually does one operation at the time. Two PUs

executing one operation each at the same time would be called a parallel execution. In

this thesis we focus on the parallel execution of loops. Each PU will receive a portion of

iterations of the parallelized loop to compute.

2.2 Scheduling of Parallel Loops
Scheduling denotes the distribution in space and over time of a workload among the available

processing cores. There are different ways to categorize scheduling strategies and methods.

One of them distinguishes between static and dynamic scheduling. Another one takes adap-

tiveness into account. There are also scheduling strategies which take weights for different

PU speeds into account. The main part of this thesis is concentrated on loop scheduling.

Loops are specific parts in an application, where the same instructions are executed multiple

times. Most of the time, the difference in execution time between the loop iterations is small.

Still, sometimes bigger differences can occur. For example when different inputs are used

for different iterations or if there are many conditional statements inside of a single loop. In

loop scheduling, the main goal is to distribute the loop iterations across all available PUs.

Static loop scheduling is the most intuitive, where the iterations of a loop are evenly dis-

tributed among all PUs. Every PU obtains an equal number of iterations. In DLS, the PUs

obtain a certain amount of iterations whenever they become available. When they finish
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Table 2.1: Common variable names

Variable Description

Cs Chunk size
P Number of Processes
N Number of Iterations
R Remaining Iterations
µ Mean execution time of the iter-

ations
σ Standard deviation of the execu-

tion time of the iterations
h Overhead time

their assigned iterations, they acquire more. The amount of iterations assigned each time is

regulated by different methods, a few of which are more closely explained in this chapter.

Weighted loop scheduling assigns different weights to each PU according to its processing

speed. A faster PU will get more weight assigned and therefore handle more loop iterations,

since it is assumed to be able to handle more work in the same amount of time as a slower

PU.

Adaptive loop scheduling is the newest and most advanced of the scheduling categories. It

dynamically adapts the amount of iterations one PU receives during the execution of the

program according to multiple factors. The amount of time it took to compute the most

recently finished iteration can, for example, be one of those factors.

Dynamic loop scheduling has the advantage of balancing the load when loop iteration ex-

ecution times have high variability. One example would be an integer sorting, where the

amount of calculations in each iteration depend on the input. Adaptive methods are be-

ing used with irregular applications, where the mean and standard deviation of iteration

execution times is unknown and iterations have a high variability.

Scheduling methods try to optimize the two parameters load balance and scheduling over-

head. We can use these to describe the scheduling methods. Each method strikes a balance

between the two parameters. The two extremes would be the static and SS methods. The

static method has the least scheduling overhead of all methods, while the SS method usu-

ally balances the load as optimally. In turn, both of them usually achieve bad results for

irregular and regular applications respectively.

2.2.1 Static Scheduling Methods
Static scheduling denotes a way of scheduling, where the allocation of tasks to PUs is known

beforehand. This means, a scheduling method, which precomputes a perfect task to PU

alignment, would also be called static. Two of these methods are descibed in chapter 3.

2.2.2 Dynamic Scheduling Methods
The following DLS methods are used in this thesis. Each method is explained and a chunk-

size calculation formula is given. Some variables are common among the methods and are

descibed in Table 2.1.
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2.2.2.1 Self Scheduling (SS)

SS [2] describes a scheduling method where iterations are assigned to PUs during runtime

of an application one at a time. SS is highly dependent on scheduling overhead time. If

threads rely on a master thread to distribute iterations, the scheduling overhead time will

become substantial. To reduce this time, the PUs should pull iterations from a common

pool. The chunk size is always equal to one. SS is the most basic DLS and tends to balance

the workload in the best possible way. It was first proposed for usage on applications where

the single iteration execution times are not known and are expected to vary heavily.

2.2.2.2 Fixed Size Chunking (FSC)

Fixed Size Chunking (FSC) [3] describes a method, which calculates the optimal chunk

size for self scheduling. It needs an input of the standard deviation σ and the overhead

time h. Assumptions are made, that the overhead time is independent of the amount of

iterations scheduled at once. A single chunk size is calculated and iterations are scheduled

to each PU according to that chunk size whenever the PU idles. For this method, the mean

iteration time µ, standard deviation of iteration times σ and the overhead time h must be

known beforehand. The FSC method was first proposed as a way to calculate chunk sizes

for dynamic scheduling to reduce the scheduling overhead time of SS while retaining a good

load balance. The formula to calculate the FSC chunk size is written as in Equation 2.1.

Cs =
√
2Nh

σP
√
log(P )

2/3 (2.1)

where Cs denotes the chunk size, N the amount of iterations and P the amount of available

PUs.

2.2.2.3 Guided Self Scheduling (GSS)

GSS [4] distributes decreasing chunk sizes across the PUs according to Equation 2.2:

Cs = R
P

(2.2)

If R falls below P , the chunk size is set to 1. GSS was proposed as the first DLS method to

be independent of µ, σ and h while scheduling chunks of iterations with a reduced scheduling

overhead time over SS.

2.2.2.4 Trapezoid Self Scheduling (TSS)

Trapezoid Self Scheduling (TSS) [5] takes two inputs from the user. A starting size and

an end size. The first chunk will be assigned according to the starting size, the last chunk

according to the end size. The method calculates a linear decrease in chunk sizes for the

iterations in between. A general suggestion for the input size is

N
2∗P . (2.3)
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The chunk size is then calculated according to Equation 2.4. The variable t is the number

of the current scheduling operation.

f = start size,

l = end size,

big N = 2I
f+l ,

δ = f−l
big N−1 ,

Cs(1) = f,

Cs(t) = Cs(t− 1)− δ. (2.4)

2.2.2.5 Factoring (FAC)

Factoring (FAC) [6] is a batched scheduling method. In FAC chunks sizes are calculated for

batches of iterations. Each batch contains the number of iterations calculated in Equation 2.5

or Equation 2.6 times the number of cores P . FAC is a mixture of FSC and GSS. In GSS, each

batch only contains one chunk and FSC results, if there is just one single batch calculated

with Equation 2.5. The j in the following equations is the batch-number.

R0 = N,

Rj + 1 = Rj − PFj ,

Csj =
Rj
xjP

, (2.5)

bj = Pσ
2
√
Rjµ

,

x0 = 1 + b20 + b0

√
b20 + 2,

xj = 2 + b2j + bj

√
b2j + 4, j > 0

In its original form, FAC needs an input of µ and σ. A simplified version is developed in

the same paper with x set to 2 [6]. Its calculation formula is shown in Equation 2.6.

Cs = R
2P

= (1− 1
2)j N2P

= (12)j+1N
P (2.6)

Compared to the other DLS methods, factoring generates fairly little scheduling overhead

while also being resistant to heavily varying iteration times.

2.2.2.6 Weighted Factoring (WF)

Weighted Factoring (WF) [7] works similar to normal factoring. After calculating the batch-

and chunk size, the result is multiplied by a weight, which represents the speed of a PU
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relative to the others. All the weights should add up to the number of PU. The chunk

size calculation shown here incorporates Csfactoring, which can be found in Equation 2.5 or

Equation 2.6.

Cs = wP ∗ Csfactoring. (2.7)

It is the only nonadaptive DLS in this thesis which addresses varying PU speeds.

2.2.2.7 Taper Strategy (TAPER)

The Taper Strategy (TAPER) [8] is based on GSS. The difference is, that it takes the mean

of the execution times of all iterations µ and their standard deviation σ into account to get

a better load balance. On top of that a variable called α is used. This variable is influenced

by the overhead time and the ratio of N to P .

T = R
P ,

vα = ασ
µ ,

K = max(Kmin, (T + v2α
2 − vα

√
2T + v2α

4 )) (2.8)

If σ = 0 TAPER will yield the same chunk size as GSS. TAPER tries to achieve optimal

load balance, while scheduling the largest possible chunk size Cs.

2.2.3 Adaptive Scheduling Methods
Adaptive Scheduling gets its name from its nature to adapt to its environment. May that

be different PU speeds, interference, or an irregular input. During the runtime, mean

execution times, standard deviation and overhead time of each PU are measured and used

for calculating the next chunk sizes. By constantly adapting, these methods stay very close

to the optimal line between perfect load balance and least amount of scheduling operations.

2.2.3.1 Bold Strategy (BOLD)

The Bold Strategy (BOLD) [9] is, as its name suggests, described as a bolder version of

FAC. It takes multiple inputs and then generates additional values during the runtime for

an adaptive chunk size calculation. Just like the TAPER strategy, it uses both mean execu-

tion time and standard deviation. An estimate of the overhead time of this method is also

used.

A few additional important variables are: boldm, boldn and totalspeed. Boldm is ”the

number of iterations that are either unassigned or belong to chunks currently under exe-

cution.” [9] Any time a PU finishes the execution of a chunk, boldm is decreased by that

amount.

Three timers are used in the calculation of the next variable, boldn. t1 is the time, when a

PU starts calculating a new chunk. t2 is the time, when a PU finishes its work and t is the

last time before t2 when any other PU finished the execution of its workload.
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Boldn is described as ”an estimate of the number of iterations that have not yet been exe-

cuted.” [9] At time t2, boldn is decreased by (t2 − t)totalspeed+ Cs− (t2 − t1) Cs
Csµ+h .

”The value of totalspeed indicates the expected number of iterations completed per time

unit, taking the allocation delay into account, and tends to lie slightly below P
µ .” [9] Each

time a PU starts working on a chunk of size Cs, it increases totalspeed by Cs
Csµ+h . After the

execution of this chunk, it decreases totalspeed by the same amount.

Taking all these values into account, the values of BOLD are initialized as in algorithm 1

and the chunk size is calculated according to algorithm 2.

Algorithm 1 BOLD initialization [9]

1: a = 2(σµ )2

2: b = 8a ln (8a)
3: if b > 0 then
4: ln b = ln (b)
5: end if
6: p inv = 1

P

7: c1 = h
µ ln (2)

8: c2 =
√

2πc1
9: c3 = ln (c2)

10: boldm = N
11: boldn = N
12: totalspeed = 0

Algorithm 2 BOLD chunk size calculation [9]

1: Q = R
P

2: if (Q ≤ 1) then
3: Cs = 1
4: else
5: r = max(R , boldn)
6: t = p inv ∗ r
7: ln q = ln (q)
8: v = Q

b+Q

9: d = R

1+
1

ln Q−v

10: if (d ≤ c2) then
11: Cs = t
12: else
13: s = a(ln (d)− c3)(1 + ( boldmrP ))
14: if (boldb > 0) then
15: w = log(v ∗ ln q) + ln b
16: else
17: w = log(ln q)
18: end if
19: q = min(t+max(0 , c1w) + s

2 −
√
s(t+ s

4 ) , t)
20: end if
21: end if



Background 9

2.3 OpenMP
The OpenMP specification has implementations in many compilers, ranging from well-known

compilers such as GNU Compiler Collection (GCC) and Intel XL, to small scale ones such as

Mercurium. All compilers use either C/C++ or Fortran source code. OpenMP can be used

for general parallelization, creation of threads, and work sharing, among other things. The

focus in this thesis lies on the work sharing aspect of OpenMP. More specifically on the use

of the omp for and omp do for the parallelization of loops. OpenMP is used inside the code

by specifying compiler directives, for example #pragma omp parallel for to parallelize a for

loop in C. Inside the OpenMP pragmas, many clauses can be set. For example, for making

variables private to each thread, for synchronization of all threads, or for schedule clauses.

OpenMP has the advantage over other programming paradigms, that it is not platform

specific and is, therefore, portable. The developers do not need to concern themselves with

the details. Only simple pragmas must be specified. The loop scheduling or the work

distribution for example are handled by the OpenMP implementation. OpenMP adapts

automatically to the specified or available amount of PUs and can even run the same code

in sequential fashion.

On the other hand, OpenMP only works with shared-memory environments and the compiler

needs to have an OpenMP implementation, like libgomp for GCC [1].



3
Related Work

All of the DLS algorithms in this thesis have been implemented into applications systems

before, but only few DLS are specified in the OpenMP specification. Additionally other

static loop scheduling algorithms have been implemented into some implementations of the

OpenMP specification. Closest related to this thesis is the work of Penna et al. on loop

scheduling in OpenMP. They proposed two new workload-aware loop scheduling algorithms

and implemented them into libgomp as a proof of concept. The algorithms are called Smart

Rount-Robin (SRR) [10][11] and BinLPT [12]. As the code of these loop scheduling algo-

rithms is publicly available, their version of libgomp was used as a base for the implemen-

tation of the DLS in this thesis. While we used the same base of implementation, the loop

scheduling methods considered herein differ greatly from SRR and BinLPT. Their focus lies

in preprocessing the length of each iteration and then evenly distributing the iterations onto

available threads, creating an almost perfect load balance before the actual scheduling oc-

curs. The methods of Pemma et al. are described as being static, but their implementation

inside of libgomp is dynamic. The implementation of SRR inside of libgomp looks similar

to a dynamic algorithm in the sense, that every iteration is assigned separately according

to a preprocessed task map. BinLPT is implemented differently than SRR in that it assigns

chunks of loop iterations at a time and not single iterations. One other significant difference

to our implementation of DLS methods is, that threads in the methods of Penna et al. do

not loop endlessly, as described in chapter 5, until they find a free chunk of iterations, since

every iteration is assigned to a specific thread beforehand.

A more dynamic loop scheduling algorithm was implemented by Durand et al. [13]. They

introduced a new OpenMP loop scheduler called Adaptive. As the name suggest it adapts

the chunk size of loop iterations to the application at hand via work stealing. It starts

with the same distribution of iterations among threads as the static scheduler. Each thread

obtains N
P iterations. When one thread becomes idle, it steals half of the remaining workload

from a loaded thread.

Every extension to the OpenMP scheduler mentioned in this thesis has been done in the

schedule clause of libgomp. The SRR, BinLPT and all of our DLS are accessible from

the runtime schedule by using environment variables. The Adaptive schedule can be used

directly in the schedule clause.
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Penna et al. designed their schedulers to be workload aware, which none of the other algo-

rithms are. The Adaptive scheduler is the first one to use work stealing in OpenMP. Each

of these three methods assigns a certain part of the workload to each PU beforehand, while

our methods are nondeterministic and assign iterations dynamically during the runtime to

available PUs. This way, between different executions of the same experiment, each PU

might be assigned different iterations.

While Durand et al. and this thesis used known methods to implement new schedulers into

OpenMP, Penna et al. employed a new way of creating scheduling strategies.
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Dynamic Loop Scheduling in OpenMP

If an algorithm exhibits parallelism, parts of it can be run in parallel on multiple PUs.

This parallelism can then be exposed inside of a scientific application using this algorithm.

OpenMP is one of the ways to express this parallelism to the compiler, to give clear instruc-

tions which commands are going to be executed in parallel on which PUs. The full ability

of the available PUs can be exploited this way to speed up the application run time. In this

thesis we extended the expression of parallelism in OpenMP. With the newly implemented

DLS methods, the underlying hardware, the PUs, can be exploited better than before for

many irregular applications. Every existing DLS has its niche of applications and systems

where its usage leads to the best performance.

Each loop scheduling method in OpenMP differs in its achieved load balance and the over-

head and scheduling time. Static scheduling requires the least amount of overhead and

scheduling time but leads to poor load balance on irregular applications. SS on the other

hand can achieve almost perfect load balance, but its overhead time suffers greatly from N

different scheduling operations. GSS and the newly implemented DLS try to find a balance

between the two extremes SS and static scheduling. They reduce the amount of needed

scheduling operations over SS but achieve slightly less perfect load balance.

By only modifying the GCC runtime library, the newly implemented methods can be used

by other developers without the need to recompile the whole compiler. Only the sched-

ule clause inside their applications needs to be changed. This way a wide range of new

algorithms is made available to everybody parallelizing with OpenMP.

4.1 Area of application of dynamic loop scheduling algorithms
From working with the different benchmark suites and the DLS, we can recommend their

usage as follows. The static scheduling should be used for any regular applications. There

should be no big difference in single iteration execution time. Another usage for static

scheduling is, if N is close to P . Any other method used in this case, would only introduce

additional overhead. SS is best used for highly irregular applications, where no previous

information about iteration length is known. For problems with a big N , SS is not recom-

mended, since the amount of scheduling operations is also N . For such problems GSS is
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better suited. The application area and performance of FAC is close to GSS. It is supposed

to deliver a better load balance than GSS but should only be used, if the PU speeds do

not differ between PUs. With differing PU speeds, WF should be used. TSS should be

used, if a good start and end value are known or can be found out easily. Its performance

can beat both GSS and FAC in their respective application area. TAPER excels at highly

irregular applications, when the values for σ, α and µ are known. TAPER trumps BOLD

in a reduced overhead time, which means it’s better used for applications with a lot of it-

erations and smaller iteration length. BOLD should only be used if single iteration lengths

are reasonably large, to allow for an accurate measurement of compute time. FSC leads to

excellent execution times, if σ and h are known. The overhead time is a lot smaller compared

to the other implemented DLS methods with input values in libgomp, since no calculations

have to be made after the initial calculation of the chunk size. Its overhead time is very

similar to that of SS, but it usually requires less scheduling operations.

4.2 Loop scheduling with libgomp
The loop scheduling in libgomp is not based on a master-slave architecture, but instead all

threads are working on the iterations. At the start of a parallel section, a master thread is

declared, but its function is only to initialize the parallel region (or loop in our case). Af-

terwards it behaves just like the other threads. After the initialization each thread executes

the same function according to the loop schedule chosen. In this function a thread tries to

allocate a certain amount of loop iterations (ranging from 1 to all of the available iterations,

depending on the scheduling algorithm). If successful it means no other thread chose these

loop iterations and it can go ahead and execute them. If another thread already allocated

the first chosen iteration, the thread has to start again, trying to allocate iterations from

the current latest iteration. Since a thread only ever allocates concurrent iterations, this

will not lead to any iterations being left out. libgomp currently has 3 scheduling methods

implemented. They are called static, dynamic and guided and are close, but not exact im-

plementations of static scheduling, SS and GSS. In libgomp the chunk size can be specified

for all existing methods. For static, this means that the scheduled iterations for each PU

are not concurrent, but rather in blocks with size according to the specified chunk size.

Dynamic dynamically schedules blocks with size according to the specified chunk size dur-

ing runtime of the application and distributes them whenever a PU idles.

The chunk size parameter is used as a minimum chunk size for the guided method. Addi-

tionally its chunk size calculation differs slightly from Equation 2.2 as it adds P − 1 to R in

the denominator.

4.3 Changes within libgomp
The runtime library libgomp on its own can be compiled and used as a shared library during

runtime of an application. This means that changes can be made to it without the need

to recompile either GCC or the application. Figure 4.1 gives an insight into the structure

of libgomp. There is a function inside of GCC, which gets called whenever a #pragma
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omp parallel for is encountered in an application. This function calls the initialization

functions GOMP loop runtime start and initialize env inside of loop.c, blue border, and

env.c, green border, if the clause schedule(runtime) is set. The function gomp loop init

contains the initialization of variables used for the scheduling methods. It needed to be

extended to implement new DLS. The functions inside of env.c are used to read in the

schedule(runtime) from the environment variable OMP SCHEDULE. This input is then

used inside of loop.c to choose the functions matching the specified scheduling method. In

the example of Figure 4.1, the FAC method is chosen. When the initializations are done, a

function of iter.c, red border, is called. iter.c had to be extended by one method for each

new DLS. The chunk size is calculated inside of iter.c and the PUs start working on their

chunks from here.

GCC initialize env

parse schedule

handle omp display env

GOMP loop runtime start

GOMP loop fact startGOMP loop init

GOMP iter fact next

calls second

calls first

returns

calls

calls

returns

returns

calls

calls first

calls second

returns

returns

returns

returns

Figure 4.1: The modified libgomp routine call stack. The functions of env.c are outlined in
green, loop.c is blue and iter.c is marked red.

4.4 Parallelization with libgomp on Linux
In Figure 4.2 the workflow of parallelizing a C program is shown. First the program code

needs to be modified to include #pragma omp on top of the parallel region. If a loop is

parallelized, #pragma omp parallel for schedule(runtime) should be used. In this example,
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the scheduling method will be read in from the environment variable OMP SCHEDULE.

After the program has been modified accordingly, it can be compiled with gcc−c−fopenmp
to create object files. These object files are then linked with gcc − o into an executable.

The last two steps can be combined in one step, if no explicit linking is required. Only

after the executable has been created, libgomp gets actually used. During the runtime of

the executable, function calls to OpenMP are redirected to libgomp, if it is specified as

the runtime library by setting the environment variable LD LIBRARY PATH to the path

containing the libgomp runtime library.

C code

object file

executable

running

compile with gcc -c -fopenmp

link with gcc -o

link to libgomp

Figure 4.2: High level workflow of creating a parallelized program with OpenMP.

4.5 Implementation Decisions and Limitations
A decision was made to use the GCC implementation of OpenMP. The other considered

implementation was the Intel OpenMP runtime library. Both of these implementations are

open source and publicly available, but only the GCC is open source. The Intel compiler is

not, which is the main reason why the GCC implementation libgomp was chosen. Further-

more in a comparison of the source code of libgomp and the Intel OpenMP runtime library,

the libgomp code was found to be more extensible due to its simple and uncomplicated na-

ture. In libgomp only few functions needed to be extended. In the Intel OpenMP runtime

library, many templates would have needed to be modified to implement new DLS methods.

During the implementation of adaptive DLS, the limitations of libgomp were revealed. Adap-

tive Factoring relies on a time measurement of single iterations. There is only one function,

which gets called whenever a chunk needs to be calculated in libgomp. The only way to call

this function for every single iteration, would be to set the chunk size to one. This would

only lead to a version of SS with more overhead.
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This section specifies the extensions done in libgomp. Its purpose is to clarify the process

of extending libgomp to help understand the effect of including new scheduling methods.

Algorithm 3 Loop initialization

1: procedure gomp loop init
2: switch schedule do
3: case dynamic
4: initializations
5: case new
6: read environment variables
7: precompute constants

8: end procedure

Algorithm 4 Calculate next chunk

1: procedure gomp iter schedule next
2: while 1 do
3: get current starting point
4: calculate chunk size
5: end = start+ chunksize
6: if current start is still free then
7: break
8: end if
9: end while

10: newstart = end
11: start executing iterations
12: end procedure

The loop scheduling clause in OpenMP currently has 4 options: static, dynamic, guided

and runtime. SS is called dynamic in libgomp, GSS is called guided. A possibility to

specify chunk sizes for these methods already exists in the libgomp specs by adding it into

the schedule clause. The newly implemented DLS methods are made accessible through

the OpenMP schedule clause runtime. By writing the desired scheduling method into the

environment variable OMP SCHEDULE, the chosen method will be used every time the

schedule(runtime) is used in the code. While implementing the DLS methods, which are
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covered in this thesis, the known implementation approaches used in the existing DLS

methods of libgomp were followed. As a basis, the guided scheduling was used. There are

a few different files inside the libgomp runtime, which needed to be edited to implement

a new scheduling method, namely env.c, libgomp.h, iter.c and loop.c. The connection and

function calls inside of these files can be found in Figure 4.1.

Inside the file env.c translation of the environment variable OMP SCHEDULE is managed.

This is used to tell the scheduler which scheduling method to use, when schedule(runtime)

is specified by the programmer. In libgomp.h the methods of iter.c and loop.c are declared.

In addition, the struct workshare is located here. Each parallel loop in OpenMP has

one workshare assigned to it. Inside all the global variables for the new DLS methods are

saved. The files iter.c and loop.c contain the loop scheduling algorithms themselves. In loop.c

all variables used in the algorithms are initialized as shown in algorithm 3. The method

containing the different initializations is called once for each #pragma omp parallel for and

initializes every variable necessary for the chosen scheduling method. For example, the

processor-weights are read from an environment variable for the weighted factoring schedule

in loop.c. The file iter.c contains methods which get called every time a PU is idle inside

a #pragma omp parallel for region. This means that every PU calls the function matching

the chosen scheduling method at the start of the loop and then again every time it finishes

its assigned workload. Generally the procedure looks like algorithm 4. In these methods

the next chunk size is calculated according to the algorithms specified in the background

section. After calculating the chunk size, a PU tries to allocate a chunk of work. If that

chunk is already taken it tries again with a new starting point. The global starting point is

updated every time a PU successfully allocates a chunk. Generally the PU start at iteration

0, but often times the first chunk allocated is not the first one to complete. Since all the

implemented scheduling methods are dynamic, there is no telling which PU will get which

chunk of loop iterations. For the static methods the assignment is a lot more straightforward,

since it is predetermined which PU gets assigned which chunk.

For the adaptive methods a timer is needed. The duration of each chunk-execution is

measured and used in the calculation of the next chunk sizes. The method called after a

chunk has been finished by a PU is again iter.c inside of libgomp, so the time measurements

are happening at the start of this method and whenever a chunk is successfully allocated at

the end of this method.

In the following sections multiple variables are used. The naming is according to Table 2.1.

For every fraction a check is made to ensure the denominator is not equal zero. Every

function in iter.c has 2 parts. An initialization part and an endless loop. The loop is

restarted every time a PU fails to allocate a chunk. Only once a chunk is successfully

allocated or when no more iterations are left, the loop can be exited. The chunk size

calculation is always done inside of the loop. If the calculated chunk size is below one it is

always set to one.
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5.1 Fixed Size Chunking
For FSC [3] the environment variables SIGMA and FSCH are read in and used in the formula

according to Equation 2.1:
√
2Ih

σP
√
logP

2/3
Furthermore, if the calculated chunk size is bigger

than N , it is set to N . If it is smaller than one, it is set to one.

As in all the other methods, in the loop of iter.c the chunk size is used to try to allocate a

chunk.

5.2 Factoring
Of all the implemented methods, FAC [6] has the smallest initialization overhead. Inside of

loop.c only two variables are initialized, the maximum workload and a counter. The workload

is used in the chunk size formula according to chapter chapter 2. In the initialization part

of its iter.c function each PU increments the global counter and saves its assigned number.

In the loop, this number is used to calculate which batch is currently being assigned with

batch number = counter
P + 1.

The chunk size calculation is done according to Cs = N
2batch number∗P , which is equivalent to

the last line in Equation 2.6.

5.3 Trapezoid Self Scheduling
In TSS [5] the initialization method in loop.c reads the environment variables TRAPSTART

and TRAPEND. From these, according to Equation 2.4 a big N and a δ are calculated with

the formulas big N = 2∗I
start size+end size and δ = start size−end size

big N−1
Furthermore a counter is initialized, which is incremented in the initialization part of TSS’

iter.c function. The chunk size is then calculated according to Cs = start size−(δ∗counter).

5.4 Weighted Factoring
WF [7] uses the same formulas and algorithm FAC uses. The only difference is the addition

of processor weights. These are read from the environment variable WEIGHTS inside the

initialization function of loop.c. Further initializations are done for the maximum workload

and the counter. In iter.c the weights are then multiplied with the same formula as FAC:

Cs = wi ∗ N
2batch number∗P .

5.5 Taper Strategy
The TAPER [8] strategy is the first method to read in a µ and σ. These are read from the

environment variables MEAN and SIGMA respectively. Another variable, α is read from

ALPHA. Then the global variable vα is calculated with vα = ασ
µ from Equation 2.8

This global variable is then used inside the loop of TAPERs iter.c function together with

the remaining workload Ti to calculate the chunk size according to

the formula Cs = Ti +
v2α
2 − vα

√
2Ti +

v2α
4 .
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5.6 Bold Strategy
As in the method above, for BOLD [9] µ and σ are also read in from environment variables.

For the µ and σ, the same ones are used as for TAPER. Additionally the overhead time

h is read in from BOLDH. From these variables and P and N the method calculates the

constants according to algorithm 1. Then the global variables boldm, boldn totalspeed,

boldtime and three arrays, boldarray, speedarray and timearray are initialized to 0 and

the current time respectively. boldarray will hold the values of every Cs and speedarray

the values of each totalspeed calculated separately for every PU.

At the start of the function in iter.c, each PU initializes the local variable t to the cur-

rent value of boldtime. Afterwards boldtime is updated with the current time. A second

local variable, t2 is initialized to the current time. Next the global variables boldm and

totalspeed are altered by subtracting the values in boldarray at position P from boldm and

in speedarray at position P from totalspeed. After this, the loop starts.

The chunk size is then calculated according to algorithm 2. If a PU successfully allocates a

chunk, its size is saved in boldarray. Next the differences t− t2 and timearray[P ]− t2 are

calculated to be used in the calculation of boldn. The first difference is the difference between

the last time a chunk has finished computing t and the starting time of this method on this

PU t2. The second difference is between the start of the last execution of the last chunk on

this PU timearray[P ] and the end of it t2. After boldn has been updated, totalspeed and

speedarray[P ] are updated with the same number. At last t2 is saved in timearray[P ] to

be used for the next chunk size calculation on this PU.
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The first part of this chapter contains explanations and specifications about the various

benchmarks used for the experiments. Some general lines along which all the benchmarks

were modified to use the new DLS methods are also given. In the second part of this chapter,

the design, by which every experiment was performed, is explained. The second part contains

the results of these experiments with explanations. The goal of this chapter is to visualize

the advantages of the newly implemented DLS by comparing them to the existing OpenMP

methods and to each other. Many experiments were done on the different benchmarks, but

only the most interesting ones are presented in this chapter. The whole table of benchmarks

used and all the experimental results can be found in Appendix A. Overall many of the

experiments turned out to have regular parallel loops. While the newly implemented DLS

methods outperform the existing DLS methods on these experiments, they can not reach

the performance of static scheduling. Much more interesting are benchmarks with irregular

parallel loops, where DLS can show their strength.

6.1 Benchmarks
The benchmark suites are written in C, C++ and Fortran. Only benchmarks, which already

had an OpenMP implementation and at least one parallel loop were extended to use the

new DLS. For most benchmarks a simple addition of schedule(runtime) to the #pragma omp

for C/C++ code or to $omp do for Fortran was sufficient. Some of the benchmarks from

the NAS Parallel Benchmark Suite (NAS) and from the SPEC OpenMP Benchmark Suite

(SPEC OMP) contained multiple files with up to 93 different parallel loops. For these file,

not every loop was parallelizable with DLS. Some of them require the scheduling to be done

statically.

For the smaller benchmarks with less parallel loops, code was temporarily added to measure

single iteration times. This was done to acquire means and standard deviations for the DLS

requiring these as input. The measurements themselves were handled by the C library time.

The function used was clock gettime with CLOCK MONOTONIC. Table 6.1, Table 6.2,

Table 6.3 and Table 6.4 give a small explanation of each extended benchmark. More specific

as to how they were extended, can be found in the next chapter.
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A full list of experiments can be found in Table A.1.
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Table 6.1: RODINIA Benchmarks [14]

Benchmark Suite Benchmark Name Explanation

Rodinia

b+tree Uses binary tree search to find
values matching a key.

cfd Computational Fluid Dynam-
ics solver. Solves the three-
dimensional Euler equations for
compressible flow.

hotspot Iteratively solves a series of dif-
ferential equations to estimate
processor temperature.

hotspot3D HotSpot for three dimensional
thermal models.

kmeans Clustering algorithm used for
data mining. Tries to group ob-
servations into k different clus-
ters.

lavaMD Calculates the potential of parti-
cles and their relocation due to
mutual forces between particles
within a large 3D space.

leukocyte Detects and tracks rolling white
blood cells in videos of blood ves-
sels.

lud A simple LU decomposition,
which calculates the solutions of
a set of linear equations.

myocyte Models a heart muscle cell and
simulates its behavior.

nn Finds k nearest neighbors in an
unstructured data set.

nw Global optimization method
for DNA sequence alignment.
(Needleman-Wunsch algorithm)

particlefilter Estimates the location of a target
object from noisy measurements
of that target’s location and an
idea of the object’s path.

srad A diffusion algorithm based
on partial differential equations.
Used for removing the speckles in
an image without sacrificing im-
portant image features (Speckle
Reducing Anisotropic Diffusion)

streamcluster Finds a number of medians for
a stream of input points, so that
each point is assigned to its near-
est center.
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Table 6.2: OpenMP Source Code Repository (OMPSCR) Benchmarks [15]

Benchmark Suite Benchmark Name Explanation

OmpSCR

fft6 Computes the discrete Fourier
transform of an input signal by
using Bailey’s 6-step Fast Fourier
Transform algorithm.

qsort Sorts an integer array with the
Quicksort algorithm.

md Calculates a simple molecular
dynamics simulation, using the
velocity Verlet algorithm.

mandel Estimates the Mandelbrot Set
area using MonteCarlo sampling.

fft Computes the discrete Fourier
Transform of an input signal.

lu LU reduction of a 2D dense ma-
trix. Calculates the solutions of
a set of linear equations.

pi Computes π.
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Table 6.3: NAS Benchmarks [16] [17] [18]

Benchmark Suite Benchmark Name Explanation

NAS

ua solution of a heat transfer prob-
lem in a cubic domain. Uses dy-
namic and irregular memory ac-
cess.

sp Calculates a synthetic system
of nonlinear partial differential
equations using scalar pentadiag-
onal solver kernelsSolves a syn-
thetic system of nonlinear par-
tial differential equations using
scalar pentadiagonal solver ker-
nels.

bt Calculates a synthetic system
of nonlinear partial differential
equations using block tridiagonal
solver kernels.

lu Calculates a synthetic system
of nonlinear partial differen-
tial equations using symmetric
successive over-relaxation solver
kernels.

mg Approximates the solution to a
three-dimensional discrete Pois-
son equation using the V-cycle
multigrid method.

ft Calculates a three-dimensional
partial differential equation us-
ing the fast Fourier transform.

ep Generates independent Gaus-
sian random variates using the
Marsaglia polar method.

cg Estimates the smallest eigen-
value of a symmetric positive-
definite matrix using the inverse
iteration with the conjugate gra-
dient method as a subroutine for
solving systems of linear equa-
tions.

is Sorts an integer array using
bucket sort.
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Table 6.4: SPEC OMP Benchmarks [19]

Benchmark Suite Benchmark Name Explanation

SPEC

wupwise Wuppertal Wilson Fermion
Solver. Solves the inhomoge-
neous lattice-Dirac equation
with the BiCGStab iterative
method

swim Solves a system of shallow wa-
ter equations using finite differ-
ence approximations on a N1 x
N2 grid.

mgrid Computes a three dimensional
potential field with a multi-grid
solver.

equake Simulates the propagation of
elastic waves in large and highly
heterogeneous valleys.

apsi Calculates temperature, wind,
velocity and distribution of pol-
lutants as prognosis.

fma3d Simulates the inelastic, tran-
sient dynamic response of three-
dimensional solids and structures
subjected to impulsively or sud-
denly applied loads.

art Adaptive Resonance Theory.
Recognizes objects in an image
with a neural network.

ammp Solves differential equations to
run a molecular dynamics simu-
lation.
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Table 6.5: Design of experiments. Each experiment was executed with 20 threads on the miniHPC system.

Benchmark
suite

Kernels Problem sizes input commands input files
Total # of

loops parallelized
with DLS

# of
runs

DLS
methods

RODINIA

b+tree
j 6000 3000
k 10000

mil.txt, command.txt 1

100

STATIC,
FSC,
GSS,
TSS,
FAC,
WF,

TAPER,
BOLD,

SS

cfd missile.domn.0.2M 5
hotspot 1024x1024, 2 iterations 1024 1024 2 20 temp 1024, power 1024 1

hotspot3D
264x264, 20 layers,
100 iterations

264 20 100
power 512x8,
temp 512x8

1

kmeans kdd cup 1
lavaMD boxes1d: 10 1
leukocyte 5 frames testfile.avi 3
lud 2048.dat 2

myocyte
end of sim interval: 1000,
instances of sim:1000

1000 1000 1 20 1

nn k: 20, lat: 60, long: 100 20 60 100 filelist 4 1
nw 8192x8192, penalty: 1000 8192 1000 20 2

particlefilter
128x128, 100 frames,
20000 particles

-x 128 -y 128
-z 100 -np 20000

10

srad
1000 iterations, λ: 0.7
image: 502x458

1000 0.7 502 458 20 2

streamcluster

min: 10, max: 20,
dimension: 256,
65536 datapoints,
chunksize: 65536,
clustersize: 1000

10 20 256
65536 65536 1000 none
output.txt 20

2

OmpSCR

fft6 4096, 50 iterations 4

100

qsort 2097152 1
md 65536, 50 iterations 2
mandel 524288 1
fft 65536 1
lu 5000 1
pi 1000000000 1
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Table 6.6: Design of experiments. Each experiment was executed with 20 threads on the miniHPC system.

Benchmark
suite

Kernels Input sizes
Total # of

loops parallelized with DLS
# of
runs

DLS
methods

NAS

ua S, W, A, B, C, D 77 in 11 files

1

STATIC,
FSC,
GSS,
TSS,
FAC,
WF,

TAPER,
BOLD,

SS

sp S, W, A, B, C, D 32 in 10 files
mg S, W, A, B, C, D 13
lu S, W, A, B, C, D 45 in 15 files
ft S, W, A, B, C 8
ep S, W, A, B, C, D 1
cg S, W, A, B, C, D 18
bt S, W, A, B, C, D 33 in 11 files
is S, W, A, B, C, D 9

SPEC

wupwise m refsize 16 in 10 files

1

swim m refsize 8
mgrid m refsize 12
equake m refsize 11
apsi m refsize 28
fma3d m refsize 93
art m refsize 1
ammp m refsize 7
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6.2 Design of Experiments
The OpenMP part of the Rodinia benchmark suite contains 19 different benchmarks. A

number of these were used for experiments. The remaining benchmarks did either not

compile, did not contain a parallel loop or did not output time measurements and therefore

were omitted from the results. A small explanation to each Rodinia benchmark can be

found in Table 6.1. The OMPSCR is divided into 15 different parts. Some of these 15 parts

contain multiple benchmarks, but most of them only one. Seven of these 15 parts were

used for experiments, the rest was omitted due to the same reason as some of the Rodinia

benchmarks were omitted. The description of the OMPSCR can be found in Table 6.2. All

of the ten different NAS benchmarks were used for an experiment. In this experiment, due

to a execution time of multiple days, every benchmark was executed only once with every

single DLS. The description of the different benchmarks can be found in Table 6.3. From

the 11 different benchmarks of SPEC OMP, eight were used for experiments. The details

to each benchmark can be found in Table 6.4

Some of the extended benchmarks contain multiple parallelized loops as seen in Table 6.7

through Table 6.10. These tables also contain information as to which loops were modified

and which scheduling method was originally used. Specific lines are highlighted to show the

most interesting benchmarks either due to the average iteration length, which is important

for accurate µ and σ measurements or due to some loops containing dynamic scheduling in

the original benchmark suite.

Table 6.7: Parallelized loops in each benchmark of the Rodinia benchmark suite. All of the
scheduling clauses were changed from static to runtime.

Benchmark Name
Total #

of parallel loops
average iteration length in seconds

b+tree 1 0.000001
cfd 5 less than 0.0000001
hotspot 1 0.00011
hotspot3D 1 0.0004
kmeans 1 0.3
lavaMD 1 0.001
leukocyte 3 find ellipse: 0.0042, track ellipse: 0.15
lud 2 0.000024, 0.000002
myocyte 1 0.013
nn 1 0.000008
nw 2 0.000004, 0.000002
particlefilter 10 1-3: 0.0000001, 4: 0.000001, 5-9: 0.00000001, 10: 0.000004
srad 2 0.00002, less than 0.0000001
streamcluster 2 0.000001, less than 0.0000001

For every parallelized loop inside OMPSCR and the Rodinia benchmarks, measurements

were taken to find the right input values for the DLS requiring them. The overhead times

were measured to be 0.000005 seconds for BOLD and 0.0000005 seconds for FSC and used

for every benchmark. For NAS and SPEC OMP, a general 0.0005 seconds was used as the

µ and 0.000005 seconds was used as input for the σ. The TSS starting point was set to the

recommended N
2∗P and the endpoint usually set to 1. In cases with a big N , the endpoint
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Table 6.8: Parallelized loops in each benchmark of the OMPSCR. All of the scheduling
clauses were changed from static to runtime.

Benchmark Name
Total #

of parallel loops
average iteration length

fft6 4 1-3: 0.000005 , 4: 6.334337
qsort 1 0.00005
md 2 0.00389, less than 0.0000001
mandel 1 0.000218
fft 1 0.00000001
lu 1 0.000065
pi 1 0.00000001

Table 6.9: Details of parallelized loops in each benchmark of NAS.

Benchmark Name
Total #

of parallel loops
# of parallel loops modified Original scheduling

UA 77 in 11 files all static
SP 32 in 10 files 1-12, 18-23, 26-32 static
MG 13 all static

LU 45 in 15 files
1-4, 7-11, 14, 16-28, 30-35, 38,

42, 45
static

FT 8 all static
EP 1 all static
CG 18 all static
BT 33 in 11 files 1-10, 18-24, 27-33 static
IS 9 1-4, 7-9 8 times static, 1 dynamic

Table 6.10: Details of parallelized loops in each benchmark of SPEC OMP.

Benchmark Name
Total #

of parallel loops
Total #

of parallel loops modified
Original scheduling

wupwise 16 in 10 files all static
swim 8 all static
mgrid 12 all static
equake 11 all static
apsi 28 all static
fma3d 93 all static
art 5 only the 5th 4 times static, 1 time dynamic
ammp 7 all 5 times static, 2 times guided

was set to a respectively higher value. The weights in WF were set to 1 for every PU, since

the setup did not allow for different processing speeds. For the experiments with TAPER,

α was set to 1.3 according to the work of Steven Lucco [8].

Every experiment was run on the same hardware as specified in Table 6.11 with the same

implementation of libgomp. The benchmarks themselves were compiled with GCC version

5.4.0. GCC and libgomp were used for benchmarks written in C and C++ as well as

benchmarks written in Fortran.

Each experiment consists of a whole benchmark suite run sequentially on one node of the

cluster. The information about one node can be found in Table 6.11. A very broad range of
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Table 6.11: Characteristics of a single miniHPC cluster node

Processor Name Intel(R) Xeon(R) CPU E5-2640 v4
Processor Speed 2.40GHz
Processor Architecture x86 64
L1d cache 32k
L1i cache 32k
L2 cache 256k
L3 cache 25600k
physical CPUs 20
virtual CPUs 40
RAM 64GB

benchmarks was used, some even twice in different benchmark suites to cover all cases and

find patterns as to which schedule type fits to which kind of problem.

Each experiment was done with the number of OpenMP threads set to 20. Thread pin-

ning (via GOMP CPU AFFINITY) improved the results by a few percent and reduced the

variance in between runs. The overhead of the different schedule types was estimated by a

measurement inside of the libgomp runtime. This overhead time was then used as an input

to the BOLD and FSC methods.

Each used benchmark outputs an execution time. This time was used as the primary mea-

surement, by which the DLS were compared.

In addition to the modified benchmarks, each benchmark suite was run in its original form

once. The results of these experiments did not vary much from the usage of static scheduling

normally and dynamic scheduling for art and IS. They are included in the figures as red

arrows on the y axis. For the NAS figures, the shape of the respective size was used instead

of arrows.

To show how load balance in a highly irregular application looks like, Score-P was used with

tracing on a LU decomposition. The execution with static scheduling is highly inefficient.

The loop execution time can be seen in Figure 6.1 in brown, while the purple parts represent

the time a thread was idle. The relation of idle to busy time of threads on the static execution

(the lower part of the picture) is 1:1, which almost doubles the total time taken.

In the top half of Figure 6.1 an almost perfect load balance can be seen. There are no purple

parts to be seen. This means every thread is busy from start to finish and the overall time

is only composed of time spent working.

6.3 Results
Looking at the experiments overall, the static method achieved best results in most of the

experiments. This leads to the conclusion, that most of the benchmarks were more regular

than irregular. While this is the case, small Ns can also lead to a good performance of

static scheduling over the other scheduling types. The DLS methods FAC and WF are

supposed to offer similar results, since their chunk size calculations are the same. FAC has

the advantage, that it does not rely on an input and still offers good results. It outperforms

static scheduling on irregular problems and SS on regular problems. It never outperforms

every other method, but reliably offers good results. The problems of the SS method with
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Figure 6.1: Comparison between static and dynamic scheduling load balance of 20 threads
working on a LU decomposition 10 times.

regular load on loops with a high number of iterations can be seen on many results. TSS,

TAPER and FSC face similar problems, as they need good input values to produce good

results. On some of the benchmarks these values were chosen badly, which reflects in their

respective performance. The BOLD method requires on top of the input values, to have

a measurable iteration length. Small iteration times lead to big uncertainties in the time

measurements and therefore bad performance.

6.3.1 Rodinia benchmark suite
The Rodinia benchmark suite is the first one to be modified to include µ and σ for each

loop. The same experiment has been run 100 times and the results have been summarized

in Figure 6.2 and Figure 6.3. Shown are the median execution times as black dots, the

standard deviation as black bar and the min and max values as small grey bar. The first

interesting benchmark here is the cfd benchmark. It is regular and the N is high, leading

to a bad performance by SS. The hotspot and hotspot3D benchmarks showcast a very good

choice of TSS values and a very bad choice respectively. While kmeans has a very high

iteration length, it is also rather regular. This means, the DLS did not do as well as the

static scheduling. This could have been a good case for BOLD, but due to its regularity, did

not quite work out. The lavaMD and leukocyte benchmarks are the first irregular bench-

marks. The performance of almost all DLS beats the performance of static except for TSS

where the input values were chosen poorly. Lud, nn and nw seem all rather regular. They

only really differ in the choice of input values. It is very unexpected to see static schedul-

ing perform so well on a LU decomposition. The myocyte benchmark is another slightly

irregular benchmark, resulting in similar performance from static scheduling and DLS alike.

Particlefilter is the most interesting benchmark of this suite. It contains irregularities,

leading to a suboptimal performance of static scheduling. The 10 parallelized loops are all

executed so frequently, that the SS method fails to achieve a reasonable performance. Due
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to the amount of different loops and their differing and sometimes extremely short execu-

tion times, the methods requiring input values do not work well. This is one of the only

benchmarks, where FAC, GSS are clearly better than the others. It seems to require a not

too coarse but also not too fine grained chunk size and little overhead due to the amount

of iterations. The three new methods with the least amount of overhead time reach the

best timings here. Streamcluster performs similar to this. Even tho the input values for

TAPER, BOLD and FSC are the same, the TAPER method completely fails. This can

be amounted to the extremely small µ and not so small σ value, which leads to a badly

computed chunk size of TAPERs. The srad benchmark is another regular benchmark with

a medium amount of iterations. Badly chosen TSS input values lead to a bad performance.

The one loop containing extremely small iterations leads to bad calculations of FSC chunk

sizes. In comparison to the streamcluster benchmark, the µ and σ are both extremely

small, resulting in a better calculation of the TAPER chunk size.

6.3.2 OpenMP SCR benchmark suite
Aligning with the Rodinia benchmark experiments, the OMPSCR benchmarks, as seen in

Figure 6.4, were also run with specific µ and σ set for every parallel loop. In general there

are more regular benchmarks in this suite and their execution times are higher, leading

to a smaller dataset overall, since less experiments could be performed in the same time.

fft6 is one of the only irregular benchmarks, leading to a slightly better performance of DLS

compared to static scheduling. The sizes for TSS were chosen poorly. The fft benchmark is

regular, has a lot of iterations and a small iteration time, leading to bad performance for any

DLS with high overhead. The only DLS keeping up with static scheduling are GSS and FAC

due to their small overhead time and comparably small number of scheduling operations.

The qsort benchmark is another regular one. Most of the input values here were chosen

poorly, which results in bad performance on any method requiring these, namely FSC,

BOLD, TAPER and TSS. The md benchmark shows an extreme case of a very regular

application with a huge amount of iterations. The bad performance of FSC can not be

explained by a bad choice of input values, since TAPER and BOLD use the same σ. The

mandel benchmark is highly irregular with a low amount of loop iterations. The loop

iteration times are comparatively high and the BOLD method is therefore able to make good

calculations and predictions, which leads to a good performance. The lu implementation

of OMPSCR is slightly more irregular, but the static method still performs just as well as

the best DLS methods. Lastly the pi benchmark is very regular with a huge amount of

iterations. The SS method is the only one to perform badly here, showing well chosen input

values for the other DLS methods.

6.3.3 NASA OpenMP parallel benchmark suite
For NAS, only one experiment was made. It took four days to complete and includes every

benchmark run in every size on every scheduling method. The results do not carry much

significance, since they stem from one single run only. Furthermore, every parallel loop was

set to use the runtime schedule, which might not be optimal. In some cases there were
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up to 77 different loops. Most smaller loops lose time on scheduling overhead due to this.

The µ and σ values were set to the same number for every benchmark. Considering all of

that, the UA benchmark has irregular and regular parts. The irregular parts overweight the

regular ones, leading to an improvement in performance on using some DLS. For SS there

are simply too many loop iterations overall, leading to too many scheduling operations and

a bad execution time. The SP , MG, LU , FT and EP benchmarks are fairly regular and

show no big difference in execution times between scheduling methods. This leads to the

conclusion, that not many iterations are scheduled and the sequential part of these programs

overweights the parallel part. The CG benchmark contains a slightly higher number of

iterations, leading to a worse performance of SS. The other scheduling methods are still

reasonably close in performance. The BT method shows signs of badly chosen input values

on all methods requiring these. Lastly, the only definitely irregular application, IS shows

good performance for every scheduling method, except for TSS due to badly chosen input

values. The DLS generally beat static scheduling here, but not by a lot. Overall it looks

like the NAS benchmarks contain a lot of sequential operations, leading to a very similar

performance of all scheduling methods. This could be improved by changing the scheduling

method of single loops and adapting input values. The graphs as seen in Figure 6.5 and

Figure 6.6 are on a logarithmic scale, showing the extremely poor performance of SS on

many benchmarks.

6.3.4 Spec OpenMP benchmark suite
Like the NASA OpenMP suite, SPEC OMP was also only executed once. One experiment

was made with all benchmarks run for the size refsize on each scheduling method. Once

again, general input values for µ and σ were chosen. This lead to less comparable results

overall and especially bad performance for FSC, TAPER and BOLD. Most of the input

values for TSS were also once again chosen poorly.

The first benchmark, wupwise, contains multiple loops with a lot of iterations, leading to bad

performance for SS. A badly chosen σ with no reference µ, lead to a very bad performance of

FSC. The swim benchmark shows similar results to the wupwise benchmark. This time, the

static method beat out the other methods by a big amount showing a very high regularity

of the application. mgrid showcasts an abysmal choice of TSS input values, leading to

a execution time multiple times higher than the other DLS. Once again, it is a regular

application. Equake behaves like wupwise with another badly chosen σ and big number

of iterations. Apsi and fma3d are also regular benchmarks and behave very similar to

the already mentioned benchmarks. Art and Ammp are the only irregular benchmarks in

SPEC OMP. Ammp shows a general good performance of all new DLS methods, even tho

the different input values were not specifically chosen for each loop. Therefore the more

general method, FAC, scored the best result.

The benchmark art was specifically modified to only contain one parallel loop with schedule

set to runtime. This loops single iteration execution times were measured and used for the

calculation of µ and σ. The start size for TSS was set to follow the Equation 2.3 and the

end size set to 1. It still performed considerably worse than the other, newer DLS. Although
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all the input values were chosen carefully, the FAC and SS methods performed similar to

TAPER, FSC and BOLD. More experiments should be run here to achieve more comparable

results.
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Figure 6.2: Medians, standard deviation, minimum and maximum values of the execution
time of 100 runs of the Rodinia benchmark suite.
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Figure 6.3: Medians, standard deviation, minimum and maximum values of the execution
time of 100 runs of the Rodinia benchmarks.
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Figure 6.4: Medians, standard deviation, minimum and maximum values of the execution
time of 60 runs of OMPSCR.
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Figure 6.5: Results of the runs of one NAS benchmark with different input sizes and DLS
methods.
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Figure 6.6: Results of the runs of one NAS benchmark with different input sizes and DLS
methods.
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Figure 6.7: Results of the SPEC OMP benchmark runs with different input sizes and DLS
methods.
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Conclusion and Future Work

In this thesis we show that implementing new DLS methods into OpenMP is possible and

feasible. These DLS methods achieved a better load balance than the static method in all

experiments. Their mean and median execution times usually lie between the two extremes,

static and SS, their exact position depending on the irregularity of the application, the

amount of loop iterations, the single loop iteration time and the choice of input values.

When looking at the results, every one of the six implemented DLS methods managed to

speed up at least one benchmark more than all the other methods. Some methods achieved

a minimum execution time, others had the best mean or median execution times over all

the experiments.

In the benchmarks with regular load, the factoring methods achieved similar results to

the static method, since their overhead is similarly small. In benchmarks with very few

iterations, the factoring methods performed worse due to their batching nature.

The most volatile methods are the ones relying on an user input. If the input is chosen well,

they outperform the other methods. For less well chosen inputs, they are usually the worst

performers. Especially for the BOLD and TSS methods our results confirm this. Since the

input for the FSC, BOLD and TAPER methods is the same, one would expect them to yield

similar results. But every one of these methods uses their input values in a different way

as explained in chapter 2. Looking at each method in detail, the FSC method performed

most closely to the SS method. The implementation of those two methods in libgomp is

almost identically. If we set the chunk size for SS to the same value, that FSC uses, the two

methods would be identical.

The TAPER method is derived from the GSS method and shows similar results. It surpasses

GSS on loops with a high standard deviation of iteration execution time, but only increases

the overhead time on loops with near zero standard deviation of iteration execution time.

The input values need to be chosen carefully to achieve optimal performance.

The most volatile method, BOLD, is our only adaptive method. Its performance relies on

not only the input of the mean and standard deviation of iteration execution time, but also

on a measurement of time inside the method itself.

If each iteration takes too little time, the time measurements are not accurate enough and

the method performs suboptimal. The input for the TSS method differs from the one for the
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other methods. It can not be measured beforehand, but could be calculated with knowledge

of the execution time of every iteration, the number of processes, the number of iterations

and the underlying system status. Tzen and Mi suggest in their paper introducing TSS

to set the starting value of N
2∗P and the end value of anything between the starting value

and one [5]. In this thesis we generally used these values as input, but the results were not

always as desired.

7.1 Future work
With this thesis we aimed to lay a foundation for future research into the use of different DLS

methods. We showed that implementing those into OpenMP is possible. The results show,

that the implementation is feasible. Further research could be done on the DLS methods to

find an area of application for each one. Other areas would be the implementation of yet

more DLS into OpenMP. For example the adaptive factoring method could be implemented

by changing the GCC, not just libgomp. For it we would need to find a point inside of the

GCC code, which gets executed every loop iteration to measure single loop iteration times.

When this is done, the rest of the method can be implemented in libgomp. Another area of

interest is the choice of DLS for a specific task. Automatically choosing the best scheduling

method for the task at hand could also be an area, which future students could explore.

Some of the DLS methods considered and evaluated in this thesis did not show their full

potential in the executed experiments. For example the whole point of WF is to run on

machines with PUs of differing speeds. One could also vary the input values of the DLS

methods to try to achieve better performance on the same experimental setup as we used.

For more experiments, the papers used in chapter 2 could be consulted. It would be very

interesting to see, if the libgomp implementations can be compared to the performance

shown in the simulations used in these papers.
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A
Appendix

A.1 modified code of libgomp

1 case GFS FACT:

2 {
3 i f ( num threads == 0)

4 {
5 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

6 s t r u c t gomp team ∗team = thr−>t s . team ;

7 num threads = ( team != NULL) ? team−>nthreads : 1 ;

8 }
9 ws−>g l o b a l f a c t c o u n t e r = −1;

10 ws−>maxworkload = 0 ;

11 ws−>maxworkload = ( end−s t a r t ) ;

12 break ;

13 }
14 case GFS TAPE:

15 {
16 i f ( num threads == 0)

17 {
18 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

19 s t r u c t gomp team ∗team = thr−>t s . team ;

20 num threads = ( team != NULL) ? team−>nthreads : 1 ;

21 }
22 double sigma = 0 ;

23 double mue = 0 ;

24 double alpha = 1 . 3 ;

25 sigma = s t r t o d ( getenv ( ”SIGMA” ) ,NULL) ;

26 alpha = s t r t o d ( getenv ( ”ALPHA” ) ,NULL) ;

27 mue = s t r t o d ( getenv ( ”MUE” ) ,NULL) ;

28 i f (mue == 0) mue = 0.0000000001 ;
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29 ws−>va = ( alpha ∗ sigma ) /mue ;

30 break ;

31 }
32 case GFS WFAC:

33 {
34 i f ( num threads == 0)

35 {
36 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

37 s t r u c t gomp team ∗team = thr−>t s . team ;

38 num threads = ( team != NULL) ? team−>nthreads : 1 ;

39 }
40 ws−>globalWFACcounter = −1;

41 ws−>WFACworkload = 0 ;

42 ws−>WFACarray = ( double ∗) mal loc ( s i z e o f ( double ) ∗ num threads ) ;

43 f o r ( i n t i= 0 ; i < num threads ; i++) ws−>WFACarray [ i ] = 1 ;

44 char ∗ env weights = getenv ( ”WEIGHTS” ) ;

45 f o r ( i n t i = 0 ; i < num threads ; i++) {
46 ws−>WFACarray [ i ] = s t r t o d ( env weights , &env weights ) ;

47 }
48 ws−>WFACworkload = ( end−s t a r t ) ;

49

50 break ;

51 }
52 case GFS BOLD:

53 {
54 i f ( num threads == 0)

55 {
56 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

57 s t r u c t gomp team ∗team = thr−>t s . team ;

58 num threads = ( team != NULL) ? team−>nthreads : 1 ;

59 }
60 double boldsigma = 0 ;

61 ws−>t o t a l s p e e d = 0 ;

62 boldsigma = s t r t o d ( getenv ( ”SIGMA” ) ,NULL) ;

63 ws−>boldmue = s t r t o d ( getenv ( ”MUE” ) ,NULL) ;

64 ws−>boldh = s t r t o d ( getenv ( ”BOLDH” ) ,NULL) ;

65 i f (ws−>boldmue == 0) ws−>boldmue = 0.0000000001 ;

66 ws−>b o l d t s e t=f a l s e ;

67 ws−>bolda = 2∗ ( ( boldsigma /ws−>boldmue ) ∗( boldsigma /ws−>boldmue ) ) ;

68 ws−>boldb = 8∗ws−>bolda ∗ l og (8∗ws−>bolda ) ;

69 i f (ws−>boldb > 0) ws−>l n b = log (ws−>boldb ) ;

70 ws−>p inv = 1.0/ num threads ;

71 ws−>c1 = ws−>boldh /(ws−>boldmue∗ l og (2 ) ) ;
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72 ws−>c2 = s q r t (2∗M PI) ∗ws−>c1 ;

73 ws−>c3 = log (ws−>c2 ) ;

74 ws−>boldm = end ;

75 ws−>boldn = end ;

76 ws−>boldarray = ( double ∗) mal loc ( s i z e o f ( double ) ∗ num threads ) ;

77 ws−>speedarray = ( double ∗) mal loc ( s i z e o f ( double ) ∗ num threads ) ;

78 ws−>t imearray = ( s t r u c t t imespec ∗) mal loc ( s i z e o f ( s t r u c t t imespec ) ∗
num threads ) ;

79 s t r u c t t imespec t imerhe lpe r ;

80 c l o c k g e t t i m e (CLOCK MONOTONIC, &t imerhe lpe r ) ;

81 c l o c k g e t t i m e (CLOCK MONOTONIC, &ws−>boldt ime ) ;

82 f o r ( i n t i = 0 ; i < num threads ; i++){ ws−>boldarray [ i ] = 0 ;}
83 f o r ( i n t i = 0 ; i < num threads ; i++){ ws−>speedarray [ i ] = 0 ;}
84 f o r ( i n t i = 0 ; i < num threads ; i++){ ws−>t imearray [ i ] =

t imerhe lpe r ;}
85 break ;

86 }
87 case GFS TRAP:

88 {
89 i f ( num threads == 0)

90 {
91 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

92 s t r u c t gomp team ∗team = thr−>t s . team ;

93 num threads = ( team != NULL) ? team−>nthreads : 1 ;

94 }
95 ws−>t rapcounter = −1;

96 ws−>d e c r d e l t a = 0 ;

97 ws−>s t a r t s i z e = 0 ;

98 s t a r t = ws−>next ;

99 end = ws−>end ;

100 chunk s i z e = ws−>chunk s i z e ;

101 ws−>s t a r t s i z e = a t o i ( getenv ( ”TRAPSTART” ) ) ;

102 i n t ends i z e = a t o i ( getenv ( ”TRAPEND” ) ) ;

103 i n t b ig n = (2∗ end ) /(ws−>s t a r t s i z e+ends i z e ) ;

104 i f ( b ig n != 1) { ws−>d e c r d e l t a = ( double ) ( ( double ) ws−>s t a r t s i z e

− ( double ) ends i z e ) /( ( double ) b ig n − 1 . 0 ) ;}
105 e l s e ws−>d e c r d e l t a = 1 ;

106 break ;

107 }
108 case GFS FSC :

109 {
110 i f ( num threads == 0)

111 {
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112 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

113 s t r u c t gomp team ∗team = thr−>t s . team ;

114 num threads = ( team != NULL) ? team−>nthreads : 1 ;

115 }
116 double h = s t r t o d ( getenv ( ”FSCH” ) ,NULL) ;

117 double sigma = s t r t o d ( getenv ( ”SIGMA” ) ,NULL) ;

118 i f ( sigma == 0) sigma = 0.0000000001 ;

119 double t e s t = ( s q r t ( 2 . 0 ) ∗( double ) end∗h) /( sigma ∗( double ) num threads

∗ s q r t ( l og ( ( double ) num threads ) ) ) ;

120 ws−> f s c s i z e = pow( te s t , ( 2 . 0 / 3 . 0 ) ) ;

121 i f (ws−> f s c s i z e > end ) ws−> f s c s i z e = end ;

122 i f (ws−> f s c s i z e < 1) ws−> f s c s i z e = 1 ;

123 break ;

124 }

Listing A.1: gomp loop init inside of loop.c

1 i n t g l o b a l f a c t c o u n t e r ;

2 i n t maxworkload ;

3 double va ;

4 i n t globalWFACcounter ;

5 i n t WFACworkload ;

6 double ∗WFACarray ;

7 double boldmue ;

8 double boldh ;

9 double bolda ;

10 double boldb ;

11 double ln b ;

12 double p inv ;

13 double c1 ;

14 double c2 ;

15 double c3 ;

16 long long boldm ;

17 long long boldn ;

18 long long t o t a l s p e e d ;

19 s t r u c t t imespec boldt ime ;

20 double ∗ boldarray ;

21 double ∗ speedarray ;

22 s t r u c t t imespec ∗ t imearray ;

23 i n t t rapcounter ;

24 double d e c r d e l t a ;

25 i n t s t a r t s i z e ;

26 // i n t WFACinit ;

27 i n t f s c s i z e ;
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28 i n t a facounte r ;

29 double ∗ a faca r ray ;

30 double ∗ a facspeed ;

31 double ∗afacmu ;

32 double ∗ afacs igma ;

33 long ∗ a fact imetaken ;

34 i n t ∗ a f a c i t e r c o u n t ;

35 bool b o l d t s e t ;

Listing A.2: gomp work share inside of libgomp.h

1 bool

2 g o m p i t e r f a c t n e x t ( long ∗ pstar t , long ∗pend )

3 {
4 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

5 s t r u c t gomp work share ∗ws = thr−>t s . work share ;

6 s t r u c t gomp team ∗team = thr−>t s . team ;

7 unsigned long nthreads = team ? team−>nthreads : 1 ;

8 long s ta r t , end , nend ;

9 unsigned long chunk s i z e ;

10 s t a r t = ws−>next ;

11 end = ws−>end ;

12 chunk s i z e = ws−>chunk s i z e ;

13 i n t mycounter = s y n c a d d a n d f e t c h (&ws−>g l o b a l f a c t c o u n t e r , 1) ;

14 whi le (1 )

15 {
16 unsigned long n , q ;

17 long tmp ;

18

19 i f ( s t a r t == end )

20 re turn f a l s e ;

21 n = ( end − s t a r t ) ;

22 i n t b l a t e s t = ( mycounter/ nthreads ) +1;

23 q = c e i l ( ( double ) ws−>maxworkload /(pow(2 , b l a t e s t ) ∗ nthreads ) ) ;

24 i f ( q < chunk s i z e )

25 q = chunk s i z e ;

26 i f ( b u i l t i n e x p e c t ( q <= n , 1) )

27 nend = s t a r t + q ;

28 e l s e

29 nend = end ;

30

31 tmp = sync va l compare and swap (&ws−>next , s t a r t , nend ) ;

32 i f ( b u i l t i n e x p e c t (tmp == sta r t , 1) ) {
33 break ;}
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34 s t a r t = tmp ;

35 }
36

37 ∗ p s t a r t = s t a r t ;

38 ∗pend = nend ;

39 re turn true ;

40 }
41

42 bool

43 gomp i t e r tape next ( long ∗ pstar t , long ∗pend )

44 {
45 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

46 s t r u c t gomp work share ∗ws = thr−>t s . work share ;

47 s t r u c t gomp team ∗team = thr−>t s . team ;

48 unsigned long nthreads = team ? team−>nthreads : 1 ;

49 long s ta r t , end , nend ;

50 unsigned long chunk s i z e ;

51 s t a r t = ws−>next ;

52 end = ws−>end ;

53 va = ( alpha ∗ sigma ) /mue ;∗/

54 chunk s i z e = ws−>chunk s i z e ;

55 whi le (1 )

56 {
57 unsigned long n ;

58 double q ;

59 long tmp ;

60 double Ti = ( double ) ( end − s t a r t ) /( double ) nthreads ;

61 i f ( s t a r t == end )

62 re turn f a l s e ;

63 n = ( end − s t a r t ) ;

64 q = ( Ti + ( ( ws−>va∗ws−>va ) / 2 . 0 ) − (ws−>va∗ s q r t ( 2 . 0∗Ti+((ws−>va∗ws

−>va ) / 4 . 0 ) ) ) ) ;

65 i f (q<=1) q=1;

66 i f ( q < chunk s i z e )

67 q = chunk s i z e ;

68 i f ( b u i l t i n e x p e c t ( q <= n , 1) )

69 nend = s t a r t + q ;

70 e l s e

71 nend = end ;

72 tmp = sync va l compare and swap (&ws−>next , s t a r t , nend ) ;

73 i f ( b u i l t i n e x p e c t (tmp == sta r t , 1) ) {
74 break ;}
75 s t a r t = tmp ;
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76 }
77 ∗ p s t a r t = s t a r t ;

78 ∗pend = nend ;

79 re turn true ;

80

81 }
82

83 bool

84 gomp i te r wfac next ( long ∗ pstar t , long ∗pend )

85 {
86 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

87 s t r u c t gomp work share ∗ws = thr−>t s . work share ;

88 s t r u c t gomp team ∗team = thr−>t s . team ;

89 unsigned long nthreads = team ? team−>nthreads : 1 ;

90 long s ta r t , end , nend , i n c r ;

91 unsigned long chunk s i z e ;

92 s t a r t = ws−>next ;

93 end = ws−>end ;

94 i n c r = ws−>i n c r ;

95 i n t tempcounter = s y n c a d d a n d f e t c h (&ws−>globalWFACcounter , 1) ;

96 chunk s i z e = ws−>chunk s i z e ;

97 whi le (1 )

98 {
99

100 unsigned long n , q ;

101 long tmp ;

102

103 i f ( s t a r t == end )

104 re turn f a l s e ;

105 n = ( end − s t a r t ) / i n c r ;

106 i n t b l a t e s t = ( tempcounter / nthreads ) +1;

107 q = c e i l ( ( ws−>WFACarray [ omp get thread num ( ) ] ) ∗ ( ( ws−>WFACworkload)

/ (pow(2 , b l a t e s t ) ∗ nthreads ) ) ) ;

108 i f ( q < chunk s i z e )

109 q = chunk s i z e ;

110 i f ( b u i l t i n e x p e c t ( q <= n , 1) )

111 nend = s t a r t + q ∗ i n c r ;

112 e l s e

113 nend = end ;

114 tmp = sync va l compare and swap (&ws−>next , s t a r t , nend ) ;

115 i f ( b u i l t i n e x p e c t (tmp == sta r t , 1) ) {
116 break ;}
117 s t a r t = tmp ;
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118 }
119 ∗ p s t a r t = s t a r t ;

120 ∗pend = nend ;

121 re turn true ;

122 }
123 double d i f f ( s t r u c t t imespec s ta r t , s t r u c t t imespec end )

124 {
125 s t r u c t t imespec temp ;

126 i f ( ( end . tv nsec−s t a r t . t v n s e c )<0) {
127 temp . t v s e c = end . tv sec−s t a r t . tv s ec −1;

128 temp . tv ns e c = 1000000000+end . tv nsec−s t a r t . t v n s e c ;

129 } e l s e {
130 temp . t v s e c = end . tv sec−s t a r t . t v s e c ;

131 temp . tv ns e c = end . tv nsec−s t a r t . t v n s e c ;

132 }
133 double time = temp . t v s e c + ( double ) ( temp . tv ns e c ) ∗0 .000000001 ;

134 re turn time ;

135 }
136

137 pthread mutex t lockt ime ;

138 bool

139 gomp i t e r bo ld next ( long ∗ pstar t , long ∗pend )

140 {
141 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

142 s t r u c t gomp work share ∗ws = thr−>t s . work share ;

143 s t r u c t gomp team ∗team = thr−>t s . team ;

144 unsigned long nthreads = team ? team−>nthreads : 1 ;

145 long s ta r t , end , nend ;

146 unsigned long chunk s i z e ;

147 s t a r t = ws−>next ;

148 end = ws−>end ;

149 s t r u c t t imespec bo ldt = ws−>boldt ime ;

150 pthread mutex lock(& lockt ime ) ;

151 c l o c k g e t t i m e (CLOCK MONOTONIC, &ws−>boldt ime ) ;

152 pthread mutex unlock(& lockt ime ) ;

153 s t r u c t t imespec boldt2 ;

154 c l o c k g e t t i m e (CLOCK MONOTONIC, &boldt2 ) ;

155 s y n c s u b a n d f e t c h (&ws−>boldm , ( long long ) ws−>boldarray [

omp get thread num ( ) ] ) ;

156 s y n c s u b a n d f e t c h (&ws−>to ta l speed , ( long long )ws−>speedarray [

omp get thread num ( ) ] ) ;

157 chunk s i z e = ws−>chunk s i z e ;

158 whi le (1 )
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159 {
160 unsigned long n ;

161 double q ;

162 long tmp ;

163 i f ( s t a r t == end )

164 re turn f a l s e ;

165 n = ( end − s t a r t ) ;

166 q = n/ nthreads ;

167 i f (q<=1){
168 q=1;

169 }
170 e l s e {
171 double r = 0 ;

172 i f (ws−>boldn >=0){
173 r = max(n , ws−>boldn ) ;

174 }
175 e l s e r = n ;

176 double t = ws−>p inv ∗ r ;

177 double ln Q = log ( q ) ;

178 double v = q /(ws−>boldb+q ) ;

179 double d = n /(1 .0+(1 .0/ ln Q )−v ) ;

180 i f (d<=ws−>c2 ) {
181 q = t ;

182 }
183 e l s e {
184 double s = ws−>bolda ∗( l og (d)−ws−>c3 ) ∗(1 .0+(ws−>boldm /( double ) ( r ∗

nthreads ) ) ) ;

185 double w = 0 ;

186 i f (ws−>boldb > 0) w = log ( v∗ ln Q )+ws−>l n b ;

187 e l s e w = log ( ln Q ) ;

188 q = min ( t+max(0 , ws−>c1∗w)+(s / 2 . 0 )−s q r t ( s ∗( t+(s /4 . 0 ) ) ) , t ) ;

189 }
190 }
191 i f ( q < 1 . 0 )

192 q = chunk s i z e ;

193 i f ( b u i l t i n e x p e c t ( q <= n , 1) )

194 nend = s t a r t + q ;

195 e l s e

196 nend = end ;

197 tmp = sync va l compare and swap (&ws−>next , s t a r t , nend ) ;

198 i f ( b u i l t i n e x p e c t (tmp == sta r t , 1) ) {
199 ws−>boldarray [ omp get thread num ( ) ] = q ;

200 double d i f f 1 = d i f f ( boldt , bo ldt2 ) ;



Appendix 54

201 i f ( ! ws−>b o l d t s e t ) {
202 d i f f 1 = 0 ;

203 ws−>b o l d t s e t = true ;

204 }
205 double d i f f 2 = d i f f (ws−>t imearray [ omp get thread num ( ) ] , bo ldt2 ) ;

206 s y n c s u b a n d f e t c h (&ws−>boldn , ( long long ) ( d i f f 1 ∗ws−>t o t a l s p e e d

+q−(( d i f f 2 ∗q ) /( q∗ws−>boldmue+ws−>boldh ) ) ) ) ;

207 ws−>t o t a l s p e e d += q /( ( q∗ws−>boldmue )+ws−>boldh ) ;

208 ws−>speedarray [ omp get thread num ( ) ] = q /( ( q∗ws−>boldmue )+ws−>
boldh ) ;

209 ws−>t imearray [ omp get thread num ( ) ] = boldt2 ;

210 break ;}
211 s t a r t = tmp ;

212 }
213 ∗ p s t a r t = s t a r t ;

214 ∗pend = nend ;

215 re turn true ;

216 }
217

218 bool

219 gomp i t e r t rap next ( long ∗ pstar t , long ∗pend )

220 {
221 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

222 s t r u c t gomp work share ∗ws = thr−>t s . work share ;

223 long s ta r t , end , nend ;

224 unsigned long chunk s i z e ;

225 s t a r t = ws−>next ;

226 end = ws−>end ;

227 chunk s i z e = ws−>chunk s i z e ;

228 i n t mynumber = s y n c a d d a n d f e t c h (&ws−>trapcounter , 1) ;

229 whi le (1 ) {
230 unsigned long n , q ;

231 long tmp ;

232 i f ( s t a r t == end ) re turn f a l s e ;

233 q = 0 ;

234 i f (ws−>s t a r t s i z e != 0 && ws−>d e c r d e l t a !=0) {
235 q = ws−>s t a r t s i z e − (ws−>d e c r d e l t a ∗ mynumber) ;

236 }
237 n = ( end − s t a r t ) ;

238 i f ( q < chunk s i z e )

239 q = chunk s i z e ;

240 i f ( b u i l t i n e x p e c t ( q <= n , 1) ) nend = s t a r t + q ;

241 e l s e nend = end ;
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242 tmp = sync va l compare and swap (&ws−>next , s t a r t , nend ) ;

243 i f ( b u i l t i n e x p e c t (tmp == sta r t , 1) ) {
244 break ;}
245 s t a r t = tmp ;

246 }
247 ∗ p s t a r t = s t a r t ;

248 ∗pend = nend ;

249 re turn true ;

250 }
251

252 bool

253 g o m p i t e r f s c n e x t ( long ∗ pstar t , long ∗pend )

254 {
255 s t r u c t gomp thread ∗ thr = gomp thread ( ) ;

256 s t r u c t gomp work share ∗ws = thr−>t s . work share ;

257 long s ta r t , end , nend , chunk , i n c r ;

258 end = ws−>end ;

259 i n c r = ws−>i n c r ;

260 chunk = ws−> f s c s i z e ;

261 i f ( b u i l t i n e x p e c t (ws−>mode , 1) )

262 {
263 long tmp = s y n c f e t c h a n d a d d (&ws−>next , chunk ) ;

264 i f ( i n c r > 0)

265 {
266 i f ( tmp >= end )

267 re turn f a l s e ;

268 nend = tmp + chunk ;

269 i f ( nend > end )

270 nend = end ;

271 ∗ p s t a r t = tmp ;

272 ∗pend = nend ;

273 re turn true ;

274 }
275 e l s e

276 {
277 i f ( tmp <= end )

278 re turn f a l s e ;

279 nend = tmp + chunk ;

280 i f ( nend < end )

281 nend = end ;

282 ∗ p s t a r t = tmp ;

283 ∗pend = nend ;

284 re turn true ;
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285 }
286 }
287

288 s t a r t = ws−>next ;

289 whi le (1 )

290 {
291 long l e f t = end − s t a r t ;

292 long tmp ;

293

294 i f ( s t a r t == end )

295 re turn f a l s e ;

296

297 i f ( i n c r < 0)

298 {
299 i f ( chunk < l e f t )

300 chunk = l e f t ;

301 }
302 e l s e

303 {
304 i f ( chunk > l e f t )

305 chunk = l e f t ;

306 }
307 nend = s t a r t + chunk ;

308

309 tmp = sync va l compare and swap (&ws−>next , s t a r t , nend ) ;

310 i f ( b u i l t i n e x p e c t (tmp == sta r t , 1) ) {
311 break ;

312 }
313 s t a r t = tmp ;

314 }
315 ∗ p s t a r t = s t a r t ;

316 ∗pend = nend ;

317 re turn true ;

318 }

Listing A.3: iter x next inside of iter.c

A.2 additional table
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Table A.1: Table of experiments done with respective input values for FSC, TAPER,
BOLD and TSS

Benchmark Name
Total #

of parallel loops
input values µ, σ, TSSstart-TSSend

b+tree 1 µ = 0.000001, σ = 0.000006, 200-10

cfd 5

µ1 = 0.00000001, σ1 = 0,
µ2 = 0.00000001, σ2 = 0.000002,

µ3 = 0.00001, σ3 = 0.00005,
µ4 = 0.00001, σ4 = 0.00004,

µ5 = 0.000013, σ5 = 0.00004, 1000-200
hotspot 1 µ = 0.00011, σ = 0.005, 200-10
hotspot3D 1 µ = 0.0004, σ = 0.002, 20-2
kmeans 1 µ = 0.3, σ = 1.7, 300-50
lavaMD 1 µ = 0.001, σ = 0.008, 20-1

leukocyte 3
find ellipse: µ = 0.0042, σ = 0.0179,

track ellipse: µ = 0.15, σ = 0.66, 20-1

lud 2
µ1 = 0.000024, σ1 = 0.000101,

µ2 = 0.000002, σ2 = 0.000015, 20-1
myocyte 1 µ = 0.013, σ = 0.057, 20-1
nn 1 µ = 0.000008, σ = 0.000032, 20-1

nw 2
µ1 = 0.000004, σ1 = 0.000018,

µ2 = 0.000002, σ2 = 0.00001, 100-5

particlefilter 10

µ1−3 = 0.0000001, σ1−3 = 0.000001,
µ4 = 0.000001, σ4 = 0.000004,

µ5−9 = 0.00000001, σ5−9 = 0.0000001,
µ10 = 0.000004, σ10 = 0.00002, 100-5

srad 2
µ1 = 0.00002, σ1 = 0.00007,

µ2 = 0.00000001, σ2 = 0, 50-10

streamcluster 2
µ1 = 0.000001, σ1 = 0.000004,

µ2 = 0.00000001, σ2 = 0.000001, 200-5

fft6 4
µ1−3 = 0.0005, σ1−3 = 0.000005,

µ4 = 6.334337, σ4 = 26.949404, 5-1
qsort 1 µ = 0.00005, σ = 0.001, 200-10

md 2
µ1 = 0.00389, σ1 = 0.0165,

µ2 = 0.00000001, σ2 = 0.000002, 1000-10
mandel 1 µ = 0.000218, σ = 0.001, 10000-100
fft 1 µ = 0.00000001, σ = 0.0000001, 262144-10
lu 1 µ = 0.000065, σ = 0.000276, 200-5
pi 1 µ = 0.00000001, σ = 0.0000001, 106-105

UA 77 in 11 files µ = 0.0005, σ = 0.000005, 200-10
SP 32 in 10 files µ = 0.0005, σ = 0.000005, 200-10
MG 13 µ = 0.0005, σ = 0.000005, 200-10
LU 45 in 15 files µ = 0.0005, σ = 0.000005, 200-10
FT 8 µ = 0.0005, σ = 0.000005, 200-10
EP 1 µ = 0.0005, σ = 0.000005, 200-10
CG 18 µ = 0.0005, σ = 0.000005, 200-10
BT 33 in 11 files µ = 0.0005, σ = 0.000005, 200-10
IS 9 µ = 0.0005, σ = 0.000005, 200-10

wupwise 16 in 10 files µ = 0.0005, σ = 0.000005, 200-10
swim 8 µ = 0.0005, σ = 0.000005, 200-10
mgrid 12 µ = 0.0005, σ = 0.000005, 200-10
equake 11 µ = 0.0005, σ = 0.000005, 200-10
apsi 28 µ = 0.0005, σ = 0.000005, 200-10
fma3d 93 µ = 0.0005, σ = 0.000005, 200-10
art 1-4 static, 5 runtime µ5 = 0.0082, σ5 = 0.057, 62-1
ammp 7 µ = 0.0005, σ = 0.000005, 200-10
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